
SIMS: A Modeling and Simulation Platform for Intrusion
Monitoring/Detection Systems

�

Ashish Garg, Shambhu Upadhyaya,
Ramkumar Chinchani

Dept. of Computer Science and Engineering
University at Buffalo, SUNY

Buffalo, NY 14260 USA
Email:

�
ashish, shambhu, rc27 � @cse.buffalo.edu

Kevin Kwiat
Air Force Research Laboratory

525 Brooks Rd.
Rome, NY 13441 USA

kwiatk@rl.af.mil

Keywords: intrusion detection, simulation tool.

Abstract

Computer security is becoming an ever-growing concern in
the current world. Intrusion monitoring and detection systems
form a large class of tools that are deployed to combat the
scourge of attacks. While there are many such systems avail-
able, the typical development cycle of such a system involves
significant time and effort. In this paper, we propose and de-
velop a modeling and simulation platform constructed over a
popular operating system simulator that can aid in the model-
ing and rapid testing of intrusion detection systems. In order
to achieve this goal, we have studied a number of intrusion
detection systems and identified the various features that are
essential to the successful construction of such a platform. We
demonstrate the capabilities of this system, called Modeling
and Simulation Platform for Intrusion Monitoring/Detection
Systems (SIMS), by developing and simulating two intrusion
detection system models. In the long run, we also hope that
this would become a widely used academic and commercial
tool.

1 INTRODUCTION

The purpose of using modeling and simulation platforms is; (a)
to educate people with the emerging technology, (b) to reduce
costs in terms of time and labor before deployment of a real
system and (c) for rapid development, testing and evaluation
of a concept. These platforms not only grant the flexibility of
testing large variety of scenarios before they are implemented,
but also provide an adequate idea about the feasibility of the
system to be implemented [1]. In this paper, we identify an
area which is attracting significant attention but greatly lacks

�
Research supported in part by U.S. Air Force Research Laboratory, Rome,

NY, under contract: F30602-00-10507

in modeling and simulation tools, viz., computer and network
systems security.

Security is a major concern for business and service criti-
cal systems. In order to address these concerns, a wide va-
riety of security mechanisms such as intrusion detection sys-
tems, firewalls, etc., are deployed. A complete security sys-
tem can take a long time to evolve, sometimes a few years;
for example the EMERALD (Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances) system [2] devel-
oped at SRI International took 3-5 years to become a robust
system. Modeling and simulation platforms, that provide sup-
port for rapidly testing the feasibility and evaluating the perfor-
mance of these security systems before they are deployed, can
reduce the time to develop such a system. Although modeling
and simulation tools are available for other domains such as
computer networks [3, 4, 5], there are none available for test-
ing security systems. In this paper, we focus primarily on mod-
eling and simulating one category of security mechanisms, i.e.,
intrusion detection. Intrusion detection is an important line of
defense since it has the potential to detect and stop attacks oc-
curring on a computer system [6].

Our primary contribution in this paper involves develop-
ment of a tool for modeling, simulating and testing an intru-
sion detection system (IDS). This is accomplished by survey-
ing various available IDSs and identifying a set of general fea-
tures supported by them. These features form the basis of our
tool. Our tool primarily serves three purposes; (1) IDS de-
velopers can use this tool to simulate and test their intrusion
detection models before deploying the real system, (2) educa-
tional institutions can use this tool to demonstrate a working
IDS with real attack scenarios, without having to compromise
the system security and (3) an organization can use the tool to
test various IDSs before deploying the one with least overhead
on their systems, while providing adequate security. As back-
ground, Section 2 of this paper presents the basic terminol-
ogy of intrusion detection, and surveys various types of IDSs

in order to identify the general features. Section 3 explains
how the features extracted from various IDSs are integrated
in SIMS (A Modeling and Simulation Platform for Intrusion
Monitoring/Detection Systems) architecture. Section 4 begins
the description of the tested IDS models and attack scenar-
ios, and then discusses the performance evaluation of our tool.
Section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION

We present an overview of some of the notable research efforts
in the field of intrusion detection and prevention in order to put
our work in perspective. Any modeling platform that claims to
allow rapid development and testing of intrusion detection sys-
tem models should provide support for general IDS features.
According to the Software Engineering Institute of Carnegie
Mellon University, an intrusion is defined as follows:

“An intrusion has taken place when an attack is
considered successful from the victim’s perspective,
i.e., the victim has experienced some loss or conse-
quence” [7].

In general, an intrusion is defined as successfully gaining
unauthorized access into a system. An attempt to break into
a system without proper authorization is called an attack. In-
trusion detection is the process of detecting attacks or unau-
thorized use of a system. The history of intrusion detection
dates back to 1980, when Anderson proposed the idea of audit
trails for monitoring the threats to computer systems [8]. The
events or operations on a computer system are collected in the
form of audit data. Almost all IDSs are based on this audit
data generated by computer systems. Intrusion detection has
been studied in two major classes. They are:

Misuse Detection. Misuse detection is done by detecting
“specific, precisely representable techniques of computer sys-
tem abuse” [9]. An IDS doing misuse detection contains a
collection of signatures, which are specifications of features,
conditions, arrangements and interrelationships among events
that signify a break-in or other misuse, or their attempt [10].
The intrusions are detected by searching for these intrusion
signatures in the user activities. For example, the signature for
a SYN attack is a large number of half open TCP connections
[11]. Misuse detection systems (MDSs) are categorized based
on the source of audit data. Host-based MDSs analyze audit
data from a single host, see Haystack [12] and MIDAS (Mul-
tics Intrusion Detection and Alerting System) [13]. On the
other hand, network based MDSs detect the intrusions based
on the audit data from a collection of hosts in a network, see
NIDES (Network Intrusion Detection Expert System) [14] and
NSM (Network Security Monitor, now called Network Intru-
sion Detector or NID) [15].

Anomaly Detection. Anomaly detection is based on the
premise that an attack on a computer system (or network) will
be noticeably different from normal system (or network) ac-
tivity, and an intruder (possibly masquerading as a legitimate
user) will exhibit a pattern of behavior different from the nor-
mal user [16]. IDSs based on this approach attempt to charac-
terize user’s normal behavior, often by maintaining statistical
profiles of each user’s activity [17, 18]. These activity profiles
include information about user’s computing behavior such as
time of login, duration of the login session, disk usage, CPU
usage, favorite applications etc.

Some systems [19, 20] use access control to define the
bracket of allowed activity (also called as sandboxing) based
on a security policy. The security policy is specified by the
information assurance analyst and contains various rules that
allow or deny actions or object accesses. The various aspects
of this security policy are enforced at the appropriate points
in the system. These access control mechanisms prevent the
system from being misused by unauthorized people.

The above analysis of various intrusion detection systems
helps us in identifying the following standout features of IDSs:

Event Monitoring. An IDS is primarily an event-driven sys-
tem and thus it requires a comprehensive event generation and
management system. Events generated by a system are gener-
ally in the form of login failures, file access or any other ob-
servable activity. Typically, probes inserted at strategic points
in the system produce this audit-data specific to generated
events. These generated events are consumed by an event lis-
tener or monitoring module, which analyses the audit trails 1

to determine whether an intrusion has occurred or not. This
audit data can be used either to detect patterns of misuse or
construct a statistical profile for anomaly detection.

Access Control. Intrusion prevention systems use static ac-
cess control mechanisms to control the access to various sys-
tem objects. Actions and object accesses that are allowed or
disallowed are specified as a security policy and various as-
pects of this policy are enforced at the appropriate points in
the system. For example, file-based access control is enforced
in the file system code, process-based access control such as
signal delivery is implemented in the process subsystem. Rel-
evant issues in this context are locating proper points in the
various subsystems to enforce access control and the correct-
ness of the security policy.

We conclude this section on a comparative note between
simulators for operating systems and computer security sys-
tems. The evolution of modern operating systems such as
Unix [21] is as old as mid 1960’s and the modeling/simulation
tools for operating systems such as Nachos [22] came as late
as early 1990’s. On a similar note, while the history of intru-

1a stream of events in a system

sion detection dates back to the early 1980’s, tools for model-
ing/simulating the real-world scenarios of intrusion detection
are beginning to appear in 2000 [23, 24, 25, 26].

3 ARCHITECTURE OF SIMS

An IDS runs over a host and an operating system. In order for
us to be able to model and simulate an IDS, we need to use
a simulated operating system kernel. Nachos [22] has been
a de-facto standard as an open-source instructional operating
system. It simulates a real operating system kernel and hence
was well suited to our needs for simulating and testing various
IDS models.

Figure 1 shows the preliminary architecture of SIMS. The
IDS model features extracted in the previous section are inte-
grated into Nachos. SIMS is essentially this comprehensive
package. The IDS models to be simulated and tested run over
SIMS. In case of event monitoring, all the subsystems of Na-
chos send notifications of events to the event management sys-
tem (EMS), when each event is appropriately redirected to its
listener. The EMS also logs these events, (see Figure 1 (a)).
EMS receives event listener registration information from an
analyst 2 requesting specific events of interest. When these
events are generated, EMS notifies the analyst about them.

The access control model for controlling access to system
objects and preventing intrusions is implemented by providing
the support for ACLs and their enforcement. The access rights
or permissions associated with the system objects are specified
by the analyst as a security policy. During the execution of user
processes, objects are accessed and if an ACL was specified,
then it is checked and enforced, (see Figure 1 (b)). The two
main components of SIMS are described as follows:

� Event Management System (EMS)

The analyst registers the events of interest with EMS.
Probes placed at specific parts of Nachos kernel gener-
ate the events when system objects are accessed. When
events are generated, corresponding subsystem of Nachos
reports them to EMS. The analyst is notified about the
events of interest to him. EMS logs all the events along
with the information such as the time when the event oc-
curred, the system call made, the object which was ac-
cessed and the access check. A sample log file is shown
in Table 1. The information gathered by EMS is used for
misuse detection as well as for anomaly detection based
on the statistics derived from event log.

� Access Control Mechanisms

The analyst can also define various access control mech-
anisms for system objects. These access control mecha-
nisms are used to control the access to various system ob-

2A person seeking to develop and test a specific IDS model.

 then report it

Nachos

with EMS
1. register event listener

Network subsystem
Probe

Probe

Probe

Probe

2. if listener sends event

EMS

Logs

Memory subsystem

Running IDS model (event probes)

File subsystem

Process subsystem

(a)

Nachos

Network subsystem

Enforce ACL

Enforce ACL Enforce ACL

Enforce ACL
Process subsystem

File subsystem

Running IDS model (security policy, ACLs)

Memory subsystem

if exists ACL then

else
 enforce ACL

 do nothing

(b)

Figure 1: Architecture of SIMS

jects including files (using access control lists), processes
etc. These access control entities are checked by the cor-
responding subsystem of Nachos to determine whether
an object has enough permissions to allow the access re-
quest. The subsystem logs this access check information
to the log file (see Table 1).

A user interface (UI) (not shown in Figure 1) is provided to
the analyst for communicating with SIMS. The analyst sends
the registration information to the EMS and receives the event
notifications using this UI. The ACLs for enforcing access
control to system objects are also specified by the analyst using

 100
 150
 200
 250
 300
 350
 400
 450

 10 15 20 25 30 35N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 100
 150
 200
 250
 300
 350
 400
 450

 10 15 20 25 30 35N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 50
 100
 150
 200
 250
 300
 350
 400

 5 10 15 20 25 30N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 50
 100
 150
 200
 250
 300
 350
 400

 5 10 15 20 25 30N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 100
 150
 200
 250
 300

 10 15 20 25 30 35N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 100
 150
 200
 250
 300

 10 15 20 25 30 35N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 100
 150
 200
 250
 300
 350

 10 15 20 25 30N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

 100
 150
 200
 250
 300
 350

 10 15 20 25 30N
o.

 o
f t

im
e

un
its

 ta
ke

n

No. of system calls

(a) (b) (c) (d)

Without EMS

With EMS

Figure 2: System overhead due to the integration of IDS models

Table 1: A sample log file

Timestamp System call Object Access check

1034217770 open() test1.txt Allowed

1034217898 open() test2.txt Denied

1034218232 read() test1.txt Allowed

1034218439 write() test1.txt Denied

1034218732 open() test3.txt Allowed

1034219103 read() test3.txt Denied

the UI.

4 MODELING AND EXPERIMENTATION

The SIMS tool allows modeling and simulation of various
IDSs and attack scenarios. In this section we describe our
experimental setup and measure the performance of the tool.
We implemented two IDS models to test the capabilities of
SIMS. These IDS models were tested by running a rogue pro-
cess which simulates various attack scenarios. We also show
the overhead on the system due to the integration of EMS and
access control mechanisms.

4.1 IDS Models
The first IDS model we implemented is for monitoring the
events and making a decision based on them. We developed
this model by inserting probes in specific parts of the Nachos
kernel. These probes generate events which are delivered by
the respective sub-system to a central entity (called EMS). The
second model utilizes access control mechanisms, which are
used for controlling access to the system objects. This IDS
model sets the ACLs on particular files in the Nachos file sys-
tem. When these files are accessed, ACLs on these files are
checked to determine whether access is allowed or denied.

4.2 Attack Scenarios
We designed a rogue process that generates a large number
of file object accesses. This process is adequate to demon-

strate the functionality of both of the above mentioned IDS
models. The target files are of different types and the access
permissions on these files are defined adequately to test the ef-
fectiveness of detection process. The following three types of
attacks were simulated for testing SIMS: (1) misuse of system
resources, by using the rogue process to generate large num-
ber of object accesses, (2) anomalies, by determining statisti-
cal deviations using event logs, and (3) sandboxing or access
control, by specifying ACLs on files.

4.3 Performance Measurements
We measured the performance of the IDS models using two
factors: (1) detection accuracy, and (2) the system overhead
due to the integration of the IDS model. The IDS model was
able to detect misuse as long as its signature was specified. In
other cases, we observed many false negatives. For anomaly
detection, the accuracy of detection improved with time. Large
periods of data acquisition and processing resulted in more ac-
curate statistical profiles. The access control mechanism pro-
vided a way to quickly test the completeness of a security pol-
icy.

When a large number of events are generated, the simula-
tion becomes less responsive due to the overheads of process-
ing this audit data. This is generally the experience with the
real world IDSs and therefore, audit processing is done offline
[2, 27, 28]. The overhead of integrating the EMS and access
control mechanisms in Nachos kernel is evaluated by plotting
the graphs of time taken by different system calls with and
without their integration. Figure 2 shows some of these graphs.
These graphs (a, b, c and d) show four different scenarios with
a random mix of system calls in each case. A random mix
makes sure that the experiment is not tied to a specific user
pattern.

We also calculated the overhead caused by individual Na-
chos system calls on the system. This is shown in Table 2. It
should be noted that the overhead due to an individual system
call only depends on the object on which it has been called
and not on the calling sequence. It thus remains the same for

the IDS model using ACLs for files. It is also interesting to
note that the dip in the Figure 2 (b) is due to the lower time
units taken by certain system calls during the execution. The
average overhead over all system calls was calculated to be
approximately 26%. This is the worst-case overhead, when all
allowable checks were used to check file access permissions.
Further optimizations of the code are possible to reduce the
overhead.

Table 2: Average overhead per Nachos system call

Nachos System call Average overhead (%age)
CreateFile() 29.856
Open() 28.173
Read() 23.788
Write() 27.545
Close() 20.977

The overhead due to the integration of EMS and access con-
trol mechanisms in the system is low. Proposed framework can
be plugged into an existing operating system, which supports
the integration of an event subsystem, without increasing the
system load enormously. The log file generated by the EMS
contains detailed information about the event, such as the time
and accessed object etc. This log information can be used to
construct the statistics about the events and decisions can be
made based on these statistics.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we described a modeling and simulation platform
for intrusion detection systems. After surveying the available
implemented IDSs, we were able to extract some essential fea-
tures to form the core components of SIMS. We have demon-
strated the usefulness of SIMS using some attack scenarios
and corresponding IDS models. In its current form, the ba-
sic foundations for SIMS have been laid and we continue to
investigate issues that will eventually make it more complete
and appealing.

Simulators almost always abstract out much of the details
of the entities of their models in order to make the simulations
tractable. However, attackers usually try to exploit vulnerabil-
ities whose presence is due to some flaw in the detailed design
of the system. Thus, simulating IDSs, as SIMS proposes to
do, is a challenging problem and runs against the grain of most
computer simulation strategies.

We would like to develop and test more IDS models for fair
evaluation of this tool. Also, due to the current limitations
of Nachos to simulate a single user program, SIMS can only
model the IDSs running on a single host and a single user.
We would like to test our architecture for the multi-host/multi-
user environment. The network support in Nachos is weak,

so we would like to integrate the network support in Nachos.
Such enhancement will enable the modeling of intrusions at
the network level too. Our current study also involves the in-
vestigation of probability density functions (pdfs) [29], which
will accurately reflect the real world system activity and attack
scenarios.

References

[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu. Advances in Network Simulation. IEEE Com-
puter, 33(5):59–67, May 2000.

[2] P. A. Porras and P. G. Neumann. EMERALD: Event
Monitoring Enabling Responses to Anomalous Live Dis-
turbances. In Proceedings of 20th NIST-NCSC National
Information Systems Security Conference, pages 353–
365, 1997.

[3] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A
Library for Parallel Simulation of Large-Scale Wireless
Networks. In Workshop on Parallel and Distributed Sim-
ulation, pages 154–161, 1998.

[4] X. Chang. Network Simulations with OPNET. In Pro-
ceedings of the 31st conference on Winter simulation,
pages 307–314. ACM Press, 1999.

[5] Information Sciences Institute, USC School of Engineer-
ing. The Network Simulator: ns2,
http://www.isi.edu/nsnam/ns/. Accessed on Jan 05, 2003.

[6] C. A. Carver, J. R. Surdu, J. M. D. Hill, D. Ragsdale,
S. D. Lathrop, and T. Presby. Military Academy At-
tack/Defense Network. In Proceedings of the 2002 IEEE
Workshop on Information Assurance, United States Mil-
itary Academy, June 2002.

[7] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel,
and E. Stoner. State of the Practice of Intrusion Detection
Technologies. Technical Report CMU/SEI-99-TR-028,
Carnegie Mellon Software Engineering Institute, Pitts-
burgh, PA 15213-3890, January 2000.

[8] J. P. Anderson. Computer Security Threat Monitoring
and Surveillance. Technical Report Contract 79F296400,
James P. Anderson Co., Box 42, Fort Washington, PA
19034, April 1980.

[9] S. Kumar and E. H. Spafford. A Software Architecture
to Support Misuse Intrusion Detection. In Proceedings
of the 18th National Information Security Conference,
pages 194–204, 1995.

[10] S. Kumar. Classification and Detection of Computer In-
trusions. PhD thesis, Purdue University, 1995.

[11] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A.,
and D. Zamboni. Analysis of a Denial of Service Attack
on TCP. In Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pages 208–223. IEEE Computer
Society Press, May 1997.

[12] S. E. Smaha. Haystack: An Intrusion Detection System.
In Proceedings of the IEEE Fourth Aerospace Computer
Security Applications Conference, Orlando, FL., Decem-
ber 1988.

[13] M.M. Sebring, E. Shellhouse, M.E. Hanna, and R.A.
Whitehm’st. Expert Systems in Intrusion Detection:
A Case Study. In Proceedings of the 11th National
Computer Security Conference, pages 74–81, Baltimore,
MD., October 1988.

[14] D. Anderson, T. Frivold, A. Tamaru, and A. Valdes.
Next-generation Intrusion Detection Expert System
(NIDES). Technical Report SRI–CSL–95–07, Computer
Science Laboratory, SRI International, 333 Ravenswood
Avenue, Menlo Park, CA 94025-3493, May 1994.

[15] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,
and D. Wolber. A Network Security Monitor. In Proceed-
ings of the IEEE Symposium on Research in Security and
Privacy, pages 296–304, May 1990.

[16] D. Denning. An Intrusion Detection Model. IEEE Trans-
actions of Software Engineering, 13(2):222–232, Febru-
ary 1987.

[17] H. S. Javitz and A. Valdes. The SRI IDES Statistical
Anomaly Detector. In Proceedings of the IEEE Research
in Security and Privacy, pages 316–376, ,Oakland, CA,
MAY 1991.

[18] T. Lunt and R. Jagannathan. A Prototype Real-time
Intrusion-Detection Expert System. In Proceedings of
IEEE Symposium on Security and Privacy, pages 59–66,
1988.

[19] S. N. Chari and P. Cheng. BlueBoX: A Policy-driven,
Host-Based Intrusion Detection system. In Proceedings
of Network and Distributed System Security Symposium
(NDSS), San Diego, California, February 2002.

[20] C. Wright, C. Cowan, and J. Morris. Linux Security
Modules: General Security Support for the Linux Ker-
nel. In Proceedings of 11th USENIX Security Sympo-
sium, August 2002.

[21] D. M. Ritchie. The Evolution of the Unix Time-sharing
System. In Lecture Notes in Computer Science No.
79: Language Design and Programming Methodology.
Springer-Verlag, 1980.

[22] W. A. Christopher, S. J. Procter, and T. E. Anderson. The
Nachos Instructional Operating System. In USENIX Win-
ter, pages 481–488, 1993.

[23] S. Razak, M. Zhou, and S. Lang. Network Intrusion Sim-
ulation Using OPNET. In OPNETWORK2002 confer-
ence, September 2002.

[24] N. C. Rowe and S. Schiavo. An Intelligent Tutor for In-
trusion Detection on Computer Systems. In Computers
and Education, volume 31, pages 395–404, 1998.

[25] S. Schiavo. An Intrusion-Detection Tutoring System Us-
ing Means-ends Analysis. Masters thesis, Department
of Computer Science, U.S. Naval Postgraduate School,
Month 1995.

[26] C. Roberts. Plan-Based Simulation of Malicious Intrud-
ers on a Computer System. Masters thesis, Department
of Computer Science, U.S. Naval Postgraduate School,
March 1995.

[27] P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre,
J. Darzentas, C. Gigante, D. Karagiannis, P. Kess,
H. Putkonen, and T. Spyrou. SECURENET: A Network
Oriented Intrusion Prevention and Detection Intelligent
System. In Proceedings of the 10th International Confer-
ence on Information Security, IFIP SEC94, The Nether-
lands, May 1994.

[28] T. Spyrou and J. Darzentas. Intrusion Modeling: Ap-
proximating Computer User Intentions for Detection and
Predictions of Intrusions. In Proceedings of Information
Systems Security Conference, pages 319–335, May 1996.

[29] R. A. Maxion. Measuring Intrusion-Detection Systems.
In Proceedings of The First International Workshop
on Recent Advances in Intrusion Detection (RAID-98),
Louvain-la-Neuve, Belgium, 14-16 September 1998.

