A Designer's Decision Aiding System : DDAS

Jenny Darzentas, Thomas Spyrou, Eftihia Benaki, John Darzentas

Research Laboratory of Samos
Dept. of Mathematics
University of the Aegean
g-mail; jennydi@aegean.gr

Keywords: decision aiding systems, design, usability, expert systems.

Abstract

This paper describes the development of a working system for aiding designers of computer
systems find appropriate tools and methods to enable them tackle usability problems. The
approach taken for the design of the system is based on Soft Systems Methodology (SSM) and
fuzzy reasoning in the form of Test Score Semantics and has been extensively described elsewhere.
Here the building of the knowledge base and features of interaction with system are explained and
ilustrated with an example. The impartance of the DDAS, lies not just in its usefulness to the
designer, who now has access 1o bodies of knowledge in direct relation to a problem of concern,
but in its claim to provide a methodology for decision aid in similar situations where problems
exist, and tools to sofve them also, but where a short cut or aid is needed to bring the two together

Keywords: decision aiding systems, design, human computer interaction, expert systems.

Acknowledgement: The work reported on in this paper was funded by the ESPRIT Basic
Research Action 7040 AMODEUS {Assayving Means of Design Expressions for Users and
Systems)

1. Intreduction

The work described in this paper was carried out as part of the Amodeus project, one of the
world's largest multidisciplinary HCI consortiums, developing modelling and analytical
techniques for Human Computer Interaction.

The motivation for the genesis of the DDAS was as a transfer activity i.e. informing design
practitioners of the potential of the Amodeus techniques. The approach that was taken to study
the problem situation and design the system has been extensively described elsewhere [5,6,7,8].

The starting point for the architecture and development of the system is the assumption that the
design practitioner confronted with a usability problem. - a problem which may be well
articulated or only vaguely suspected. - would need some help 1o assess which techniques are
best suited to solve this problem. In effect, by a designer decision aiding system is meant a
system whose purpose is to help a designer by first solving the problem of finding the most
appropriate tools, within a specific array, to tackle the situation of concern.

In developing the DDAS some immediate limitations had to be imposed upon this scenario, in
order to define the scope of the system.

Firstly and most obviously, it is not possible to offer aid for all problems or classes of
problems, but only those that the Amodeus modelling techniques can handle. However, the
array of Amodeus techniques covers design from a user oriented, task oriented, system oriented
and design rationale points of view, and while one cannot claim that they cover all possible
problems, it would probably be true to say that at least at some level of granularity they touch
upon all.

Secondly, it 1s not possible to allow the designer-user to express his problem freely in natural
language, because all effort would go to processing the input and trving to match it to the
knowledge base of problems handled by Amodeus. Nor would this state of affairs be very
desirable. Recent work in active DSS show that the user prefers "active” aid from a system,
and wants to be prompted [11]. A user who has a very well formed idea of what his problem is
would not mind expressing it , (though he may wonder if the machine is interpreting it as he
wants), but a user who just "has a feeling" would have difficulties making that intuitive
response to a situation comprehensible to the system.

Thirdly, the DDAS is designed at present to do no more than assess the user’s need for
technique(s) and make a recommendation and present this to him with some justification which
will show the reasoning the system used to arrive at its conclusion. The svstem does not store
knowledge about how a technique is used, or what skills are needed to use it. Thus it could be
entirely possible that a recommendation is made which requires a background in software
engineering which the user has not been assessed for. The reason for separating out the “what
1t does” from the “how it does it” was to remain faithful to a desire to have the techniques
“compete” on similar terms and eliminate as much as possible constraints that would impose a
too early limiting of choices upon the user. From a practical point of view as well, if a problem
could be aided by a technigne which requires, for instance, skilled personnel. then it is not
unlikely that the design practitioner will take steps to acquire the services of said personnel, if
at all possible. '

The ways for dealing with the above three limitations were, firstly, to build a knowledge base
cogtaining descriptions of the aspects of the overall design space which are relevant to the
modelling techniques; secondly, to present these descriptions to the user and ask him to select
those which most closely resemble his own problem of concemn; and lastly, have DDAS
complemented by a system, or even documentation, such as the Executive Summaries [2], or a
combination of multimedia documents describing a technique, showing it in action, etc. that
would cover supplementary information such as what it is, how it does it, who can do it, what is
needed, how to interpret the results, etc. The approach to eliciting the knowledge and designing
the overall svstem was based on SSM [3,4] and has been presented elsewhere [7].

The next section presents details of the implementation of the system, in terms of architecture,
and technical details; building and organising the knowledge base, and features of the
interaction. In section 3 an example session 1s given to illustrate the interaction, and section 4
presents conclusions and discussion.

2. Implementation

2.1 Architecture and technical details

The system architecture 1s represented in Figure 1. This shows the three main components of
the DDAS: the knowledge base; the reasoning module; and the communication module.

Implementation was carried out using CLIPS, an expert system environment developed by
NASA and HARDY, a hypertext based diagram editor for Xwindows and windows 3.1.
developed by AIAI of the University of Edinburgh.[9,10]

2.2 Knowledge base

The design of the content of the knowledge base, in terms of its organisation and its
manipulation is the result of a methodology that goes through four phases:

1. the extraction of statements that describe the potential of the modelling techniques
2. the extraction of subproblems that the above statements (1) refer to

3. the specification of the relationships of the above subproblems (2) with the modelling
techniques

4. the specification of relationships between and among the above subproblems (2)

2.2.1 Extraction of statements that define the modelling techniques

The modelling techniques were examined in tum and defining statements about each were
taken from the relevant literature [1,2]. The statements were descriptions of what a technique
does in relation to system usability design, as opposed to how to use an approach.

The statements that were extracted were shown to the modellers to check for interpretation and
consistency In order to arrtve at a final set of working statements. Examples of “what”
statements are given below:

CTA (Cognitive Task Analysis) identifies aspecis of design that place heavy demands
upon the user’s cognitive resources (memory, attention span, etc.)

FSM (Formal Systemns Methods) provides a framework for representing and
understanding the compatibility between functional (system) state and perceived state.

2.2.2 extraction of subproblems that the above statements (2.2.1) refer to

Considering that for each statement of the modelling techniques, resulting from the previous
phase, there is a purpose that justifies its existence, that purpose is used to extract the design
subproblem that lies behind the claims of the modelling technique, That is to say, searching for
the answers to the question "What problems does each modelling technigue trv to solve?",

The CTA example given above implies that there exist aspects of design which are difficult for
users to cope with cognitively. In metamorphosing from claims to subproblems, whole sets of
subproblems are revealed. It is possible that more than one statement of a modelling technique
refers to the same subproblem. It is also possible that more than one statement from different
modelling techniques refers to the same subproblem. In the DDAS, the subproblems are
considered in the sense of Checkland's {3,4] purposeful activity subsystems.

These design subproblems are noted down and then compared and contrasted to see which are
common 1n order to arrive to a sets of subprobiems which eliminates redundancy,

Some examples of the subproblems are the following:

isolate features that the user will find hardest to learn

reason whether some program correctly implements a given specification

predict reasonable user behaviours that the designer did not intend and did not want etc.

2.2.3 specificarion of the relationships of the above subproblems (2.2.2) with the modelling
techniques.

Each one of the subproblems 1s related with one or more modelling technigues. Only one type
of relationship is considered here, that which specifies how well the modelling technique
satisfies the particular subproblem. ’

For example, a subproblem A may be well satisfied by the CTA modelling technique,
somewhat less satisfied by the FSM medelling technique and not satisfied at all by other
modelling techniques. This means that the particular subproblem has this ‘degree of
satisfaction’ relationship with two of the modelling techniques.

The knowledge about this relationship between the techniques and the subproblems were
elicited from the modellers, who were presented with the sets of subproblems and were asked to
give a degree of satisfaction of their modelling technique to each one of the subproblems within
them. The modellers were given the opportunity to use either a given scale of quantifiers (a lot
... a little) or to define thelr own scale of quantifiers, in order to give the degree of how well
their modelling technique satisfies each one of the subproblems. In the second case, when the
modellers defined their own scale of quantifiers, they had to explicitly state what the scale
meant. The modellers were invited to make comments on the subproblems, and especially
useful were comments regarding the presentation of the subproblems e.g. as disjointed
statements, placed in a hierarchy, etc. Examples were taken from case studies to illustrate the
subproblem descriptions or modelling technigue claims

In the spirit of Checkland. the methodology is viewed as a learning process rather than a
requirements/specification process. The modellers were presented with "problems” that were
often little more than paraphrases of statements about modelling techniques. The modellers, in
rating the subproblems, were asked to ignore these strong associations and to try to assess each
subproblem statement as though it were free of connotations. The modellers commented upon
the fact that this exercise made them aware of the scope of their techniques as well as how they
might be viewed by designers.

2.2.4 specification of relationships among the above subproblems (2.2.2}

Apart from the degree-of-satisfaction type of relationship that each subproblem mayv have with
one or more modelling techniques, the subproblems may also be related with one or more other
subproblems. These relationships among the subproblems exist regardless of the modelling
techniques. Some of these relationship types are generality/specificity, low possible
concurrency, high possible concurrency, and are defined below.

Type generality (gen): if A and B are subproblems. members of the relationship 'A (gen) B,
this means that subproblems B is a more specific subproblem than subproblem A and
subproblem A is more general than B. In other words, B is a subproblem of subproblem A. This
type of relationship includes the type specificity (spec) as well. Each time there is A {gen) B,
there is also B (spec) A. Such relationships derive from questions asked such as:

* move towards the specific (How can youtellit'sa..?. Can vou give examples of ...?)

s move towards the general (What have ... got in common?, What are ... examples of?, What
distinguishes ... from..?)

¢ move orthogonal to the axis {What alternative examples of ... are there to ...7)

1d be noted that for the following types of relationships A is considered to be one subproblem or a
conjunction of subproblems (Al [and A2 [and ..Ai]]) and B to be one subproblem or a
conjunction of subproblems (Bl [and B2 [and ... Bj]]).

Tvpe low possible concurrency (lpc): if A and B are subproblems and also members of the
relationship "A (Ipc) B’, then the possibility that both A and B are parts of the user's problem is
very low,

Tvpe high possible concurrency (hpe): if A and B are subproblems and also members of the
relationship "A (hpc) B’, then the possibility that both A and B are parts of the user's problem is
very high.

225 Results of the methodology

Phase 2.2.3 provides a set of subproblems related to the modelling techniques. Phase 2.2.4
takes this set of subproblems and specifies the relationships among the subsystems-problems
that follow the above definitions and thus converts the set of subproblems to a network of
related purposeful activity subsystems.

2.3 Interacting with the system

A main assumption of the DDAS is that the designer-user will express his problem according to
the subproblems of this network that have their source in the modelling techmques. The
following sections discuss the presentation of the subproblems to the user; how the user can be
guided to express/identify his problem and what facilities are available for this; and finally how
the system outputs recommendations.

The interaction with the user is based upon two types of presentation elements: the graphic
display of the subproblems, and the commands that manipulate the interaction.

The subproblems are displayed in the form of labelled shapes and are laid out in a series of
screens browsable by the user. Two types of shapes are used, one to represent the fact that
there exist more specific problem descriptions in the knowledge base, while the other shape
represents the most specific expression of & subproblem contained in ihe xnowledge base. In
the current version, the former are shown as rhombii, the latter as circles. Shapes may be
linked by arcs which denote different types of relationships existing between subproblems, for
example, green arcs represent “high possible concurrency” and blue arcs, “low possible
COncurrency’ .

Commands are displaved as burtons on a toolbar which 1s permanently on screen. These
commands aid the user to choose amongst the available facilities of the system, for example the
facility of moving to diagrams/screens that correspond to different levels of analysis is
performed by double arrow buttons.

231 Guiding the user to identify his problem

During the interaction the subproblems are displayed to the user. in order for him to search for
and identify the subproblems descriptions that he considers as most relevant to his problem.
The objective is for him to make a selection of these relevant subproblems which is a way of
expressing his situation of concern. Whilst selecting (by lefi-clicking on the subproblems}, the
user can also specify the degree of relevance of the subproblems to his problem, and should he
change his mind, he can unselect any subproblems he has already chosen. Each time he clicks
on a subproblem. its colour changes. Each colour shows the degree of importance of the
specific subproblems to the user The set of used colours are white, turquoise, yellow, magenta
and red, signifving least to maximum importance respectively. This is also the sequence of the
colours which appear when left clicking. After red, (most relevant) comes white again and the
user can go through this cycle as many times as he wants.

In order to guide the user through the network of subproblems. these are presented to him at
various levels of detailed description. This is done by presenting them in several screens
according to the subproblems’ degree of generality. It is possible for the user to go backwards
and forwards between screens (by using the buttons << >>).

Another feature of the system is that the user can ask for comments from the system about the
set of the subproblems he has chosen (Cormerts or Choices) This facility is available
any time during the interaction when selections are made. The comments that the system is able
to give are based on the relationships of the subproblems that exist in the knowledge base. For
instance, the user who has chosen both of the subproblems that are parts of a “low-possible-
concurrency’” relationship, is warmed that these subproblems are not usually concurrent. The
subproblems that are mentioned in the warning messages are highlighted with a black outline in
order to find them more easily. The system is flexible in the sense that it allows the user to
ignore the warning messages. Should the user want to follow the advice given, he may decide
how he wants 1o solve the implications, by either selecting and unselecting accordingly. Once
all the warning messages that the system has to show according to the relationships have been
displaved, the system reverts to the normal interaction state where the user can
choose/unchoose subproblems or choose one of the other available facilities.

A further facility available at any time is that of providing a formatted text description of the set
of subproblems chosen (Current State). The relationships that exist in the knowledge
base form the basis for the text description of the chosen subproblems. Once the text
description of the set of chosen subproblems has been presented. the svstem reverts to state
where the user can choose/unchoose subproblems or choose one of the other available facilities.

Should the user want an illustration of a particular problem description, he can obtain examples
of use of the he by using the example button {(or by shift-left-clicking on the subproblems in
question). This feature can be useful in helping the user decide about how close (if at all) the
specific subproblem description is to his own particular problem.

Finally, the user is also able to see instructions regarding the use of the system (3elp button).

2.3.2 QOutput of the interaction: Recommending

When the designer-user feels that the subproblems he has chosen describe his problem situation
adequately, he can request a recommendation from the system. The DDAS recommends which

the modelling technique(s) are suitable for his problem. This facility 1s available whenever no
other facility 1s active.

In the current version of DDAS, the recommendation is a formatted text which recommends the
user the most appropriate technigque(s). The reasoning behind this recommendation, which is
based upon fuzzy logic, is also given in the formatted text, in order to give the user the
justification of the rationale behind the recommendation. The compensation oriented score
operator from test score semantics [12] is used to compute the recommendation. For its
computation the degrees that specify how important each chosen most specific subproblems is
to the user (3.2.) and the degrees of how well the modelling techniques satisfy each chosen
subproblems are used (2.3).

3. Example

To illustrate some of the system’s capabilities, an example detailing a designer’s specific
problem and how he can handle it using DDAS follows. In this example, a designer's concemrmn
is that interface users are often confused by the outcome of clicking a button X. e.g. there can
be two different results of clicking the same button X in two different contexts respectively,

R
o " . e
PROVIDE A FRAMEWORK FOR
B CAPTURMNG PROPERTIES THAT ARE
ACENTIFY PROGLEMATIC FEATURES - GENERALLY REQUIRED TO EXIST :
N THE REQUIREMENTS » BETWEEN THE STSTEM AND THE (Bl
: . MNTERFACE o 22 i
/_. - = - " - I
ks - R -
_-PROVIDE A FRAMEWORK THAT -

~CONTRAST THE BFECIFICATION AND ; . < DOCUMENT THE DESON PROCESS
“.THE DESION OF AN NTERFACE. = .- .

DERTFY FEATURES I THE DEEWBN -,
| OF THE INTERFACE THAT NEED - - =,
TMODFICATIONS QR EXTENEIONS)

-

B il Fhs ks ST i

Figure 2. A snapshot of the most general subproblems diagram

The designer wants to resolve this problem. For the sake of the example, it is assumed that he
wants the solution to enable the users of the interface to distinguish clearly what are the
corresponding effects on the system when a button is pressed. It is also assumed that the
designer wants to check that this problem of the design of the interface does not start from a
confusion in the requirements.

The designer 1s firstly presented with a diagram which uses rhombii to represent the most
general subproblem descriptions, such as that given in Fig 2. The designer searches through'the
diagram for labels which come closest to expressing his problem. In this case, he chooses the
rhombii with the following labels and assigns to them a degree of relevance:

¢ IDENTIFY FEATURES IN THE DESIGN OF THE INTERFACE THAT NEED
MODIFICATIONS OR EXTENSIONS (red)

» IDENTIFY PROBLEMATIC FEATURES IN THE REQUIREMENTS (vellow)

*+ PROVIDE A FRAMEWORK FOR CAPTURING PROPERTIES THAT ARE
GENERALLY REQUIRED TO EXIST BETWEEN THE SYSTEM AND THE
INTERFACE (magenta)

= L 2=
I T WAL Py wF | FF i = Pirmtiad I b di S e b i A -
SR i
£ 2] :
& A ElEAa A .;'
- T - - T -~ - = 7 e
i iy mutimodal output r | 7 . 7 destify features that as
. B ntify mulim PURT, ety features that do mat < | OROTY Mam
+ endesing the samme pleoa of | - . .. bmistone due to an implict |
: ” . Cinsusdenhance soren stabdty: . ’
information . S sssumption . R
. AT T
T ‘e rtify features that users a j
- . L moet kel o make 2o ¢
e — o _ . Lo T P 7
- [Hentify featuies that userm wilt -7 o T -
. i find hardest #o lean ;. mentfyambguliesand ™. e
Adentify featues of the desigr g — bonfusione in the mquirmenis
 that piace heawy demands - ., and therfor terate toaustds 5
1 - H . - " H H
i Upen the yreds cognitve / — I L desgn speciications that ame 5
) RO Tes . Mf-."’\g:xgnﬂhrery straghticnwand -
N - T T . e T
. — e T provide & framewaiifor
L T e P Jreaponing about moduiaty,
- . e T Uraueshiby, podabity oo owe
el o7 ' 3¢ A0OUT CONCUNET,
. .) . . i=al] oy and
. o :
:;T:c:y ‘-ff*“rif Lﬂa}j:rr::i K : . C intetizaving at the izek, the
ioay of ambigu :) . .
contue bi T dentify conflisting ~Intaraction anguage and
- requiremernis : T _devies ever . :
] '

Figure 3. A snapshot of the most specific subproblems diagram

The designer presses the button with the label «>>« in order to move to the next diagram with
the more specific subproblem descriptions. He is then presented with a diagram which uses
circles and arcs 1o represent the possible subproblem descriptions and the relationships between

them, such as that given in Fig 3. The designer searches through the network diagrams for
labels which come closest to expressing his problem. In this case, he chooses the circles with
the following labels and assigns to them a degree of relevance (colour).

dentify features that are sources of ambiguity and confusion {red)

identify ambiguities and confusions in the requirements and therefore iterate towards design
specifications that are cognitively straightforward (vellow)

provide a framework for representing and understanding the compatibility between
functional (system) state and perceived state (conformance) (magenta)

provide a framework for representing and understanding the trade-off between what the
representation In itself will support and what must be supported by the system (affordance)
(turquoise)

provide a framework for representing and understanding the property of predictability:
supporting the system tasks by providing enough information to indicate to user what effect
his new actions will have (magenta)

Before going on to choose some more subproblem descriptions from the DDAS diagram, the
designer would like to have a commentary from the system about his choices. He clicks on the
«COMMENTS ON CHOICES» grey button. This advice is given in a message window as
shown in Fig. 4.

find hapdest to mamn

. .- Message. . . .

" atout modularty.
2, porEbilty, 2e veell

g 2t the tzek, the
n Bhguzoe and R
Lvis guay

Figure 4. Comments on Choices message window

In this particular case the displayed message comments that according to the system, the
subproblem description «provide a framework for representing and understanding the
compatibility berween functional (system) state and perceived siate (conformancej» usually
implies the one with the label «provide a framework for representing and understanding the
feedback which shows that a mistake has been made and the ease with which an inverse for an
incorrect action can be found (repair and recoveryj» and therefore the second could also be
chosen.

| |}
/p[\:ruﬁ'é;frame
mepress nting
S andemianding the
a which shenwe that
hae been made an
fth which an inve

i temporat
denign epace .
incre me Azl
bt design
- e 2 e s 4 Fes =2 thedesi;n/.'
= e . PloRte develops

_) ' = perception of the cveall
fezecn whether some pl:-g:arri: view of the desgn prvses

S _—

; oouectly implements agken |7 L jeep tadkof and make explck
) specttication - o L : despaer reaeoning, problem

Tem 5 soling and consesus

The designer can shift-lefi-click on a subproblem in order 1o see the available examples (if any)
of the specific subproblem. The examples help him understand some characteristic situations
that the subproblem should be chosen. The examples are given in a message window as shown
in Fig. 5.

Each time the designer wants to see a text description of the chosen subproblem he clicks on
the « CURRENT STATE» grey button. A window appears with formatted text which consists
of sentences that contain either one selected subproblems description or two selected
subproblems that are related with a type of relationship expressed in words. In this exaniple, a
part of the text description that the designer sees is shown on the window in Figure 6.

dentity mu

/
rendering 4

l\ in

/{:\enti'f'y faat
that place

Figure 6. Current state message window

In this way, the system, utilising its knowledge of the design space, and subproblems associated
with it, prompts the user and aids him to consider subproblem descriptions which may be
relevant to his problem of concern and which he has not chosen. The user considers the
system’s advice and is free to reject it should he not think it relevant.

Otherwise, the system highlights the subproblems mentioned with a black outline (Figure 7) to
help the user find the subproblems that the message refers to.

The user continues in this way, making selections, reading the comments on current choices
and reselecting until he is satisfies with what the current selection represents. During this cvcle
he can get at any time a text description of the current state.

When the designer is satisfied that he has a final set of chosen subproblem descriptions (i.e, he
doesn’t want to choose any more subproblem descriptions by clicking on them and that he
doesn’t want to change his belief about the importance he gave to the selected subproblem
descriptions, by changing their colour), he then clicks on the «Recommendation» button to get
a recommendation about the most appropriate modelling technique(s) for his problem. A
window appears with the recommendation. The computation representing the reasoning behind
this result is also displayed in the same window for traceablity. This can be transformed to
formatted text, in order to give the user the opportunity to understand and justify the system’s
reasoning {Figure 8).

o prdict masonabie user
3 behaviours that the desgmer

i did neot inkend and did net
weant

:.". guide and comtain the oyl

; " el | - that & tahen through any ore |

dasigh -probkm - epace

4 .

AR B framevtrtr 4 -

represantng and Q
/underetandjng the feedhark
which s hoane that 2 mistake

hae been mads and the caee

Ah whih an inve e for
ir%s:uect action can ba

- —
Bhd Iogical and & mpeiad,

atructuse o the desgn space
by meane of incecnental

b

< Fomin mad sorrE e e T - . pathering of cesign i
L T - - commime nte oe the deegn,
-~ - — — " " i
© ad pereption of the cuzrall - e o PR .euebp?’
: H e - — T

Jeaon wihizthersome progeam | wiew of the design procese

Figure 8, Recommendation message window

4. Conclusions and Discussion

Making a generally applicable catalogue of design problems, and/or even making a taxonomy
of such problems, is a difficult task to undertake and it is doubtful, in view of the rapidiy
changing nature of technology, and users' responses to it, whether such a task could be achieved
satisfactorily. The DDAS concentrates on those design space subproblems which can be aided
bv the modelling techniques and upon classifying these into a network according to the
relationships that exist among them.

This approach does not compare and contrast the modelling techniques. Instead, the
methodology looks at what design problems these techniques are capable of dealing with and
works by comparing and contrasting the problems, not the techniques themselves. In this way a
network of subproblems is generated. The network and the relationships within it relate to the
degree with which a modelling technique can deal with a subproblem, as well as to the
relationships between the subproblems themselves, When a user selects a sample set which
most closely resemble his own situation of concern, the system reasons by means of the test
score semantics using a number of operators, to provide a recommendation as to which
modelling technique(s) are the most appropriate for the user's particular problem, and backs
this up with a justification of its rationale.

The importance of the DDAS, lies not just in its usefulness to the designer, who now has access
to bodies of knowledge in direct relation to a problem of concern, but in its claim to provide a
methodology for decision aid in similar situations where problems exist, and tools to solve
them also, but where a short cut or aid is needed to bring the two together.

3. References

[1] Amodeus, ESPRIT Basic Research Action 3066, 1989-1992, AMODEUS (Assimilating
Models of Designers Users and Systems) and ESPRIT Basic Research Action 7040
AMODEUSII 1992-1995 (Assaying Means of Design Expressions for Users and Systems)
Documentation available by anonymous fip (fip.mrc-apu.cam.ac.uk) or by www
(http://www.mrc-apu.cam.ac.uk/amodeus/qref html)}.

[2] Buckingham Shum S., Jergensen A .H., Hammond N. and Aboulafia A (Eds), Amodeus-2
HCT Modelling and Design approaches: Executive Summaries and Worked Examples
Amodeus roject Documeni: TA/WPI6., 1954

[3] Checkland P.B. Systems Thinking, Systems Practice, Wiley, New York, 1981.

[4] Checkland P.B.. Scholes J. Soft Systems Methodology in action, Wiley, New York, 1990.

i5] Darzentas J., Darzentas J.S., Spyrou T. Defining the Design “Decision Space™ Rich
Pictures and Relevant Subsystems , Amodeus Project Document: TA/WP 21, 1994,

[6] Darzentas J., Darzentas J.S., Spyrou T. Fuzzy Reasoning and Systems Thinking in a
Decision Aid for Designers in Proceedings of Second European Conference on Intelligent
Techniques and Soft Computing, Aachen, ppl609-1614, 1994

[7] Darzentas J.. Darzemas J.S., Spyrou T. Designing a Designers’ Decision Alding System
(DDAS): a Designers’ Decision Aiding System, Journal of Decision Systems Hermes (in
press)

[8] Darzentas J., Darzentas J.S., Spyrou T. An Architecture for Designer Decision Aiding in

Brannback, M. and.Leino, T (Eds) DSS-Galore! Ebo Academy Press, Ebo Ser. A, 427,
ppll5-132, 1995,

[9] Giarratano J. and Riley G. Expert Systems: Principles and Programming. PWS Publishing,
Boston, MA., 2nd. edition, 1994,

[10} NASA Johnson Space Center, Houston, TX, “Clips Programmer’s Guide, Version 6.0,
JSC-250127, June 1993.

{11]Raghav Rao H., Sridhar R., Narain S. An active intelligent decision support system
Architecture and Simulation. Decision Support Systems, 12, pp. 79-91, 1994

[12] Zadeh L.A. Knowledge Representation in Fuzzy Logic, IEEE Transactions on Knowledge
and Data Engng 1 n° 1, pp. 89-100, 1989.

	c03 001.bmp
	c03 002.bmp
	c03 003.bmp
	c03 004.bmp
	c03 005.bmp
	c03 006.bmp
	c03 007.bmp
	c03 008.bmp
	c03 009.bmp
	c03 010.bmp
	c03 011.bmp
	c03 012.bmp
	c03 013.bmp
	c03 014.bmp
	c03 015.bmp

