
Scatter (and other) Plots for Visualizing User Profiling Data
and Network Traffic

Tom Goldring
National Security Agency

ABSTRACT
The scatterplot continues to be one of the most useful tools
for visualizing numeric data, however what we typically en-
counter in Computer Security is categorical and/or textual
in nature, and how to convert it into a form where scatter-
plots apply is not always obvious. We outline some simple
ideas for doing this and illustrate with two “real data” case
studies: User Profiling and Network Traffic. In both cases
the results can be quite surprising.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security

Keywords
Visualization

1. USER PROFILING

1.1 Introduction
Within the context of Computer Security, User Profiling

[8, 9, 19, 5, 14, 16, 18, 12, 13, 10, 15] involves two problems:
a) authentication (is a session being impersonated) and b)
insider misuse (is the legitimate user doing something they
shouldn’t). To begin to answer such questions we first need
to decide what data from user sessions should be analyzed.
Although the majority of published research has focused on
Unix command line data, window-based environments are
far more ubiquitous in current practice, and in most cases
the command line is all but extinct. To focus on user be-
havior as opposed to system behavior , we collected data
from window titles (whatever is in the title bar of a window
appearing on the desktop) and the process table (the mecha-
nism that multitasking operating systems use to keep track

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VizSEC/DMSEC’04 October 29, 2004, Washington DC, USA
Copyright 2004 ACM 1-58113-974-8/04/0010 ...$5.00.

of the various applications running concurrently), for the
Windows NT operating system. We assume that with very
few exceptions, every window appearing on a user’s desk-
top is the result of intentional user activity, and conversely,
nearly all user interaction with the system is done through
some window. Since windows can be linked to processes via
their process ID, it is possible to filter out most if not all
background system behavior not consciously initiated by the
user. Timing (wall clock and cpu) statistics associated with
windows and processes were collected as well. The data set
we used is available to the general research community [1]
and some experiments previously performed on it are dis-
cussed in [7].

1.2 cpu Usage
Given the availability of timing statistics on a per process

level, it is natural to look at how various processes use cpu
time, as first proposed in [10]. From the user sessions, we
create a list of all process names for windows appearing on
the desktop, ordered by total cpu time (over all sessions for
all users). We take the top ten (netscape, outlook, winword,

ieplore, explorer, msaccess, powerpnt, excel, acrord32, winzip32),
call them P1, . . . , P10 respectively, and let P11 represent all
the rest. We selected ten users for this experiment, and for
k = 1, . . . , 10 created a matrix Ak for user k whose ij’th
element is the proportion used by Pj (j = 1, . . . , 11) of the
total cpu time for session i (the sessions are labeled in time
order, i.e. session i1 occured prior to i2 if i1 < i2). Then
concatenate A1, . . . , Ak one underneath the other and add
a column on the left containing the user label k for each
row. A data image plot [11] for this final matrix is shown
in Fig. 1. It is derived by normalizing each column to the
unit interval (min → 0, max → 1), associating a rectangular
cell with each entry, and coloring the cells according to the
normalized value (0 → black, 1 → white). Column 1 clearly
shows the user boundaries. Note how for users 2-8, most
of their cpu time is dominated by the first five processes.
On the other hand, user 1 appears to be somewhat of a
maverick, using only explorer (which is the name of many
built in processes for the Windows OS) but none of the
other top ten. User 8 seems to have spent a number of
nearly consecutive sessions making heavy use of acrord32,

but hardly ever using it otherwise. msaccess is used in a few
sessions by user 2, and almost never by anyone else. These
examples illustrate how some users can look very much alike,
but at the same time how some of a given user’s sessions
may appear anomalous in certain ways when compared to
that same user’s other sessions. Hence the difficulty of the
authentication problem for user profiling on this platform.

119

Figure 1: Data Image for Window Processes

1.3 Word Repetitions
It turns out that the actual words appearing in the win-

dow titles form a reasonably good feature for distinguishing
among users [6]. Based on this we would like to visualize
to what degree does a given person reuse words from one
session to the next, and to what degree are the word sets of
two people different. This can be displayed in a scatterplot
as follows: take all sessions belonging to the first user and
concatenate them, where we restrict the contents of a session
to only the window titles, one to a line. Do the same for the
other users, and then concatenate all of these into a single
text document. So user 1’s sessions will appear in lines 1 –
L1, user 2’s sessions in lines (L1+1) – L2, etc. Now create an
index for this document, i.e. each entry is a word appearing
in the document and the line numbers that word appears
in. We exclude from the index numbers, words “belonging
to Windows” (see the documentation in [1]), a given set of
stop words, and any words of length less than three. Each
word gives rise to a set of triples (u, x, y) where x > y are line
numbers and u is the user number for x. So e.g. if “hello”
shows up in lines 10, 25, and 36 where L1 = 27, L2 > 36
then we obtain the set {(1, 25, 10), (1, 36, 10), (2, 36, 25)}.

Since some people generate more and/or larger sessions
than others, plots of the derived numeric data can look some-
what uneven. For display purposes, 1000 lines were chosen
at random for each user (so Ln = 1000 n for n = 1, . . . , 10),
resulting in 30,551 triples, i.e. a 30551× 3 matrix with rows
sorted by user number. A data image plot for this matrix
is shown in Fig. 2. As before, column 1 shows the user
boundaries, and as expected, columns 1 and 2 are strongly
correlated. The degree to which columns 1 and 3 are cor-
related gives an indication of how well the particular words
identify the user. For example, if everyone used a common
set of words with similar frequency you would expect no cor-
relation at all, whereas if the user’s word sets were mutually
nonintersecting, the correlation would be very high.

Figure 2: Data Image for Word Repetitions

If we now remove column 1 and use it only to color the
data points, we obtain the scatterplot of the remaining two
columns, shown in Fig. 3. Since x > y for all pairs, the
upper half quadrant is empty. The fact that the block cor-
responding to user 2 (1001 ≤ x ≤ 2000) visually splits into
a sparsely filled rectangle beneath a densely filled triangle
shows that the word sets for users 1 and 2 are fairly dis-
tinct. Similarly for user 3 vs. 1 and 2. The effect for user 4
is slightly less pronounced, while user 5 appears to be better
distinguished from users 1, 2, and 4 than from 3. The dis-
tinction is very strong for user 6, and quite good for users 7
and 9. User 8 separates from 1 better than from 2–7, while
10 looks very similar to 9 but not to 1–8.

Figure 3: Scatterplot of Word Repetitions

120

1.4 Interval Graphs
Another way to analyze the user profiling data is through

the notion of an interval graph [3]. For any session, cre-
ate a graph whose vertices are the windows opened by the
user, with an edge joining two vertices if the corresponding
windows are open concurrently. Optionally, the time the
two windows are both open may be used as an edge weight.
These graphs may be viewed using an environment such as
Renoir [4] (see Fig, 4 for a plot of a single session), however

Figure 4: Renoir plot of an Interval Graph

to compare many sessions at once requires a preliminary
feature selection step. For example, suppose we choose the
following features (attributes) for each interval graph (see
any text on graph theory for definitions):

1. number of vertices

2. number of edges

3. length of largest maximal matching

4. number of complete subgraphs

5. number of vertices in largest complete subgraph

6. number of vertices in longest cycle.

In this way we obtain a six element row vector from each user
session, then we combine these vectors into a data matrix.
To get a scatterplot from the resulting data matrix we need
to project onto some two dimensional subspace, e.g. the
first two Principal Components. This particular projection
maximizes the intercentroid distances among clusters that
may exist in the data, and in our experiments we have found
it to be extremely useful. For the interval graph features
(same user data as before), we obtain Fig. 5. Although these
features do not distinguish among users, the structure in the
plot, which at present we do not understand, shows that the
feature set does provide a very well defined partition for the
data. A potential strategy for discovering the meaning of
such structure is outlined at the end of the next section.

2. NETWORK TRAFFIC
Some innovative ideas for visualizing computer network

traffic are presented in [11], but for the most part, the ma-
jority of network traffic visualizations appearing in the lit-
erature show (some variation on the theme of) plots of IP

Figure 5: Principal Components of Interval Graph

Data

connection graphs, i.e. graphs where the vertices are IP ad-
dresses, with an edge between vi and vj if a connection exists
between the corresponding hosts. While such plots provide
a good starting point and in particular do an excellent job of
showing things like hubs and port scans, the IP connection
graph does not do well at the following:

• showing what happens inside a connection

• visualizing more than two or three attributes per node
or edge

• displaying many thousands of connections and still
having the plot be intelligible

• detecting clusters or patterns arising from interactions
among attributes

• employing mathematical decomposition techniques to
display the data in various ways.

All of these can be addressed by the lowly scatterplot. As
with the interval graphs, we select a set of features from the
raw network traffic (either on a per packet level, or on a per
session level if the traffic has been sessionized). These can
come from packet headers, payloads, or both. We now have a
matrix where each row is either a packet or session, and each
column contains the value of some attribute. Next, map cat-
egorical attributes into numbers, e.g. if an attribute has n

possible values {a1, a2, . . . , an}, substitute n columns where
a1 ⇔ (1, 0, . . . , 0), a2 ⇔ (0, 1, 0, . . . , 0) etc. (you can reduce
the dimension by one using the vertices of an n-simplex). If
this adds too many coordinates, another possibility is to use
multidimensional scaling to reduce the dimension if a mean-
ingful dissimilarity matrix can be written down. But much
more simply, we can just map ai ⇔ i. This of course intro-
duces an ordering on the attribute values where in fact none
may exist, however we do not regard it as a serious problem,
because we don’t expect it to destroy existing structure. At
worst it might introduce additional structure into the scat-
terplots we are about to describe, but this can be tested by
permuting the ai and redrawing the plot.

121

We now have a (possibly high dimensional) numeric ma-
trix, and can leverage a host of visualization techniques that
exist for multidimensional data such as the data image, par-
allel coordinates, and tours (e.g. the last two are imple-
mented in the ggobi Data Visualization System [17]). After
much experimentation, we have found that projecting onto
the first two Principal Components tends to work extremely
well in most cases. Some plots obtained in this way from
the Lincoln Labs DARPA data [2] are shown below. The
results are very intriguing, but at present we don’t know
what they mean. In theory, this could be addressed through
an interactive plotting interface, where the user manually
selects and saves a subplot corresponding to outliers or to
an interesting pattern (ggobi implements such an interface).
From the row numbers, one could then extract the subset of
the original data corresponding to the selection and present
it to a domain expert for analysis. We are currently imple-
menting this strategy and plan to report results in future
work.

Figure 6: Network Traffic

Figure 7: More Network Traffic

Figure 8: Still More Network Traffic

3. REFERENCES
[1] ftp://ftp.njit.edu/pub/manikopo/data.

[2] www.ll.mit.edu/IST/ideval/data/data index.html.

[3] Joint work with m. s. postol.

[4] Renoir: General network visualization and
manipulation program.
http://www.nsa.gov/techtrans/techt00013.cfm.

[5] B. Davison and H. Hirsch. Predicting sequences of
user actions. In AAAI/ICML 1998 Workshop on
Predicting the Future, 1998.

[6] K. DeVault, N. Tucey, and D. Marchette. Analyzing
process table and window title data for user
identification in a windows environment. Naval
Surface Warfare Center, NSWCDD/TR-03/122, 2004.

[7] T. Goldring. Authenticating users by profiling
behavior. In ICDM Workshop on Data Mining for
Computer Security. Melbourne, Florida, November
2003.

[8] Javitz and Valdes. The nides statistical component
description and justification.
http://www.sdl.sri.com/projects/nides/reports/
statreport.ps.gz.

[9] T. Lane and C. E. Brodley. Sequence matching and
learning in anomaly detection for computer security.
In AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk Management. Providence, RI,
1997.

[10] Y. Liao. Windows nt user profiling with support vector
machines. In Proc. 2002 UC Davis Student Workshop
on Computing, Technical Report CSE-2002-28. Dept.
of Computer Science, UC Davis, 2002.

[11] D. Marchette. Computer Intrusion Detection and
Network Monitoring: A Statistical Viewpoint. Springer
Verlag, 2001.

[12] R. Maxion and K. Tan. Anomaly detection in
embedded systems. IEEE Transactions on Computers,
51(2), February 2002.

[13] R. Maxion and T. Townsend. Masquerade detection
using truncated command lines. In International
Conference on Dependable Systems and Networks.
Washington, D.C., June 2002.

122

[14] P. Reiher. File profiling for insider threats. Sensors
Directorate, Air Force Research Laboratory,
AFRL-SN-WP-TR-2002-1102, 2002.

[15] J. Shavlik, M. Shavlik, and M. Fahland. Evaluating
software sensors for actively profiling windows 2000
computer users. In Fourth International Symposium
on Recent Advances in Intrusion Detection. Davis,
CA, 2001.

[16] T. Spyrou and J. Darzentas. Intention modeling:
Approximating computer user intentions for detection
and prediction of intrusions. In S. K. Katsikas and D.
Gritzalis (eds.), Information Systems Security: Facing
the Information Society of the 21’st Century.

[17] D. Swayne, D. Cook, A. Buja, and D. Lang. ggobi

manual. http://www.ggobi.org/manual.pdf, 2003.

[18] K. Tan and R. Maxion. Why 6? defining the
operational limits of stide, an anomaly-based intrusion
detector. In IEEE Symposium on Security and
Privacy. Oakland, CA, May 2002.

[19] M. Theus and M. Schonlau. Intrusion detection based
on structural zeroes. Statistical Computing & Graphics
Newsletter, 9(1):12–17, 1998.

123

