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Abstract 
 
Local and wide area network information assurance analysts 
need current and precise knowledge about their systems 
activities in order to address the challenges of critical 
infrastructure protection. In particular, the analyst needs to 
know in real-time that an intrusion has occurred so that an 
active response and recovery thread can be created rapidly. 
Existing intrusion detection solutions are basically after-the-
fact, thereby offering very little in terms of damage 
confinement and restoration of service. Quick recovery is 
only possible if the assessment scheme has low latency and it 
occurs in real-time. The objective of this paper is to develop a 
reasoning framework to aid in the real-time detection and 
assessment task that is based on a novel idea of 
encapsulation of owner’s intent. The theoretical framework 
developed here will help resolve dubious circumstances that 
may arise while inferring the premises of operations 
(encapsulated from owner’s intent) by way of examining the 
observed conclusions resulting from the actual operations of 
the owner. This reasoning is significant in view of the fact 
that intrusion signaling is not a binary decision unlike error 
detection in traditional fault tolerance. Our reasoning 
framework has been developed by leveraging the concepts of 
cost analysis and pricing under uncertainty found in 
economics and finance. Our main result is the modeling of 
user activity on a computing system as a martingale and the 
subsequent quantification of the cost of performing a job to 
enable decision making. 

 

1. Introduction 
 
A variety of intrusion detection techniques and tools exist 

in the computer security community. Though these 
techniques follow different approaches for intrusion 
detection, audit trail analysis has been used as the last line of 
defense [1]. In these methods, the user behavior is monitored 

for certain patterns of abuse by looking at the audit data. 
Unfortunately, intrusion detection schemes based on audit 
trail analysis do not offer much in terms of damage 
containment because these approaches are passive, after-the-
fact solutions. They are known to be largely firsthand and 
heuristic. In order to contain the damage effectively it is 
essential to detect intrusions concurrently so that recovery 
and restoration of service can be expedited. 

We have developed a new host-based concurrent intrusion 
detection scheme (CIDS) [2]. Our scheme is based on the 
hypothesis that if one could reasonably encapsulate the intent 
of the user of a computing system, then it is possible to assess 
intrusions by monitoring the activities on-line. One way of 
realizing this idea is by means of verification of satisfiability 
of computing premises assisted by on-line monitoring of 
conclusions resulting from actual user actions. In addition, 
sequences of events and actions can be derived by analyzing 
the dynamically generated user data in real-time so as to 
enhance the intrusion assessment capabilities and lower the 
detection latency. Quick recovery is only possible if the 
assessment scheme has low latency and it occurs in real-time. 
Precise damage assessment can then be done by considering 
transaction and data dependency relationships. 

 In our technique of intrusion detection using verifiable 
assertions, flagging an intrusion is not a binary decision. 
Often, when reasoning backwards to the premises of 
operations from the set of observed conclusions, dubious 
circumstances (e.g., acceptance or rejection of a case) arise.   
While the idea of encapsulation of user’s intent and the 
monitoring of user operation and profiling patterns gives a 
mechanism for intrusion detection, assessment and 
forecasting, the question of when to declare an anomaly as an 
intrusion needs further investigation. Any decisions on 
acceptance or rejection of a hypothesis and admittance or 
termination of service must be made rationally and on the 
basis of some reasonableness criteria; otherwise there is a 
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danger of excessive false alarms. The questions that need to 
be addressed are: What is a reasonable plan when a user 
initially provides his session-scope to the security monitor? 
When is it reasonable to suspect a user as an intruder? Can 
reasonableness checks be used to flag non-deliberate faults 
such as operator faults in a given system? 

We leverage concepts from other domains such as artificial 
intelligence, business and finance to build a reasonableness 
check framework. In business and marketing domains, there 
are many instances where decisions have to be made, even 
though the exact details of an operation or that of an event 
happening is not known beforehand. In such a case, decisions 
have to be made on the basis of the cost involved and the 
probabilities of those events happening. Although the course 
of events is unknown, the possible events that could occur are 
enumerated and its probabilities and costs evaluated. This 
process is referred to as Risk Analysis [3]. Analytical models 
exist for reasoning on pricing under uncertainty [4]. Some of 
these principles will be employed in our reasoning framework 
to provide an analytical basis for making rational decisions. 

In Section 2, our basic intrusion detection system is briefly 
reviewed to facilitate the presentation of our analytical model 
of reasoning about intrusions. The necessary abstraction and 
formalism of system components appear in Section 3. The 
cost analysis basics are given in Section 4 and a stochastic 
modeling of user job activity on a computer system is 
developed in Section 5. The reasoning framework and the 
associated algorithms are discussed in Section 6, preliminary 
results are given in Section 7 and conclusions appear in 
Section 8. 

 

2. Review of CIDS 
 

The framework presented in this paper is aimed at 
detecting and apprehending intrusive behaviors such as 
masquerading, legitimate user penetrations, internal abuse, 
illegal resource access etc. It cannot directly detect denial of 
service attacks unless they occur through a well-defined user 
session [2]. Techniques to deny generic DOS attacks are 
discussed elsewhere and since DOS attacks are not treated as 
intrusions, they are not discussed here any further.  
 Concurrent intrusion detection typically proceeds at the 

user operation level. However, there is a need for a reference 
graph to compare the user operations with at this level of 
abstraction. Therefore, we devised the method of 
encapsulation of user’s intent 2 by querying the user for a 
session-scope [2]. The user gives a summary of his intended 
system usage.  Once the scope file is submitted, the user is 
allowed to continue with his session. This session scope 
remains active until the user proceeds to alter it after proper 
authentication and hence making it less onerous for the user. 

                                                           
2 Encapsulation of user intent should not be confused with 
user intent modeling [5]. Unlike inferring user's intent, our 
technique actively queries the user for his intent. This data is 
generally small and makes the intrusion detection problem 
tractable.   

Meanwhile the system translates the scope file into a sprint 
(Signature Powered Revised Instruction Table) plan. When 
no strict ordering of events is possible on the activities of the 
user, the sprint plan is simply a table of verifiable assertions. 
There is no control flow information as such. A verifiable 
assertion is formally defined as a quadruple, which associates 
a user with the intended operation over a given period of 
time. Its format is  (subject, action, object, period), where 
subject is a user, action is an operation performed by the 
subject, such as login, logout, read, execute, and object is a 
receptor of actions such as files, programs, messages, records, 
terminals, printers etc. A temporal characteristic called period 
signifies the time interval for the usage of an action. 

The assertions give a mechanism for monitoring the user 
behavior. Verifiable assertions are a generalization of IDES's 
[6] specification of some very self-centric user characteristics 
so that such characteristics can be monitored on-line. An 
important component of our assertions is the subject field. 
The subject field is generated from the userID and other 
unique identifications such as the IP address of the 
workstation, tty number of the terminal being used etc. All 
such information will be coded into the subject field. There is 
only one monitor process per user per system even when 
multiple sessions are opened.  

When the user is in session, the monitor process monitors 
the user commands and checks if the command is the one he 
originally intended to execute. Certain tolerance limits are set 
to take care of unplanned but benign deviations. Any 
significant deviation from the plan is an indication of 
potential intrusion. Fig. 1 gives a self-explanatory flow 
diagram of the basic concurrent intrusion detection system 
(CIDS). 

 
 

Fig. 1. Flow diagram of CIDS 
 
 

CIDS can be implemented in a hierarchical way like 
several other intrusion detection efforts [7], [8]. An algorithm 
and several intrusion scenarios and their detection have been 
reported in [2]. A prototype of the basic CIDS has also been 
implemented and several simulation experiments conducted 
[9].   

The basic CIDS described here has limited detection 
capability since only a set inclusion check is performed on 
the assertions in the sprint plan. Intrusions can easily be 
forced by concocting malicious sequences of operations, 
despite staying within the scope of operations. Whereas CIDS 
provides a novel way of intrusion detection, its detection 



limitation can be addressed by discovering patterns (e.g., 
certain types of combinations of assertion metrics) in the user 
sprint plan, user generated data and network data records. 
Pattern profiles can be leveraged to enhance the anomaly 
detection, intrusion identification, recovery, and intrusion 
forecasting potential of our technique. In the rest of this 
paper, we present the sketch of a formal reasoning framework 
to address intrusion detection and assessment based on user 
operation monitoring supported by pattern profiling. 

 

3. Abstractions and Formalisms of System 
Components 

 
In order to develop a reasoning framework for intrusion 

detection, it is necessary to first develop formal definitions 
for key system components such as a User, Resource, Action, 
Operation, Object, Event, Sequence and Job with the 
appropriate security and abstraction levels. A complex system 
can usually be broken down into a set of modules, and each 
of these modules can further be broken down into simpler 
modules and so on. Each such level represents a level of 
abstraction. 
 
3.1. Definitions of Basic Entities 

 
User: A user U is defined as one who gains access to the 
system resources by a userID and password submission. A 
user could be an authorized subject or an intruder. A user is 
denoted by a 2-tuple U = (IU, LU), where IU is a subjectID 
unique to the user and LU is the security level of the user. LU 
could also be considered to be the group to which the user 
belongs. 
Resource: A resource R is defined as a system entity whose 
services are used when a job is being performed. A resource 
could be complex consisting of various levels of abstraction. 
It is denoted by a 2-tuple R = (IR , AlR), where IR  is an 
identifier unique to the resource R and AlR is a set of  2-tuples 
(A, l), where A is the set of all valid actions at the level of 
abstraction l.   
Action: An action A is defined as a basic operation. Actions 
are classified as accessors and modifiers. Accessor actions do 
not change the state of the resource, but modifier actions do. 
An example of an accessor action is ReadByte and an 
example of a modifier action is WriteByte when actions 
performed are on bytes. 
Operation: An operation O is a generalization of action and 
is defined as an action that is performed on an object 
belonging to a resource at a particular level of abstraction. An 
operation may be broken down into two or more sub-
operations, which are operations by themselves. An operation 
is denoted by a 2-tuple O = (A, K), where A is the action 
performed on some object K. 

For the purpose of intrusion detection, the floor level of 
operation is defined at the user command level. 
Object: An object K is defined as an entity belonging to 
some resource at a specified level of abstraction and on which 

an operation is performed to get the job done. It is denoted as 
a 3-tuple K = (IK, RK, lK), where IK is the objectID, RK is the 
resource to which it belongs and lK is the level of abstraction 
at which it is defined. Typically, operations are performed on 
a file. A file can be represented as (ThisFile, ThisFileSystem, 
File). 
Event: An event E is an operation associated with time and is 
defined as an operation performed at some specific time 
instant. It is denoted by a 2-tuple E = (O, t), where O is an 
operation performed and t is the time at which this operation 
is performed. 
Sequence: A sequence S is a set of events, denoted by S = 
(E1, E2, E3, ...), where Ei are events forming the states of the 
sequence. It is possible that events could repeat over time. In 
other words, there could exist events Ei, Ej expressed as 
tuples (Oi, ti), (Oj, tj), such that Oi = Oj for ti ≤ tj. 
Job: A job J is defined as a service that a user expects the 
system to perform. A job by itself is complex and can be 
broken into sub-jobs or operations. There could exist multiple 
levels of abstraction. A job J is denoted by a 3-tuple J = (O, 
S, U), where O is the set of operations performed, S is the 
sequence of operations, and U is the user on whose behalf the 
job is being performed. 

We now define the levels of abstraction in resources and 
jobs. 

 
3.2. Levels of Abstraction 
 
Resource Abstraction: Consider the disk storage. It can be 
divided into individual disks, each disk into partitions, each 
partition into a file system, and each file system into its 
constituent structures like files, directories, inodes, and 
eventually each of these into bytes. Actions can be defined at 
each of these levels. At the byte level, the set of actions could 
be (ReadByte, WriteByte). At the file level, the set of actions 
could be (ReadFile, WriteFile, CreateFile, DeleteFile, 
TruncateFile, …). 
Job Abstraction: A user gains access to a system in order to 
get some jobs done. The outcome of getting a job done may 
be the normal completion or a system compromise. Let us 
consider a simple job, a LaTeX job. It can be broken down 
into an editing job and some LaTeX commands. The 
constituent operation O in the editing job can be specified as 
O = (EditFile, ThisFileObject), which means, the action is 
EditFile, on object ThisFileObject. For greater granularity, O 
can be broken down into smaller operations involving objects 
at lower levels of abstraction for that resource, i.e., 
ThisFileObject at a lower level would be equivalent to some 
file structures and data bytes and EditFile would now be 
broken down appropriately as ReadByte or WriteByte. 
 
3.3. Validity of an Operation 
 

An operation O(A, K) is invalid if: 
1) Action A is not defined on objects of type K. 



2) The user is not permitted by the system policy to 
perform the action A on object K. 

3) The object K does not exist. 
The user is penalized for performing an invalid operation 

and the penalty depends on the operation and how it affects 
the system. 

 
3.4. Expected Sequences of Operations 
 

Whenever a system is built, it is built with a goal and a 
purpose in mind. In order to make use of the system, it must 
be used in proper ways. This forms the basis for expected 
operations in an expected sequence. There need not be a 
unique sequence to complete a job, but the sequences can be 
rated from the most normal to the least normal way of getting 
the job done. So, there are usually a few sequences, which 
constitute normal job behavior, and the rest are deviations 
from this behavior. Since the user intent is encapsulated at the 
beginning of a session, it is possible to deduce the most 
normal sequences of operation. These sequences develop a 
default profile of the given job. We now delineate a method 
to formulate the expected sequences of operations. 

Let the set of all possible sequences of operations be S. 
Assume that it consists of the expected sequences S1, S2, … , 
Sm and a pseudo sequence S', which represents all the 
unknown sequences. S' abstracts the anomalies and can be 
assumed to consist of sequences longer than the longest of S1, 
S2, … , Sm since any anomalous sequences are substantial 
deviations of expected sequences. 

 
S = {S1, S2, … , Sm, S'}             (1) 
P{S'} = 1 – [  P{S1} + P{S2} + … P{Sm}]      (2) 
 
Similarly, let the set of all possible operations be O. Let the 

elements of the set be o1, o2, … , ok and a  pseudo operation  
o'. This pseudo operation o', like S', represents all the 
unknown operations which are not present in the sequences 
S1, S2, … , Sm. o′ can be relaxed by inferring more operations 
which could be anomalies or mistakes. Such operations 
would then no longer be counted as unknown. 

 
O = {o1, o2, … , ok , o'}            (3) 
P{ o'} = 1 – [  P{o1}+ P{o2}+ … + P{ok}]       (4) 
 
We now define a sequence S, which becomes the profile of 

a particular job of a particular user. Let Oi be the operation 
performed at state i of the sequence S. The probability 
distribution of operations at each state of this sequence S can 
be found using the above information and the theorem of 
Total Probability. According to our scheme, all anomalies 
need not be individually modeled. Only the knowledge of the 
expected sequences and the associated operations is needed 
and these sequences and operations are usually finite. The 
monitoring of operations is done at the user command level, 
and these sequences are sequences of commands a user 
issues. Each command, however, may be monitored at a 

greater granularity if the command allows for excessive 
freedom and control to the user. 

It may be noted that these sequences do not represent the 
attack signatures as in other intrusion detection systems. 
Also, there could be a finite but large number of partial 
orderings in the set of operations, which may cause potential 
state explosions. This may lead one to think that rapid 
intrusion detection is impractical and the large number of 
possibilities may result in non-determinism and false 
positives. The idea of obtaining a session scope from the user 
at the beginning of the session and prioritized workspace 
allocations will alleviate this problem. This is part of our 
ongoing work, and the details are outside the scope of this 
paper. 

 

4. Cost Analysis 
 
4.1. Assigning Costs to Operations 
 

Performing some operations on appropriate resources in 
some order or sequence can complete a job. When an 
operation is performed, a cost is calculated based on the use 
of resources. The cost can be calculated at each level of 
abstraction of the resource for greater granularity. 

The Cost of an Operation, Co is defined as a function of 
the amount of the resources being used to perform the 
operation. It is necessary to monitor the usage of resources 
when the operation is being performed because even though 
there may be slight deviations from the intended operation, 
the user could still dominate the resources, reducing the 
quality of service (QoS) for other users. This may not qualify 
as an intrusion, but it is still an abuse of resources and hence 
an anomaly. The method of calculating this cost of 
performing an operation is discussed in Section 6.2. 
 
4.2. Assigning Costs to Sequences 
 

The sequence of operation performed to complete a job on 
a given system is not unique. Depending on the user’s intent 
[2], a set of expected sequences and the associated expected 
operations are developed as described in Section 3.4. When 
the user logs into the system and submits jobs, the behavior is 
matched with the one that is predicted. A measure of the 
deviation from the expected behavior is called the Cost of 
Deviation, Cd. 

A genuine user would conform to his user profile and will 
have very little deviation. On the other hand, an intruder who 
may break into a user’s session is normally not aware of the 
user’s profile and is expected to deviate from this profile. The 
method of calculating this cost is discussed in Section 6.3. 
 
4.3. Computing the Cost of Performing a Job 
 

The Cost of performing a job is calculated as the 
cumulative cost of operations involved at each instant of time 



in a sequence along with the penalty for deviations from the 
expected sequence. 

 
Cost(J) = ∑ [Co(Oi) + Cd(Oi),]           (5) 
summed over a sequence Sj followed by the user.   
  

5. Stochastic Modeling of Job Activity 
 
The choice of an operation to perform a certain job is 

probabilistic and hence is a random variable X(ξ), where ξ is 
the operation chosen. The set of operations is finite. A 
sequence of any such operations has a temporal property 
making it a discrete-stochastic process denoted by X(t, ξ). 
The operations performed over time t form a sequence of 
random variables X(t1, ξ), X(t2, ξ), … X(tm, ξ). Since it is 
more relevant for a profiler to know which operation follows 
which other and not the instant of time itself at which an 
operation is performed, the parameter ti here is made to 
denote a state in the sequence rather that time; t1 is the first 
state in the sequence, t2 the second, and so on. In summary, 
this stochastic process represents the sequence of operations 
performed while completing a job.  

A user can perform a specific type of job zero or more 
times in one user session. A stochastic process is associated 
with a job every time it is executed. But for the purpose of 
assessment and prediction of operations (intrusions) a user 
can perform, a history of processes associated with the type 
of job is used. For a specific job, we define a sequence of 
stochastic processes, X1(t, ξ), X2(t, ξ), …Xn(t, ξ) to represent 
the history of sessions related to that job. 

The lateral sequence of random variables, X1(t1, ξ), X2(t1, 
ξ), … Xn(t1, ξ) forms the user job profile history at state 1 of 
the sequence of operations. In general, a lateral sequence of 
random variables X1(ti, ξ), X2(ti, ξ), … Xn(ti, ξ) forms the 
user job profile history for state i of the sequence of 
operations the user chooses to complete the job. 
 
5.1. The Concept of a Martingale [10, 11] 
 

 Let X1, X2, … Xn be a sequence of random variables 
defined on a common probability space (Ω, ℑ, P) and let ℑ1, 
ℑ2, … ℑn be a sequence of σ-fields all belonging to ℑ. The 
sequence { (Xn, ℑn), n=1, 2, …}  is a martingale if for each n it 
satisfies the four conditions below: 

 
(1) ℑn ⊂ ℑn+1;                       (6) 
(2) Xn is measurable ℑn;                  (7) 
(3) E(|Xn|) < ∞ ; and                         (8) 
(4) E[Xn+1 | ℑn] = Xn with probability 1.     (9) 

 
The martingale theory uses concepts of conditional 

probability and has found a lot of applications in the 
economics and finance domains [Malliaris 91]. We elaborate 
this further since we are going to model user activity as a 
martingale. This model will help us to draw a parallel 

between the uncertainties in intrusion detection and the 
concepts of pricing under uncertainty in economics.  

Pricing under Uncertainty or Futures Pricing, under 
certain conditions is a martingale [Malliaris 91]. Let X1, 
X2…X t be a sequence representing the time sequence of 
prices till time t. We assume that these random variables are 
bounded because the prices of a commodity are finite and 
usually have some upper bound. We also assume that an 
economic agent is observing the prices of these commodities, 
and this agent is predicting the futures price based on the past 
information contained in the σ-fields generated by these 
random variables. The futures price of a commodity depends 
only on the last known distribution and not the entire history 
of the prices. This result is proved in [Malliaris 91].  The 
martingale property has also been used to predict other 
market parameters like a share of a stock, risk evaluation, etc. 
 
5.2. User Activity as a Martingale 

 
Theorem: Let the lateral sequence of random variables for 
any state i of a sequence of operations be denoted as X1(ti, ξ), 
X2(ti, ξ), … Xn(ti, ξ). Such a sequence of user activity is a 
martingale. 
Proof: Since the parameters ti, ξ, remain constant, we 
simplify the notation for the sequence as X1, X2, … , Xn.  Our 
goal is to predict the next distribution, given this history. 

Let us assume that Xn+1 = Xn + An, where An is an 
independent identically distributed random variable with zero 
mean and a small variance. This assumption is justified by 
the fact that we expect the user to perform operations not 
very different from the last time. Any small deviation that 
could possibly occur is embodied in An.  

ℑn = σ(Xn, Xn-1, …X1)     ⊂     ℑn+1 = σ(Xn+1, Xn, … X1), 
since the information embodied in the sequence Xn+1, Xn, … 
X1 is larger than that in Xn, Xn-1, … , X1. This satisfies 
condition 1 of martingale (see Eq. (6)).   

Since the set of operations is finite and we define an initial 
distribution based on the encapsulation of users intent and 
other general information regarding user behavior, which 
involves every outcome in ℑ, it follows that Xn is measurable 
ℑn, satisfying condition 2. 

Also, every outcome is assigned a finite value. This 
satisfies condition 3. 

We establish condition 4 as follows.  
E{ Xn+1 | Xn, Xn-1, … X1 }   
= E{ Xn + An | Xn, Xn-1, … X1 }  
= E{ Xn | Xn, Xn-1, … X1}  + E{  An | Xn, Xn-1, … X1}  
= Xn + E{ An}     (since An is an independent random 

variable) 
= Xn + 0  (since E{ An}  =  0) 

= Xn                               (10)  
 
Development of this theorem provides a breakthrough for 

our reasoning since we are able to integrate the user activity 
profile in a quantitative framework. This result allows us for 



the quantification of measures leading up to intrusions and its 
evaluation as described in the next section. 
 
6. The Reasoning Framework 
 

We define two thresholds Tl and Th on the cost of 
performing a job in order to facilitate the reasoning process. 
As the job is being performed, the cost keeps accumulating in 
a monotone non-decreasing manner. Three regions of costs, 
viz., non-intrusive, indeterminate and intrusive are defined 
using the two thresholds Tl and Th as shown in    Fig. 2. 

 
 

 
 
 

Fig. 2. Illustration of  thresholds and cost buildup 

 
The cost of performing a job maps into these regions. The 

mapping is done actively, following the sequences as the 
events occur. 

 
Cost (non-intrusive)   ≤   Tl    ≤   Cost (indeterminate)   ≤    

Th    ≤    Cost(intrusive)             (11) 
 
 The above relation alludes to the relationship between 

the costs and regions demarcated by the thresholds. 
 
6.1. Reasoning Basis 

 
This section discusses the basic method used for 

developing the reasonableness test framework.  The 
quantification of parameters involved is discussed in the 
following sub-sections. 

As a user begins to perform operations to complete a job, 
he begins to incur costs of both types as discussed in Section 
4.3. Clearly, when the accumulated costs map into the non-
intrusive region, an intrusion will not be signaled. On the 
other hand, when the costs map into the intrusive region, an 
intrusion will be signaled. When the costs map into the 
indeterminate region (window of uncertainty) the situation is 
ambiguous and needs to be resolved. We have the 
indeterminate region since it is not possible to make a binary 
decision whether a user’s activity is intrusive or not. When 
the costs map into the indeterminate region, the goal would 
be to reduce this window of uncertainty to the greatest 
possible extent, making the decision-making process more 
deterministic and quicker. This would arrest any further 
damage if the user were really an intruder. 

An initial default profile is created when the user submits 
his intent in his first login session [2]. Subsequent job and 
user sessions shape this initial profile. Based on this profile, 
we predict what the user’s behavior would be and compare 
the actual behavior to this predicted behavior. When an 
intruder breaks into someone’s account, he would hardly 
know the user profile of the person’s account he has broken 
into. His actions will appear as a deviation from the predicted 
user profile. The accumulated costs in such cases are likely to 
map either into the indeterminate region or the intrusive 
region. Genuine users do make mistakes at times, but they 
correct themselves and conform to the profile. Therefore, it 
can be expected that the accumulated costs would map into 
the non-intrusive or indeterminate regions. Once in the 
indeterminate region, we use factors such as cost gradients to 
shrink this region. This process may have to be repeated until 
this indeterminate region is very small and there are 
effectively only two regions, viz., non-intrusive and intrusive. 
When that is done, any further mappings would be resolved 
as either non-intrusive or intrusive. 
 
6.2. Quantifying the Cost of Operations 

 
The number of resources in a system is finite and the 

number of actions that can be performed on a resource is also 
finite.  Actions at higher levels are defined in terms of actions 
at lower levels (see Section 3). So we start at the lowest level 
of abstraction and assign costs for these basic actions. The 
cost of each action at a particular level may depend in turn on 
the semantics of the operation, i.e., whether the action is an 
accessor or a modifier. We then progress upward defining 
costs at higher levels based on the ones defined at the lower 
levels. For example, take the resource Hard Disk. The lowest 
logical level is that of a Byte or some similar data type. The 
actions that are defined at that level could be ReadByte and 
WriteByte. Since the semantics of ReadByte would be just 
reading a Byte without any loss or damage to data, it has a 
smaller cost. WriteByte on the other hand, though it operates 
on a Byte, has a higher cost because it could result in damage 
or loss of data. At the next higher level of a File, we could 
have the actions CreateFile, ReadFile, WriteFile, DeleteFile. 
Each of these actions in turn uses the lower level actions 
ReadByte and WriteByte. Moreover, reading five Bytes would 
have more cost than reading one Byte, because it is equivalent 
of performing the ReadByte action five times. It is also 
possible that the operation cannot be completed because it is 
an invalid one (ref. Section 3.3). This can also be interpreted 
as the operation can be completed in infinite time. Such 
operations are assigned a very high cost. This is additionally 
justified by the fact that choice of an invalid operation 
indicates deviation. The goal of this scheme is to reflect the 
amount of resources being used. 

The cost of performing an operation reflects the usage of 
resources. An abuse of the resources causes accumulation of 
high costs, eventually leading to abuse detection. It should be 
noted though that intruders are subtler and rarely do they 



resort to behaviors indicative of resource abuse. Therefore, 
this component remains negligible in such cases. 
 
6.3. Quantifying the Cost of Deviation 

 
The encapsulated user’s intent and the actual choice of 

operations in each session form a list or history of profiles. 
This history is used to model the future user behavior.  A 
non-linear mean square estimation method [12] can be used 
for this purpose.   

     Let the sequence of random variables Xn, Xn-1, Xn-2, … , 
X1 represent a history of choice of operations at some state i 
of  sequences followed in the respective sessions. 

We make the futuristic estimate as: 
 
E{ Xn+1 | Xn, Xn-1, … X1}  = Xn                 (12) 
 
Now, since we have modeled the future user behavior, we 

define the following relation to quantify the deviation from 
the normal user behavior. 

 
Cd(Oi) ∝ [E{Xn} – Xn(Oi)]            (13) 
where Oi is the operation chosen. 
 
or Cd(Oi) = λ . [  E{Xn} –Xn(Oi)]          (14) 

where λ is the constant of proportionality. It could also be 
used as a scaling factor to map the cost into the regions 
defined in Fig. 2.          

 
The following algorithm is used to define the initial 

distribution for the operations associated with completing a 
job. This algorithm, based on the development in Section 3.4, 
takes into consideration the sensitivity of the cost of deviation 
to the choice of operations. This initial default profile is 
based on the user intent provided at the start of the very first 
user session.  

 
Algorithm: INIT_DISTR 
1) Let S = { S1, S2, … , Sm}  be the set of sequences (ref. 

Section 3.4). 
2) Sort S in decreasing order of the lengths of the 

sequences. 
3) Let Smax be the longest sequence in S. 
4) Associate a stochastic process X(t, ξ) with Smax. 
5)  At each state ti of this stochastic process, enumerate the 

operations and assign probabilities to each of these 
operations  (see Section 3). 

6) Let R be a large real number. /* The actual mapping of 
each random variable X(ti, ξ) begins here */ 

7) for i  = 1 to |Smax| do /* where |x| means the length of x * / 
7.1) Let O = { o1, o2, … , ok}  be the set of operations at state i, 
sorted in the decreasing order of the  probabilities. 
7.2) X(ti, o1) = R 
7.3) for j = 2 to size(O)  do 
7.3.1) X(ti, oj) = R + (-1)j [f(P{ o1}  – P{ oj} )]     
7.3.2) j = j + 1   

A pictorial representation of the initial distribution 
resulting from the above algorithm at each state is given in 
Figure 3. 

 
Fig. 3. The initial distribution 

 

The distribution is shaped by the function f in the 
algorithm in such a way that the operations with higher 
probability of selection by the user lie closer to the mean and 
others are mapped away from the mean. This would allow the 
distribution to be more sensitive to deviations (see (14)). The 
operation with the highest probability is used as a reference. 
The mapping of other operations is defined by the function of 
the difference of their probabilities from this reference 
probability. This function f could be a linear or exponential 
function and is chosen appropriately. 

Since, at any step of the algorithm, only a finite and small 
number of values are being handled irrespective of the user 
input, the time complexity of this algorithm is O(1). 
The above procedure determines the initial default user 
profile for a particular job. This profile is subject to change 
based on the user’s behavior, i.e., the distribution at each state 
of this sequence is influenced by future choices of operations. 
We now propose an algorithm, which modifies and updates 
the user profile X(t, ξ) to accommodate the current user 
activity. 
 
Algorithm: MODIFY_DISTR 
1) Let X(t, ξ) be the stochastic process representing the user 

profile.  
2) Let S be the sequence the user follows to complete a job. 
3) if Cost(J) > Th, exit, where J is the job performed till its 

completion or till flagging of intrusion. 
4) else if  |(X(t, ξ)| < |S|, extend X(t, ξ) by |S| – |X(t, ξ)|  

states and associate random variables for each of these 
states using INIT_DISTR 

5) for i = 1 to |(X(t, ξ)| do 
5.1) update the probability distribution for X(ti, ξ), 
considering that unknown operations are represented by o' 
(ref. Sec. 3.4). 
 
This algorithm is simple and all it does is update the 
frequency distributions at each state of the stochastic process 



X(t, ξ). The complexity of the operations depends linearly on 
the length of the sequence of operations as chosen by the 
user. Hence, the complexity equals O(n). 
 
6.4. Quantifying the Thresholds Tl anf Tk 

 
Setting the thresholds to determine the intrusive and non-

intrusive regions is not easy. Therefore, we use certain 
bounds to initially set the thresholds. These thresholds will be 
refined subsequently based on the user operations.    

Clearly, a job can be completed in multiple ways, with 
each having its own sequence of operations.  Let Smin 

represent the shortest of such sequences and Smax  the longest 
one. Threshold Tl is the lowest amount of costs accumulated 
over the sequence Smax. 

 
Tl = Cost(J) = ∑ [α . Co(Oi) +  β . Cd(Oi)] , summed over 

the sequence Smax .                    (15) 
 
Here, Co(Oi) and Cd(Oi) are the minimum costs, or in other 

words, an appropriate operation Oi is chosen such that these 
costs are the minimum. Any other sequence will accumulate 
smaller costs assuming the user is conforming to his profile. 
Therefore, the costs accumulated in such a case will remain 
in the non-intrusive region. A reasonable amount of error ε 
can be added to relax the bound. 

The threshold Th is the maximum costs accumulated over 
the sequence Smin. 

 
Th = Cost(J) =  ∑ [α . Co(Oi) +  β . Cd(Oi)], summed over 

the sequence Smin.                     (16) 
 
Any other sequence (ref. S’ in Section 3.4) will accumulate 

higher costs, indicating that the user has been deviating from 
his profile in an intrusive way. Hence, costs accumulated in 
such a case will overflow into the intrusive region. Just as in 
the case of Tl, a reasonable amount of error can be added or 
subtracted from this bound. 
 
6.5. Decision-making in the Indeterminate Region 

 
If the cost of performing a job maps into the indeterminate 

region at any time, the situation needs to be resolved quickly 
to ensure concurrent detection.   We propose to handle this by 
dynamically moving the thresholds based on certain criteria.  
The cost may have mapped to the window of uncertainty due 
to genuine, but inadvertent deviations by the user. With this 
optimistic view, the Tl threshold is moved toward Th. The 
amount by which it is moved is equal to the minimum costs 
that would be accumulated from this current state till the 
completion of the job over the longest sequence possible 
from this current state. This is a recursive procedure (see 
Section 6.4). 

 Th   needs to be moved towards Tl since there is an 
appreciable deviation from the profile. The idea is to shrink 
the window of uncertainty so that a speedy decision can be 

taken.  This movement depends on the rate at which the costs 
have been accumulated since the last time the threshold 
movement was triggered. A genuine user does occasionally 
make mistakes, but would otherwise conform to his profile 
and hence, the gradient of costs is expected to be small. An 
intruder on the other hand would perform largely deviating 
operations in a short span of time, causing a greater gradient 
of costs. In such a case, the window of uncertainty should be 
narrowed sharply. 

 
 (Th – Tl) ∝ 1 / G                      (17) 
 (Th – Tl) = ϒ x [1 / G], where ϒ is a constant   (18) 
  
where G = (∆Cost)/n, where ∆Cost is the difference in 

costs accumulated since the last time the threshold movement 
was triggered, and n is the number of states traversed since 
that time. 
The threshold movement, which is the core of our reasoning, 
is presented in the form of an algorithm. Whenever the costs 
map into the indeterminate region, this algorithm is invoked. 
 
Algorithm: DECIDE 
1) Let S be the longest sequence of operations that is 

needed to complete the job from the current state in the 
user’s sequence of operations. 

2) Calculate c = minimum cost over S. 
3) Tl = Tl + c 
4) Let C = currently accumulated costs 
5) Let C' = accumulated costs when DECIDE was last 

invoked. If DECIDE was never invoked C' = 0. 
6) Calculate gradient of costs G = [C – C'] / n, where n is 

the number of states traversed since DECIDE was last 
invoked. 

7) Th = Tl + ϒ x [1 / G], where ϒ is a constant. 
 

This algorithm is used only when the accumulated costs 
map into the indeterminate region. In the best case, this 
algorithm may not be invoked even once. In the worst case, 
the algorithm may have to be invoked for the entire length of 
the sequence. The time complexity would then be O(n). 
 
7. Preliminary Results 

 
The above framework was tested by integrating it into the 

basic CIDS and a summary of these results is presented. 
These tests are by no means exhaustive and serve merely as a 
proof of concept. Moreover, there is a lack of proper test data 
at our level of monitoring, requiring us to generate some of 
our own. In reality, it calls for more specialized data specific 
to an environment this system would be deployed. 

We have simulated a “Virtual Banking Environment”  for 
testing purposes. This environment consists of entities such 
as Bank, Account, Employee, Customer, etc. There are 
multiple employees in a bank at various levels in the 
hierarchy and each with a specific job detail. Customers can 
have multiple accounts in the bank and each employee 
typically has access to multiple accounts. Considering the 



value of the information, there is always a possibility of 
security policy violations or attempts thereof. 

Any user connecting to the bank for the first time is 
presented with a GUI, which consists of a set of jobs based 
on his userID. The user can now choose a subset of these jobs 
and this forms his intent. The system remembers his previous 
intent, if any, and the user can choose to agree with the old 
one. 

User activity is primarily in the form of GUI events, and 
each event is bound to a specific action or command. These 
events in time domain represent a sequence of operations. 

Monitoring is primarily performed by a master watchdog 
that continuously monitors user activity in the system. 
Accesses to the database are monitored by a file watchdog, 
which is built around the system database. It communicates 
with the master watchdog to report any violations or events. 

The system was designed to be as realistic as possible and 
was built on CORBA [14] to support the distributed 
architecture of the banking environment. The system was 
primarily developed in Java. Information is stored in an 
Oracle database and JDBC provides connectivity to this 
database. It uses SQL to perform queries on this database. All 
GUI components are written to be lightweight and small 
using JFC Swing [15]. 

Sequences which are perfectly valid and those resulting in 
a possible compromise are noted and fed to the monitor. 
These form the input to the watchdogs. 

We used system overhead and detection coverage as 
performance metrics. There is a fixed amount of processing 
and memory overhead due to the initial setup of the watchdog 
processes, and the increase is an approximate linear function 
of the number of users currently accessing the system. This is 
due to the fact that additional processing is attributed to the 
threads, which the master watchdog launches to monitor per 
user activity. There is very little permanent storage required 
because of the martingale approach. This system gives a very 
good coverage with few false positives when the user doesn’ t 
resort to excessively deviant behavior. This could be a part of 
the policy enforcement. Any significant exploratory behavior 
is identified by the system as “noise”  and this may result in 
large false positives. 
 
8. Discussion  

 
We have presented a basic reasonableness test framework 

for detecting intrusions before they manifest in harmful ways 
and cause irreparable damage. The low latency of detection is 
a significant feature of our technique. The underlying idea of 
intrusion detection is based on a novel concept of 
encapsulating owner’s intent. Obtaining the owner’s intent 
prior to starting a session makes the concurrent intrusion 
detection tractable unlike the approaches that work with huge 
audit data. This paper is mainly focusing on the development 
of an analytical framework for the reasonableness test part of 
intrusion assessment. Most of the reasonableness test works 
in the literature are ad hoc [13] in nature. The framework 
presented here gives a systematic way of checking if a 
particular decision is made in a rational way. This framework 
is applicable not only for reasoning about intrusions but also 

to situations where decision-making is not a binary process. 
The major contribution of our work is the integration of the 
user activity profile into a quantitative framework. We have 
leveraged concepts from economics and finance to 
accomplish this goal.  

Most existing security monitoring systems are rule-based, 
which means that they cannot detect unseen intrusions. 
Unlike checking for an ever-growing set of intrusive 
sequences, our approach monitors to see that the user follows 
a plan. Moreover, since we work with the concept of jobs, 
and solicit a session scope, we have smaller and focused set 
of operations to deal with. Maintaining two thresholds 
enables us to make a more informed decision with reduced 
false positives. We are currently working on devising 
techniques to manage and reduce the state explosion and false 
alarms while handling various sequences of operations. A 
preliminary prototype of the systems has been setup and 
studied [9] and the results obtained are encouraging.  

Security has to be always linked with people. A user on a 
system implementing the proposed security monitoring 
framework must not resort to random and exploratory 
behavior. In other words, we assume that the users are well 
trained and will not behave like intruders or hackers. Since 
our system maintains history and profiles, it could be adapted 
to provide corrective measures too, in case of operator faults.   

This system does have its limitations. Excessive 
exploratory behavior or “harmless”  noise can result in large 
false alarm rates. Since the monitoring is done at a user 
command level, it cannot detect low-level network based 
attacks or external DOS attacks.  

The reasoning framework and the concurrent intrusion 
detection ideas presented here are not replacements to 
existing core anomaly detection techniques. Instead, it can be 
used as a third-party module to supplement the current 
security systems. Based on the theoretical model developed 
here, we plan to implement a fully developed intrusion 
detection and assessment prototype in the future. This 
prototype will be subjected to tests in several environments. 
The factors influencing the parameters described in the paper 
will be studied by simulating intrusion scenarios and 
analyzing the results. 
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