
47

Intrusion detection

Hervé Debar,
Benjamin Morin

Hervé Debar, Expert Sénior à France Télécom R&D,
est spécialiste en techniques et outils de détection
d'intrusions, ainsi que dans les technologies
complémentaires (analyse de vulnérabilités, leurres,
audits de sécurité, gestion des alertes et des
incidents).

Benjamin Morin, INSA Rennes 2000, prépare une
thèse de doctorat à France Télécom R&D (Caen) sur
les techniques de détection d’intrusion utilisant la
corrélation des alertes.

Evaluation of the diagnostic capabilities of
commercial intrusion detection systems



48

Intrusion detection

Evaluation of the diagnostic capabilities of
commercial intrusion detection systems

Abstract

This paper describes a testing
environment for commercial intrusion-
detection systems,shows results of an
actual test run and presents a number of
conclusions drawn from the tests. Our test
environment currently focuses on IP
denial-of-service attacks, Trojan horse
traffic and HTTP traffic. The paper focuses
on the point of view of an analyst receiving
alerts sent by intrusion-detection systems.
While the analysis of test results does not
solely targets this point of view, we feel
that the diagnostic accuracy issue is
extremely relevant for the actual success
and usability of intrusion-detection
technology. The tests show that the
diagnostic proposed by commercial
intrusion-detection systems sorely lack in
precision and accuracy, lacking the
capability to diagnose the multiple facets
of the security issues occuring on the test
network. In particular, while they are
sometimes able to extract multiple
informations from a single malicious
activity, the alerts reported are not related
to one another in any way, thus loosing
signicant background information for an
analyst. The paper therefore proposes a
solution for improving current intrusion-
detection probes to enhance the
diagnostic provided in the case of an alert,
and qualifying alerts in relation to the intent
of the attacker as percieved from the
information acquired during analysis.

Introduction

Since the seminal work by Denning in
1987 [7], many intrusion-detection
prototypes have been created.
Intrusion-detection systems have emerged
in the computer security area because of
the difficulty of ensuring that an information
system will be free of security aws.

Commercial intrusion-detection systems
have been available since 1995; however,
their performance has not been scientically
studied. In early 2001, we decided to
create a testing environment for
commercial intrusion-detection systems,
following a three phase approach. After a
litterature survey getting information from
vendors and the community about multiple
intrusion-detection products, we selected
a small number of them for internal testing
and comparative evaluation. Early on, it
became clear that the study should be
restricted in scope in order to provide on
network-based intrusion-detection
commercial products, with probe
components available worldwide as a
remotely manageable appliance. We finally
deployed four commercial
intrusion-detection systems on a testbed
and carried out a comparative evaluation.
Partial results from this evaluation are
presented in the paper.

The emphasis of this work is on ensuring
that the benefit of deploying
intrusion-detection technology is
maximized by providing a detailed and
accurate diagnostic of the malicious
activity occuring on our networks. The
objective is to ensure that operators with
a good knowledge of their networks but
little in-depth knowledge of vulnerabilities
and intrusions can operate the probes,
leaving only serious security breaches to
trained analysts. Operational issues such
as management of the probes, updates to
software, signature and conguration,
performance, are recognized as extremely
important, but were given second priority
to the diagnosis accuracy issue.

Description of a test bed for
comparative evaluation of
intrusion-detection systems.
It is shown that the benefit of
the system is maximized
when an accurate diagnostic
of the malicious activity is
provided. This leads to the
proposal of an enhanced
model.



49

Introduction to
intrusion-detection
systems
Description of a generic
intrusion-detection system
An intrusion-detection system acquires
information about its environment to
perform a diagnosis on its security status.
The goal is to discover breaches of
security, attempted breaches, or open
vulnerabilities that could lead to potential
breaches. A typical intrusion-detection
system is shown in Figure 1.
An intrusion-detection system can be
described at a very macroscopic level as
a detector that processes information
coming from the system that is to be
protected (Fig. 1). This detector can also
launch probes to trigger the audit
process, such as requesting version
numbers for applications.
This detector uses three kinds of
information: long-term information related
to the technique used to detect intrusions
(a knowledge base of attacks, for
example), configuration information about
the current state of the system, and audit
information describing the events that are
happening on the system.

The role of the detector is to eliminate
unneeded information from the audit trail.
It then present either a synthetic view of
the security-related actions taken during
normal usage of the system, or a synthetic
view of the current security state of the
system. A decision is then taken to
evaluate the probability that these actions
or this state can be considered symptoms
of intrusion or vulnerabilities.
A countermeasure component can then
take corrective action to either prevent
the actions from being executed or
changing the state of the system back to
a secure state.
Intrusion-detection systems can be
classified by two properties, the
information source used by the system
and the technology used to analyze the
data. The following sections cover these
in more details.

The remainder of the paper is organized
as follows:

� “Introduction to intrusion-detection
systems” proposes a short introduction to
the area of intrusion-detection.

� “Background on testing
intrusion-detection systems” (page 53)
presents the goals and organisation of
the tests.

� “The France Télécom R&D
intrusion-detection testbed” (page 56)
presents our testing principles and
the testbed we designed.

� “Results obtained during the tests”
(page 59) presents the results obtained
and the lessons that we learned from
the tests.

� “Proposed model for an
intrusion-detection system” (page 66)
draws from these lessons to propose a
enhanced model for an intrusion-detection
system that would emphasize diagnostic
accuracy.

AuditsProbes

Database

Detector

Configuration

Countermeasure

System

Actions

Note : The arrow thickness represents the amount of information flowing from one component to another.

ALARMS

Figure 1 - Very simple intrusion-detection system.



50

Information sources for
intrusion detection
systems

Three categories of information sources
have been used by intrusion-detection
systems, network traffic for network-
based intrusion detection, system logs for
host-based intrusion detection, and
application logs.

Network-based information sources
As the popularity of network sniffers for
gathering information has grown in the
attackers community, they are also
regarded today as an efficient means for
gathering information about the events
that occur on the network architecture.
This is consistent with the trend of moving
from a centralized to a distributed
computing model, and the pace of change
has even increased with the widespread
diversification of the Internet. Most
accesses to sensitive computers today
take place over a network, and therefore
capturing the packets before they enter
the server is probably the most efficient
way to monitor this server.

It is also consistent with the occurrence of
denial-of-service attacks. As companies
put valuable information on the Internet,
and even depend on it as a source of
revenue, the prospect of simply shutting
down a web site creates an effective
threat to the organization running it. Most
of these denial-of-service attacks originate
from the network and must be detected at
the network level, as a host-based
intrusion-detection system does not have
the capability to acquire this kind of audit
information.

There is an inherent duality in network
sniffers, which is also apparent in the
rewall world with its differences between
application-level gateways and ltering
routers. If the analysis is carried out at a
low level by performing pattern matching,
signature analysis, or some other kind of
analysis of the raw content of the TCP or
IP packet, then the intrusion-detection
system can perform its analysis quickly.

This is a stateless approach that does not
take session information into account
because the latter could span over several
network packets. If the intrusion-detection
system acts as an application gateway
and analyzes each packet with respect to
the application or protocol being followed,
then the analysis is more thorough, but
also much more costly. This is a stateful
analysis. Note that this analysis of the
higher levels of the protocol also depends
on the particular machine being protected,
as implementations of the protocols are
not identical from one network stack to
another.

Using network sniffing as the information
source has the following advantages:

� The detection of network-specific attacks.
There are a number of network attacks,
particularly denial-of-service attacks that
cannot be detected in a timely fashion by
searching for audit information on the
host, but only by analyzing network traffic.

� The impact of auditing on the host
performance. Information is entirely
collected on a separate machine, with no
knowledge of the rest of the network.
Therefore, installation of such tools is
facilitated because in terms of configuration
and performance they do not impact the
entire environment.

� The heterogeneous audit trail formats.
The current de facto standardization
towards TCP/IP facilitates the acquisition,
formatting, and cross-platform analysis of
the audit information.

But it also has a number of drawbacks:

� It is more difficult to identify the culprit
when an intrusion has been discovered.
There is no reliable link between
information contained in the packets and
the identity of the user who actually
submitted the commands on the host.

� With switched networks (switched-
Ethernet, switched Token-Ring, ATM),
selecting an appropriate location for the
sniffer is not obvious. Some tools are
located on switches, others at gateways
between the protected system and the

outside world. The former gives better
audit information but also has a higher
cost. One has to realize, however, that
switched networks are also much less
vulnerable to sniffer attacks [20] and are
actually a recommended solution to
improve the security of a network.

� Encryption makes it impossible to
analyze the payload of the packets, and
therefore hides a considerable amount of
important information from these tools.
Also, even without encryption, it is possible
to obfuscate the contents of the packet to
evade detection [20] if the signatures are
not suciently comprehensive.

Host-based information sources
Host audit sources are the only way to
gather information about the activities of
the users of a given machine. On the other
hand, they are also vulnerable to
alterations in the case of a successful
attack. This creates an important real-time
constraint on host-based intrusion-detection
systems, which have to process the audit
trail and generate alarms before an attacker
taking over the machine can subvert either
the audit trail or the intrusion-detection
system itself.

System sources
All operating systems have commands to
obtain a snapshot of information on what
is happening. In a UNIX environment,
examples of such commands are ps,
pstat, vmstat, getrlimit. These commands
provide very precise and focused
information about the events because they
examine the kernel memory directly.
However, they are very difficult to use for
continuous audit collection in
intrusion-detection tools because they do
not offer a structural way of collecting and
storing the audit information.
However, this source of information is now
implemented as dedicated kernel modules
and does not use the commands
referenced above anymore.



51

Syslog
Syslog is an audit service provided to
applications by the operating system
(UNIX and others). This service receives a
text string from the application, prefixes it
with a time stamp and the name of the
system on which the application runs, and
then archives it, either locally or remotely.
Syslog is very easy to use, and that has
incited many application developers to use
it as their audit trail. A number of
applications and network services use it,
such as login, sendmail, nfs, http, and this
also includes security-related tools such
as sudo, klaxon, or TCP wrappers.
Therefore, a few intrusion-detection tools
have been developed that use information
provided by the syslog daemon, an
example of this approach being Swatch [11].
Although syslog is a lightweight audit
source that does not generate a large
amount of audit data per machine, a large
network can generate a large number of
messages, very few of which are
security-relevant. Swatch [11] reduces the
burden of the system administrator by
correlating messages (several machines
reporting that an nfs server is down would
be aggregated into one) and highlighting
security-related ones.

C2 security audit
The security audit records all potentially
security-significant events on the system.
As the US government has required that
all computer systems it purchases be
certified at the C2 level of the TCSEC, all
operating system vendors competing in
this area have had to include an
“accountability” feature. This translates
into security audit trails such as SUN's
BSM and Shield packages, or AIX audit.
All these security audit trails have the
same basic principle. They record the
crossing of instructions executed by the
processor in the user space and
instructions executed in the Trusted
Computing Base (TCB) space. This security
model postulates that the TCB is trusted,
that actions in the user space cannot
harm the security of the system, and that

security-related actions that can impact
the system only take place when users
request services from the TCB.

In the UNIX environment, the TCB is
basically the kernel. Therefore, the audit
system records the execution of system
calls by all processes launched by the
users. Compared with a full system call
trace, the audit trail provides limited
abstraction: context switches, memory
allocation, internal semaphores, and
consecutive file reads do not appear in the
trail. On the other hand, there is always a
straightforward mapping of audit events to
system calls.

The UNIX security audit record contains a
great deal of information about the events.
It includes detailed user and group
identification (from the login identity to the
one under which the system call is
executed), the parameters of the system
call execution (file names including path,
command line arguments, etc.), the return
code from the execution, and the error
code.

The C2 security audit is the primary
source of audit information for the majority
of host-based intrusion-detection prototypes
and tools because it currently is the only
reliable mechanism for gathering detailed
information on the actions taken on an
information system. Work has been
conducted by several groups [8, 17, 19,
27] to define what information should be
included in the security audit trail as well
as a common format for audit trail
records, but this is an ongoing research
effort.

Application log files
As the trend towards application servers
becomes more pronounced, and the
notion of operating system fades,
application log files take a greater
importance as a data source for intrusion
detection.
Compared with system audits or network
packets, the use of application log files
has three advantages:

Accuracy
C2 audit data or network packets require
processing before the intrusion-detection
system can understand which information
as actually been received by the
application. This processing is based on
interpretations of protocol specifications
or API specifications, and it is very
possible that the interpretation of the
application developer is different from the
interpretation of the intrusion-detection
system developer. By obtaining the
information directly from the log,
the information is almost guaranteed
to be accurate.

Completeness
C2 audit data or network packets require
reassembly of several audit calls or several
network packets, potentially on multiple
hosts, to rebuild the session at the
application level. This can be very difficult
to achieve, and even simple reassembly,
such as matching incoming http request
and outgoing response to determine the
success of a request, is not done by
current tools. The application log contains
all relevant information, even if the
application is distributed over a cluster of
machines (e.g web server or database
server). In addition, the application can
provide internal data that does not show
up in audit trails or network packets.

Performance
By letting the application select which
information is relevant for security
purposes, the overhead induced by the
collection mechanism is greatly reduced
when compared with security audit trails.

There are two drawbacks in using
application log files for intrusion detection:

Race condition
Attacks are only detected when the
application log is written. If the attack can
prevent the writing of the application log
(this may be the case of many
denial-of-service attacks), then the
information needed by the
intrusion-detection system is not there.



52

Low-level attacks
There are a number of attacks (again,
particularly denial-of-service attacks), that
tar-get the lower levels of the system
software, such as network drivers. As
these attacks do not exercise application
code, they may not be seen in the
application logs, or only the consequence
of the attack (such as reboot), could be
visible.

An example of such a tool is WebWatcher [1].
This tool monitors web server logs in real
time and provides much mode detailed
information about web server attacks than
its network-based counterparts do.
A similar approach could be envisioned for
database servers.

Misuse detection versus
anomaly detection

There are two complementary detection
technologies in intrusion detection, [1] to
use the knowledge accumulated about
attacks and look for evidence of the
exploitation of these attacks, and [2] to
build a reference model of the usual
behavior of the information system being
monitored and look for deviations from the
observed usage. The first trend is often
referred to as misuse detection [12, 13],
but also as detection by appearance [26].
The second trend is referred to as
anomaly detection [12] or detection by
behavior [26].

Misuse detection
Misusedetection applies the knowledge
accumulated about specific attacks and
system vulnerabilities. The
intrusion-detection system contains
information about these vulnerabilities and
looks for attempts to exploit these
vulnerabilities. When such an attempt is
detected, an alarm is raised. In other
words, any action that is not explicitly
recognized as a misuse of the information
system is considered acceptable.

Advantages of the misuse detection
approaches are that they have, in theory,
very low false-alarm rates, and the
contextual analysis proposed by the
intrusion-detection system is detailed,
making it easier for the security officer
using this intrusion-detection system to
understand the problem and to take
preventive or corrective action.

Drawbacks include the difficulty of
gathering the required information on the
known attacks and keeping it up to date
with new vulnerabilities and environments.
Maintenance of the knowledge base of the
intrusion-detection system requires careful
analysis of each vulnerability and is
therefore a time-consuming task.
Knowledge-based approaches also have
to face the generalization issue.
Knowledge about attacks is very focused,
dependent on the operating system,
version, platform, and application.
The resulting intrusion-detection system is
therefore closely tied to a given
environment. Also, detection of insider
attacks involving an abuse of privileges is
deemed more difficult because no
vulnerability is actually exploited by the
attacker.

In terms of techniques, knowledge-based
intrusion-detection prototypes were first
implemented using first-order logic and
expert systems. Commercial products
them mostly used a signature (i.e. pattern
matching) approach. Additional techniques
such as Petri nets and state-transition
analysis have been proposed as well.

Anomaly detection
Anomaly detection assumes that an
intrusion can be detected by observing a
deviation from the normal or expected
behavior of the system or the users. The
model of normal or valid behavior is
extracted from reference information
collected by various means.
The intrusion-detection system later
compares this model with the current

activity. When a deviation is observed, an
alarm is generated. In other words,
anything that does not correspond to a
previously learned behavior is considered
intrusive.

Advantages of anomaly detection
approaches are that they can detect
attempts to exploit new and unforeseen
vulnerabilities. They can even contribute to
the (partially) automatic discovery of these
new attacks. They are less dependent on
operating-system-specific mechanisms.
They also help detect “abuse of privilege”
types of attacks that do not actually
involve exploiting any security vulnerability.

The high false-alarm rate is generally cited
as the main drawback of anomaly
detection techniques because the entire
scope of the behavior of an information
system may not be covered during the
learning phase. Also, behavior can change
over time, introducing the need for
periodic on-line retraining of the behavior
profile, resulting either in unavailability of
the intrusion-detection system or in
additional false alarms. The information
system can undergo attacks at the same
time the intrusion-detection system is
learning the behavior. As a result, the
behavior profile will contain intrusive
behavior, which is not detected as
anomalous.

In terms of implementation techniques,
intrusion-detection systems mostly use
statistics. Prototypes using expert
systems, neural networks, user intention
identification and computer immunology
have been proposed.

According to the previous taxonomy
elements, all the commercial
intrusion-detection system tested in this
paper are network-based and follow a
misuse detection paradigm oriented
towards signature analysis.



53

Background on testing
intrusion-detection
systems

A number of papers related to testing
intrusion-detection systems have been
published in the litterature. In most cases
testing methodology is proposed by the
developpers of a given IDS method or
tool, with the purpose of showing their
own development at its best. This type of
work is considered biased and was not
studied in depth because it does not take
into account commercially available
intrusion-detection systems. During our
litterature survey, we found three testing
approaches which were sufficiently close
to our preoccupations that we analyze
them and decide if they are relevant to us.

The Lincoln Lab
experiments

One of the best known testing experiments
in the intrusion-detection community is the
Lincoln Lab exper-iment [15, 14]. The initial
purpose of this experiment is to test the
various intrusion-detection technologies
developped under DARPA funding, and to
compare them in order to choose the
most appropriate one.
This is achieved by simulating a network
of workstations to create normal trafic
and by inserting a set of attacks carefully
chosen to cover various situations,
summed up as remote attacks, local
attacks and denial-of-service attacks.
This experiment has received scientific
criticism from the community, most
notably [16], and has evolved accordingly,
up to the generation of a testing
environment. This testing environment was
not available at the time of testing, and we
probably would not have used it for the
following reasons:

� Focus on background traffic
As the test includes behaviour-based
intrusion-detection systems, realistic
background data must be generated to
ensure that these systems will be properly
trained. However, these systems simply
do not exist commercially and thus the
need for background data does not exist
for training. While background traffic
generation is required for performance
testing, the Lincoln Lab testbed does not
provide a way of calibrating the
characteristics of this background traffic
and verifying their compliance with
specifications.
Our testbed uses the LoadRunner tool
from Mercury Interactive (1) to generate
calibrated HTTP traffic.
This tool creates realistic HTTP requests
to load the network links on the testbed.
However, performance testing is not at
the core of the paper and results are not
included here.

� Focus on research prototypes
The Lincoln Lab tests were commissioned
by DARPA to evaluate DARPA-funded
research work. No commercial
intrusion-detection product was ever
evaluated or taken into ac-count. For
example, intrusion-detection products
provide configuration management
features, that we want to evaluate, and
these aspects are not available with the
Lincoln Lab tests.
The testbed includes reporting on the
installation, management and integration
for each tool. These results are extremely
dependent on our procedures and
environment and are considered out of
scope for this paper.

� Focus on a broad set of attacks
The Lincoln Lab tests aimed at exercising
the largest possible set of attacks for the
largest possible set of intrusion-detection
systems. Our objective is to focus on
network traffic close to firewalls, therefore
the Lincoln Lab tests are too wide for our
use. Also, attacks that are qualified as
local to root are less relevant in
telecommunication environment where
monitoring is located on the wires.
Our testbed focuses on specific types of
applications that are representative of the
traffic profiles seen on our networks.

� Lack of reference point or baseline
The Lincoln Lab tests compare prototypes
in a closed circle. There is no notion of a
minimal set of requirements that a tested
tool has to meet, only relative data
comparing them with each other.
Our testbed uses Snort [24] as a baseline.

The lack of a baseline that all tools would
have to fulfill was felt as particularly
lacking in the Lincol Lab experiment.

1. http://www.heva.mercuryinteractive.com/
products/loadrunner/



54

The university and
research work

The most representative work concerning
university tests has been carried at
UCDavis [3, 22, 21], with related and de
facto similar work at IBM Zurich [5].

The objective of the UC Davis test is to
simulate the activity of normal users and
the activity of attackers, using script
written in the expect language.
Expect simulates the presence of a user
by taking over the input and output
streams of a tty-based application,
matching expected responses from the
application with the displayed output, and
feeding appropriate input as if the user
typed it on its keyboard.

A similar approach was followed at IBM
Zurich; in addition to user-recorded scripts
the IBM approach introduced software
testing scripts from the DejaGnu platform
(also in expect) to ensure that all aspects
of an application were exercised,
regardless of the fact that they were
obscure features of an application or not.

This testing methodology is closer to our
own. In particular, the fact that tests are
automated and reproducible is felt to be a
very important property. However, we feel
that the following points reduce the
effectiveness of the test environment.

� Heavy to manage
To achieve a significant level of
background activity, the testbed must
contain a significant number of machines,
each of them piloting a number of users
generating activity. This creates a complex
environment to manage, and induces the
risk of repetitiveness. Also, calibration to
obtain data points at regularly spaced
traffic rates is not taken into account.
Our testbed includes centralized
distribution of software and management
scripts that automate test run and result
analysis.

� Limited in attack testing
Requiring that attacks be scriptable using
expect makes it unfeasible to use a
number of exploit scripts collected from
“underground” sources. Also, verifying the
actual execution of each attack, verify its
effect, and correlate with the IDS system
is a manual process.
Our testbed does not solve this issue;
installing and configuring the vulnerable
software, meeting precon-ditions, running
the attack, verifying the results and
restoring the environment for future tests
is manual as well.

� Applicability to commercial tools
The UC Davis testbed has been designed
primarily for research prototypes, and no
information is available as to how
commercial intrusion-detection systems
would be included in such testing.

Commercial tests

Tests classified as commercial regroup
the tests published by commercial test
laboratories mandated by a particular
company, and tests carried out by
independant publications.

Several test labs have published test
results related to intrusion-detection
systems. In particular, Mier Communications
has released at least two test reports, a
comparative of BlackICE Sentry,
RealSecure and NetProwler on one hand,
and a test of Intrusion.com SecurenetPro
Gigabit appliance. Appropriate queries on
mailing list archives show that these test
results have been the subject of many
controversies. The general feeling is that
it is appropriate for the testing laboratory
to provide results that highlight the
advantages of the product sponsored by
the company financing the tests.
Even if direct test manipulation is not
suspected, at least test configurations for
the competing products is likely not to be
handled by experts, thus resulting in unfair
comparison.

Our feeling is that even this cannot be
determined, as the description of the tests
is very sparse and does not provide
information that would allow an impartial
judgement of the tests. Normal traffic
generation, for example, is done using
commercial products and the test report
is considered complete with only the
mention of the name of the traffic
generator, without any information on the
kind of traffic it generates or its
configuration.

Journalists have also been involved in the
testing of intrusion-detection systems.
The most interesting article that we have
found is by Mueller and Shipley [18].
It is the only comparative test of commercial
intrusion-detection systems that we have
found, where a number of intrusion-detection
products are compared on equal footing
and on live traffic, hence with a higher
probability of either missing attacks or
triggering flase positives.
The main drawback of this kind of test is
reproductibility: when observing alerts it is
quite difficult to reproduce the conditions
in which these alerts are generated.
Also, we believe that the tuning phase
carried out during testing initiation is
problematic; the testers describe a
process in which alerts that they believe
are false are turned off. Our approach has
been the opposite, keeping a maximum
number of signatures active and tabulating
both appropriate and false alerts. Doing
this enables us to demonstrate the current
trade-off of signature-based (and probably
misuse-detection only systems), that a
large number of patterns catches more
attacks but also generates more false
alarms.



55

IDS Evasion

Another, related work, is the work on
detection evasion, particularly pointed by
Ptacek and Newsham [20], and enhanced
by Vern Paxson and al.[10]. We consider
this to be of extreme relevance to our
work since network-based
intrusion-detection systems periodically
are shown vulnerable to evasion
techniques in one protocol or the other.

However, we also believe that carrying out
this kind of tests is extremely difficult,
and that we would not be able to add
much value to the state of the art.
Therefore, our testbed focuses on evasion
at the application protocol layer, because
we believe that application protocol
analysis is still an area of improvement for
commercial products.
There are in fact two issues with
application-layer protocols:

� Misunderstanding of the protocol
states or properties
Sometimes, vulnerabilities are only
applicable to certain states of
the application layer protocols, or certain
fields in the exchange. For example,
Sendmail vulnerabilities usually apply only
to the SMTP command mode.
Intrusion-detection systems need to
recognize these states and verify that
state information is adequate before
applying signatures.
Unfortunately, this sometimes require
keeping state information, which can be
costly. As a corollary, rarely-used states
are sometimes ignored by the vendors for
the sake of performance, and result in
evasion opportunities for attackers.

� Misunderstanding of the protocol
encodings
Sometimes, protocols can encode data in
a way which hides the information to the
intrusion-detection system if it does not
have the ability to decode it.
For example, unicode encoding on HTTP
requests [9] can result in false positives.
Worse, implementers of applications
sometimes have hidden features or
encodings that deviate from the published
protocol specifications, such as the
infamous %u unicode encoding issue with
Microsoft Internet Information Server,
which resulted in a lot of
intrusion-detection systems not able to
correctly parse HTTP requests and detect
attacks [2, 25].

We take these two issues seriously. Our
testbed currently uses Whisker [23] as a
support for HTTP scanning and therefore
has knowledge of HTTP evasion
techniques. We are examining a transition
to the libwhisker library which provides
additional evasive capabilities.



56

The
France Telecom R&D
intrusion-detection
testbed

From this background, we decided to
develop our own testbed, reusing the
interesting ideas and trying to improve
where we felt there were weaknesses.
Our testbed is segmented in five areas,
described in page 57. Each of these areas
contains a set of tests that can be
executed with different parameters.
Our testbed repeats as many executions
of each test set with as many parameter
combinations as relevant for the expected
results.

Objectives of the test

While designing the testbed, we set a
number of objectives that this design must
meet when performing the comparative
tests.

� Fairness
The first objective of our testbed is
fairness. The testbed must ensure that all
products are treated equally, receive the
same input and have a chance to correctly
detect the attack.

To ensure that this objective is met, all
network-based intrusion-detection systems
being tested are located on the same hub
and receive exactly the same traffic.
Each appliance is equipped with two
network interfaces, one for data
acquisition purposes and one for
management purposes. The two LANs to
which these appliances reside are
physically separated from one another.
While this setup may not be feasible in all
environments, it is actually the way other
appliances are deployed, with a physical
network dedicated to management
purposes.

Also, during installation of the products on
the testbed a maximum coverage policy is
enabled to ensure that detection

capabilities are at a maximum. This may
be seen as unrealistic because of
performance and operator overloading
issues. While we share these two
concerns, wa also believe that reducing
the capabilities of the intrusion-detection
appliance actually shifts the burden from
the machine to the analyst trying to make
sense of the alert data generated. The
sparser the information delivered, the
longer it will take the analyst to understand
what is going on and assess the severity
of the alert. As an example, certain HTTP
attacks are dangerous only if the attacker
uses the POST method; correlating the
alert with the method helps the analyst
assess the attacker’s intention and success,
therefore having the intrusion-detection
system provide the data is faster than
having the analyst search for it.

� Repeatability
The second objective of the test is
repeatability. In the intrusion-detection
world, updates to both the detection
software and the knowledge base are
frequent, and linked together. Most
vendors will deliver updates on a monthly
basis; since recent attacks are usually
more dangerous than older ones because
of the time it takes to actually patch
systems, and because of the inherent
attractiveness of new exploits, updates
must be taken into account as fast as
possible.

We therefore expect that the testing
process will have to be repeated on a
regular basis, to ensure that the tools
deployed in the field still perform as
expected, and to apply regression testing
to discover whether “older” vulnerabilities
are still being detected, whether the false
alarm rate has been improved, and
whether performance is still comparable
to the initial data. We also do expect that
vendors shift focus, and that the ratings
obtained at the end of the test may
change over time. Regression testing will
detect this shift, and allow us to either
alert vendors or change product choices.

� Automation
As the testing process is likely to be
repeated, the automation objective seems
self explanatory. However, it covers two
different areas of the testbed, running the
tests and exploiting the results.

Automating the execution of the tests on
the testbed and collecting the data has
been an important goal of our design. We
use a collection of scripts centralized on a
source server; every component of the
testbed connects to the source server to
obtain the latest version of the testbed
software. If modifications are made on
one of the components, upon commiting
these changes to the script repository all
other components benefit from the
update. Since the entire battery of tests
can take up to 3 days continuous
execution, automation is indeed usefull.
Note, however, that a few tests described
in page 64 have not been automated. The
main reason for this manual execution is
the difficulty of checking all possible error
conditions and verifying that the test
actually succeeded.

Automating the exploitation of results is
also extremely important. the usage of the
testbed shows that a test batch generates
several thousand alerts, from the
5 intrusion-detection systems being tested
and the script running the attacks. All this
information has to be correlated and
tabulated to establish which tool caught
which attack, and how it caught it. We
have been able to automate most if this
task through the use of a central alert
repository accessed via syslog.
While syslog lacks reliability, it works well
in practice as long as the management
network is not overloaded. Comparison
between the content of the global syslog
server and individual syslog files hosted
on the intrusion-detection probes has
shown that all data is correctly
transferred. Also, syslog is easy to set-up
and operate for most probes, and the
one-line format eases post-processing.



57

Result exploitation is done through a set
of perl scripts generating CSV tables. The
analysis of the messages provided by the
attack machine provides us with a linear
outline of the complete test. Each of the
parameter combinations is aggregated on
one line to tabulate the results.

� Baseline
We believe that meaningful tests require a
baseline against which the products are
tested. Not only do we want to compare
intrusion-detection products, we also wish
to establish if they are actually better than
what the security community provides and
maintain for free. The actual push towards
open source in the security community is
important; having the possibility to view
the signatures and understand why an
alert is triggered is of the utmost impor-
tance during analysis, and Snort [24]
provides this facility.

Note that using Snort for baselining does
not make it a competitor for our choice of
an intrusion-detection platform, because it
is not an appliance and does not have an
integrated management platform. At the
time of testing, the SourceFire company
was forming and it is quite possible that a
repetition of the tests at this time would
see the open source Snort baselining the
SourceFire appliance.

Description of the test
protocol

We prioritized a set of 5 tests related to
HTTP traffic, Trojan horse traffic and IP
low level vulnerabilities and implemented
them on the testbed. This priorities were
set in accordance with the traffic
distribution observed at our network
boundaries.

The testbed layout is shown in Fig. 2. Two
local area networks are used, the control
for management and alert traffic and the
live for observation of normal and
malicious traffic. The source server is the
central source repository, running a CVS
server. The victim is the target of
malicious activity. It runs an Apache web-
server masquerading as both Apache and
IIS, and has a set of vulnerable cgi scripts
installed to carry out actual attacks. The
client machines generate normal, mostly
non-malicious traffic (2). The Attacker
machine contains the attack scripts and
drive the test sequences. The Syslog
server receives alert data for analysis. The
Console manages the intrusion-detection
systems.
The following five test sets have been
implemented in the testbed:

� IP Manipulation
Tests These tests are related to low level
manipulations of the IP packet, such as
targa or winnuke, that result either in
denial-of-service or evasion of the
intrusion-detection system. For these
tests, we selected seventeen different
vulnerabilities for which we have been able
to find an adequate exploit tool, and to
verify that this exploit tool indeed
manipulates the TCP-IP packet sent over
the wire. The reader is refered to
vulnerability databases such as
SecurityFocus (3) searching for the attack
keyword identifying the attack tool.
Note that the objective of these tests is
remote denial-of-service and does not
targets the evasion methods described in
[20], although some of these attacks can
be relevant to these techniques.

� Trojan horse traffic
These tests are related to the installation
of Trojan horses on client machines, either
classic, remote-command Trojans such as
BackOrifice or NetBus, or
distributed-denial-of-service Trojans such
as Tribal Flood Network or Trinoo. Note
that these tests concentrate on the
detection of management traffic, and as
such do not carry out denial-of-service
attempts against the server. We installed
these four Trojans on the testbed,
ensuring that all the components were
indeed available and running. The Trojans
run unmodified, and as such use default
publicly known communication ports,
default command sets and unencrypted
traffic. This test set could certainly be
improved at least by the usage of
non-default communication ports.

2. This area of the testbed is under development.
An early version was used for performance
evaluation, using the LoadRunner HTTP traffic
simulation engine to load the live network. 
3. http://www.securityfocus.com/

Attacker Snort IDS_A IDS_B IDS_C IDS_D

control

...

Source

server
Victim

Internet

Gateway

live

Syslog

server
Console

Client 1 Client n

Figure 2 - The France Telecom intrusion-detection testbed.



58

4. This is the case for most vendors.

� Whisker vulnerability scanning
These tests use the freely available whisker
cgi scanner, repeating the scan with the
default database of vulnerabilities with
multiple evasion parameters. Note that
our server is specially configured to
answer appropriately when whisker
attempts to verify pre-conditions before
running the actual test, so that the
maximum number of requests from the
default database are run.
We expect intrusion-detection vendors to
use whisker in their test suites, as we
believe it is a tool actively in use for
information gathering purposes, even
though it is a bit old by Internet standards.
Unfortunately, page 60 shows that the
diagnostic of whisker scans is still lacking.

The same test database is used for 21
test runs, the first four with the GET method
(- M command line flag), the next 9 with the
HEAD method and the evasion parameter
(- I command line flag) incremented from 1
to 9, and the next 7 with the HEAD
method, and the evasion parameter set to
- I 1 - I n with n varying from 2 to 9. Note
that the - M command line switch is
overriden for certain tests in the default
database. Also, some tests are not
carried out in some evasion modes, which
results in a smaller number of requests
reported by the Attacker.

� Live cgi attacks
These tests carry out real attacks against
our vulnerable HTTP server. These attacks
have varying results, some of them giving
a shell with httpd user privileges and the
others allowing to visualize files. At this
stage, this set of tests has to be carried
out manually to ensure that pre-conditions
are met, that compromise effectively
happens and to restore the server to its
original state.
Our file target is the /etc/passwd file, to
ensure that all intrusion-detection products
would have a chance to see abnormal
activity. While other files are worthy of an
attacker’s attentions, the only common
one that we have found registered
accross all intrusion-detection systems is
the unix password file.

� Whisker signature evaluation
These tests use the freely available whisker
cgi scanner, with a specially crafted
database taking into account the list of
HTTP vulnerabilities that all products
document, and constructing creative
requests to evaluate the extend and
diagnostic capability of each signature.
The goal of this test is to verify that
signatures listed in the product
documentation do trigger and to
approximate the trigger that sets the alert
off. We expect this information to be very
valuable for analysts assessing
the alerts representing the diagnostic of
the tested intrusion-detection systems,
particularly if detailed alert description is
not available (4).

The test is constructed around a specific
whisker database, containing a set of URLs
to test for each vulnerability/signature that
we wish to evaluate. This set contains URLs
related to different attacker activity, such
as scanning (attempting to infer whether
the vulnerability is present on the system;
this is the general operation of whisker),
normal activity (attempting to reproduce
requests that users earnestly trying to use
the vulnerable application as specified

would submit), outright malicious activity
that would directly exploit the vulnerability,
and abnormal activity that either extends
the direct exploits with our own knowledge
or derives from these direct exploits.
Clearly, a lot of time is spent analyzing
each of the vulnerabilities and figuring out
devious ways of either using the
vulnerability but with different goals than
the “default” exploits published, or
transforming these so that the requests
look similar without being exactly the
same. Examples are given in page 65 that
covers the results of this set of tests.

Clearly, this does not cover all possible
intrusive activity. Future extensions of the
testbed include generating normal and
abnormal DNS, mail (SMTP, POP and IMAP)
RPC and file (NFS, Samba) traffic to
broaden the coverage of the test. Our
emphasis on HTTP is justified by its status
today as an ubiquitous transport protocol,
used not only for page serving, but also
for additional traffic simply because it can
traverse the firewall protecting most
organizations today. Also, most content is
served from web servers even if the
server only acts as a mediation portal.



59

Results obtained
during the tests

This section presents the results obtained
during a complete run of the tests. The
intrusion-detection systems will be
identified as IDS-A, IDS-B, IDS-C and IDS-D,
representing four of the five commercial
leaders in the field. We decided against
explicitely naming the product because all
of them exhibited significant (although not
the same) shortcomings and we do not
wish these results to be interpreted as an
endorsement of these products. In fact,
the shortcomings identified lead us to
believe that none of them would be
satisfactory for our demanding environment.

Results of the IP
manipulations tests

The following table shows the results
obtained. The first column identifies the
attack, the next five the number of different
alerts that were considered valid for each
IDS, and the final five the number of alerts
that were considered false alerts for each
attack. The summary counts the number
of events flagged and the total number of
different alerts for each tool in each
category.

The first observation from the results is
that none of the tested intrusion-detection
systems detects the entire set of attacks.
In fact, two of them, gwese and octopus,
are not detected at all; this is not surprising
since both of them are very specific,

windows-95 denial-of-service attacks and
as such are probably rare in the field.
Note, however, that the best tool only
detects ten out of seventeen trials; we
believe that this number is quite low and
should be improved.

Second, note that the best IDS in terms of
detection, IDS-A, is also the one generating
the largest number of false alarms. This
reveals an issue with signatures, that are
probably not tuned enough to differentiate
the real attack from symptoms that would
also exist with other vulnerabilities, but are
not significant simply by themselves.
Clearly, the tradeoff between accuracy of
diagnostic and coverage has been set
towards accuracy for IDS-B and coverage
for IDS-A; hence the better
intrusion-detection system depends on the

Attack Appropriate alerts Irrelevant alerts

Name Snort IDS-A IDS-B IDS-C IDS-D Snort IDS-A IDS-B IDS-C IDS-D

papabroadcast 1 1 1 0 0 0 0 0 0 0
pinger 2 1 0 0 0 2 0 0 0 0
gewse 0 0 0 0 0 1 1 0 0 0
nestea 1 1 1 0 0 1 0 0 0 0
newtear 1 1 1 0 0 1 0 0 0 0
targa2-bonk 0 0 0 1 0 1 0 0 0 0
targa2-jolt 1 3 0 0 0 0 1 0 0 0
targa2-land 0 0 1 1 0 1 1 0 0 0
targa2-syndrop 1 1 1 0 0 0 0 0 0 0
targa2-winnuke 0 1 1 1 1 0 0 0 0 0
targa2-1234 0 2 1 0 0 0 0 0 0 0
targa2-sayhousen 0 3 0 0 2 0 0 0 0 0
targa2-oshare 0 0 0 0 0 0 0 0 0 0
kkill 0 0 1 0 0 0 2 1 0 0
octopus 0 0 0 0 0 0 0 0 0 0
overdrop 0 0 0 1 0 0 0 0 0 0
synful 0 1 1 0 0 1 1 0 0 0

Number of events flagged 6 10 9 4 2 7 5 1 0 0
Number of alerts sets 7 15 9 4 3 8 6 1 0 0

Table 1 : Results of the IP manipulation tests



60

particular needs of an organization. We
would add that we are not happy by either
side of the tradeof, which means on
one side more analyst time and on the
other side missed attacks. Also,
the Snort yardstick shows that IDS-C and
IDS-D are not up to date with the possible
attacks against an IP stack, letting the
door open to potential denial-of-service
attacks.

Third, note that table 1 counts the number
of different alerts for each intrusion
detection system, not the total number of
alerts generated per attempt. This number
of different alerts is important for an ana-
lyst because it gives him more information
about the ongoing attack, and gives more
meat to a correlation system.
Using this measure shows that not only
does IDS-A detect the largest number of
attempts, it also is the one giving us the
most information about the malicious
activity going on. The conclusion reached
here is similar to the one in the previous
paragraph.

Finally, the table does not measure the
number of alerts generated for each
attack. Some attacks generate a large
number of packets, each of them carrying
the anomalous characteristic and
triggering an alert. This characteristic has
already been shown in [6], and we confirm
this result; clearly this is a case where
aggregation of consecutive, similar alerts
is desirable and should be performed by
the probe since it has all the elements to
do so.

Results of the Trojan
horses tests

Concerning the Trojan horse tests, all
Trojans were detected by all
intrusion-detection systems except IDS-D
which did not detect any of them and
generated one false alarm. Snort in
addition generated two false alarms. Since
default ports and keywords were in use,
these results are exactly what’s expected
and the only valid test result is that
functionality specified in the documentation

Results of the Whisker
vulnerability scanning

The results are presented in Table 2. The
first two columns indicate the total number
of whisker request and the number of
requests that actually deliver information
outside of directory existence. Then, for
each intrusion-detection system, the table
gives the total number of alerts generated,
the number of whisker requests that
triggered an alert, and the number of
whisker directory events that triggered
an alert.

The table is incomplete, because of a
number of circumstantial issues during
testing. We were unable to configure IDS-D
to send events to our syslog server; given
that this test generates several thousands
of events, it is impossible to manually
reincorporate the results of IDS-D into the
log file. It also proved impossible to use
custom log files to carry out this task and
we finally gave up, having the impression
from screen observation that the box was
performing in about the same way as the
other ones. Also, during the final rounds of
the tests our data collection network
broke down and therefore the last three
lines of the experiment should be
discounted. Since such a test run takes
more than 3 days, we were not able to
keep the intrusion-detection systems
reliably running for that amount of time, at
a rate of about one alert per second each.
We propose the following comments for
these results:

� Missed events
The obvious remark from this table is that
many scan events are not flagged as
anomalous; the commercial intrusion
detection systems flag between 10 % and
20 % of the scan events, and Snort goes
up to 30 %, but at the cost of many false
alarms. This actually is a very reasonable
tradeoff, because this offers some
resistance to alert flooding. The most
verbose intrusion-detection probe across
the board is Snort, which systematically
generates 3 to 6 times more alerts than
the other probes.

� Missed summary of scan activity
Note that this test carries out a scan, not
actual attacks. As such, there is no real
attack traffic going on the network, only
suspicious activity. The best response
from an intrusion-detection probe facing
this kind of traffic would be a single event,
or the same event repeated at regular
intervals with update information. What we
see here is a chain of uncorrelated events
(uncorre-lated in the sense that the
intrusion-detection probe does not link
them, because an obvious correlation
chain from IP address and monotonically
increasing port number exists in the logs)
that requires an operator manual analysis,
not the complete diagnostic that would
bring the expected value from this tool.
Snort is the only tool to indicate that, with
some evasion modes, it is facing a whisker
scan; this takes the form of additional
alerts in evasion modes - I 3, - I 4, - I 5
either alone or combined. IDS-A and IDS-C
without explicitly mentioning whisker at
least give an indication of the evasion
mode for some of them.

� Missed identification of targets
A follow-up observation is that since this is
merely a scan and not actual attacks, all
of the alerts generated could be
considered false alarms, from the point of
view of an operator who would be looking
for successful intrusions, or even intrusion
attempts. A scan here attempts to assert
that superficial traces of a vulnerability
exist on the scanned web server. It does
not attempt to use the potential
vulnerability to break into the server.
This unfortunately points out the fact that
the intrusion-detection signatures
implemented are attached to very
superficial characteristics of the attacks
and do not take into account symptoms
indicating a really malicious attempt. The
only anomalous symptom that the probes
seem to look for is a request for the UNIX
password file at the well-known location
/etc/passwd. Our scan included attempts
against other sensitive files
(.rhost, /etc/exports, /etc/shadow)
without the probes noticing them.



61

� Ignorance of directory scanning
As shown in the Dir columns, Most probes
fail to detect directory scanning. This is a
reasonable way to practice unless
directory browsing is enabled on the web
server.

� Continuing issues with evasion modes
Attack detection is very much dependant
of the kind of evasion mode that is
activated. Evasion mode - I 8 is particularly
deadly, as it carries out most of the
scanning activity with a very low detection
probability. IDS-C resists better to the
various evasion modes that the others,
which indicates that the analysis engine
has at least some notion of what an HTTP
session should look like.
The reason why this change from “/” to “\”
is deadly for the probes is that many of

them use the “/” character in the
signatures to anchor the pattern;
a signature pattern for the phf vulnerability
could look like “/phf?” to indicate that the
phf string is at the end of the request
string and needs arguments. If the
translation from “\” to “/” is not done
(although IIS at least and probably all web
servers running on windows platforms
must do it) then the trigger is missed.
Even though it also shows failures from
the probes, mode - I 7 is not as deadly for
the server, as it applies mostly to
directory scanning; this gives an attacker
some information about the directory
structure of the server and as such some
information about potential weaknesses,
but it would still require a lot of work to
actually break in the site.

Reaction of the various intrusion-detection
probes to evasion varies greatly. Snort
and IDS-C (and IDS- A to a lesser extend)
become extremely verbose with certain
modes. In the long URL mode
(- I 3, - I 4 or - I 5), they also generate a
number of false alarms because the
random characters inserted match
existing, too simple signatures.

This test shows that even though
progress has been made by the
intrusion-detection probes with respect
to interpreting the various subtleties of
HTTP protocol encoding (a similar test
two years ago showed all probes failing
detection even with the simplest
encoding tricks), they could still be
improved.

Whiskerwwwwwww Snort IDS-B IDS-A IDS-C

Total Scans wTotal Event wDir wTotal wEvent iiiiiiDir wTotal wEvent iiiiiiDir Total wEvent iiDir

548 347 145 144 7 75 63 5 33 33 4 131 77 5
548 347 145 145 7 30 28 2 33 33 4 131 77 5
548 347 145 145 7 30 28 2 33 33 4 130 77 5
548 347 145 145 7 30 28 2 33 33 4 132 77 5
548 347 145 145 7 75 65 5 33 33 4 197 67 3
548 347 92 92 5 75 65 5 47 33 5 1366 69 3
548 347 556 538 205 75 65 5 568 33 5 1176 70 3
548 347 872 539 322 75 65 5 33 33 4 319 60 5
548 347 554 542 203 75 65 5 33 33 4 117 69 3
548 347 144 144 6 75 65 5 33 33 4 121 70 4
241 71 26 26 6 1 1 0 2 2 0 17 9 1
522 325 76 60 6 73 65 5 17 17 4 118 66 3
95 68 792 95 27 9 8 1 7 7 1 220 17 2

548 347 100 92 5 75 65 5 47 33 5 1146 52 1
548 347 556 541 203 75 65 5 570 33 5 1171 69 3
548 347 874 541 319 75 65 5 33 33 4 326 57 4
548 347 553 541 203 75 65 5 33 33 4 116 69 3
548 347 144 144 7 75 65 5 33 33 4 120 70 4
241 71 26 26 6 1 1 0 2 2 0 17 9 1
522 325 76 60 6 73 65 5 17 17 4 111 66 3
39 35 344 38 4 4 3 0 2 2 0 0 0 0

Table 2 : Results of the Whisker vulnerability scanning



62

Snort IDS-B IDS-A IDS-C

L T G A B E T G A B E T G A B E T G A B E

0 145 140 5 0 0 75 1 3 0 71 33 24 9 0 0 131 60 16 1 0
1 145 140 5 0 0 30 12 15 0 3 33 24 9 0 0 131 59 17 1 0
2 145 140 5 0 0 30 12 15 0 3 33 24 9 0 0 130 59 17 1 0
3 145 140 5 0 0 30 12 15 0 3 33 24 9 0 0 132 59 17 1 1
4 145 140 5 0 0 75 1 3 0 71 33 24 9 0 0 197 53 13 1 51
5 92 88 4 0 0 75 1 3 0 71 47 24 9 0 14 1366 53 15 1 743
6 556 124 5 0 427 75 1 3 0 71 568 24 9 0 535 1176 53 15 2 553
7 872 105 3 8 756 75 1 3 0 71 33 24 9 0 0 319 40 16 4 112
8 554 138 5 1 410 75 1 3 0 71 33 24 9 0 0 117 53 15 1 0
9 144 139 5 0 0 75 1 3 0 71 33 24 9 0 0 121 50 19 1 0

10 26 24 2 0 0 1 1 0 0 0 2 2 0 0 0 17 7 2 0 0
11 76 50 4 0 22 73 1 1 0 71 17 14 3 0 0 118 54 11 1 3
12 792 0 0 0 792 9 1 3 0 5 7 7 0 0 0 220 10 7 0 102
13 100 88 4 0 8 75 1 3 0 71 47 24 9 0 14 1146 43 8 1 641
14 556 124 5 0 427 75 1 3 0 71 570 24 9 0 537 1171 53 15 1 551
15 874 96 5 4 769 75 1 3 0 71 33 24 9 0 0 326 41 14 2 121
16 553 138 5 0 410 75 1 3 0 71 33 24 9 0 0 116 53 15 1 0
17 144 139 5 0 0 75 1 3 0 71 33 24 9 0 0 120 50 19 1 0
18 26 24 2 0 0 1 1 0 0 0 2 2 0 0 0 17 7 2 0 0
19 76 50 4 0 22 73 1 1 0 71 17 14 3 0 0 111 54 11 1 0
20 344 0 0 0 344 4 1 3 0 0 2 2 0 0 0 0 0 0 0 0

Table 3 : Structure of the alerts of the Whisker vulnerability scanning



63

Table 3 analyzes in more detail the
structure of the alerts generated by the
intrusion-detection systems.
The total number of alerts is given in
columns T. Then, alerts are classified into
4 groups: G for good alerts giving
meaningful information about the event
(although maybe not as exhaustive as
what we whould like), A for approximate,
giving information that is correct but
marginally relevant for the analysis of the
actual event, B for bad alerts that are
clearly false alarms, and E for alerts related
to the evasion method used rather than
the actual event. The definition of these
groups is configured into the result
analysis tool.
Concerning the E (Evasion) column, it
means different things for each probe.

For IDS-B, almost all alerts classified in
that category indicate that the probe has
caught a HEAD request. Such an alert is
not systematically generated for every
HEAD request. The most likely hypothesis
at this stage is that there is a second
factor which is required for the creation of
the alert, yet unidentified.
Some scan events not generating an alert
in modes 1-3, but fairly close in patterns
(e.g. perl and perl5) do give a HEAD alert.
A second hypothesis is then that IDS-B
understands that there is an anomaly with
the request and generates alerts with a
slightly broader coverage in terms of
pattern matching. Finally, the HEAD alert is
sometimes doubled, e.g. two messages
arrive in the syslog file for only one scan
event. As such, it is unclear whether it is a
bad alert or a useful one.

For IDS-A, evasion almost exclusively
means that it has seen the infamous “../..”
string in the URL. This pattern is inserted
by whisker’s mode 4 and is flagged by
IDS-A as an attempt to exploit an IIS
vulnerability, which is obviously an
erroneous interpretation (even though the
alert should not, in our opinion, be
classified as bad because the request
indeed presents the required
characteristics).

For IDS-C and Snort, it is a mixed bag of
things, “../..” strings and also specific
messages targeting whisker modes such
as the directory traversal of mode 4 and
the splicing technique of mode 9. The first
observation from this table is that Snort
and IDS-C are the only intrusion-detection
probes that generates obviously-false
alarms (not that the others never do, but
testing for false alarms was beyond the
purpose of the tests). For Snort, this is
due to the overly simplistic signature
database that matches on strings found in
the long URL evasion mode (7 and 15). For
IDS-C, the same long URL mode matches
on pornographic signatures. IDS-C also
matches “perl” on the “perlshop.cgi” scan
event; this is considered a false alarm
because it matches on part of the file
name only and should be corrected.

The second diagnostic is that the
classification of alerts in G, A or B is not
influenced significantly by the evasion type
(except for IDS-B). The total count drops a
bit or stays steady, and only the E column
increases. This means that filtering the
evasive alerts would make the diagnostic
acceptable for an operator, without
loosing too much accuracy.

As a comparison between IDS-B and the
other probes, only evasion modes 1 to 3
can be used (due to the HEAD phenomenon
mentioned earlier). This shows that both
IDS-B and IDS-A are almost equivalent in
terms of performance. IDS-C has a slightly
better score, with the cost of additional
false alarms.

Although the “perl” signature from IDS-C is
overly large, while other signatures are
very precise and distinguish between
locations. For example, it matches on
/mlog.phtml, but not /cgi-bin/mlog.html,
whereas Snort matches on both. This
indicates that the signatures from IDS-C
can probably be enhanced to better take
into account the attack conditions, which
is an important possibility to reduce the
number of false positives.



64

Results of the live cgi
attacks

The results of these tests are presented in
Table 4. Note that when an attack is not
caught through generation of one or several
alerts, an actual compromise of our victim
web server is not diagnosed and reported.
Therefore, missed attacks are counted as
a very bad point, especially since the
attacks were carried out using parameters
that are known to be embedded in
signatures, such as /etc/passwd.

Our test includes 18 attacks. IDS-A and
Snort are the two best probes on this test,
generating at least one alarm for 15 of the
18 attempts. This could look like a very
nice result, but is actually not so. In cases
where the tools give us only one alert they

only catch the presence of the
/etc/passwd string on the request; they
do not identify the vulnerability itself. Quite
clearly, the fact that a request targets the
password file is important and must be
flagged, even if the vulnerable CGI script
is not known to the intrusion-detection
system. However, the fact that only the
password file is known as an anomalous
symptom shows that the designers of
intrusion-detection systems have little
imagination in terms of attackers targets.

Also, this ranking changes when analyzing
the accuracy of the diagnostic proposed
by the intrusion-detection system. IDS-C
and IDS-D do a much better job at

evaluating the extend of an attack. They
both diagnose multiple aspects of the
attack, such as the name of the vulnerable
script used as the attack vector, directory
traversal activity, request for /etc/passwd
and indicate whether the attacker’s
actions have been successful. IDS-C in
particular in one instance indicated us that
the HTTP request for the password file
was successful, and in another instance
indicated that something that looked like a
password file was being sent out of the
protected network. These two elements
show that extended diagnostic while not
generally available is indeed possible and
that this extended diagnostic eases the
analyst’s work.

Attack Appropriate alerts Irrelevant alerts

Attack name Snort IDS-A IDS-B IDS-C IDS-D Snort IDS-A IDS-B IDS-C IDS-D

accesscounter 0 0 0 0 0 0 0 0 0 0
aspseek-xpl 0 0 0 0 1 0 0 0 2 0
bizdb 1 1 0 0 1 0 0 0 0 0
clickrespond 0 1 0 0 0 1 0 0 0 0
clipper 1 1 1 2 2 0 0 0 0 0
coldfusion 1 0 0 0 0 0 0 0 0 0
finger 1 1 1 1 1 0 0 0 0 0
handler 1 2 0 3 1 0 0 0 0 0
htdig 1 1 1 1 1 0 0 0 0 0
htgrep 1 1 1 1 1 0 0 0 0 0
phf 1 2 2 3 3 0 0 0 0 0
php-nuke 1 1 0 0 0 0 0 0 0 0
php 1 2 2 2 2 0 0 0 0 0
search 1 1 1 1 2 0 0 0 0 0
search 2 1 1 2 2 0 0 0 0 0
viewsource 1 2 2 2 3 0 0 0 0 0
webspirs 1 1 1 3 2 0 0 0 0 0
whois 1 1 0 2 0 0 0 0 0 0
Number of attacks found 15 15 10 12 13 1 0 0 1 0
Diagnostic accuracy 16 19 13 23 22

Table 4 : Results of the Whisker vulnerability scanning



65

Of course, this extended diagnostic still
does not meet our expectations.
In particular, it does require an analyst to
manually correlate the three or four alerts
related to the attack, as the
intrusion-detection probe merely provides
the alerts side by side without eliciting any
relationship between them. In addition,
each alert keeps the evaluation of its own
severity, whereas the most relevant
information would be an aggregated and
ponderated severity of all related alerts.

Results of the signature
evaluation tests

The results presented here are related to
three vulnerabilities out of the 60 that the
testbed currently checks.
They are representative of all observed
behaviours.

Figure 3 shows an extract of the whisker
database file for the evaluation of the
add.exe vulnerability.
For this vulnerability, four requests are
sent, although the first two could be
considered equivalent be-cause the HTTP
standard does not differentiate between the
absence of arguments to a CGI script and
the empty argument. Therefore, the first
two requests result in starting the add.exe
script with an empty QUERY_STRING. The
third request passes an argument to the
CGI script in an attempt to simulate
normal usage and the fourth one
constitutes the effective attack.
For each of the requests the testbed
receive the same ADD.EXE alert.
This suggest that the pattern detecting
the malicious activity for all of the intrusion
detection systems is similar to (in perl-like
regular expression syntax) “/add\.exe”.

In each case, the attacker receives
different information. In each case, the
diagnostic provided by the
intrusion-detection systems is the same.
As such, we consider this diagnostic
incomplete. A normal request to the script
is flagged as anomalous by the
intrusion-detection system with exactly the
same severity as a scan or an intrusive
attempt. Our conclusion is that for every
alert generated, valuable analyst time
must be spent on assessing the activity
whereas the intrusion-detection system
could automate the process.

Figure 4 shows an extract of the whisker
database file for the evaluation of the
Cart32 vulnerability.
Again, the first two requests are related to
scanning and the third one to normal
activity (although normal activity is more
complex than that). The two last lines are
direct malicious attempts exploiting two
different Cart32 vulnerabilities.

The tested intrusion-detection systems
generate an alert only on the last request
(line 4.5). Neither the scanning activity of
the 2 first requests or the attack attempt
from the fourth generate any noise,
altough any analyst will consider that the
one before last (line 4.4) looks extremely
suspicious. This case illustrates that the
signature for the Cart32 vulnerability is
too restrictive, because additional
vulnerabilities discovered more recently
and affecting the same base software are
not covered by the signature.

4.1: scan () @roots >> c32web.exe
4.2: scan () @roots >> c32web.exe?
4.3: scan () @roots >> c32web.exe?foo
4.4: scan () @roots >> c32web.exe?TabName=Cart32%2B &Action=Save+Cart32%2B+Tab &SaveTab=Cart32%2B
&Client=foobar &ClientPassword=e%21U%23 %25%28%5D%5D%26%25*%2B-a &Admin= &AdminPassword=
&TabToSave=Cart32%2B &PlusTabToSave =Run+External+Program &UseCMDLine=Yes
&CMDLine=cmd.exe+%2Fc+dir+%3E+c%3A%5Cfile.txt
4.5: scan () @roots >> cart32.exe/cart32clientlist

Figure 4 - Signature evaluation
for the Cart32 vulnerability

3.1: scan () @roots >> add.exe
3.2: scan () @roots >> add.exe?
3.3: scan () @roots >> add.exe?foo
3.4: scan () @roots >> add.exe?C:\inetpub\iissamples\default\samples.asp

Figure 3 - Signature evaluation for the add.exe vulnerability



66

This does not contradict our analysis of
the Add.exe vulnerability test (too simple
signatures giving too many alerts). Our
analysis proceeds from the same logic,
namely that in both cases the diagnostic
provided is extremely imprecise and
requires manual analysis to verify the
exact circumstances of the attack and
assess the extent of the damage.
Assessing the alert with the appropriate
adjacent and related acivity would allow
broader signatures (hence less misses)
with varying severity levels (hence
facilitating the analyst’s work).
This analysis is expanded in page 68.

Figure 5 shows an extract of the whisker
database file for the evaluation of the
shtml.exe vulnerability. The real attack is
on line 4.4, line 4.5 representing a
variation of ours to check whether the
signature implemented in the tested
intrusion-detection systems includes the
slash between the components or not.

The interesting result from this experiment
is that one of the tested commercial
intrusion-detection sys-tems crashed hard
on the four requests not specifically
targetting the vulnerability while correctly
identifying the malicious attempt.
This illustrates the difficulty of testing
network-based intrusion-detection systems.
Our suspicion is that vendors of these
network-based intrusion-detection systems
test them using a database of network
frames representative of instances of the
execution of a given vulnerability, without
rebuilding the vulnerable environment and
testing with live attacks. Therefore, attack
variants that could be introduced
accidentally because the operating system
handles network traffic a bit differently, or
intentional variants such as ours, are not
tested and end up introducing faults in the
software.

Proposed model for
an intrusion-detection
system

Our test results clearly show that there is
still a lot of work to be carried out within
the intrusion-detection community to
improve the systems that are being
deployed today. We believe that the most
serious issue highlighted by our tests is
the diagnostic issue, namely the lack of
details in the information transmitted to
the analyst whereas useful information
could be automatically extracted from the
data source. From this, we take a look at
the current model for intrusion-detection
systems proposed by the intrusion-detection
working group (IDWG) of the IETF and
propose several improvements that would
result in better diagnostic.

The IDWG model of an
intrusion-detection system

The model of an intrusion-detection system
proposed by the IDWG in its requirements
document [28] has several components
and the interested reader is refered to the
draft for the complete description. We
really are interested here in the analysis
(boxes) and data (italics) components as
shown in Fig. 6.

5.1: scan () / >> vti bin/shtml.exe
5.2: scan () / >> vti bin/shtml.exe?
5.3: scan () / >> vti bin/shtml.exe?toto
5.4: scan () / >> vti bin/shtml.exe/prn
5.5: scan () / >> vti bin/shtml.exe?prn

Figure 5 - Signature evaluation for the shtml vulnerability

Figure 6 - The IDWG intrusion-detection system model

Probe

Data source

Event

Alert

Sensor

Analyzer

Manager



67

Concerning the data components, the
data source provides raw information
tapped by the sensor. The sensor parses
and formats information available in the
data source and into events that are sent
to the ANALYZER. The ANALYZER processes
the events to realize the actual detection
process and provide alerts indicating that
malicious activity has been discovered.
The alerts are sent to the MANAGER for
management and further processing. Note
that the model provides for multiple flows
of information, for example for multiple
SENSORS to send events to one ANALYZER.
Also, a component could play both the
role of an ANALYZER for dialogs with
upstream components and the role of a
MANAGER for downstream components.

Let’s take the example of one of the
tested network-based intrusion-detection
systems. The data source is the network
packets that are sent on the wire.
The SENSOR taps the network and formats
the information retrieved, for example
applying the anti-evasion techniques
presented in [20] and possibly further
decomposing the information to retrieve
protocol states. The ANALYZER then takes
this information and decides according to
its attack signatures to generate an alert.
Note that this example collapses the
SENSOR and ANALYSER components together
into an opaque box that performs both
data acquisition, formatting and analysis.

Our proposal for an
enhanced model

Figure 7 presents our extension to the
IDWG model. It is indeed a very simple
extention, consisting of the insertion of a
feature extraction mechanism (extractor
taking events and providing features to
the analyzer. While this seems like a minor
change, we do believe it is important
particularly in light of the test results shown
in page 64 and 65. The intrusion-detection
systems tested to not provide a complete
analysis, but in fact limit themselves to the
feature extraction stage. Each feature is
extracted from the data source and sent
to the management console independantely
of the others, regardless of the fact that
the features may be linked and loosing the
link information in transit.

In addition, the quest for performance
seems to push intrusion-detection vendors
into not performing the complete feature
extraction stage. Matching multiple
patterns has a cost; exiting early from the
search loop allows vendors to claim
higher processing rates and gigabit
capacity, which is often needed by
customers. However, customers often do
not realize that trading performance for
accuracy will deter them from actually
using the intrusion-detection system. This
quest for performance also impacts the
sensor, limiting the reconstruction of

network data to IP and TCP fragmentation
rather than analyzing the actual TCP
session from establishment to teardown.

Let’s take the example of an HTTP request
for the password file using the phf
vulnerability, against a vulnerable server.
The request sent on the wire could look like
GET /cgi-bin/phf?/etc/passwd HTTP/1.0.
From this request, all tested
intrusion-detection systems provide us
with two alerts, PHF and PASSWORD,
representative of the two saliant features
of the URL. However, the two alerts are
juxtaposed, not linked, event though they
are extracted from the payload of the
same packet.

IDS-C and IDS-D in addition to these two
provide SUCCESS and/or PASSWORD-EXTERNAL,
indicating that they are monitoring not only
the incoming request but also the
response from the server, and that they
extract additional features from the
response. This shows that monitoring
sessions rather than packets is feasible
and informative.

The limitation we see is that all the alerts
are shown on the interface without
indication that they come from the same
TCP session, or even from the same IP
packet; the analyst must manually notice
that IP, port and url information is identical
and that timing is identical or very
close, and infer that they are related.
Similarly for the response, port and IP
information is reversed but the analyst
matches it. We believe that the
intrusion-detection probes have a much
better case than the analyst to make the
correlation between the alerts. Not only do
they have the information displayed, they
also definitively know if the features were
in the same packet, or in the same TCP
session due to matching sequence
numbers. We see no valid reason for the
probes not to carry out this simple task,
and give us a single alert fully assessing
the damage created by each malicious
activity.

Figure 7 - Our proposed intrusion-detection system model

Probe

Data source

Event

Alert

Sensor

Extractor

Manager

Feature Analyzer



68

Damage assessment and
alert qualification

This notion of assessment also allows to
go beyond the current proposed severity
level, which only takes into account the
intrinsic damage caused by a successful
exploit of a vulnerability. We wish that the
diagnostic would propose at least one of
the following qualifiers:

� Scan
The attacker tries to determine the
existence of a vulnerability. The main
characteristic of a scan-qualified alert is
that no actual compromise can result from
the attacker’s actions even though he
gains information about the environment.

� Exploit
The attacker tries to exploit the vulnerability,
possibly with well known attack scripts,
well known targets or publicly available
information. An exploit-qualified alert
indicates a clearly identified attack that
can result in actual compromise if the
target is vulnerable.

� Variant
The attacker tries to exploit the vulnerability
by using the application outside of its
specifications, but the target or exploit
could not be definitely recognized.
A variant-qualified alert indicates that there
is a possibility for compromise or leakage
of information.

In addition, the success of the malicious
activity and its relevance to the monitored
information system should be included in
the alert. In some of our operations, we
are simply not interested in unsuccessful
malicious activity, because there is simply
too much. We just want to know when they
succeed, and then be able to react
immediately and accurately. This would
enable an evaluation of the severity of
each alert based not only on the intrinsic
characteristics of the vulnerability
exploited but also on the actual exploit
circumstances.

Note that these notions have been included
in the message format of the IDWG working

group [4] for some time, but have not yet
found their way into products, although
the relevance of attacks is starting to be
evaluated in post-mortem commercial
analysis products by crossing vulnerability
assessment reports with intrusion-detection
alerts.

Impact on alert correlation

Alert correlation is currently being pushed
heavily in the research community as
being the way to solve the diagnostic
accuracy issue exhibited by many current
commercial intrusion-detection systems.
Indeed, we also are part of this trend and
working towards alert correlation as a way
to reduce the number of alerts that are
being processed by operators and
analysts. Adding the feature extraction in
our model pushes some correlation
functionalities down in the probes, thus
reducing alert trafic and ensuring that the
MANAGER is devoted to alert correlation
from different probes.

We believe that the EXTRACTOR layer in the
probe is in fact a fairly simple engine,
extracting features from a single event;
we do not envision a feature extraction
mechanism that would search for a
feature accross two events. In such case,
the feature should be split in two
sub-features, each of them covering one
event, the recomposition of the two
sub-features being realized by the ANALYZER.
As such, the analyzer could provide a
diagnostic based on a single event as well
as multiple events.

A number of research projects have
looked at using existing intrusion-detection
alerts and correlating them to improve the
quality of the diagnostic and lower false
positives. An exemple of this trend is the
Tivoli RiskManager product [6]. Looking at
it from the feature extraction viewpoint, a
much better solution is to improve the
probes themselves, for the following 
reasons:

● They have more data internally than in
the alerts they provide, in particular 

for assessing that multiple features
come from the same data source,
and the same occurence within the
data source such as a single HTTP
request or a single network packet.

● Exchange of information between
different components of an
intrusion-detection system is
minimized, enabling remote
management on smaller links or
minimizing bandwidth required for
in-band management.

● Communications with management
consoles can be prioritized more
easily, sending only what needs to be
acted upon immediately and batching
the alerts related to reporting and
trending activities.

With more intelligent probes in place, work
on correlation can concentrate on the
most interesting aspects of crossing
alerts provided by multiple probes while
resting sure that each probe provides a
trustworthy diagnostic.

Conclusion

In this paper, we have shown the design of
a test bed for comparative evaluation of
intrusion-detection systems. This test bed
has been used to compare four
commercial intrusion-detection systems
with each other and with the open-source
lightweight Snort. The results show that
there is room for improvement in the
tested probes.

Concerning future work, the test bed is
under development to introduce additional
applications and services and vary the
traffic profile in order to make the task of
the tested intrusion-detection systems
more difficult. Also, we are developping a
prototype probe to validate the EXTRACTOR

concept and verify that the diagnostic is
indeed improved; this prototype will be
used as an additional yardstick along
Snort in the testbed.



69

References

[1] Almgren, M., Debar, H., and Dacier,
M. A lightweight tool for detecting web 
server attacks. In Proceedings of NDSS
2000, Network and Distributed System
Security Symposium (San Diego, CA,
February 2000), The Internet Society,
pp. 157–170.

[2] Cert Coordination Center. Multiple
intrusion detection systems may be
circumvented via %u encoding. Cert-CC
Vulnerability Note VU#548515,
July 2001.
http://www.kb.cert.org/vuls/id/548515.

[3] Chung, M., Puketza, N. J., Olsson, R. A.,
and Mukherjee, B. Simulating concurrent
intrusions for testing intrusion detection
systems: Parallelizing intrusions. In
Proceedings of the 1995 National
Information Systems Security
Conference. Baltimore, Maryland,
October 10-13, 1995, pp. 173-183.
(Baltimore, MD, October 1995),
pp. 173–183.

[4] Curry, D., and Debar, H. Intrusion
detection message exchange format
data model and extensible markup
language (xml) document type definition.
Internet Draft (work in progress),
December 2001
http://search.ietf.org/internet-drafts/
draft-ietf-idwg-idmef-xml-06.txt.

[5] Debar, H., Dacier, M., and Wespi, A.
Reference Audit Information Generation
for Intrusion–Detection Systems.
internal RZ 2997, IBM Zurich Research
Laboratory, Säumerstrasse 4,
CH-8803 Rüschlikon, Switzerland,
March 1998.

[6] Debar, H., and Wespi, A. Aggregation
and correlation of intrusion-detection
alerts. In Proceedings of the 4th
International Symposium on Recent
Advances in Intrusion Detection (RAID
2001) (Davis, CA, USA, October 2001),
W. Lee, L. Mé, and A. Wespi, Eds.,
no. 2212 in Lecture Notes in Computer
Science, Springer, pp. 85–103.

[7] Denning, D. An intrusion-detection
model. IEEE Trans. Softw. Eng. 13, 2
(1987), 222–232.

[8] Habra, N., Charlier, B. L., Mounji, A.,
and Mathieu, I. Asax: Software architec-
ture and rule-based language for
universal audit trail analysis.
In Proceedings of ESORICS92
(Toulouse, France, November 1992).

[9] Hacker, E. Ids evasion with unicode.
http://online.securityfocus.com/infocus/
1232, January 2001.

[10] Handley, M., Kreibich, C., and Paxson,
V. Network intrusion detection: Evasion,
traffic normalization, and end-to-end
protocol semantics. In Proceedings of
the 10th USENIX Security Symposium
(Washington, DC, August 13–17 2001).

[11] Hansen, S. E., and Atkins, E. T.
Automated system monitoring and
notification with swatch. In Proceedings
of the seventh Systems Administration
Conference (LISA ’93)
(Monterey, CA, November 1993).

[12] Jagannathan, R., Lunt, T., Anderson, D.,
Dodd, C., Gilham, F., Jalali, C., Javitz,
H., Neumann, P., Tamaru, A., and
Valdes, A. System design document:
Next-generation intrusion detection
expert system (NIDES). Tech. Rep.
A007/A008/A009/A011/A012/A014,
SRI International, 333 Ravenswood
Avenue, Menlo Park, CA 94025,
March 1993.

[13] Kumar, S., and Spafford, E. A pattern
matching model for misuse intrusion
detection. In Proceedings of the 17th
National Computer Security Conference
(October 1994), pp. 11–21.

[14] Lippman, R., Haines, J. W., Fried, D. J.,
Korba, J., and Das, K. Analysis and
results of the 1999 darpa off-line
intrusion detection evaluation.
In Proceedings of the third international
workshop on Recent Advances in
Intrusion Detection (Toulouse, France,
October 2000), H. Debar, L. Mé, and
S. F. Wu, Eds., no. 1907 in Lecture
Notes in Computer Science, Springer,
pp. 162–182.

[15] Lippmann, R., Fried, D., Graf, I., Haines,
J., Kendall, K., McClung, D., Weber, D.,
Webster, S., Wyschogrod, D.,
Cunninghan, R., , and Zissman, M.
Evaluating intrusion detection systems:
The 1998 darpa off-line intrusion
detection evaluation. In Proceedings of
the 2000 DARPA Information
Survivability Conference and Exposition
(January 2000),
IEEE Computer Society Press.

[16] McHugh, J. The 1998 lincoln laboratory
ids evaluation, a critique. In Proceedings
of the third international workshop on
Recent Advances in Intrusion Detection
(Toulouse, France, October 2000),
H. Debar, L. Mé, and S. F. Wu, Eds.,
no. 1907 in Lecture Notes in Computer
Science, Springer, pp. 145–161.

[17] Mounji, A. Languages and Tools for
Rule-Based Distributed Intrusion
Detection. Doctor of science, Facultés
Universitaires Notre-Dame de la Paix,
Namur (Belgium), September 1997.

[18] Mueller, P., and Shipley, G. To catch a
thief. Network Computing
(August 2001).
http://www.nwc.com/1217/1217f1.html.

[19] Price, K. E. Host-based misuse detection
and conventional operating systems’
audit data collection. Master of science
thesis, Purdue University, Purdue, IN,
December 1997.

[20] Ptacek, T. H., and Newsham, T. N.
Insertion, evasion, and denial of service:
Eluding network intrusion detection.
Tech. rep., Secure Networks, Inc.,
Suite 330, 1201 5th Street S.W,
Calgary, Alberta, Canada, T2R-0Y6,
January 1998.

[21] Puketza, N. J., Chung, M., Olsson, R. A.,
and Mukherjee, B. A software platform
for testing intrusion detection systems.
IEEE Software 14, 5
(September–October 1997), 43–51.

[22] Puketza, N. J., Zhang, K., Chung, M.,
Mukherjee, B., and Olsson, R. A. A
methodology for testing intrusion
detection systems.
IEEE Trans. Softw. Eng. 22, 10
(October 1996), 719–729.

[23] Rain Forest Puppy.
A look at whisker’s anti-ids tactics.
http://www.wiretrip.net/rfp/pages/
whitepapers/whiskerids.html, 1999.

[24] Roesch, M. Snort - lightweight intrusion
detection for networks. In Proceedings
of LISA’99: 13th Systems Administration
Conference (Seattle, Washington, USA,
November 7-12 1999).

[25] SecurityFocus.
Multiple ids vendor encoded iis attack
detection evasion vulnerability.
http://www.securityfocus.com/bid/3292,
September 2001.

[26] Spirakis, P., Katsikas, S., Gritzalis, D.,
Allegre, F., Darzentas, J., Gigante, C.,
Karagiannis, D., Kess, P., Putkonen, H.,
and Spyrou, T. SECURENET: A network-
oriented intelligent intrusion prevention
and detection system.
Network Security Journal 1,
1 (November 1994).

[27] Staniford-Chen, S., Tung, B., Porras, P.,
Kahn, C., Schnackenberg, D., Feiertag,
R., and Stillman, M. The common
intrusion detection framework - data
formats. Internet draft draft-ietf-cidf-data-
formats-00.txt, March 1998.
Work-in-progress.

[28] Wood, M., and Erlinger, M. Intrusion
detection message exchange require-
ments. Internet draft (work in progress),
February 2002.
http://search.ietf.org/internet-drafts/
draft-ietf-idwg-requirements-06.txt.


