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Abstract 
 

A model of malicious intrusions in infrastructure 
facilities is developed, using a network representation 
of the system structure together with Markov models 
of intruder progress and strategy. This structure 
provides an explicit mechanism to estimate the 
probability of successful breaches of physical 
security, and to evaluate potential improvements. An 
example of an intruder attempting to place an 
explosive device on an airplane at an airport gate 
illustrates the structure and potential application of 
the model.  
 

. 
1. Introduction 
 
There is widespread interest in protection of critical 
infrastructures from malicious attack. The attacks 
might be either physical intrusions (e.g., to steal vital 
material, plant a bomb, etc.) or cyber intrusions (e.g., 
to disrupt information systems, steal data, etc.). The 
attackers may be international terrorists, home-grown 
hackers, or ordinary criminals. In 1997, the report of 
the U.S. President’s Commission on Critical 
Infrastructure Protection identified eight critical 
infrastructures “whose incapacity or destruction 
would have a debilitating impact on our defense and 
economic security” [11]. In subsequent years, this list 
of critical infrastructures was expanded and a set of 
13 critical infrastructure sectors are included in the 
National Strategy for Homeland Security [3]. These 
13 are: agriculture, food processing, water, public 
health, government, emergency services, banking and 
finance, telecommunications, energy, transportation, 
the chemical industry, postal and shipping services, 
and the defense industrial base. 

In this analysis, we focus primarily on 
transportation facilities, but the approach we suggest 
could also be used in other infrastructure contexts. For 
example, a similar type of analysis has been applied 
to information systems [2]. The objective of the 
analysis presented here is to provide guidance to 
system owners and operators regarding effective ways 
to reduce vulnerabilities of specific facilities. To 
accomplish this, we develop a Markov Decision 
Process (MDP) model of how an intruder might try to 
penetrate the various barriers designed to protect the 
facility. This intruder model provides the basis for 
consideration of possible strategies to reduce the 
probability of a successful attack on the facility. 

We represent the system of interest as a network of 
nodes and arcs.  Nodes represent barriers that an 
intruder must penetrate, and arcs represent 
movements between barriers that an intruder can 
make within the system. The adversaries first must 
penetrate entry points to the system, and if an 
attempted penetration at a particular entry node is 
successful, they can traverse edges from the 
successfully breached node to other nodes in the 
network that are connected to the one breached.  
Traversing an edge entails a risk of detection. The 
adversary is assumed to make the decision that 
maximizes the probability of successful attack. 

Several previous authors have used graph-based 
methods to represent attackers or defenders in security 
analyses.  Phillips and Swiler [10] introduced the 
concept of an “attack graph” to represent sets of 
system states and paths for an attacker to pursue an 
objective in disrupting an information system.  
Several subsequent papers (e.g., [4], [13], [15]) have 
extended these initial ideas. 

A number of authors have used Markov models 
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to represent uncertainties in system state in the face 
of attacks, especially in computer systems (e.g., [4], 
[7], [13], [14]).  In particular, Hidden Markov Models 
(HMM) focus on intruder detection using indicators 
that indirectly reflect potential attacker activities (see, 
for example, [8], [14], [16]). 

Jha et al. [4] introduced the idea of using Markov 
Decision Processes (MDP) for situations in which the 
intruder’s path is probabilistic. By interpreting attack 
graphs as Markov Decision Processes they computed 
a probability of intruder success for each attack 
represented by the graph. In the current work, we also 
use the idea of computing the probability of a 
successful attack by characterizing the problem as an 
MDP. However, our graph structure is different from 
the normal attack graph structure used in information 
systems, and thus the underlying network over which 
the MDP is formulated is different from that used in 
[4]. 

Our primary attention is on a class of adversaries 
that is rational and well informed.  By “rational,” we 
mean that the adversaries follow a strategy that 
maximizes the probability of their attack being 
successful.  By “well informed,” we mean that the 
adversaries know the probabilities of detection, 
success, etc. at various stages of the attack, so they 
can effectively optimize their attacks. 

Our focus on well-informed adversaries is useful 
because it leads to an estimate of the probability of 
successful intrusion that is likely to be an upper 
bound on the actual value. This, in turn, leads us to be 
conservative in estimating how well-protected the 
system is. Less well-informed intruders might also be 
successful, but their probabilities of success will be 
smaller. Further exploration of the likely strategies of 
less informed intruders is, however, an important area 
for additional work. 

We first construct an HMM to represent an 
intruder’s actions at a single node (barrier) in a 
system.  Then we develop an aggregated 
representation of that single-node model for inclusion 
in an MDP model of intruder strategy within a 
network representation of the entire system. 
 
2. Intrusion attempts at a node 
 
An attempt to penetrate a system barrier (node) and 
the interaction between the intruder and the intrusion-
detection system is modeled using a Hidden Markov 
Model (HMM).  The general concept of such a model 
is represented in Figure 1.  The intruder’s actions (the 
lower portion of the diagram) are assumed to 
progress through a set of states as a Markov process. 

The diagram in Figure 1 shows a simplified 
representation in which transitions are only to 
sequential states, but the transition matrix used can be 
more general. Occupancy of various states may result 
in emanations that are observable by the system 
operator (represented by the “signals” in Figure 1). For 
example, the intruder may be attempting to pick the 
lock of a door where there is video surveillance. 
Picking the lock requires an uncertain amount of time, 
represented by transition through a series of Markov 
states. While the intruder occupies those states (i.e., 
during the time that the intruder is attempting to pick 
the lock), there is a probability that his/her presence 
will be detected by the video surveillance system. The 
general structure of the HMM allows considerable 
flexibility in defining various types of signals and 
resulting actions by the system operator. For example, 
some signals may cause an increased level of 
surveillance without an alarm being raised. For our 
current purposes, we use a straightforward definition 
that a recognized signal from any state constitutes 
detection and the end of the attempted intrusion. If the 
intruder reaches a ”breach” state without being 
detected, we say that the node (barrier) has been 
breached, and no further emanations will cause the 
system to detect the intruder at that node. We also 
include a “retreat” state that corresponds to an 
unsuccessful, but undetected, attempt to penetrate the 
barrier. In that outcome, the intruder can withdraw 
without raising an alarm. 
 

1 2 3 kIntruder
States

aSignals b c

... Breach

Retreat

 
Figure 1. A hidden Markov model 
characterizing an attack at a system node. 

 
We use a discrete-time, discrete-state HMM 

characterized by the following equations: 
 

n
T

n XAX =+1     (1) 
 

nn BXY =     (2) 
 
for transition steps n = 1, 2, …, ∞. The state of the 
system (i.e., presence of the intruder in some node in 
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the lower portion of Figure 1) is represented by the 
(column) probability vector, X.  The dynamics of the 
system are governed by (1), where A is a transition 
matrix (i.e., it satisfies the properties 0ija  and 

1
j

ija .)  The states of the system are not observed 

directly.  The process Y is observed, which is a 
function of the state of the underlying Markov 
process, X.  Each column of B specifies a conditional 
probability distribution over the possible 
observations, given that the underlying (hidden) 
system is in a particular state. The estimated values 
for B in a given application should reflect any efforts 
that might be taken by an intruder to reduce the 
likelihood of detection (e.g., attempting to defeat 
sensors, create diversions, etc.). 

For our purposes, we assume that A and B are 
known (or have been estimated).  We want to use the 
estimated HMMs at various nodes as the basis for a 
network-level model of intruder strategy.  In large 
networks, it is useful to abstract the HMM at node v 
to a simpler representation, as shown in Figure 2. An 
intruder enters an “Attempt” state for that barrier 
(node).  The intruder continues to occupy that state 
until the attempted penetration is detected (and an 
alarm is raised), the penetration is successful and the 
barrier is breached, or the intruder retreats. 

 

 
Figure 2. Aggregated abstraction of the HMM 
at a node. 

 
To make the abstraction in Figure 2 useful, we 

must be able to derive the transition probabilities p, s, 
d and r from the underlying A and B matrices of the 
HMM.  The transition probabilities s, d and r are 
specified so that the probabilities of detection, 
successful breach and retreat match those from the 
original HMM. The transition probability p is 
specified so the expected length of residence in the 
“attempt” state matches the duration of the attempted 

penetration in the original HMM. In the interests of 
space, the details are not given here, but they are 
provided in [5]. 

The value of the aggregated representation is that 
it allows us to construct a Markov Decision Process 
(MDP) of the intruder’s strategy at the system level, 
without carrying along all the detail of states within 
each node.  This is the focus of the following section. 
 
3. Expanding to the system level 
 

At the system level, we represent a network of 
barriers and potential movements as shown in the 
simple example in Figure 3. Each node can be 
expanded using a representation like the one in Figure 
2.  

If the intruder is successful at breaching a 
particular barrier, he/she has choices about where to 
go next (which arc to cross). Crossing arc ij entails a 
probability of detection ij , and this is represented in 
the transition matrix. 

 

 
Figure 3. Simple system-level network. 

 
We can pose the problem of finding the intruder’s 

optimal strategy as an MDP over an infinite horizon.  
We define the expected “reward” to the intruder as a 
value associated with reaching the “success” state of a 
goal node (such as node 8 in the example in Figure 3), 
which represents an undetected exit from the system 
after accomplishing a desired action (such as placing 
a bomb, etc.). If we define this reward value as 1, then 
the expected rewards calculated at all earlier nodes in 
the network can be interpreted as probabilities of 
success, given that the intruder has reached that node. 

We assume that the objective of the intruder is to 
maximize his/her expected reward (probability of 
successful attack), and we examine the problem of 
finding the optimal strategy for this objective.  
Solving this problem positions us to adopt the 
perspective of the system operator and consider the 
actions that can have the largest impact on reducing 
the probability of successful intrusions. 
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If the intruder is in state i and chooses action ai, we 
denote the expected value of the future stream of 
rewards by w(i,ai).  Each possible action ai implies a 
change in the transition probabilities that govern the 
process.  We denote the elements of the transition 
matrix resulting from choosing action ai as Pij(ai). The 
MDP we define for this problem is positive bounded, 
and we can find the optimal policy through either 
policy iteration or linear programming. 

From a computational standpoint, policy iteration 
is generally preferable to linear programming for 
finding solutions, but the linear programming 
formulation can yield insights that are significant for 
our current purposes.  Puterman [12] describes the 
linear programming formulation for positive bounded 
expected total reward models.  The formulation seeks 
the decision policy (choice of ai) that maximizes the 
expected value of the reward stream, w(i,ai).  We 
denote the resulting optimal expected value as w*(i). 

As [12] describes in detail, the set of w*(i) is the 
smallest set of values of w(i) for which the following 
inequalities hold for all states, i: 
 

+≥
j

iijii jwaPaRiw )()()()(  (3) 

where )( ii aR  is the immediate reward for selecting 
action ai when the system state is i. In our application, 

0)( =ii aR  for all states i other than the goal state, g, 
and 1)( =gg aR  for the dummy action, ag, after 

achieving the goal state. 
If we then introduce an arbitrary set of positive 

scalars, βi , with the requirement that 1i
i

β = , the 

linear program can be written as follows: 
 

i
i iw )(min β    (4) 

subject to: 
 

iii
j

iij aiaRjwaPiw ,)()()()( ∀≥−        (5) 

  iiw ∀≥ 0)(  (6) 
 
This linear program has a dual that can be expressed 
as follows: 

 
max ( ) ( )

i

i i i i
i a

R a x a   (7) 

 
subject to: 

 
( ) ( ) ( )

i i

i i ij i i i i
a j a

x a P a x a iβ− ≤ ∀    (8) 

      
( ) 0 ,i i ix a i a≥ ∀    (9) 

 
In our case, because all but one of the  )( ii aR  values 
are zero, the dual objective function can be simplified 
to: 
 

)(max gg ax    (7’) 

 
The primal linear program has many more constraints 
than variables, so it is more effective to solve the dual 
problem.  In addition, it can be shown (see [12]) that 
in an optimal solution to the dual problem (7)–(9), 
there is no more than one non-zero xi(ai) for each state 
i.  The ai for which xi(ai) is non-zero indicates the 
optimal action *

ia  for each i. The shadow prices on 
the dual constraints (8) are the values of w*(i), 
indicating the probability of successful attack, given 
that the intruder has reached state i. 

 
 
4. An illustrative application 

 
As an example of system-level analysis for a 

specific infrastructure facility, consider an intruder 
who is attempting to place an explosive device aboard 
an aircraft while it is sitting at an airport gate, with the 
intent that it will explode later after the aircraft is in 
flight. A simplified representation of the barrier 
network and possible intruder actions is shown in 
Figure 4 (the network structure is the same as in 
Figure 3, but the nodes and links have now been 
labeled as specific barriers and movements). 
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Figure 4.  Illustrative network for analyzing an 
attempted placement of an explosive device 
on an aircraft. 

 
The intruder must first gain access to the apron area 

of the terminal. We postulate that this can occur either 
by gaining illicit access through the employee gate 
(e.g., by stealing an employee ID and using it to enter 
the area), or by entering in a service vehicle at a gate 
(e.g., in a catering truck). If the intruder is successful 
in getting access to the area, he/she must then 
impersonate a legitimate worker in the aircraft gate 
area – either an airline employee or a service 
contractor. The “cross-over” arcs between “entry” and 
“impersonation” in Figure 4 indicate that even if the 
intruder gains access to the apron area using an 
employee ID, he/she may switch ID’s and 
impersonate a service contractor within the area (or 
vice versa). This impersonation must be successful for 
the period of time required to get from the entrance to 
the aircraft itself. 

Approaching the aircraft carries a risk of detection, 
and the approachable areas on the aircraft if the 
intruder is impersonating an employee may be 
different from those that are approachable if he/she is 
impersonating a service contractor. For example, a 
person who appears to be an airline maintenance 
employee might not attract attention approaching the 
under-wing area around the landing gear, whereas a 
person who appears to be a catering contractor would. 
For purposes of this example, we consider in Figure 4 
three areas of the aircraft where an explosive device 
might be hidden – inside the wing around the landing 
gear, in the cargo hold, or in the catering supplies 
delivered to the galley. 

If access to the aircraft is gained, the device must 
be placed without arousing suspicion. This is 
represented by the arcs connecting the aircraft area 
nodes to the exit node. Each of these arcs has a 

probability of detection. 
Finally, if the intruder succeeds in gaining access to 

the aircraft and placing the device, he/she must exit 
without detection, and this represents the last barrier. 
Our modeling premise is that if the intruder is 
detected after placing the device, it will trigger a 
thorough search of the aircraft and the device will be 
discovered, so that the attempted attack will be foiled. 

Table 1 summarizes the node data used for the 
example analysis, and Table 2 shows the probabilities 
of detection used for the arcs in the example network. 
These data are all inputs to the analysis and the values 
shown in Tables 1 and 2 are strictly hypothetical. In 
practice, these input values would likely be a mixture 
of estimates based on testing specific elements of the 
system and subjective estimates (i.e., expert 
judgment). 

 

Table 1.  Example data for network nodes. 
Node (see 
Figure 4) 

Expected 
Time for 

Attempted 
Breach  
(min) 

Prob. of 
Success 

Prob. of 
Detection  

Prob. 
of 

Retreat  

Employee 
Gate 

1 0.6 0.25 0.15 

Service 
Vehicle 

2 0.4 0.4 0.2 

Impersonate 
Employee 

10 0.5 0.3 0.2 

Impersonate 
Contractor 

15 0.7 0.2 0.1 

Landing 
Gear 

5 0.6 0.3 0.1 

Cargo Hold 3 0.7 0.25 0.05 

Galley 15 0.55 0.4 0.05 

Undetected 
Exit 

10 0.8 0.2 0 

 
Table 2.  Probability of detection for possible 

moves. 

Arc Prob. of 
Detection  

Empl. Gate – Impersonate Employee 0 
Empl. Gate – Impersonate Contractor 0 
Service Vehicle – Impersonate Empl. 0 
Service Vehicle – Impersonate Contr. 0 
Impersonate Empl. – Landing Gear 0.3 
Impersonate Empl. – Cargo Hold 0.2 
Impersonate Contr. – Cargo Hold 0.5 

Impersonate Contr. – Galley 0.1 
Landing Gear – Exit 0.4 
Cargo Hold – Exit 0.2 

Galley – Exit 0.3 
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In the example data, we assume there is no retreat 
at the stage of exiting after placing the device – at that 
stage either the attack is successful or it is detected. 
Also note that the probability of detection on the arcs 
leading to the “impersonation” nodes is zero. This is 
because we are treating impersonation process (and 
time) as a barrier (node), so the probability of 
detection is lumped at the nodes, rather than on the 
arcs. 

For this set of input data, the solution for the 
optimal intruder strategy can be summarized as shown 
in Figure 5. To the left of each node is the probability 
of successful attack, given that the intruder is 
“arriving at” that barrier. To the right of each node is 
the probability of success, given that the intruder has 
successfully negotiated that barrier. There is only one 
value shown for the exit node (i.e., the “approaching” 
probability), because once that node is successfully 
negotiated, the attack has been a success, by 
definition. 

 
Figure 5. Summary of intruder strategy and 
probability of success. 
 

The dashed line indicates the optimal path for an 
intruder (i.e., the path that maximizes the probability 
of success). This is the path of greatest vulnerability 
to the system. In our simple example, we would 
compute a probability of successful attack of 0.11 for 
an intruder whose strategy is to gain entry to the 
apron area through the employee gate, then switch 
ID’s and impersonate a contractor (probably a 
catering service worker) to access the aircraft galley 
and place the device there before exiting. 

The existence of this strategy does not mean that all 
intruders will always proceed in exactly the way 
indicated.  It does mean that if all intruders were 
rational and well informed (in the sense described at 
the beginning of the paper), this would be a strategy 
through which they could maximize the probability of 
a successful attack. The actual probability of 
successful attack is likely to be less than this 

maximum value because intruders will have less-than-
complete information and may not optimize their 
strategy. The solution to the MDP model also 
provides useful information on the conditional 
probability of success for an attacker that reaches a 
certain point in the network, regardless of whether or 
not he/she followed the optimal strategy. For 
example, if an intruder succeeds in reaching the cargo 
hold of the aircraft (despite the fact that this is not an 
optimal strategy), the probability of a successful 
attack from that point on is 0.45. 

This information can be extended to represent a 
“vulnerability tree” as shown in Figure 6. This tree 
indicates the optimal strategy for continuing an attack 
by an intruder who reaches a given node, regardless 
of how he/she arrived there. This information adds 
value to system security studies over and above the 
identification of the single most vulnerable path for a 
system intruder. 

Having established a base-case vulnerability 
assessment for the system, we can proceed to a series 
of “what if” analyses to examine the impact of 
potential changes to improve security. For example, 
what if an attempt were made to reduce the likelihood 
of successful attack along the most vulnerable path by 
more carefully checking contractors moving in the 
aircraft gate area and delivering food to the galley?  
We will represent this change in operational policy by 
increasing the probability of detection of someone 
impersonating a contractor moving in the gate area to 
0.5 (and correspondingly decreasing the probability of 
successful impersonation to 0.4). We will represent 
the effect of increasing the vigilance on contractors 
entering the galley area of the aircraft by increasing 
the probability of detection on that access arc to 0.3. 

 

 

Figure 6. Vulnerability tree. 

 
Figure 7 summarizes the results of those changes. 

The well-informed intruder adapts by changing 

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6



his/her strategy, and now impersonates an airline 
employee, making an attempt to place the explosive 
device in the cargo hold of the aircraft rather than in 
the galley. The overall probability of success has 
declined, but only marginally, to 0.105. Of course, the 
change might have somewhat greater short-term 
effectiveness (i.e., before the potential intruder can 
learn of it and change strategy), but it is unlikely to 
produce very significant improvements in security 
over a longer period. 

 

Figure 7. Revised intruder strategy after 
increases in monitoring levels for 
contractors. 

 
One strategy for achieving greater long-term 

improvement in security is to focus on cut sets in the 
intrusion network.  This idea is illustrated in Figure 8, 
which shows a cut set constructed across the arcs 
representing access to the aircraft. If simultaneous 
improvements in detection rates for intruders are 
made in all arcs of the cut set, it is more difficult for 
the intruder to change strategy to avoid the higher-
security paths because all paths must cross the cut set. 

 

 
Figure 8. Illustration of cut set. 

 
As an example, suppose that instead of focusing 

just on contractors, as in our first experiment, the 
probability of detection were increased to 0.6 on all 

arcs in the cut set shown in Figure 8. The resulting 
solution for intruder strategy is shown in Figure 9. 
The optimal intruder strategy has shifted from the 
galley to the cargo hold in response to this change, 
and the overall probability of successful attack has 
decreased to 0.075, a 32% decrease from the original 
value of 0.11. 

 

 
Figure 9. Intruder strategy and probability of 
success after increasing detection probability 
on cut set arcs to 0.6. 

 
The model structure developed here can also be 

used to answer a variety of other questions. For 
example, suppose we were to focus our attention on 
the cut set in Figure 8. We have seen that an increase 
in the detection probability on those arcs to 0.6 results 
in a noticeable reduction in overall success probability 
for the intruder. How high would the detection 
probability on those cut set arcs have to be in order to 
reduce the overall intrusion success probability to 
0.01? We can determine that the required detection 
probability is 0.97. 

We can also use the model to examine 
combinations of strategies. For example, suppose we 
thought it would be feasible to increase the detection 
rate on the aircraft access arcs to 0.9, but not to 0.97. 
If 0.9 were achieved on those arcs, how much better 
would the detection probability have to be at the 
impersonation nodes preceding those arcs in order to 
achieve an overall success probability of no more than 
0.01? We can do a quick search with the model and 
determine that the answer to this question is 0.68. 
That is, we would have to be able to maintain a 68% 
chance of detection of impersonators (of both 
employees and contractors), along with a 90% chance 
of detection of intruders approaching an aircraft, in 
order to reduce the probability of a successful attack 
to 0.01. 
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5. Optimizing resource allocation for 
security improvement 
 
The illustrative analysis in Section 4 leads us to an 
obvious question: If it were possible to estimate a cost 
function for changes within the network that would 
reduce the likelihood of a successful intrusion, could 
we identify the most effective (i.e., minimum cost) 
way of achieving a desired (small) probability of 
successful intrusion? This question can be answered 
using a bi-level optimization formulation. At the 
“upper level” we have an optimization that determines 
changes at nodes and arcs in the network so as to 
minimize cost, subject to a constraint that the 
resulting probability of successful attack is no greater 
than a specified value. However, the probability of 
successful attack is determined as the solution to a 
“lower level” optimization (optimizing the intruder’s 
strategy, given the characteristics of the network 
he/she is facing). 

To be more specific about this optimization, 
consider again the model of the intruder’s strategy 
expressed in equations (4)-(6). There are at least five 
ways that the system operator (or “defender”) can act 
to reduce the likelihood that the intruder will be 
successful: 

• Increase the probability of detection at barrier 
(node) i ; this might be accomplished either by 
increasing the sensitivity of the detection 
process, or by increasing the time required to 
penetrate the barrier, allowing the existing 
detection mechanisms more time to be 
effective. 

• Increase the probability of detection on 
movement arcs ij between nodes. 

• Add new barriers that must be negotiated; this 
is represented by a new node in the network, 
with reconnection of existing arcs to force 
some (or all) intruders’ paths to go through the 
new node. 

• Remove existing arcs in the network; this 
represents some additional constraints (either 
physical or virtual) on movement within the 
system. 

• Reduce the level of information that potential 
intruders have about the system structure and 
detection probabilities, creating additional 
uncertainty for the intruders, and perhaps some 
level of “disinformation” that would lead them 
to make poor choices in their attack strategy. 

From the standpoint of the model we have defined, 
the third and fourth strategies listed can be considered 

to be special (extreme) cases of the first two strategies 
(for more detailed discussion of this, see [5]). The 
fifth strategy is quite different from the first two, and 
needs to be analyzed in a separate way. This is 
described further in the following section as an 
extension of the work in the current paper. 

For our current analysis, we will focus on the first 
two strategies for reducing the vulnerability of the 
system (implicitly including the third and fourth as 
well). Suppose that the initial detection probability at 
node i is denoted 0

id , and the increase in that 

probability is denoted iΔ , so that the actual detection 

probability in effect is iii dd Δ+= 0 . 
Similarly, we will assume that the initial detection 

probability on arc ij is 0
ijδ , and the increase in that 

probability is ijγ , so the actual detection probability 

in effect is ijijij γδδ += 0 . 

Increases in the detection probabilities are assumed 
to require expenditures )( iiC Δ  and )( ijijK γ . In the 

current formulation, the cost functions are separable 
by node and arc, but a more general cost function 
could be used without changing the structure of the 
bi-level optimization formulation. 

We will use E to denote the set of entry nodes to the 
system network, and then express the “upper level” 
problem as follows: 

 
Min +Δ

ij
ijij

i
ii KC )()( γ   (10) 

 
subject to: 

 
EiWiw ∈∀≤ ** )(   (11) 

 
idd iii ∀Δ+= 0    (12) 

 
ijijijij ∀+= γδδ 0    (13) 

 
ii ∀≥Δ 0     (14) 

 
ijij ∀≥ 0γ    (15) 

 
In (11), the )(* iw  values are the optimal solution 

to the “lower level” problem, specified as follows: 
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i
i iw )(min β    (16) 

subject to: 
 

i
j

ijiiij agijwdaPiw ,0)(),|()( ≠∀≥− δ      17) 

 

g
j

gjgggj ajwdaPgw ∀≥− 1)(),|()( δ      (18) 

 
 iiw ∀≥ 0)(    (19) 

 
In (17) and (18), the transition matrix is written as 

),|( ijiiij daP δ  to reflect the fact that it depends on the 

values of id and 
ijδ determined in the upper problem. 

The lower problem in (16)-(19) is the same problem 
as in (4)-(6), but is re-written to reflect the specific 
knowledge of )( ii aR  values that relevant to this 
problem, and to emphasize its connection to the upper 
problem in (10)-(15). 

A solution procedure for this bi-level optimization 
searches over possible values of iΔ and ijγ , and for 

each set of values, solves the lower problem to find 
)(* iw  (after translating the id and 

ijδ values into a new 

transition matrix ),|( ijiiij daP δ ). A general issue 

(which is endemic to bi-level models) is that it is 
difficult to guarantee convergence of solution 
algorithms to true optimal solutions in the upper 
model. Bard [1] describes this general difficulty. 
 
6. Extensions 
 
Several extensions to the model described here are 
possible and desirable. In addition to further 
development of the bi-level optimization ideas 
discussed in the previous section, there are two 
extensions that seem particularly important. First, it is 
useful to incorporate imperfect information on the 
part of the intruders. This allows us to begin 
exploration of the fifth “defender” strategy mentioned 
in section 5. One very direct way to do this is to 
embed the MDP model in a simulation where 
uncertainty in the perceptions of the detection 
probabilities is reflected. This is one type of limitation 
on the information assumed to be available to the 
attackers. Variations in the perceptions of the 
detection probabilities can lead to different strategies 
for different intruders, and the effect (from the system 
operator’s perspective) is that potential attacks appear 

to be following a mixed (or randomized) strategy.  
This form of simulation is a step in the general 
direction of considering the system to be a partially 
observable Markov decision process (POMDP) from 
the perspective of the intruder. The simulation 
approach can also be used to analyze other types of 
imperfect information on the part of intruders – for 
example, imperfect knowledge of what arcs exist in 
the network for movement among nodes, or even 
imperfect information as to what nodes exist. 

A second useful extension is to create semi-Markov 
models for the processes of attempted penetration of 
barriers. This would allow more accurate 
representation of the uncertain time required to 
penetrate a given barrier, as well as offer a broader 
range of opportunities for modeling various types of 
time-dependent detection probabilities. This extension 
could improve the range of applicability of the model. 

  
7. Conclusions 
 

The objective of the analysis presented here is to 
provide guidance to system owners and operators 
regarding effective ways to reduce vulnerabilities of 
specific infrastructure facilities. To accomplish this, 
we have developed a Markov Decision Process 
(MDP) model of how an intruder might try to 
penetrate the various barriers designed to protect the 
facility. The solution to this MDP model provides 
insight into the level of vulnerability of the facility 
(the probability of successful intrusion) and indicates 
where the vulnerabilities are (the most likely paths for 
the intruder). 

The intruder model also provides the basis for 
consideration of possible strategies to reduce the 
probability of a successful attack on the facility. 
Illustrations of using the model in this way are 
provided in the case study analysis in section 4. The 
process of searching for cost-effective strategies to 
reduce system vulnerability can be formally cast as a 
bi-level optimization problem, as discussed in section 
5. This provides a promising direction for further 
work. 

Successful implementation of the model described 
in this paper depends very directly on two important 
tasks: 1) constructing large-scale networks that 
represent the various barriers and movement 
possibilities in a system; and 2) estimating the various 
probabilities embedded in the A and B matrices that 
are elements of the HMM’s at each network node. 
Quite clearly, if the constructed network does not 
reflect accurately the barriers to intrusion and possible 
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paths for intruders, the resulting computations from 
the model will be flawed. Constructing an accurate 
network representation requires significant system 
knowledge and also the ability to “think like an 
attacker.” Estimating the probabilities is also a 
challenging task. There are tools that have been 
created for estimating HMM matrices in other 
application contexts, and the experience gained in 
those other contexts should provide important insight 
for this task. 

The process of testing, implementing and 
enhancing the model is an ongoing one, with the 
expectation that this approach will become an 
important new tool for the protection of critical 
infrastructure facilities. 
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