Submitted to the 1/th IFIP Int’] Information Security Conf. “SEC 98” Our file:

PREPRI Vienna, Austria, and Budapest, Hungary, Aug. 31-Sept. 4, 1998 6593
NT (Proc. to be published by Chapman and Hall)

Reference Audit Information Generation for Intrusion
Detection Systems

Hervé Debar, Marc Dacier and Andreas Wespi
IBM Research Division, Zurich Research Laboratory, 8808 Rischlikon, Switzerland

Abstract

This paper addresses the problem of generating reference audit information used in the in-
trusion detection technique proposed by S. Forrest et al. [1]. This technique uses a model of
normal behavior of the information system being monitored to detect attacks against it. We
present a novel approach to collect the reference behavior information used by the intrusion
detection system to solve the problem identified in [1]. The model of normal behavior is ex-
tracted from this reference information. This model is then tested against real user activity
and attacks.

[1] S. Forrest, S.A. Hofmeyr, and A..Somayaji, “Computer immunology,” Commun. ACM, vol. 40, no. 10,
October 1997.

1 Introduction

We are working on an intrusion detection prototype using as one of its components the anomaly
detection method developed by S. Forrest et al. [11]. One of the requirements of the method is
to obtain reference information that adequately contains all the possible behaviors exhib-
ited by the system. It is essential that this reference information not contain any attacks, as
it is used to train the intrusion detection system. We propose a method to meet this require-
ment in the context of the reference information required by this specific intrusion detection
technique.

We also focus our efforts on a specific environment, which is an ftp server providing service
to both registered and anonymous users. We have chosen ftp as our first target because it is a
widespread service in the Internet environment, and one with well-known vulnerabilities. Of
course, other services (e.g. http, sendmail, finger) will be considered later.

The paper is organized as follows. Section 2 presents general concepts concerning intrusion
detection. Section 3 describes the intrusion detection prototype that we have developed.
- Section 4 presents our initial approach for generating the reference information for the intrusion
detection system, namely using audit events recorded during real user activity, and some results
obtained. Section 5 presents our current method to generate this reference, and Section 6
experimentally validates this method. ‘

2 Intrusion detectioﬁ

Since the séminal work by D. Denning in 1981 [2], many intrusion detection prototypes have
emerged. There are two complementary trends in intrusion detection: (1) using the knowledge
accumulated about attacks and looking for evidence of the exploitation of these attacks, and (2)
building a reference model of the usual behavior of the information system being monitored
and looking for deviations from the observed usage. The first trend is often referred to as
misuse detection [3], but also as detection by appearance [4]. In this paper, we use the term
“knowledge-based” intrusion detection, which we feel describes more precisely the technique
being used. Conversely, the second trend is referred to as anomaly detection [3] or detection
by behavior [4], and we use the term “behavior-based” intrusion detection.

¢ Knowledge-based intrusion detection techniques exploit the knowledge accumulated about
specific attacks and system vulnerabilities. The intrusion detection system contains in-
formation about these vulnerabilities and even looks for an attempt to exploit these
vulnerabilities. When such an attempt is detected, an alarm is triggered; otherwise the
actions of the user are deemed appropriate from a security point of view.

In other words, any action that is not explicitly recognized as an attack is considered
acceptable.

Advantages of the knowledge-based approaches are that they have the potential for a
very low false alarm rate, and the contextual analysis proposed by the intrusion detection
system is detailed, making it easier for the security officer using this intrusion detection
system to take preventive or corrective action.

Drawbacks include the difficulty of gathering the required information on the known
attacks and keeping it up to date with new vulnerabilities and environments. We are
maintaining a vulnerability database to which we add five or six new vulnerabilities
weekly. Maintenance of the knowledge base of the intrusion detection system requires
careful analysis of these vulnerabilities and is therefore a time-consuming task.

1

¢ Behavior-based intrusion detection techniques assume that an intrusion can be detected
by observing a deviation in the behavior of the system. The model of normal behavior
of the system is extracted from reference information collected by various means. The
intrusion detection system later compares this model with the current activity. When a
deviation is observed, it generates an alarm.

In other words, anything that does not correspond to a previously learned behavior is
considered unacceptable.

Advantages of the behavior-based approaches are that they can detect attempts to ex-
ploit new and unforeseen vulnerabilities. They can even contribute to the (partially)
automatic discovery of these new attacks. They are less dependent on operating-system-
specific mechanisms. They also help detect “abuses of privileges” types of attacks that
do not actually involve exploiting any security vulnerability.

The high false alarm rate is generally cited as the main drawback of behavior-based
techniques, because the entire scope of the behavior of the information system may not
be covered by the learning phase. Also, behavior changes with time, introducing the need
for periodical on-line retraining of the behavior profile, resulting in either unavailability
of the intrusion detection system or additional false alarms. The information system
can undergo attacks at the same time the intrusion detection system is learning the
behavior. As a result, the behavior profile may contain intrusive behavior, which would
not be detected as anomalous. '

Various tools can be used to implement both approaches. For example, statistics [3], ex-
pert systems [5], signature analysis [6], neural networks [7], user intention identification (8]
and model-based reasoning [9] have been used to implement various research prototypes and
commercial products. -

We have implemented a prototype of a behavior-based intrusion detection system, which
is described in the following section. This tool monitors the behavior of UNIX services, not
users. The changes in -behavior are thus much smaller, easier to learn, and not subject to
frequent updates. The problem addressed in this paper concerns the generation of the initial
reference information from which the model of the service will be extracted.

3 The intrusion detection system

The intrusion detection approach that we are following has been described in (10,1, 11]. UNIX
processes are described by the sequence of audit events that they generate, from start (fork) to
finish (ezit). Their normal behavior is modeled by a table of patterns, which are subsequences
extracted from these sequences. The detection process relies on the assumption that when an
attack exploits vulnerabilities in the code, new (i.e. not included in the model) sequences of
audit events will appear. : , '

The upper part of Fig. 1 creates the model off-line. Audit events (represented by letters
here, imagine that A=fork, B=open, C=read, and so on) are recorded from the ftp daemon,
which has been triggered by some experiment process. This recording runs through a filtering
and reduction process, whose purpose is explained later. When the experiment is completed,
the entire audit information is used to generate the patterns of the model. The patterns
are generated as presented in [1], using a simple pattern extraction algorithm to extract all
the possible fixed-length patterns. This model is then used as input for the on-line intrusion
detection part.

Filtering Pattern
- | Reduction - | Extraction
Aggregation

ON-LINE [AEFG ~ |~ — —

Filtering Pattern
—) »| Matching
Aggregation

ALARM

Figure 1: Intrusion detection process

The lower part of Fig. 1 shows the real-time intrusion detection process. Audit events
are again generated by the ftp daemon, and go through the same filtering and reduction
mechanism, in real time. Then, the resulting sequence is matched on the fly to the patterns
in the model. We also say that this sequence is covered by the patterns, and the resulting
- coverage is the percentage of audit events in the sequence covered by the patterns. When no
known pattern matches the current stream of audit events, an alarm is generated (as shown
- in Fig. 1). We apply this technique to AIX, using C2 audit records to record the activity of
the process (ftpd) that we are monitoring.

The purpose of the Filtering/Reduction/Aggregation box is (1) to filter the incoming audit
stream into processes, (2) to remove processes that have generated exactly the same stream of
audit events from-start (fork) to finish (ezit) (this is not used in the on-line version, because
keeping all known process images would become too costly in terms of memory and search after
some time), and (3) to remove consecutive occurrences of system calls. The filtering prevents
the introduction in the audit stream of arbitrary context switches by the operating system.
The reduction keeps only “unique” process images for model extraction. The aggregation
. comes from the observation that strings of n consecutive audit events are quite frequent, with

n exhibiting small variations. A good example is the ftp login session, where the ftp daemon

closes several file handles inherited from inetd, sometimes 17, sometimes 20, sometimes 21,
with no obvious cause. Therefore, we have decided to simplify the audit trail in order to obtain
a model containing fewer and shorter patterns. There is no claim of equivalence between the
reduced (simplified) audit trail and the original one, the new one has possibly less semantic
content. This is an experimental choice, and we will remove the aggregation part if the
true/false alarm performance of the intrusion detection system is not satisfactory.

The most obvious aggregation replaces identical consecutive audit events with an additional
“virtual” audit event. However, doing so enriches the vocabulary (the number of registered
audit events) and possibly the number of patterns, which we want to keep small. Our solution
simply aggregates these identical consecutive audit events. Therefore, any audit event repre-
sents “one or more” such events (i.e. A=A+ in regular expression formalism) at the output
of the aggregation box. The tables in the remainder of the paper include not only level 1
aggregation (A=A+), but also level 2 and 3 aggregation (AA=AA+, AAA=AAA+). We do

not use the last two currently, but will use them if more precision is required while building
models for other detection methods (e.g. statistics, neural networks).

4 Designing an environment for user activity
simulations |

The most commonly practiced method for training behavior-based intrusion detection systems
is to record the activity of the users on a normal workday. This recording is used as the
reference information for the training phase that will extract the model. QOur first prototype
improves this approach by creating a workbench with which we can reproduce the reference
information and record it under varying external conditions. The recording procedure ensures
that this reference information is attack-free.

4.1 Description of the simulation environment

The first approach that we present to create this sample is to simulate user sessions. However,
we wish to do the recording in a closed environment to ensure that no attacks against the
ftp server take place. We achieve this goal by asking several participants in our laboratory
to record ftp sessions against an internal ftp server that supports both users and anonymous
connections, and to dump their terminal interaction at the shell level using script [12]. The
ftp server is then reconfigured inside a closed network to prevent interactions with the outside
world. ~

Once this recording process is complete, we automatically transform these recordings into
simple ezpect [13] scripts, which recreate the interactive session. User-related information such
as username, password, and target ftp server, are variable to allow the parallelization of scripts
(removal of the user-script dependency that allows the same script to be run simultaneously
several times against the same server). These ezpect scripts contain activities performed by the
users either as themselves (having an account on the server) or as “anonymous” (anonymous
ftp service). Analysis of their content ensures that no user-controlled attack script is included
in our collection. Attacks scripts exploiting ftp vulnerabilities are included in the workbench,
but are used for testing purposes only.

Additional scripts are added to the database to perform specific actions, such as using tar
and compress to transfer files, which were not in the original configuration of the recordings.
This need comes from the attack simulator. Some attacks involve the use of tqr and com-
- pression programs to create setuid shells, therefore our normal user activity also has to invoke -
these commands. :

To handle these scripts, a workbench controller has been developed. The design require-
ments for this workbench controller are (1) automatic setup of the environment, both on the
server (ftp configuration) and on the client, (2) creation of normal user activity allowing vari-
able load and targets, and (3) automatic launching of attacks. The workbench consists of
several setup scripts and a controller for running the user sessions. The controller is split
between the server and the client, to allocate resources and pass information between them.
The protocol is described as follows:

1. The client looks for a free user on its side and locks it. It then requests a user identity
from the server side.

2. The server receives the request and forks a subserver to handle the request. The subserver
looks for a free user on its side and locks it. It answers with the name of this user.

3. The client then picks a script in the script database (randomly, sequentially, according
to a configuration file) and starts it. When the script is completed, the client prompts
the server.

4. The subserver cleans the user environment on the server, removes the lock, and termi-
nates.

5. The client cleans the user environment on the client machine, removes the lock, and
terminates.

The controller server acts as a standard daemon, which can process several requests simul-
taneously. An atomic locking mechanism is used to prevent collisions. The controller client
is encapsulated into a wrapper that allows one to configure the way scripts are to be run.
The parameters are the total number of scripts to run, the time to wait between two script
executions, and the selection of scripts to run (e.g. all scripts, scripts involving anonymous
users, script involving normal users, some portion of the scripts database).

This workbench is a very effective environment for evaluating intrusion detection systems.
It supports four operating systems, but is currently limited to ftp activity. We are working on
installing intrusion detection systems using different techniques, and extending the scope of

the workbench beyond the ftp service to evaluate the effectiveness of these different techniques
[14]. ’ ' -

4.2 Recordings of user activity

We performed a number of experiments to record the reference behavior from which the
model is extracted. These experiments involve (1) varying the load on the server (number of
simultaneous connections), (2) changing the network interface (Ethernet or token ring), and

- (3) picking out different subsets of scripts.
We separate our user scripts into four groups:

o all the scripts that we have in the database (set 1)

)
e the scripts involving normal user behavior (set 2);

e the scripts involving anonymous user behavior (set 3);
e and the scripts involving normal user behavior but without those that have been added
to include the usage of tar and compress (via the site exec command) (set 4, subset of

set 2).

Unfortunately, the small number of ftp sessions (55) does not allow a complete separation
between a representative training set and a complete false alarm evaluation set.

The experimentation results are presented in Table 1. The first column describes the
experiment, the second gives the total number of scripts run, the third the total number of
audits generated, the fourth the total number of processes created (output of the filtering),
the fifth the number of unique processes generated (output of the reduction), and the sixth,
seventh and eighth the number of unique processes generated with aggregation levels of 1, 2, -
and 3, respectively. ‘

This table shows that the results of the experimentation are very homogeneous. The number
of processes generated is in direct proportion to the number of scripts run. When we look for
unique processes, we always find the same number of different processes (70). Aggregation
does not reduce this number significantly. This is radically different from observations (in the
LINUX environment) carried out using strace, monitoring actually at the system call level.
There, we observed variances in the number of different processes generated from experiment

5

Table 1: Collection of user data

Number of Number of Processes
No. audit events After After filtering, reduction
Experiment description of in the After filtering and aggregation—
scripts reference filtering and Level | Level | Level]

set reduction 1 2ﬁ_‘ 3
Sequence of all scripts run on Bthernet interface 55 111521 430 70 69 70 70
Sequence of all scripts run on token-ring interface 55 105064 430 70 69 70 70
Sequence of all scripts run simultaneously
two network interfaces (token ring & Ethernet) 110 201357 860 70 69 70 70
Simulation (randomly selecting scripts), in parallel
one on cach network interface, light load 200 494126 1604 70 69 70 70
Simulation (randomly selecting scripts), in parallel
three on each network interface, semi-heavy load 600 1082548 4583 70 69 70 70
Simulation of five users in parallel, using set 1 500 849095 3931 72 71 72 72
Simulation of five users in parallel, using set 2 500 299048 4008 25 24 25 25
Simulation of five users in parallel, using set 3 500 1038129 3764 49 49 49 49
Simulation of five users in parallel, using set 4 500 1118403 4178 40 40 40 40

to experiment, mainly because of operating system context switches and signals. This shows
that even a low-level information source such as the C2 audit trail gives some abstraction to
the data, such as eliminating context switches, signals, and interrupts.

However, as the process for creating the scripts and running the experiments is very time
consuming, we started looking for another method for generating this reference information.

9 Systematic generation

Using user “controlled” manipulations to generate the reference behavior of the service is not
optimal. Our requirements are that in addition to being attack-free and reproducible, this
reference behavior must contain all the possible legitimate commands supported by the ftp
service, and these commands must be received by the ftp server from the network interface.
The second requirement is that these commands are either generated by an ftp client or directly
“manufactured”, for example, by a packet~spooﬁng tool.

5.1 Software engineering and source code analysis

The first possibility to generate the reference is to extract the complete call graph of the code
considered. This process is very heavy, and is only possible by acquiring source code for the
service considered. However, with the increasing complexity of programs and the fact that
many system calls would actually happen inside the libraries for which source code may not
be available, we have eliminated this course of action because it is too cumbersome. Moreover,
this technique does not fit our client-side requirement.

5.2 Macroscopic simulation as a finite state automaton

This second approach is based on a finite state automaton that implements all possible actions
that can be performed by a user. Generating normal behavior means simply running the
automaton. An example of this is given in Fig. 2, which shows a partial representation of the
required finite state machine to simulate the client of an ftp daemon. The one in Fig. 2 depicts
only a very limited subset of the some 70 different commands (without options!) that the ftp
daemon can analyze, and not all paths are represented (e.g. one may issue the Is command
after a put command).

Figure 2: Over-simplified transition graph for simulating ftp client

However, only a very limited subset of these commands is actually known to users and used
by them. Therefore, it would make sense to enrich these arcs with transition probabilities. As .
we are interested in the logic of this process, a natural solution for this kind of modelization
would be to use stochastic Petri nets [15], whose coverage graphs are Markov graphs [16].
We could then use those Markov graphs to generate test suites using, for example, classical
statistical software testing methods [17].

- This approach is very difficult to implement for three main reasons:

1. The values of the transition probabilities are difficult to determine and are specific to
- the experimental environment.

2. This approach is only suitable when the set of commands is limited. It can simulate an
ftp client but not a normal user shell session.

3. Even in simple cases such as ftp clients, implementation problems can arise. Indeed, ftp
clients on different platforms sometimes have a different syntax, and the commands they
generate make the ftp server react in different ways. Also, maintaining the coherence of
the environment is quite difficult, as the automaton must analyze the return information
given by the ftp daemon to decide which parameters it can insert in the next command.

- For the automaton to generate meaningful sequences of commands, it has to analyze the
information returned by the ftp server and create the subsequent command accordingly,
otherwise the number of error messages generated by the ftp daemon would be much
higher than what the normal usage pattern shows.

These difficulties encountered in modeling ftp activity are true for other services as well.

Therefore, this approach was dropped from the current implementation of the workbench.

5.3 Approximating user behavior with test suites

A simpler approach consists of using the test suites provided by the development laboratories
that develop operating systems. In our case, we obtained access to the test suite used by the

AIX development team. This test suite, called functional verification tests (FVT for short),
tests the compliance of the implementation of the TCP/IP services with their specification
from the functional point of view, i.e. it tests the server functionality using the client in the
case of ftp. These FVT are implemented within the DejaGnu [18] testing framework as a set
of expect scripts, which exercise all the possible actions that a user can send to an ftp server.
Owing to the portability requirements of the workbench environment, we modified these FVT
not only to run on a pair of AIX boxes, but also to use LINUX and SUN boxes as clients or
servers.

These FVT do not offer a realistic view of what users usually do, but at least they let us
see how the system should behave when responding to normal requests. Actually, these test
cases implement very simple scripts to test one command at a time. In that sense, they can
be considered as traveling a subgraph of the one presented in Fig. 2, where the length of the
path would not exceed one or two commands between start and bye (see Fig. 2).

This approach is also interesting to evaluate the false alarm rate of knowledge-based intru-
sion detection systems. Because the FVT will make the network daemons generate all sorts of
events that do not (or very infrequently) occur in real-life systems, it can confuse these events
with attacks scenarios. In this case, every alarm generated by a knowledge-based intrusion
detection system is a false alarm.

If the intrusion detection system has rules governing the normal behavior of the network
service, running such a test suite allows us to check the completeness of the normal behavior
model and also to interpret alarms generated by the intrusion detection system as false alarms.
However, the capability to fully train a behavior-based intrusion detection system on this kind
of data is still an open issue, as the profiles may contain many "borderline” behaviors not
actually exercised by the users. The purpose of the next section is to show results for the
usage of this FVT data to record different reference information sets, which in turn are used
to generate models for the intrusion detection system.

6 Experimentations with the functional verification tests

6.1 Recordihg of FVT data

Recording the FVT sessions was done quite simply by running all the available tests. Table
2 presents the same results that have been presented in Table 1, but for the functional ver-
. ification tests data collection. Three separate runs of the FVT were made to compare the
resulting reference information. Data collection took place on an isolated network, with as
little interference as possible from other applications. ‘ o

The first remark on the experimentations with the FVT is that even though all runs gener-
ated the same number of processes (401), the number of unique processes varies from run to
run. We do not have a definite explanation for this, as the network on which the experimenta-
tions were performed was isolated and did not support additional load. We suspect that this
variation depends on one of the tests in the FVT, the ftp proxy setup test, but have not been
able to verify it. '

- The second observation is that 77 unique process images for 487 tests is very small. Our
explanation is that many of these tests are redundant, i.e. they transfer exactly the same file in
different modes (e.g. ascii, ebcdic, struct, record). The basic sequence (login, set parameters,
transfer, logout) is repeated n times, but the parameter changes affect only the network level,
and not the system. Therefore, we do not observe changes in the audit trail.

The third observation is that, contrary to the user simulation case, aggregation reduces

Table 2: Collection of FVT data

Number of Number of Processes

Number | audit events After After filtering
Experiment description of in the After filtering reduction and

scripts reference filtering and aggregation

set reduction | Level1 | Level 2 | Level3]

Sequential run of all available FVT tests (1) | 487 87793 401 77 [57] | e | 73
Sequential run of all available FVT tests (2) 487 878137 401 73 58 | 62 68
Sequential run of all available FVT tests (3) 487 89128 401 71 56 61 67

the number of different processes in a significant way. The explanation we have found is
that even with these very similar processes, the recording of audits is sometimes still not
completely identical, particularly on the login sequence depending on the number of open file
handles handed by the inetd daemon to the ftpd daemon. Aggregation further reduces these
differences, making it clear that the ftp daemon activity is quite limited.

We extract the model of behavior from these process images, which we consider as our
reference information.

6.2 Generation of the model

Of these experiments, we use the first one to build the model (highlighted value in Table 2).
We validate this model against the two other FVT runs. Of course, generating the model for
an intrusion detection product would require several FVT runs.

There are two variables that we can vary to generate the fixed length patterns for the
model [11]. The first one is the length of the patterns considered. This ranges from two
consecutive audit events up to the length of our shortest sequence. The second parameter is
the number of times the sequence occurs in the training set. This gives us an evaluation of
the representativity of the sequence, or its contribution to the coverage.

The results obtained are summed up in Table 3. Rows represent pattern sizes from 2 to
6, columns the number of occurrences required. Each cell contains four lines, the number of
patterns generated, the coverage for the training set (experiment 1), and the coverage for the

two test sets (experiments 2 and 3).
' The results obtained are very good, even with long patterns, which potentially carry more
semantic information. The coverage is well above 98% of all the data sets, which leads us to
" the conclusion that our method represents well the data we wish to model.

6.3 Evaluation of the false alarm rate of the model

We have applied this model to our user simulation data set to evaluate how well this model
actually represents live data. Results in Table 4 include only models with patterns of length
2, 4, and 6, and repetitions, respectively, of 2, 4, and 1, out of the complete picture shown in
Table 3. For this test, we reused the experiments presented in Table 1.

First, the percentage of audit events covered is large as well. It is difficult to draw conclu-
sions from global figures, and therefore we took a closer look, computing the same statistics
on a per-process basis. This closer look shows that some processes are very poorly covered.
After analysis, these processes are related to the execution of the tar command, used by some
of our users to aggregate directories for downloading. This is a service offered by our ftp
configuration, but it does not belong to the standard set of services offered by a basic ftp
daemon, and it is not part of the FVT. Therefore, we had to generate the patterns for the tar
command and add them to our model.

Table 3: Generation of reference tables

Size of Minimum of | Minimum of | Minimum of Minimum of | Minimum of
Patterns | occurrence=1 | occurrence=2 occurrence=3 | occurrence=4 | occurrence=5
2 71¢ 59 57 56 52
99.567% 99.509% 99.480% 99.480% 99.422%
99.534% 99.477% 99.421% 99.421% 99.364%
99.556% 99.497% 99.467% 99.467% 99.408%
3 122 92 88 85 80
99.466% 99.350% 99.321% 99.321% 99.148%
99.449% 99.336% 99.266% 99.266% 99.096%
99.452% 99.334% 99.304% 99.304% 99.127%
4 178 127 119 114 107
99.422% 99.177% 99.134% 99.105% 98.975%
99.378%. 99.124% 99.040% 99.011% 98.884%
99.408% 99.157% 99.112% 99.083% 98.950%
5 239 168 152 145 137
99.307% 99.119% 99.018% 98.874% 98.744%
99.280% 99.082% - 98.955% 98.814% 98.687%
99.304% 99.112% 99.009% 98.861% 98.728%
6 307 205 182 172 157
99.321% 99.073% 98.975% 98.803% 98.657%
99.264% 99.026% 98.913% 98.743% 99.408%
99.304% 99.053% 98.950% 98.772% 98.624%

“Not 100% coverage because the number of events in the

of the pattern length.

Table 4: Evaluation of the reference tables with user data

process is not necessarily a multiple

Experiment description

Pattern
size = 2
repetition = 2

Pattern
size = 4
repetition = 4

Pattern
size = 6
repetition = 6

Sequence of all scripts run on Ethernet interface

190 (99.246%)

405 (98.431%)

410 (98.411%)

Sequence of all scripts run on token ring interface

190 (99.246%)

405 (98.431%)

410 (98.411%)

Sequence of all scripts run simultaneously
on the two network interfaces

155 (99.400%)

347 (98.684%)

353 (98.635%)

Simulation (randomly selecting scripts) in parallel,
one on each network interface, light load

155 (99.400%)

347 (98.684%)

353 (98.635%)

Simulation (randomly selecting scripts) in parallel,
three on each network interface, semi-heavy load

155 (99.400%)

347 (98.684%)

353 (98.635%)

Simulation of five users in parallel, using all available
scripts, running 100 scripts each

158 (99.401%)

350 (98.675%)

358 (98.644%)

Simulation of five users in parallel, using anonymous
scripts, running 100 script each

34 (99.604%)

81 (98.643%)

100 (98.352%)

Simulation of five users in parallel, using normal
user scripts, running 100 scripts each

126 (99.368%)

276 (98.615%)

259 (98.701%)

Simulation of five users in parallel, using normal
user scripts without the ones using “site exec”,
running 100 scripts each

50 (99.750%)

189 (99.019%)

174 (99.097%)

10

Now, how can we reliably detect attacks? We imagine that for very long processes, we might
get a significant number of non-matching audit events, which might lead to some false alarms.
Therefore, we have decided to attach our detection process to the length of the sequence of
consecutive uncovered audit events. We observe occurrences of one non-matching audit event,
and sometimes two consecutive non-matching audit events, but not more. Therefore, we decide
that any non-matching sequence of more than two audit events will be flagged as an attack.
This sounds reasonable when we recall that we are observing actions of users at a very low
level, and that it is absolutely impossible for an attack attempt to be carried out with a single
or even two consecutive audit events.

6.4 Evaluation of the true alarm rate of the model

We have also tested our intrusion detection prototype by carrying out attacks against our
isolated ftp server. Our attacks all involve getting root access on the server using a vulnerability
of the ftp daemon. These vulnerabilities fall into two categories, configuration errors of the ftp
service (such as letting the anonymous ftp directory world writable), and exploitation of bugs
in the ftp code (after compiling and installing vulnerable versions). Moreover, our attacks
are as stealthy as possible, making sure that no new entries are created in the table listing
all possible system calls. For each attack and model, two figures are given: the percentage of
covered audit events, and the length of the longest uncovered sequence. ' The table contains
only a subset of the attacks that we have carried out against our server. The attack scripts
have been developed by S. Lampart as a part of his master’s thesis [19] while at IBM.

Table 5: Evaluation of the true alarm rate of the model

| Attack code Model (2,2) | Model (4,4) | Model (6,1)]
put forward 78.285% | 34 [76.571% | 35 | 77.714% 34 |
put rhost 99.099% | 1 |97.297% | 1 | 97.297% | 2
site copy 85.039% | 15 | 81.889% | 18 | 81.889% 15
site exec copy ftpd | 85.826% | 15 | 83.464% | 15 | 82.677% | 15
site exec copy ls 85.039% | 15 | 81.889% | 18 | 81.889% | 15

Using the threshold method described earlier, only the second attack would not be detected
in our model. Actually, the first two attacks are very similar, because they involve putting a
file to the server (legitimate action) and triggering its execution (illegitimate action). In the
first case, the illegitimate action is carried out by the attack script and is detected. In the
second case, the illegitimate action is not carried out and therefore the “potential” attack (as
no intrusion has actually been carried out) is not discovered.

The second conclusion drawn from Table 5 is that the models perform differently, both in
terms of coverage and length of uncovered sequence. We are currently looking at this issue to
propose a method for selecting the best model.

7 Conclusion and future work

We have presented a method to generate reference information for intrusion detection systems
that allows us to train a behavior-based model. The intrusion detection technique we use,

11

trained on this reference information, detects all attacks with potentially no false alarms. OQur
method requires the existence of test suites for the applications we wish to monitor.

We shall address two remaining issues in upcoming work. The first issue is the generation
of patterns. We think that better strategies can be envisioned for creating the patterns, which
would be more restrictive in what they tolerate as good behavior, and yet have the same
coverage level. Also, we will test our intrusion detection prototype in a real-life environment
to measure the actual false alarm rate over long periods and the efficiency in terms of real-
time processing. We believe that our method will allow a very efficient anomaly detection
technique. We can then improve the prototype for either real-time low overhead intrusion
detection on the machine considered or for batch processing of large sets of audit files.

References

(1] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A sense of self for Unix pro-
cesses,” in: Proceedings of the 1996 IEEE Symposium on Security and Privacy, Oakland,
CA, May 1996.

[2] D. Denning, “An intrusion-detection model,” IEEE Transactions on Software Engineer-
ing, vol. SE-13, February 1987.

[3] T.F. Lunt, R. Jagannathan, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H. Javitz,
P. Neuman, A. Tamaru, and A. Valdez, “System Design Document: Next-Generation
Intrusion Detection Expert System (NIDES),” SRI International Technical Report, March
1993.

[4] P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre, J. Darzentas, C. Gigante, D. Karagian-
nis, P. Kess, H. Putkonen and T. Spyrou, “SECURENET: A network-oriented intelli-

gent intrusion prevention and detection system,” Network Security Journal, vol. 1 no. 1,
November 1994.

[5] M. Esmaili, R. Safavi-Naini, and J. Pieprzyk, “Computer Intrusion Detection: A Com-
parative Survey,” Center for Computer Security Research, University of Wollongong,
Australia, Technical Report, Ref. 95-07, May 1995.

(6] S. Kumar and E.H. Spafford, “A pattern matching model for misuse intrusion detection,”
in: Proceedings of the 17th National Computer Security Conference, Baltimore, MD, Oc-
tober 1994.

[7] H. Debar, M. Becker and D. Siboni, “A neural network component for an intrusion
detection system,” in: Proceedings of the 1992 IEEE Symposium on Research in Computer
Security and Privacy, Oakland, CA, May 1992.

(8] T. Spyrou and J. Darzentas, “Intention modelling: Approximating computer user inten-
tions for detection and prediction of intrusions,” in: Proceedings of IFIP SEC’96, Samos,
Greece, May 1996.

[9] T.D. Garvey and T.F. Lunt, “Model-based intrusion detection,” in: Proceedings of the
14th National Computer Security Conference, Washington DC, October 1991.

[10] P. D’haeseleer, S. Forrest, and P. Helman, “An immunological approach to change detec-
tion: algorithms, analysis, and implications,” in: Proceedings of the 1996 IEEE Symposium
on Computer Security and Privacy, Oakland, CA, May 1996.

12

[11] S. Forrest, S.A. Hofmeyr, and A. Somayaji, “Computer immunology,” Communications
of the ACM, vol. 40, no. 10, October 1997.

(12] “Script”, UNIX manual page.

[13] Don Libes, Ezploring Ezpect - A TCL-based Toolkit for Automating Interactive Programs,
O’Reilly and Associates, Sebastopol, CA (1995).

[14] H. Debar, M. Dacier, A. Wespi and S. Lampart, “An experimentation workbench for
intrusion detection systems” IBM Research Report, RZ 2998 March 9, 1998.

[15] S. Natkin, Les réseauz de Petri stochastiques, Thése de Docteur Ingénieur, CN AM, Paris
1980.

[16] M. Molloy, “Performance analysis using stochastic Petri nets”, IEEE Transactions on
Computers, vol. 39 no. 9, 1982.

[17] P. Thevenod-Fosse, “Software validation by means of statistical testing: Retrospect and
future direction,” in: Proceedings 1st IFIP Working Conference on Dependable Computing
for Critical Applications, Santa Barbara, CA, 1989.

(18] Rob Savoye, “The solution: DejaGnu,” free software report, vol. 3 no. 1, 1994.

[19] S. Lampart, Creation of an Intrusion Detection Testbed, Professional Thesis, Eurecom
Institute (France), July 1997.

13

