

1 Research supported in part by U.S. Air Force Research Laboratory, Rome, New York, under Contract: F30602-00-10507

Abstract

Local and wide area network information assurance analysts
need current and precise knowledge about their systems
activities in order to address the challenges of critical
infrastructure protection. In particular, the analyst needs to
know in real-time that an intrusion has occurred so that an
active response and recovery thread can be created rapidly.
Existing intrusion detection solutions are basically after-the-
fact, thereby offering very little in terms of damage
confinement and restoration of service. Quick recovery is
only possible if the assessment scheme has low latency and it
occurs in real-time. The objective of this paper is to develop a
reasoning framework to aid in the real-time detection and
assessment task that is based on a novel idea of
encapsulation of owner’s intent. The theoretical framework
developed here will help resolve dubious circumstances that
may arise while inferring the premises of operations
(encapsulated from owner’s intent) by way of examining the
observed conclusions resulting from the actual operations of
the owner. This reasoning is significant in view of the fact
that intrusion signaling is not a binary decision unlike error
detection in traditional fault tolerance. Our reasoning
framework has been developed by leveraging the concepts of
cost analysis and pricing under uncertainty found in
economics and finance. Our main result is the modeling of
user activity on a computing system as a martingale and the
subsequent quantification of the cost of performing a job to
enable decision making.

1. Introduction

A variety of intrusion detection techniques and tools exist

in the computer security community. Though these
techniques follow different approaches for intrusion
detection, audit trail analysis has been used as the last line of
defense [1]. In these methods, the user behavior is monitored

for certain patterns of abuse by looking at the audit data.
Unfortunately, intrusion detection schemes based on audit
trail analysis do not offer much in terms of damage
containment because these approaches are passive, after-the-
fact solutions. They are known to be largely firsthand and
heuristic. In order to contain the damage effectively it is
essential to detect intrusions concurrently so that recovery
and restoration of service can be expedited.

We have developed a new host-based concurrent intrusion
detection scheme (CIDS) [2]. Our scheme is based on the
hypothesis that if one could reasonably encapsulate the intent
of the user of a computing system, then it is possible to assess
intrusions by monitoring the activities on-line. One way of
realizing this idea is by means of verification of satisfiability
of computing premises assisted by on-line monitoring of
conclusions resulting from actual user actions. In addition,
sequences of events and actions can be derived by analyzing
the dynamically generated user data in real-time so as to
enhance the intrusion assessment capabilities and lower the
detection latency. Quick recovery is only possible if the
assessment scheme has low latency and it occurs in real-time.
Precise damage assessment can then be done by considering
transaction and data dependency relationships.

 In our technique of intrusion detection using verifiable
assertions, flagging an intrusion is not a binary decision.
Often, when reasoning backwards to the premises of
operations from the set of observed conclusions, dubious
circumstances (e.g., acceptance or rejection of a case) arise.
While the idea of encapsulation of user’s intent and the
monitoring of user operation and profiling patterns gives a
mechanism for intrusion detection, assessment and
forecasting, the question of when to declare an anomaly as an
intrusion needs further investigation. Any decisions on
acceptance or rejection of a hypothesis and admittance or
termination of service must be made rationally and on the
basis of some reasonableness criteria; otherwise there is a

An Analytical Framework for Reasoning About Intrusions1

Shambhu Upadhyaya and Ramkumar Chinchani
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, New York 14260

{shambhu, rc27}@cse.buffalo.edu

Kevin Kwiat
Air Force Research Laboratory

525 Brooks Road
Rome, New York 13441-4505

kwiatk@rl.af.mil

danger of excessive false alarms. The questions that need to
be addressed are: What is a reasonable plan when a user
initially provides his session-scope to the security monitor?
When is it reasonable to suspect a user as an intruder? Can
reasonableness checks be used to flag non-deliberate faults
such as operator faults in a given system?

We leverage concepts from other domains such as artificial
intelligence, business and finance to build a reasonableness
check framework. In business and marketing domains, there
are many instances where decisions have to be made, even
though the exact details of an operation or that of an event
happening is not known beforehand. In such a case, decisions
have to be made on the basis of the cost involved and the
probabilities of those events happening. Although the course
of events is unknown, the possible events that could occur are
enumerated and its probabilities and costs evaluated. This
process is referred to as Risk Analysis [3]. Analytical models
exist for reasoning on pricing under uncertainty [4]. Some of
these principles will be employed in our reasoning framework
to provide an analytical basis for making rational decisions.

In Section 2, our basic intrusion detection system is briefly
reviewed to facilitate the presentation of our analytical model
of reasoning about intrusions. The necessary abstraction and
formalism of system components appear in Section 3. The
cost analysis basics are given in Section 4 and a stochastic
modeling of user job activity on a computer system is
developed in Section 5. The reasoning framework and the
associated algorithms are discussed in Section 6, preliminary
results are given in Section 7 and conclusions appear in
Section 8.

2. Review of CIDS

The framework presented in this paper is aimed at
detecting and apprehending intrusive behaviors such as
masquerading, legitimate user penetrations, internal abuse,
illegal resource access etc. It cannot directly detect denial of
service attacks unless they occur through a well-defined user
session [2]. Techniques to deny generic DOS attacks are
discussed elsewhere and since DOS attacks are not treated as
intrusions, they are not discussed here any further.
 Concurrent intrusion detection typically proceeds at the

user operation level. However, there is a need for a reference
graph to compare the user operations with at this level of
abstraction. Therefore, we devised the method of
encapsulation of user’s intent 2 by querying the user for a
session-scope [2]. The user gives a summary of his intended
system usage. Once the scope file is submitted, the user is
allowed to continue with his session. This session scope
remains active until the user proceeds to alter it after proper
authentication and hence making it less onerous for the user.

2 Encapsulation of user intent should not be confused with
user intent modeling [5]. Unlike inferring user's intent, our
technique actively queries the user for his intent. This data is
generally small and makes the intrusion detection problem
tractable.

Meanwhile the system translates the scope file into a sprint
(Signature Powered Revised Instruction Table) plan. When
no strict ordering of events is possible on the activities of the
user, the sprint plan is simply a table of verifiable assertions.
There is no control flow information as such. A verifiable
assertion is formally defined as a quadruple, which associates
a user with the intended operation over a given period of
time. Its format is (subject, action, object, period), where
subject is a user, action is an operation performed by the
subject, such as login, logout, read, execute, and object is a
receptor of actions such as files, programs, messages, records,
terminals, printers etc. A temporal characteristic called period
signifies the time interval for the usage of an action.

The assertions give a mechanism for monitoring the user
behavior. Verifiable assertions are a generalization of IDES's
[6] specification of some very self-centric user characteristics
so that such characteristics can be monitored on-line. An
important component of our assertions is the subject field.
The subject field is generated from the userID and other
unique identifications such as the IP address of the
workstation, tty number of the terminal being used etc. All
such information will be coded into the subject field. There is
only one monitor process per user per system even when
multiple sessions are opened.

When the user is in session, the monitor process monitors
the user commands and checks if the command is the one he
originally intended to execute. Certain tolerance limits are set
to take care of unplanned but benign deviations. Any
significant deviation from the plan is an indication of
potential intrusion. Fig. 1 gives a self-explanatory flow
diagram of the basic concurrent intrusion detection system
(CIDS).

Fig. 1. Flow diagram of CIDS

CIDS can be implemented in a hierarchical way like
several other intrusion detection efforts [7], [8]. An algorithm
and several intrusion scenarios and their detection have been
reported in [2]. A prototype of the basic CIDS has also been
implemented and several simulation experiments conducted
[9].

The basic CIDS described here has limited detection
capability since only a set inclusion check is performed on
the assertions in the sprint plan. Intrusions can easily be
forced by concocting malicious sequences of operations,
despite staying within the scope of operations. Whereas CIDS
provides a novel way of intrusion detection, its detection

limitation can be addressed by discovering patterns (e.g.,
certain types of combinations of assertion metrics) in the user
sprint plan, user generated data and network data records.
Pattern profiles can be leveraged to enhance the anomaly
detection, intrusion identification, recovery, and intrusion
forecasting potential of our technique. In the rest of this
paper, we present the sketch of a formal reasoning framework
to address intrusion detection and assessment based on user
operation monitoring supported by pattern profiling.

3. Abstractions and Formalisms of System
Components

In order to develop a reasoning framework for intrusion

detection, it is necessary to first develop formal definitions
for key system components such as a User, Resource, Action,
Operation, Object, Event, Sequence and Job with the
appropriate security and abstraction levels. A complex system
can usually be broken down into a set of modules, and each
of these modules can further be broken down into simpler
modules and so on. Each such level represents a level of
abstraction.

3.1. Definitions of Basic Entities

User: A user U is defined as one who gains access to the
system resources by a userID and password submission. A
user could be an authorized subject or an intruder. A user is
denoted by a 2-tuple U = (IU, LU), where IU is a subjectID
unique to the user and LU is the security level of the user. LU
could also be considered to be the group to which the user
belongs.
Resource: A resource R is defined as a system entity whose
services are used when a job is being performed. A resource
could be complex consisting of various levels of abstraction.
It is denoted by a 2-tuple R = (IR , AlR), where IR is an
identifier unique to the resource R and AlR is a set of 2-tuples
(A, l), where A is the set of all valid actions at the level of
abstraction l.
Action: An action A is defined as a basic operation. Actions
are classified as accessors and modifiers. Accessor actions do
not change the state of the resource, but modifier actions do.
An example of an accessor action is ReadByte and an
example of a modifier action is WriteByte when actions
performed are on bytes.
Operation: An operation O is a generalization of action and
is defined as an action that is performed on an object
belonging to a resource at a particular level of abstraction. An
operation may be broken down into two or more sub-
operations, which are operations by themselves. An operation
is denoted by a 2-tuple O = (A, K), where A is the action
performed on some object K.

For the purpose of intrusion detection, the floor level of
operation is defined at the user command level.
Object: An object K is defined as an entity belonging to
some resource at a specified level of abstraction and on which

an operation is performed to get the job done. It is denoted as
a 3-tuple K = (IK, RK, lK), where IK is the objectID, RK is the
resource to which it belongs and lK is the level of abstraction
at which it is defined. Typically, operations are performed on
a file. A file can be represented as (ThisFile, ThisFileSystem,
File).
Event: An event E is an operation associated with time and is
defined as an operation performed at some specific time
instant. It is denoted by a 2-tuple E = (O, t), where O is an
operation performed and t is the time at which this operation
is performed.
Sequence: A sequence S is a set of events, denoted by S =
(E1, E2, E3, ...), where Ei are events forming the states of the
sequence. It is possible that events could repeat over time. In
other words, there could exist events Ei, Ej expressed as
tuples (Oi, ti), (Oj, tj), such that Oi = Oj for ti ≤ tj.
Job: A job J is defined as a service that a user expects the
system to perform. A job by itself is complex and can be
broken into sub-jobs or operations. There could exist multiple
levels of abstraction. A job J is denoted by a 3-tuple J = (O,
S, U), where O is the set of operations performed, S is the
sequence of operations, and U is the user on whose behalf the
job is being performed.

We now define the levels of abstraction in resources and
jobs.

3.2. Levels of Abstraction

Resource Abstraction: Consider the disk storage. It can be
divided into individual disks, each disk into partitions, each
partition into a file system, and each file system into its
constituent structures like files, directories, inodes, and
eventually each of these into bytes. Actions can be defined at
each of these levels. At the byte level, the set of actions could
be (ReadByte, WriteByte). At the file level, the set of actions
could be (ReadFile, WriteFile, CreateFile, DeleteFile,
TruncateFile, …).
Job Abstraction: A user gains access to a system in order to
get some jobs done. The outcome of getting a job done may
be the normal completion or a system compromise. Let us
consider a simple job, a LaTeX job. It can be broken down
into an editing job and some LaTeX commands. The
constituent operation O in the editing job can be specified as
O = (EditFile, ThisFileObject), which means, the action is
EditFile, on object ThisFileObject. For greater granularity, O
can be broken down into smaller operations involving objects
at lower levels of abstraction for that resource, i.e.,
ThisFileObject at a lower level would be equivalent to some
file structures and data bytes and EditFile would now be
broken down appropriately as ReadByte or WriteByte.

3.3. Validity of an Operation

An operation O(A, K) is invalid if:
1) Action A is not defined on objects of type K.

2) The user is not permitted by the system policy to
perform the action A on object K.

3) The object K does not exist.
The user is penalized for performing an invalid operation

and the penalty depends on the operation and how it affects
the system.

3.4. Expected Sequences of Operations

Whenever a system is built, it is built with a goal and a
purpose in mind. In order to make use of the system, it must
be used in proper ways. This forms the basis for expected
operations in an expected sequence. There need not be a
unique sequence to complete a job, but the sequences can be
rated from the most normal to the least normal way of getting
the job done. So, there are usually a few sequences, which
constitute normal job behavior, and the rest are deviations
from this behavior. Since the user intent is encapsulated at the
beginning of a session, it is possible to deduce the most
normal sequences of operation. These sequences develop a
default profile of the given job. We now delineate a method
to formulate the expected sequences of operations.

Let the set of all possible sequences of operations be S.
Assume that it consists of the expected sequences S1, S2, … ,
Sm and a pseudo sequence S', which represents all the
unknown sequences. S' abstracts the anomalies and can be
assumed to consist of sequences longer than the longest of S1,
S2, … , Sm since any anomalous sequences are substantial
deviations of expected sequences.

S = {S1, S2, … , Sm, S'} (1)
P{S'} = 1 – [P{S1} + P{S2} + … P{Sm}] (2)

Similarly, let the set of all possible operations be O. Let the

elements of the set be o1, o2, … , ok and a pseudo operation
o'. This pseudo operation o', like S', represents all the
unknown operations which are not present in the sequences
S1, S2, … , Sm. o′ can be relaxed by inferring more operations
which could be anomalies or mistakes. Such operations
would then no longer be counted as unknown.

O = {o1, o2, … , ok , o'} (3)
P{ o'} = 1 – [P{o1}+ P{o2}+ … + P{ok}] (4)

We now define a sequence S, which becomes the profile of

a particular job of a particular user. Let Oi be the operation
performed at state i of the sequence S. The probability
distribution of operations at each state of this sequence S can
be found using the above information and the theorem of
Total Probability. According to our scheme, all anomalies
need not be individually modeled. Only the knowledge of the
expected sequences and the associated operations is needed
and these sequences and operations are usually finite. The
monitoring of operations is done at the user command level,
and these sequences are sequences of commands a user
issues. Each command, however, may be monitored at a

greater granularity if the command allows for excessive
freedom and control to the user.

It may be noted that these sequences do not represent the
attack signatures as in other intrusion detection systems.
Also, there could be a finite but large number of partial
orderings in the set of operations, which may cause potential
state explosions. This may lead one to think that rapid
intrusion detection is impractical and the large number of
possibilities may result in non-determinism and false
positives. The idea of obtaining a session scope from the user
at the beginning of the session and prioritized workspace
allocations will alleviate this problem. This is part of our
ongoing work, and the details are outside the scope of this
paper.

4. Cost Analysis

4.1. Assigning Costs to Operations

Performing some operations on appropriate resources in
some order or sequence can complete a job. When an
operation is performed, a cost is calculated based on the use
of resources. The cost can be calculated at each level of
abstraction of the resource for greater granularity.

The Cost of an Operation, Co is defined as a function of
the amount of the resources being used to perform the
operation. It is necessary to monitor the usage of resources
when the operation is being performed because even though
there may be slight deviations from the intended operation,
the user could still dominate the resources, reducing the
quality of service (QoS) for other users. This may not qualify
as an intrusion, but it is still an abuse of resources and hence
an anomaly. The method of calculating this cost of
performing an operation is discussed in Section 6.2.

4.2. Assigning Costs to Sequences

The sequence of operation performed to complete a job on
a given system is not unique. Depending on the user’s intent
[2], a set of expected sequences and the associated expected
operations are developed as described in Section 3.4. When
the user logs into the system and submits jobs, the behavior is
matched with the one that is predicted. A measure of the
deviation from the expected behavior is called the Cost of
Deviation, Cd.

A genuine user would conform to his user profile and will
have very little deviation. On the other hand, an intruder who
may break into a user’s session is normally not aware of the
user’s profile and is expected to deviate from this profile. The
method of calculating this cost is discussed in Section 6.3.

4.3. Computing the Cost of Performing a Job

The Cost of performing a job is calculated as the
cumulative cost of operations involved at each instant of time

in a sequence along with the penalty for deviations from the
expected sequence.

Cost(J) = ∑ [Co(Oi) + Cd(Oi),] (5)
summed over a sequence Sj followed by the user.

5. Stochastic Modeling of Job Activity

The choice of an operation to perform a certain job is

probabilistic and hence is a random variable X(ξ), where ξ is
the operation chosen. The set of operations is finite. A
sequence of any such operations has a temporal property
making it a discrete-stochastic process denoted by X(t, ξ).
The operations performed over time t form a sequence of
random variables X(t1, ξ), X(t2, ξ), … X(tm, ξ). Since it is
more relevant for a profiler to know which operation follows
which other and not the instant of time itself at which an
operation is performed, the parameter ti here is made to
denote a state in the sequence rather that time; t1 is the first
state in the sequence, t2 the second, and so on. In summary,
this stochastic process represents the sequence of operations
performed while completing a job.

A user can perform a specific type of job zero or more
times in one user session. A stochastic process is associated
with a job every time it is executed. But for the purpose of
assessment and prediction of operations (intrusions) a user
can perform, a history of processes associated with the type
of job is used. For a specific job, we define a sequence of
stochastic processes, X1(t, ξ), X2(t, ξ), …Xn(t, ξ) to represent
the history of sessions related to that job.

The lateral sequence of random variables, X1(t1, ξ), X2(t1,
ξ), … Xn(t1, ξ) forms the user job profile history at state 1 of
the sequence of operations. In general, a lateral sequence of
random variables X1(ti, ξ), X2(ti, ξ), … Xn(ti, ξ) forms the
user job profile history for state i of the sequence of
operations the user chooses to complete the job.

5.1. The Concept of a Martingale [10, 11]

 Let X1, X2, … Xn be a sequence of random variables
defined on a common probability space (Ω, ℑ, P) and let ℑ1,
ℑ2, … ℑn be a sequence of σ-fields all belonging to ℑ. The
sequence { (Xn, ℑn), n=1, 2, …} is a martingale if for each n it
satisfies the four conditions below:

(1) ℑn ⊂ ℑn+1; (6)
(2) Xn is measurable ℑn; (7)
(3) E(|Xn|) < ∞ ; and (8)
(4) E[Xn+1 | ℑn] = Xn with probability 1. (9)

The martingale theory uses concepts of conditional

probability and has found a lot of applications in the
economics and finance domains [Malliaris 91]. We elaborate
this further since we are going to model user activity as a
martingale. This model will help us to draw a parallel

between the uncertainties in intrusion detection and the
concepts of pricing under uncertainty in economics.

Pricing under Uncertainty or Futures Pricing, under
certain conditions is a martingale [Malliaris 91]. Let X1,
X2…X t be a sequence representing the time sequence of
prices till time t. We assume that these random variables are
bounded because the prices of a commodity are finite and
usually have some upper bound. We also assume that an
economic agent is observing the prices of these commodities,
and this agent is predicting the futures price based on the past
information contained in the σ-fields generated by these
random variables. The futures price of a commodity depends
only on the last known distribution and not the entire history
of the prices. This result is proved in [Malliaris 91]. The
martingale property has also been used to predict other
market parameters like a share of a stock, risk evaluation, etc.

5.2. User Activity as a Martingale

Theorem: Let the lateral sequence of random variables for
any state i of a sequence of operations be denoted as X1(ti, ξ),
X2(ti, ξ), … Xn(ti, ξ). Such a sequence of user activity is a
martingale.
Proof: Since the parameters ti, ξ, remain constant, we
simplify the notation for the sequence as X1, X2, … , Xn. Our
goal is to predict the next distribution, given this history.

Let us assume that Xn+1 = Xn + An, where An is an
independent identically distributed random variable with zero
mean and a small variance. This assumption is justified by
the fact that we expect the user to perform operations not
very different from the last time. Any small deviation that
could possibly occur is embodied in An.

ℑn = σ(Xn, Xn-1, …X1) ⊂ ℑn+1 = σ(Xn+1, Xn, … X1),
since the information embodied in the sequence Xn+1, Xn, …
X1 is larger than that in Xn, Xn-1, … , X1. This satisfies
condition 1 of martingale (see Eq. (6)).

Since the set of operations is finite and we define an initial
distribution based on the encapsulation of users intent and
other general information regarding user behavior, which
involves every outcome in ℑ, it follows that Xn is measurable
ℑn, satisfying condition 2.

Also, every outcome is assigned a finite value. This
satisfies condition 3.

We establish condition 4 as follows.
E{ Xn+1 | Xn, Xn-1, … X1 }
= E{ Xn + An | Xn, Xn-1, … X1 }
= E{ Xn | Xn, Xn-1, … X1} + E{ An | Xn, Xn-1, … X1}
= Xn + E{ An} (since An is an independent random

variable)
= Xn + 0 (since E{ An} = 0)

= Xn (10)

Development of this theorem provides a breakthrough for

our reasoning since we are able to integrate the user activity
profile in a quantitative framework. This result allows us for

the quantification of measures leading up to intrusions and its
evaluation as described in the next section.

6. The Reasoning Framework

We define two thresholds Tl and Th on the cost of
performing a job in order to facilitate the reasoning process.
As the job is being performed, the cost keeps accumulating in
a monotone non-decreasing manner. Three regions of costs,
viz., non-intrusive, indeterminate and intrusive are defined
using the two thresholds Tl and Th as shown in Fig. 2.

Fig. 2. Illustration of thresholds and cost buildup

The cost of performing a job maps into these regions. The

mapping is done actively, following the sequences as the
events occur.

Cost (non-intrusive) ≤ Tl ≤ Cost (indeterminate) ≤

Th ≤ Cost(intrusive) (11)

 The above relation alludes to the relationship between

the costs and regions demarcated by the thresholds.

6.1. Reasoning Basis

This section discusses the basic method used for

developing the reasonableness test framework. The
quantification of parameters involved is discussed in the
following sub-sections.

As a user begins to perform operations to complete a job,
he begins to incur costs of both types as discussed in Section
4.3. Clearly, when the accumulated costs map into the non-
intrusive region, an intrusion will not be signaled. On the
other hand, when the costs map into the intrusive region, an
intrusion will be signaled. When the costs map into the
indeterminate region (window of uncertainty) the situation is
ambiguous and needs to be resolved. We have the
indeterminate region since it is not possible to make a binary
decision whether a user’s activity is intrusive or not. When
the costs map into the indeterminate region, the goal would
be to reduce this window of uncertainty to the greatest
possible extent, making the decision-making process more
deterministic and quicker. This would arrest any further
damage if the user were really an intruder.

An initial default profile is created when the user submits
his intent in his first login session [2]. Subsequent job and
user sessions shape this initial profile. Based on this profile,
we predict what the user’s behavior would be and compare
the actual behavior to this predicted behavior. When an
intruder breaks into someone’s account, he would hardly
know the user profile of the person’s account he has broken
into. His actions will appear as a deviation from the predicted
user profile. The accumulated costs in such cases are likely to
map either into the indeterminate region or the intrusive
region. Genuine users do make mistakes at times, but they
correct themselves and conform to the profile. Therefore, it
can be expected that the accumulated costs would map into
the non-intrusive or indeterminate regions. Once in the
indeterminate region, we use factors such as cost gradients to
shrink this region. This process may have to be repeated until
this indeterminate region is very small and there are
effectively only two regions, viz., non-intrusive and intrusive.
When that is done, any further mappings would be resolved
as either non-intrusive or intrusive.

6.2. Quantifying the Cost of Operations

The number of resources in a system is finite and the

number of actions that can be performed on a resource is also
finite. Actions at higher levels are defined in terms of actions
at lower levels (see Section 3). So we start at the lowest level
of abstraction and assign costs for these basic actions. The
cost of each action at a particular level may depend in turn on
the semantics of the operation, i.e., whether the action is an
accessor or a modifier. We then progress upward defining
costs at higher levels based on the ones defined at the lower
levels. For example, take the resource Hard Disk. The lowest
logical level is that of a Byte or some similar data type. The
actions that are defined at that level could be ReadByte and
WriteByte. Since the semantics of ReadByte would be just
reading a Byte without any loss or damage to data, it has a
smaller cost. WriteByte on the other hand, though it operates
on a Byte, has a higher cost because it could result in damage
or loss of data. At the next higher level of a File, we could
have the actions CreateFile, ReadFile, WriteFile, DeleteFile.
Each of these actions in turn uses the lower level actions
ReadByte and WriteByte. Moreover, reading five Bytes would
have more cost than reading one Byte, because it is equivalent
of performing the ReadByte action five times. It is also
possible that the operation cannot be completed because it is
an invalid one (ref. Section 3.3). This can also be interpreted
as the operation can be completed in infinite time. Such
operations are assigned a very high cost. This is additionally
justified by the fact that choice of an invalid operation
indicates deviation. The goal of this scheme is to reflect the
amount of resources being used.

The cost of performing an operation reflects the usage of
resources. An abuse of the resources causes accumulation of
high costs, eventually leading to abuse detection. It should be
noted though that intruders are subtler and rarely do they

resort to behaviors indicative of resource abuse. Therefore,
this component remains negligible in such cases.

6.3. Quantifying the Cost of Deviation

The encapsulated user’s intent and the actual choice of

operations in each session form a list or history of profiles.
This history is used to model the future user behavior. A
non-linear mean square estimation method [12] can be used
for this purpose.

 Let the sequence of random variables Xn, Xn-1, Xn-2, … ,
X1 represent a history of choice of operations at some state i
of sequences followed in the respective sessions.

We make the futuristic estimate as:

E{ Xn+1 | Xn, Xn-1, … X1} = Xn (12)

Now, since we have modeled the future user behavior, we

define the following relation to quantify the deviation from
the normal user behavior.

Cd(Oi) ∝ [E{Xn} – Xn(Oi)] (13)
where Oi is the operation chosen.

or Cd(Oi) = λ . [E{Xn} –Xn(Oi)] (14)

where λ is the constant of proportionality. It could also be
used as a scaling factor to map the cost into the regions
defined in Fig. 2.

The following algorithm is used to define the initial

distribution for the operations associated with completing a
job. This algorithm, based on the development in Section 3.4,
takes into consideration the sensitivity of the cost of deviation
to the choice of operations. This initial default profile is
based on the user intent provided at the start of the very first
user session.

Algorithm: INIT_DISTR
1) Let S = { S1, S2, … , Sm} be the set of sequences (ref.

Section 3.4).
2) Sort S in decreasing order of the lengths of the

sequences.
3) Let Smax be the longest sequence in S.
4) Associate a stochastic process X(t, ξ) with Smax.
5) At each state ti of this stochastic process, enumerate the

operations and assign probabilities to each of these
operations (see Section 3).

6) Let R be a large real number. /* The actual mapping of
each random variable X(ti, ξ) begins here */

7) for i = 1 to |Smax| do /* where |x| means the length of x * /
7.1) Let O = { o1, o2, … , ok} be the set of operations at state i,
sorted in the decreasing order of the probabilities.
7.2) X(ti, o1) = R
7.3) for j = 2 to size(O) do
7.3.1) X(ti, oj) = R + (-1)j [f(P{ o1} – P{ oj})]
7.3.2) j = j + 1

A pictorial representation of the initial distribution
resulting from the above algorithm at each state is given in
Figure 3.

Fig. 3. The initial distribution

The distribution is shaped by the function f in the
algorithm in such a way that the operations with higher
probability of selection by the user lie closer to the mean and
others are mapped away from the mean. This would allow the
distribution to be more sensitive to deviations (see (14)). The
operation with the highest probability is used as a reference.
The mapping of other operations is defined by the function of
the difference of their probabilities from this reference
probability. This function f could be a linear or exponential
function and is chosen appropriately.

Since, at any step of the algorithm, only a finite and small
number of values are being handled irrespective of the user
input, the time complexity of this algorithm is O(1).
The above procedure determines the initial default user
profile for a particular job. This profile is subject to change
based on the user’s behavior, i.e., the distribution at each state
of this sequence is influenced by future choices of operations.
We now propose an algorithm, which modifies and updates
the user profile X(t, ξ) to accommodate the current user
activity.

Algorithm: MODIFY_DISTR
1) Let X(t, ξ) be the stochastic process representing the user

profile.
2) Let S be the sequence the user follows to complete a job.
3) if Cost(J) > Th, exit, where J is the job performed till its

completion or till flagging of intrusion.
4) else if |(X(t, ξ)| < |S|, extend X(t, ξ) by |S| – |X(t, ξ)|

states and associate random variables for each of these
states using INIT_DISTR

5) for i = 1 to |(X(t, ξ)| do
5.1) update the probability distribution for X(ti, ξ),
considering that unknown operations are represented by o'
(ref. Sec. 3.4).

This algorithm is simple and all it does is update the
frequency distributions at each state of the stochastic process

X(t, ξ). The complexity of the operations depends linearly on
the length of the sequence of operations as chosen by the
user. Hence, the complexity equals O(n).

6.4. Quantifying the Thresholds Tl anf Tk

Setting the thresholds to determine the intrusive and non-

intrusive regions is not easy. Therefore, we use certain
bounds to initially set the thresholds. These thresholds will be
refined subsequently based on the user operations.

Clearly, a job can be completed in multiple ways, with
each having its own sequence of operations. Let Smin

represent the shortest of such sequences and Smax the longest
one. Threshold Tl is the lowest amount of costs accumulated
over the sequence Smax.

Tl = Cost(J) = ∑ [α . Co(Oi) + β . Cd(Oi)] , summed over

the sequence Smax . (15)

Here, Co(Oi) and Cd(Oi) are the minimum costs, or in other

words, an appropriate operation Oi is chosen such that these
costs are the minimum. Any other sequence will accumulate
smaller costs assuming the user is conforming to his profile.
Therefore, the costs accumulated in such a case will remain
in the non-intrusive region. A reasonable amount of error ε
can be added to relax the bound.

The threshold Th is the maximum costs accumulated over
the sequence Smin.

Th = Cost(J) = ∑ [α . Co(Oi) + β . Cd(Oi)], summed over

the sequence Smin. (16)

Any other sequence (ref. S’ in Section 3.4) will accumulate

higher costs, indicating that the user has been deviating from
his profile in an intrusive way. Hence, costs accumulated in
such a case will overflow into the intrusive region. Just as in
the case of Tl, a reasonable amount of error can be added or
subtracted from this bound.

6.5. Decision-making in the Indeterminate Region

If the cost of performing a job maps into the indeterminate

region at any time, the situation needs to be resolved quickly
to ensure concurrent detection. We propose to handle this by
dynamically moving the thresholds based on certain criteria.
The cost may have mapped to the window of uncertainty due
to genuine, but inadvertent deviations by the user. With this
optimistic view, the Tl threshold is moved toward Th. The
amount by which it is moved is equal to the minimum costs
that would be accumulated from this current state till the
completion of the job over the longest sequence possible
from this current state. This is a recursive procedure (see
Section 6.4).

 Th needs to be moved towards Tl since there is an
appreciable deviation from the profile. The idea is to shrink
the window of uncertainty so that a speedy decision can be

taken. This movement depends on the rate at which the costs
have been accumulated since the last time the threshold
movement was triggered. A genuine user does occasionally
make mistakes, but would otherwise conform to his profile
and hence, the gradient of costs is expected to be small. An
intruder on the other hand would perform largely deviating
operations in a short span of time, causing a greater gradient
of costs. In such a case, the window of uncertainty should be
narrowed sharply.

 (Th – Tl) ∝ 1 / G (17)
 (Th – Tl) = ϒ x [1 / G], where ϒ is a constant (18)

where G = (∆Cost)/n, where ∆Cost is the difference in

costs accumulated since the last time the threshold movement
was triggered, and n is the number of states traversed since
that time.
The threshold movement, which is the core of our reasoning,
is presented in the form of an algorithm. Whenever the costs
map into the indeterminate region, this algorithm is invoked.

Algorithm: DECIDE
1) Let S be the longest sequence of operations that is

needed to complete the job from the current state in the
user’s sequence of operations.

2) Calculate c = minimum cost over S.
3) Tl = Tl + c
4) Let C = currently accumulated costs
5) Let C' = accumulated costs when DECIDE was last

invoked. If DECIDE was never invoked C' = 0.
6) Calculate gradient of costs G = [C – C'] / n, where n is

the number of states traversed since DECIDE was last
invoked.

7) Th = Tl + ϒ x [1 / G], where ϒ is a constant.

This algorithm is used only when the accumulated costs
map into the indeterminate region. In the best case, this
algorithm may not be invoked even once. In the worst case,
the algorithm may have to be invoked for the entire length of
the sequence. The time complexity would then be O(n).

7. Preliminary Results

The above framework was tested by integrating it into the

basic CIDS and a summary of these results is presented.
These tests are by no means exhaustive and serve merely as a
proof of concept. Moreover, there is a lack of proper test data
at our level of monitoring, requiring us to generate some of
our own. In reality, it calls for more specialized data specific
to an environment this system would be deployed.

We have simulated a “Virtual Banking Environment” for
testing purposes. This environment consists of entities such
as Bank, Account, Employee, Customer, etc. There are
multiple employees in a bank at various levels in the
hierarchy and each with a specific job detail. Customers can
have multiple accounts in the bank and each employee
typically has access to multiple accounts. Considering the

value of the information, there is always a possibility of
security policy violations or attempts thereof.

Any user connecting to the bank for the first time is
presented with a GUI, which consists of a set of jobs based
on his userID. The user can now choose a subset of these jobs
and this forms his intent. The system remembers his previous
intent, if any, and the user can choose to agree with the old
one.

User activity is primarily in the form of GUI events, and
each event is bound to a specific action or command. These
events in time domain represent a sequence of operations.

Monitoring is primarily performed by a master watchdog
that continuously monitors user activity in the system.
Accesses to the database are monitored by a file watchdog,
which is built around the system database. It communicates
with the master watchdog to report any violations or events.

The system was designed to be as realistic as possible and
was built on CORBA [14] to support the distributed
architecture of the banking environment. The system was
primarily developed in Java. Information is stored in an
Oracle database and JDBC provides connectivity to this
database. It uses SQL to perform queries on this database. All
GUI components are written to be lightweight and small
using JFC Swing [15].

Sequences which are perfectly valid and those resulting in
a possible compromise are noted and fed to the monitor.
These form the input to the watchdogs.

We used system overhead and detection coverage as
performance metrics. There is a fixed amount of processing
and memory overhead due to the initial setup of the watchdog
processes, and the increase is an approximate linear function
of the number of users currently accessing the system. This is
due to the fact that additional processing is attributed to the
threads, which the master watchdog launches to monitor per
user activity. There is very little permanent storage required
because of the martingale approach. This system gives a very
good coverage with few false positives when the user doesn’ t
resort to excessively deviant behavior. This could be a part of
the policy enforcement. Any significant exploratory behavior
is identified by the system as “noise” and this may result in
large false positives.

8. Discussion

We have presented a basic reasonableness test framework

for detecting intrusions before they manifest in harmful ways
and cause irreparable damage. The low latency of detection is
a significant feature of our technique. The underlying idea of
intrusion detection is based on a novel concept of
encapsulating owner’s intent. Obtaining the owner’s intent
prior to starting a session makes the concurrent intrusion
detection tractable unlike the approaches that work with huge
audit data. This paper is mainly focusing on the development
of an analytical framework for the reasonableness test part of
intrusion assessment. Most of the reasonableness test works
in the literature are ad hoc [13] in nature. The framework
presented here gives a systematic way of checking if a
particular decision is made in a rational way. This framework
is applicable not only for reasoning about intrusions but also

to situations where decision-making is not a binary process.
The major contribution of our work is the integration of the
user activity profile into a quantitative framework. We have
leveraged concepts from economics and finance to
accomplish this goal.

Most existing security monitoring systems are rule-based,
which means that they cannot detect unseen intrusions.
Unlike checking for an ever-growing set of intrusive
sequences, our approach monitors to see that the user follows
a plan. Moreover, since we work with the concept of jobs,
and solicit a session scope, we have smaller and focused set
of operations to deal with. Maintaining two thresholds
enables us to make a more informed decision with reduced
false positives. We are currently working on devising
techniques to manage and reduce the state explosion and false
alarms while handling various sequences of operations. A
preliminary prototype of the systems has been setup and
studied [9] and the results obtained are encouraging.

Security has to be always linked with people. A user on a
system implementing the proposed security monitoring
framework must not resort to random and exploratory
behavior. In other words, we assume that the users are well
trained and will not behave like intruders or hackers. Since
our system maintains history and profiles, it could be adapted
to provide corrective measures too, in case of operator faults.

This system does have its limitations. Excessive
exploratory behavior or “harmless” noise can result in large
false alarm rates. Since the monitoring is done at a user
command level, it cannot detect low-level network based
attacks or external DOS attacks.

The reasoning framework and the concurrent intrusion
detection ideas presented here are not replacements to
existing core anomaly detection techniques. Instead, it can be
used as a third-party module to supplement the current
security systems. Based on the theoretical model developed
here, we plan to implement a fully developed intrusion
detection and assessment prototype in the future. This
prototype will be subjected to tests in several environments.
The factors influencing the parameters described in the paper
will be studied by simulating intrusion scenarios and
analyzing the results.

References

[1] T. Lunt, “A Survey of Intrusion Detection Techniques” ,

Computers and Security, Elsevier Science Publishers Ltd., vol.
12, 1993, pp. 405-418.

[2] S. Upadhyaya and K. Kwiat, “A Distributed Concurrent
Intrusion Detection Scheme Based on Assertions” , SCS Int.
Symp. on Perf. Eval. of Comput. and Telecom. Systems, July
1999, pp. 369-376.

[3] A. Mallik, Engineering Economy with Computer Applications,
Engineering Technology Inc, 1979.

[4] S. Jagpal, Marketing Strategy and Uncertainty, Oxford
University Press, 1999.

[5] T. Spyrou and J. Darzentas, “ Intention Modelling:
Approximating Computer User Intentions for Detection and

Prediction of Intrusions, 12th IFIP Information Security
Conference, 1996.

[6] D. Denning and P. Neumann, “Requirements and Model for
IDES - A Real-time Intrusion Detection Expert System”,
Technical Report, Computer Science Laboratory, SRI
International, Menlo Park, CA, August, 1985.

[7] P. Neumann and P. Porras, “Experience with Emerald to
Date” , 1st Usenix Workshop on Intrusion Detection and
Network Monitoring, April 1999.

[8] J. Balasubramaniyam, J. Fernandez, D. Isacoff, E. Spafford
and D. Zamboni, “An Architecture for Intrusion Detection
Using Autonomous Agents” , Proceedings of the 4th IEEE
Computer Security Applications Conference, December 1998.

[9] K. Mantha, R. Chinchani, S. Upadhyaya and K. Kwiat,
“Simulation of Intrusion Detection in Distributed Systems”,
SCS Summer Simulation Conference, July 2000.

[10] A. Malliaris and W.A. Brock, Stochastic Methods in
Economics and Finance, Elsevier Science Publishers, New
York, 1991.

[11] R. G. Gallager, Discrete stochastic processes, Kluwer
Academic Publishers, 1995.

[12] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, Third Edition, WCB/McGraw-Hill, 1991.

[13] D. Pradhan, Fault-Tolerant Computer System Design, Prentice
Hall, 1996.

[14] Jeremy Rosenberger, CORBA in 14 Days, Sams Publishing,
1998.

[15] S. Pantham, Pure JFC Swing, SAMS, 1999.

