Applying SICS: A technique for software modules Communication.

T. Spyrou', E. Sutinen’, A. Douma', H. Putkonen’, J. Darzentas'

'University of the Aegean *University of Qulu
Research Laboratory of Samos Tol, Oulu
GR 83200 Karlovassi, Samos FIN 99570 Finland
tsp@aegean.gr putko/@tolsun.oulu.fi

Abstract

In this paper SICS, a message parsing and message communication system, is presented as an effective
means af imtermodule communication during distributed saftware implementation of complex systems.
The use of this communication system is shown through SECURENET, one of the major RACE research
projects in the area of security of management in network environments. SICS plays a basic role in
SECURENET since it is the message passing system berween the different modules. The application and
use of SICS is presented here through its use by UHN one of the SECURENET modules which is
responsible for detection of malicious artacks. Also a number of experiments have been carried oui to
evaluate the characteristics of SICS and to test its potential in fast message transferring under varyving
conditions. SICS plays the role of communication manager and in parallel it has the responsibility for
maintaining a common communication dictionary. In this way the rewriting of code is minimised during
implementation and this is a major advantage in the development cycle.

Keywords: Intermodule communication, software modules, software architecture.

1. Introduction

This paper presents the use of an approach which is used to improve efficiency during the
implementation of software modules, This approach is considered as a prerequisite when various
software modules need to communicate during implementation. The problem of software modules'
communication is discussed and the actual system, SICS [6,7,8] (SECURENET Internal
Communication System) 1s proposed as a possible message passing system which solves a number
of such communication problems.

- SICS is also considered as a way of minimising the rewriting of code during implementation
offering in this way a major advantage in the development cycle.

The initiative for building SICS comes from LINDA [1.2,3] a system for dividing software tasks
among several processors.

The main application of SICS till now is its use in the SECURENET project [5]. The SECURENET
project is developing a network monitoring and analysis system which aims at networks protection.
It is composed of several modules with different responsibilities. There are currently three analysis
modules which analyse information coming from the actual network in order to recognise or to infer
malicious attacks on the network. There are several monitoring modules which cobserve the real
network acquiring the information necessary for the analysis step. There is a decision support
module which has the responsibility to elaborate the results of the analysis made by the analysis

modules. All these modules need to pass information to each other in an efficient way. SICS is used
to play the role of communication manager and in parallel it bas the responsibility to maintain a
corimon communication dictionary.

The application and use of SICS in SECURENET project is also described. SECURENET [3] is
one of the major RACE research projects in the area of securiry of management in network
environments. SICS plays a basic role in SECURENET since it is the message passing system
between the different modules. The application and use of SICS is presented through 1ts use by Ull
[4] one of the SECURENET modules which is responsible for detection of malicious attacks. Also a
number of tests was carried out to evaluate the characteristics of SICS.

For the purposes of these tests, communication has been established between an agent that generates
messages and the I/O function of UIl module which is receiving these messages, processes them,
and returns output messages to a message receiving module.

Based on this configuration, a set of experiments have been designed and performed. Special
attention was given to the speed of message processing and transmussion in relation to their size and
the complexity of their structure.

Finally the advantages of using SICS in SECURENET development cycle is discussed.
2. Overview of SICS

SICS (SECURENET Internal Communication System) is a message parsing and communicating
system which was initially designed and built for use in the SECURENET project. The main aim
was to provide all the necessary organisation and support to the rest of the software modules of the
SECURENET project to cover their communication needs. Currently SICS is an integrated
communication system which can cover communication needs wherever special requirements exist.

SICS is a set of conventions, services and methods and their implementation, which allow efficient
communication between modules of a system and automatic parsing of messages. The main tasks of
SICS are:

e 10 pass messages between the modules,

e 1o manage the connections and the data used in communications,

« to launch objects dynamically when needed

e 10 manage data in messages independently of the processor architecture

* to configure the system behaviour even at runtime and

Lo pmr Voo &1l s Ao eiann st e
ts

{0 A g TYSICIm S16TT persisient.

2.1, Specifications and design

The main primitives of the SICS system are:
Message which is what is actuaily moving in SICS.

Object which means any program or function that is running and talking to other objects and doing
its part for SECURENET.

Class is a template for program or function that can be started. Inside SICS each class also has
information concerning its launching procedures.

Channel is an abstraction of data streams from objects with all the required information for

conneciions from queues and based on opening inactivated queues, to activate objects at the other
ends. Channels are templates for connections. Channels are handled by the default handler.

Connection 1s a logical data stream between one or more objects. Connections are seen by the
communication server and configured there by the default handler.

Quewe 1s the part of connection that an object sees.

Protocols are definitions of data structures using which information is packed into messages and
sent down the channels.

Configuration files are text files that contain the configuration of many areas of SICS. They are
converted into binary data structures for fast use.

Objects and communication server discuss using control messages.

default handler

queue handling

LS

communication server
connection handling ¥ :
i Fy 4 ry 4 |
connection connection conaection connection
[program _ DProgram -
: library , ; library .
. 4 - A (- / - ¥ |
@!ﬁ% (queue ' @ Juene™~
i__ Py +\ i :-. [s / 'y
. i object
¢/ object
£ 00] l qd I gd qd gd
A Y
S S oo P
! S B S R
: message handiing loops ; message handling toops
' . ; :
»

Figure I Structure and terms
Figure 1 presents a view of the terms in their context. In this figure term ‘qd’ refers to queue
descriptor and program to a physical host of a running object.
SICS consists of the following parts:

¢ The Communication server which is the main part of SICS and handles messages passing from
objects to others and informs the default handler of everyv situation for which it has not been
configured.

o The Shared memory which is the media of communication between objects. It has a formatted
contrel message area that 1s used for comununication between the communication server and
objects.

e The Communication library which consists of a set of functions, variables and data-areas that
handle communication between communication server and objects. The communication library
includes protocols' configuration and the functions to access data in messages.

s The Default Handler which maintains structures to contain the situation inside running the
SECURENET system based on those structures. It configures the communication server and also
activates and deactivates objects when needed. The default handler reads configuration files and
then takes actions based on them.

¢ The Basic objects which give basic services to other objects and give direct administrational
access to SICS.

SICS has been divided into two parts; the server and the default handler. SICS acts as a fast packet
switch and the default handler takes care of the brainwork of opening connections when needed,
starting new objects etc.

When SICS is started, the server is first started. The server initialises shared memory segment and
after that starts the default handler. From then on the server maintains connections, passes messages
from clients to other clients based on connections and handles the memory management of the
shared memory block. After the default handler has been started, it waits for connection requests.
The defanlt handler starts client objects when needed.

When an object wants to send something to other client, it creates a connection with the server using
library functions. A packet is assembled by the object and sent to the queue. The server then gives
this packet to client.

Next, the server passes all messages on channels which are not currently open to the default handler.
The default handler starts the object on the other end of the channel if appropriate and creates the
connection, and sends the packet back to the server. Now when the connection has been made, the
server can forward all subsequent packets on that channel directly to their correct destination.

2.2 Implementation issues

Initially, SICS was implemented using the Linux operating system on normal PC - compatible
hardware. The development tools are listed below:

¢ (C+4= compiler; GNU g+=v. 2.3.8
¢ Debugger: GNU gdb v.4.12
¢ Editor: GNU emaes v.19.22

SICS has been implemented according to POSIX standards, and now runs on several platforms that
support GNU tools. It is relatively easy to port to any system which uses SYS V style shared
memory and UNIX domain sockets. Further development of SICS eventually helps porting it to
other operating system platforms.

Shared memory is allocated by communication server. It has five areas: version area, queue to
communication server, queues to objects, message slot table and data area.

The version area is only a few bytes long at the very beginning of the shared memory. [t contains
data about the version of the communication server. This means the version of the queues that are
after it in the shared memory. Using that information clients can check if they do understand this
version and either terminate without causing havoc or use the appropriate message handier.

Queue to communication server is a data structure that contains a message queue as well as lock and
queue pointers that point to last read and written slots in message queue. Each message slot contains
sender's 1d, message type and four parameters.

Queues to objects represent connections/queues of objects. They contain one slot for each
connection. Each message slot contains a lock, time stamp of latest communication and pointer to
actual message slot 1n message slot table.

Message slot table is an array of structures that contain control messages to objects. Each message
can go 1o several objects, but the slots in this table do not contain pointers to objects that are reading
them, instead the queues to objects have pointers to message slots. Each slot in this table contains
messages sender's id, message type and four parameters. Control messages of type MSG MSG
contain pointers to message table.

Data area is most of the shared memory. It is allocated message areas by the communication server
to be used by objects in communication.

Note that the version area and queues and message slot table do not need to reside in the same
physical shared memory area as the message area. This helps debugging programs that reference
memory incorrectly, and if fixing them fails, provides a slow but workable method to connect them
into SECURENET.

The communication server is divided into the main Joop, the message parser, memory management
and connection management.

The communication server is the first program that starts when SICS starts. Upon start up it
accesses shared memory, initialises several variables and launches the default handler. After that
communication the server goes into the main loop.

The main loop has several steps:

s it checks if there are any incoming messages 1o the server and if any, it hands that message to the
message parser. Note that messages that the communication server receives are control messages.

: . : e N : - plele Lo . Ll by o g
» on idle time it checks if any slots in the message slot table have an expiiod inae starng and

resolves the situation.

® at pre-set times it sends gathered statistics of systems operation to appropriate objects if
necessary.

3. A trial application

For the purposes of this paper, SICS system has been checked through its use during the
umplementation of UIl module. Ul module is one of the basic modules of the SECURENET
system, a system for the detection of malicious attacks against the management of a network. Next
section gives an outline of the general problem environment describing the modules of
SECURENET and their intercommunication.

3.1 The problem (SECURENET)

The main application of SICS till now is 1ts use in SECURENET project. SECURENET project is
developing a network monitoring and analysis system which aims at networks protection. It is
composed by several modules with different responsibilities. There are currently three analysis
modules which analyse information coming from the actual network in order to recognise or to infer
about malicious attacks to the network. There are several monitoring modules which observe the
real network acquiring the information necessary for the analysis step. There is a decision ‘support
module which has the responsibility to elaborate the results of the analvsis made by the analysis
modules. All these modules need to pass information each other in an efficient wayv. SICS is used to
play the role of communication manager and in parallel it has the responsibility to maintain a
common communication dictionary.

3.2 SICS in SECURENET

Using dedicated message passing system like IPC and sockets instead of standardised network and
interprocess communications methods may seem inappropriate. One might easily think that system
like SICS is just extra overhead which does not offer true value over generic. However, its
advamntages in development cycle are very clear. Rewriting of code is minimal, because lot of work
in communications is done automatically, via configuration files settings. If a change in the agent’s
output to another agent is required then the only requirement is the corresponding edit to the
configuration file and no code rewrite is required.

3.3 The specific implementation

The User Intention Identification module, as mentioned above, plays a complementary role within
the SECURENET system, trying to detect a range of malicious attacks in a network. According to
the SECURENET architecture the specific module needs to ger audit data from a module that
monitors the network activity, to analyse them and then to send the results of this analysis to a
decision module. SICS 1s used in order to offer an effective communication between these three
modules.

In order to communicate using SICS, a number of definitions have to be done and a set of SICS
functions have to be used. These necessary definitions and the required functions are described in
the sequel.

First of all, the classes or objects that participate to the communication must be declared in the
ciisses configuration file. For the purposes of this work the specific objects are the logagent object
that sends the audit data and the U7 object that receives them and sends the results for further
processing. A sample description of these two objects follows.

Jf Dame: logagsnt sctject
/¢ Description: Logagent class to handle log messace storage
fciass logagent
{

Frogranlame = 2205 logger;

FileName = "SICS/bin/loggsr";

Type = PROCESS;
/i Hame: JZI obkiact
// Dascription: The User Intenticn Identificazion class

All configuration files are written in ASCII format. Due to performance issues these are converted
to binary files. All text on a line after # or // is considered as comment text.

For each class the class name. the class process name, the executable file name and the process type
are specified. The "file name” field determines the program to be started when the specific class
sends or receives a message for the first time. The "process type” field specifies if the program code
is a separate program or not.

When an object is designed, a set of channels, which will be the connections, must be designed too.
Thus, for the specific module two channels are declared in the corresponding configuration file, the
channel AUDIT where audit data are transferred

/7 Hare: AUDIT
charnael ARUDIT <6l>

Tyoe = BT
Wrifter =
Jnigue

]
(=L)]

and the channel UIIMSG where the results are forwarded:

A5

g

The "type” field specifies the way the objects send or receive the messages. Possible values are
fo_many when one object writes a message and many objects receive; from many when many
objects write and one receives; forward; backward; bus; and bidirect. The “writer” or "reader” field
specifies the name of the object that reads or writes a message from/to the specific channel.

Each object can send or receive information via a channel, using a special protocol. In other words,
protocols are the actual way objects pack data into messdges and communicate them. Protocols'
configuration file contains definitions for each protocol used. For the current application two
protocols for messages are defined:

sorotcooi AUDIT REC @ SECURENZT <33, 1>
_ong nodeid;
~80g Time;
ong recid;
lormg VETEM;
lornc evanz;

long ppld;
Long 2uaditid;
long realid;
Long effid;
long gcrip;
leng eZfgid;
leong svscid;
int NEETamS;
string sysid;
string syscall;
String rarals;
frrotocs: UTIMSG _REC @ SECURENET <31, 1>
string sysicd;
laong nede_iz;
long time;
long recid;
icng user_id;
leng Lvptype:
long conflav;
long mparans;
string params;

Protocols are stored as a set of fields in a specific order. Each field denotes the type and length of
cach piece of data that can be stored into a message. These definitions are converted by a protocols'
converter program into a binary array of structures, These arrays are directly transferred into
memory and they are used to parse messages very fast. Protocols’ converter also checks the syntax
of that file and creates C-formar include files which contain macros for even faster data
retrieval/storage.

When an object wants to send information to another object, it establishes connection with SICS
using SICS library functions. The corresponding packets are assembled by the object and are sent to
SICS queue. SICS then gives these packets to receiving objects.

Even if this process seems complex, in fact, it is realised by just moving pointers in shared nemory.
No data is actually moved while messages are transferred from senders to receivers.

According to the normal way objects utilise SICS, the following steps describe the implementation
of the communication of UIl module with the other modules:

- cail GICS (nitialisaion

o
b1
3
[f3]
w
M
r
<3
-
3]
113
L
.
11
+9
]

- call SICS channel-queue initialisation

auditgueue=5ICS_cpen gueue (5ICS CHAN RUZIT, ST
uiinandl

W
o0
I
)
1
P
1
T}
[
t
i3]
w
it
1
Lo

]

I

bt
1%

[
i
P
T
I
i
]
-
b
{2

3

[it

'

[
141
e

I

[
Wl

|

[n1]

1

D

- Do an infinite loop that handles all incoming messages, sends messages to channel and gives time
for other programs

while (13ICS do_exit)
while {SICS loop_cnce{§5IC8_buff[21) 1= -1
ifdef DEZUG
IF(SICS Bufiol = 'Ol
printfi{"gs\n", &SICS Duffidli;
erdif

/7 Call your function that sends ressages *,

/* Give time for other programs */
S5ICE usleepissconds);

- close all queues and call SICS quit function
SICE _guit_sicsil:

The sender function checks if the corresponding channel is available

1
i
R
e}
=}

[¥g}
-
]
115]
W
1]
!
w1
o
I
11
=
ir1
[p]
o
L]
3
=]
1i]
tn
0
w
[te}
11]
[
o
]
|
4]
i8]
I-C‘
=
m
.
i
3

and recycles the reserved memory

ZC5_recycle textimessagal; ,
Finally there is the handler function "uithandle msg"” which is called from SICS whenever there is
an incoming message. In this function only a pointer that points to the received protocol is defined :
static Int ulihandle msgistruct 3ICSPS *msg, char ~buf)

struct SICTS23 AUZIT 2EC *me

ifimsg->protesel = SI0S BRS

I

in
o

]

]
o

|
oy W
1t Hhy
Fop

*
g
2ot

N .
oy g b Y
s |

[(4
[
]

[

-
3

This implementation has been done using C paradigm. SICS offers the possibility of using C++
instead of C but both these two ways are based on the same basic idea.

4. Design of the experiments-Measurements

To estimate the performance of SICS in message passing operation, the C programs implemented

for the communication of UIl were modified in order to perform a set of measuring experiments.
The program “send” sends messages and the program “‘receive” counts the amount of messages
received per second and sends this information back to “send” which retumns the actual benchmarks.

For the experiments a pentium based machine with 16MB of main memorv running LINUX
operating system was used. The message transfer rate was evaluated in relation to the message
length and the complexity of the message structure.

The results are shown in the following three figures.

Figure 2 shows the message transfer rate in relation to the length of the transferred message.

Messages with twenty different length values have been chosen. The length values vary from 100 to
2100 characters. For each one of these values a big number of message transfers have been
performed and the corresponding average speed has been measured,

([;

123 4567 8 91011121314151617 18192021
message kength (100 chars)

2500 -
2000 -
1500 -
1000 -

messages/second

Lt
L]

o] =]
L]

Figure 2. message transfer rate in relation to the message length
The main conclusions that arise by observing the above figure are:

The message transfer is very high, almost 1000 messages per second even if the length of the
message is quite big, 2100 characters.

The message transfer rate decreases as the transferred message length increases.

I
o change of transfer rate \} X
For the same experiment the rate of change Lchange of message length y has been calculated and is

shown in figure 3.

II“II“II[LL

12345678 9101112:314151617181920
message length (*100)

Figure 3. rate of change in message transfer in relation to the change in message length
The rate of change decreases as the message length increases.

For a constant message length of 500 characters, seven experiments have been planned in order 1o
measure the change in message transfer in relation to the complexity of the transferred message
structure. Figure 4 presents the results of these experiments.

100000 +
o 80000 -
=
> 60000 ~
5]
7
3 40000 -
£
20000 —
0 -

1 2 3 4 5 6 7
stuchire of ressage

Figure 4. message transfer rate in relation 1o the complexity of message structure

The seven structures selected are described in the following table:

Experiment Structure of message
(# x field length = total length)

1 I x 500 =500

2 2x250=2500 :

3 2x200+1x100=300

4 3x 100+ 1 x200=7500

5 5 x 100 =500

6 2x50+4x 100 =500

7 4 x50+ 3x100 =500

Table 1. Structure of the transferred messages.

The results of this experiment show that the message transfer speed is a function of the complexity
of the structure of the message to be transferred.

However for systems such as SECURENET, where the actual processes which are carried out by

the software modules, the speed is by far greater than the requirements of the modules. This applies
even for the accumulation of the modules requirements. That is, each module can process maximum
100 messages per second, and it has been shown that SICS can process very comfortably about one
thousand message per second in the most demanding case.

5. Discussion and Conclusions

In this paper SICS, a message parsing and message communication system, has been presented as
an effective way of intermodule communication during distributed software implementation of
complex systems. The use of this communication system has been shown through its use in the
development of UII one of the SECURENET's modules. Also a number of experiments have been
carried out to test its potential in fast message transferring under different conditions.

SICS is used to play the role of communication manager and in parallel it has the responsibility to
maintain a common communication dictionary. In this way the rewriting of code is minimised
during implementation being a major advantage to the development cycle.

Using dedicated message passing system like IPC and sockets instead of standardised network and
interprocess communications methods may seem inappropriate. One might easily think that systems
like SICS is just extra overhead which does not offer true value over generic. However, its
advantages in development cycle are very clear. Rewriting of code is minimal, because a lot of work
in communications is done automatically, via configuration files settings. If a change in an agent
output to another agent is required then the only requirement is the corresponding edit to the
configuration file and no code rewrite is required.

6. References

1] S. Ahuja, N. Carriero, D. Gelernter and V. Krishnaswamy, "Maiching Language and
Hardware for Parallel Computation in the Linda Machine", JEEE Transactions on Computers,
August 1988, Vol 37, No 8, pp. 921-929,

[2] L. Cagan and A. Sherman, "Linda unites network systems", IEEE Spectrum, December 1993,
pp. 31-35.

[3] N. Carriero and D. Gelemte "LINDA in context", Communications of the ACM, April 1989

[4] J. Darzentas, T. Spyrou, et. al. Functional Specifications of SECURENET Components, In:
SECURENET System Development Plan, CEC RACE Report, R2057. EXP.DR L.030BI, pp.
53-143,1992,

[5] P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre. I. Darzentas. C. Gigante, D. Karagisnnis,
P. Kess, H. Putkonen and T. Spyvrou "SECURENET: A Network Oriented Intrusion
Prevention and Detection Intelligent System", Nerwork Securiry Journal, vol. 1, no 1, Nov.
1994. (Also in IFIP SEC94, Proceedings of the 10th International Conference on Information
Securiry, May 1994.)

[6] E. Sutinen, "/DEL/JIMP/4.2/OULUEPS/050395; Implementation of SICS", Securenet I
deliverable, 1993.

{71 E. Sutinen and H. Putkonen, "/DEL/SPC/4.1/OULU/EPS/050594; Specification of SICS",
Securenet [1 deliverable, 1994.

[8] E. Sutinen and H. Putkonen, “/TRP/DES/4.2/QULU/EPS/050395; Design of SICS",
Securener II deliverable, 1995,

11

	c03 001.bmp
	c03 002.bmp
	c03 003.bmp
	c03 004.bmp
	c03 005.bmp
	c03 006.bmp
	c03 007.bmp
	c03 008.bmp
	c03 009.bmp
	c03 010.bmp
	c03 011.bmp
	c03 012.bmp

