
Chapter 2

INTRUSION DETECTION: A SURVEY

Aleksandar Lazarevic, Vipin Kumar, Jaideep Srivastava
Computer Science Department, University of Minnesota

Abstract: This chapter provides the overview of the state of the art in intrusion detection
research. Intrusion detection systems are software and/or hardware
components that monitor computer systems and analyze events occurring in
them for signs of intrusions. Due to widespread diversity and complexity of
computer infrastructures, it is difficult to provide a completely secure
computer system. Therefore, there are numerous security systems and
intrusion detection systems that address different aspects of computer security.
This chapter first provides taxonomy of computer intrusions, along with brief
descriptions of major computer attack categories. Second, a common
architecture of intrusion detection systems and their basic characteristics are
presented. Third, taxonomy of intrusion detection systems based on five
criteria (information source, analysis strategy, time aspects, architecture,
response) is given. Finally, intrusion detection systems are classified according
to each of these categories and the most representative research prototypes are
briefly described.

Keywords: intrusion detection, taxonomy, intrusion detection systems, data mining.

1. INTRODUCTION

With rapidly growing adoption of the Internet, networked computer
systems are playing an increasingly vital role in our society. Along with the
tremendous benefits that the Internet brings, it also has its dark side.
Specifically, new threats are created everyday by individuals and
organizations that attack and misuse computer systems. As reported by the
Computer Emergency Response Team/Coordination Center (CERT/CC)
[37], the number of computer attacks has increased exponentially in the past
few years (Figure 2-1). In addition, the severity and sophistication of the

20 Chapter 2

attacks is also growing (Figure 2-2). For example, Slammer/Sapphire Worm
was the fastest computer worm in history. As it began spreading throughout
the Internet, it doubled in size every 8.5 seconds and infected at least 75,000
hosts causing network outages and unforeseen consequences such as
canceled airline flights, interference with elections, and ATM failures [153].
Earlier, the intruders needed profound understanding of computers and
networks to launch attacks. However, today almost anyone can exploit the
vulnerabilities in a computer system due to the wide availability of attack
tools (Figure 2-2).

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 141990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 2-1. Growth rate of cyber incidents reported to Computer Emergency Response
Team/Coordination Center (CERT/CC)

The conventional approach for securing computer systems is to design
security mechanisms, such as firewalls, authentication mechanisms, Virtual
Private Networks (VPN), that create a protective “shield” around them.
However, such security mechanisms almost always have inevitable
vulnerabilities and they are usually not sufficient to ensure complete security
of the infrastructure and to ward off attacks that are continually being
adapted to exploit the system’s weaknesses often caused by careless design
and implementation flaws. This has created the need for security technology
that can monitor systems and identify computer attacks. This component is
called intrusion detection and is a complementary to conventional security
mechanisms.

Intrusion Detection: A Survey 21

Figure 2-2. Attack sophistication vs. Intruder technical knowledge (source:
http://www.cert.org/present/internet-security-trends)

The National Institute of Standards and Technology classifies intrusion
detection [15] as “the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of intrusions,
defined as attempts to compromise the confidentiality, integrity, availability,
or to bypass the security mechanisms of a computer or network".

Intrusions in computer systems are usually caused by attackers accessing
the systems from the Internet, or by authorized users of the systems who
attempt to misuse the privileges given to them and/or to gain additional
privileges for which they are not authorized. An Intrusion Detection System
(IDS) can be defined as a combination of software and/or hardware
components that monitors computer systems and raises an alarm when an
intrusion happens.

This chapter provides an overview of the current status of research in
intrusion detection. It first provides an overview of different types of
computer intrusions, and then introduces a more detailed taxonomy of
intrusion detection systems with an overview of important research in the
field. Both taxonomies are illustrated and supported with several well known
examples of computer attacks and intrusion detection techniques. Several
surveys in the intrusion detection have been published in the past [4, 13, 31,
55, 92, 97, 110, 114, 136]. However, the growth of the field has been very
rapid, and many new ideas have since emerged. The survey in this chapter
attempts to build upon these earlier surveys, but is more focused on intrusion
detection projects proposed in academic institutions and research

22 Chapter 2

organizations than on commercial intrusion detection systems, primarily due
to the lack of detailed technical information available on commercial
products. The reader interested in commercial IDSs is referred to a survey of
IDS products [92] and to web sites that maintain lists of such systems [57,
76].

2. TAXONOMY OF COMPUTER ATTACKS AND
INTRUSIONS

Research community in computer security has developed numerous
definitions of computer attacks and intrusions. One of the most popular
definitions for intrusion [181] is that it represents a “malicious, externally
induced, operational fault”. Computer intrusions and attacks are often
considered synonymous. However, other definitions of the word “attack”
that differentiate it from intrusion have also been proposed in the intrusion
detection literature. For example, a system can be attacked (either from the
outside or the inside), but the defensive “shield” around the system or
resource targeted by the attack may be sufficiently effective to prevent
intrusion. Therefore, we may say that an attack is an intrusion attempt, and
an intrusion results from an attack that has been (at least partially) successful
[181].

There have been numerous attempts to categorize and classify computer
attacks and intrusions [11, 112, 115, 128, 135]. Some of these attempts have
provided formally developed taxonomies and specified a certain set of
properties that the taxonomy should satisfy, e.g., they should be: (i) logical
and intuitive [84], (ii) based on solid technical details [23], (iii)
comprehensible [128], (iv) complete [5], (v) exhaustive [84, 128], (vi)
mutually exclusive [84, 128], (vii) objective [108], (viii) repeatable [84,
108], and (ix) useful [84, 128]. For more details on these characteristics, the
reader is referred to the above publications, as well as to Lough’s PhD thesis
[135].

Initial work in categorizing different aspects of computer security
focused on weaknesses in computer systems and design flaws in operating
systems [12], as well as functional vulnerabilities and computer abuse
methods [172]. Several taxonomies that were developed later mainly focused
on two issues: (i) categorization of computer misuse (i.e. attacks) and (ii)
categorization of the people trying to get unauthorized access to computers
(perpetrators), and the objectives and results of these attempts.

In one of earlier attempts for describing types of computer attacks,
Neumann and Parker developed the SRI Computer Abuse Methods Model
[165, 166, 173], which outlines about 3000 attack cases and computer

Intrusion Detection: A Survey 23

misuses collected over nearly twenty years and categorizes them into the
nine-level tree of attack classes. Lindqvist and Jonsson [128] extended the
Neumann and Parker model by expanding several attack categories
(categories 5, 6 and 7 from original nine-level tree of attacks) and by
introducing the concept of dimension, which represents a basis of the attack
classification. They specified two interesting criteria for system owners to
perform attack classification, namely “intrusion techniques” and “intrusion
results”, and they called these criteria dimensions. Jayaram and Morse [96]
also developed a taxonomy of security threats to networks, in which they
provide five “classes of security threats” and two “classes of security
mechanisms”. Another significant work in computer attack taxonomies is
performed by the CERIAS group at Purdue University [11, 108, 112]. Their
first attempt [112] provided a classification of computer intrusions on Unix
systems using system logs and colored Petri nets. Aslam [11] extended this
work by providing a taxonomy of security flaws in Unix systems. Finally,
Krsul [108] reorganized both previous taxonomies and provided a more
complex taxonomy of computer attacks that contains four main categories
(design, environmental assumptions, coding faults and configuration errors).
Richardson [189, 190] extended these taxonomies by developing a database
of vulnerabilities to help study of the problem of Denial of Service (DoS)
attacks. The database was populated with 630 attacks from popular sites that
report computer incidents. These attacks were cataloged into the categories
that correspond to extensions from Aslam’s taxonomy of security flaws [11]
and Krsul’s taxonomy of computer attacks [108]. Within the DARPA
intrusion detection project, Kendall [103] developed a similar database of
computer attacks that exist in DARPA intrusion detection evaluation data
sets [52]. An excellent overview of these techniques as well as their
extensions is provided in Lough’s PhD thesis [135].

Anderson presented one of the first categorizations of attack perpetrators
according to their types. He used a 2x2 table to classify computer threats into
three groups (external penetration, internal penetration and misfeasance),
based on whether or not penetrators are authorized to use the computer
system or to use particular resources in the system [7]. One of the most
influential taxonomies in categorizing attack perpetrators is the classification
of types of attackers, used tools, access information, attack consequences
and the objectives of the attacks, performed by CERT [84]. Researchers at
Sandia National Laboratories [45] proposed a very similar taxonomy, with a
few added or merged categories.

The taxonomy we provide in this survey is more general, and is obtained
by examining and combining existing categorizations and taxonomies of
host and network attacks published in the intrusion detection literature, and
by revealing common characteristics among them. In previously published

24 Chapter 2

taxonomies, categories used in classification of attacks were usually either a
cause of a vulnerability or the result (i.e., effect) of a vulnerability. In the
taxonomy proposed here, we use traditional cause of vulnerability to specify
the following categories of attacks:
• Attack type
• Number of network connections involved in the attack
• Source of the attack
• Environment
• Automation level

Attack type. The most common criterion for classifying computer
attacks and intrusions in the literature is according to the attack type [84,
103]. In this chapter, we categorize computer attacks into the following
classes:
– Denial of Service (DoS) attacks. These attacks attempt to “shut down a

network, computer, or process; or otherwise deny the use of resources or
services to authorized users” [144]. There are two types of DoS attacks:
(i) operating system attacks, which target bugs in specific operating
systems and can be fixed with patches; and (ii) networking attacks, which
exploit inherent limitations of networking protocols and infrastructures.
An example of operating system attack is teardrop, in which an attacker
exploits a vulnerability of the TCP/IP fragmentation re-assembly code
that do not properly handle overlapping IP fragments by sending a series
of overlapping packets that are fragmented. Typical example of
networking DoS attack is a “SYN flood” attack, which takes advantage
of three-way handshake for establishing a connection. In this attack,
attacker establishes a large number of “half-open” connections using IP
spoofing. The attacker first sends SYN packets with the spoofed (faked)
IP address to the victim in order to establish a connection. The victim
creates a record in a data structure and responds with SYN/ACK message
to the spoofed IP address, but it never receives the final acknowledgment
message ACK for establishing the connection, since the spoofed IP
addresses are unreachable or unable to respond to the SYN/ACK
messages. Although the record from the data structure is freed after a
time out period, the attacker attempts to generate sufficiently large
number of “half-open” connections to overflow the data structure that
may lead to a segmentation fault or locking up the computer. Other
examples of DoS attacks include disrupting connections between
machines thus preventing access to a service, preventing particular
individuals from accessing a service, disrupting service to a specific
system or person, etc. In distributed DoS (DDoS) attack, which is an
advanced variation of DoS attack, multiple machines are deployed to
attain this goal. DoS and DDoS attacks have posed an increasing threat to

Intrusion Detection: A Survey 25

the Internet, and techniques to thwart them have become an active
research area [151, 152, 154, 169, 171, 176, 226]. Researchers that
analyze DoS attacks have focused on two main problems: (i) early
detection mechanisms and identification of ongoing DoS activities [41,
75, 218, 235]; and (ii) response mechanisms for alleviating the effect of
DoS attacks (e.g. damage caused by the attack). Response mechanisms
include identifying the origin of the attack using various traceback
techniques [27, 91, 195, 206] and slowing down the attack and reducing
its intensity [141, 151, 248] by blocking attack packets. In addition to
these two main approaches, some systems use measures to suppress DoS
attacks. For example, CenterTrack [218] is an overlay network that uses
selective rerouting to trace the entrance points of large flooding attack,
while SOS (Secure Overlay Services) [104] employs a combination of
“secure overlay tunneling, routing via consistent hashing, and filtering”
to proactively prevent large flooding DoS attacks.

– Probing (surveillance, scanning). These attacks scan the networks to
identify valid IP addresses (Figure 2-3) and to collect information about
them (e.g. what services they offer, operating system used). Very often,
this information provides an attacker with the list of potential
vulnerabilities that can later be used to perform an attack against selected
machines and services. Examples of probing attacks include IPsweep
(scanning the network computers for a service on a specific port of
interest), portsweep (scanning through many ports to determine which
services are supported on a single host), nmap (tool for network
mapping), etc. These attacks are probably the most common ones, and
are usually precursor to other attacks. The existing scan detection
schemes essentially look for IP addresses that make more than N
connections in T seconds. These schemes are very good at picking out
fast and disperse noisy scans. Unfortunately, tools based on these
techniques are quite inefficient at detecting slow/stealthy scans or scans
targeted specifically at the monitored enterprise - the type of scans that
analysts would really be interested in. Stealthy scans can be defined as
scans that would normally not trigger typical scan alert technology. Due
to these reasons, sophisticated adversaries typically attempt to adjust their
scans by reducing the frequency of their transmissions in order to avoid
detection. For detecting stealthy scans, there are a few recently proposed
more sophisticated technique based on collecting various statistics [62,
102, 147, 191, 214, 222].

26 Chapter 2

Figure 2-3. Typical scanning activity

– Compromises. These attacks use known vulnerabilities such as buffer
overflows [38] and weak security points for breaking into the system and
gaining privileged access to hosts. Depending upon the source of the
attack (outside attack vs. inside attack), the compromises can be further
split into the following two categories:

 R2L (Remote to Local) attacks, where an attacker who has the ability
to send packets to a machine over a network (but does not have an
account on that machine), gains access (either as a user or as the
root) to the machine. In most R2L attacks, the attacker breaks into
the computer system via the Internet. Typical examples of R2L
attacks include guessing passwords (e.g. guest and dictionary
attacks) and gaining access to computers by exploiting software
vulnerability (e.g. phf attack, which exploits the vulnerability of the
phf program that allows remote users to run arbitrary commands on
the server).

 U2R (User to Root) attacks, where an attacker who has an account
on a computer system is able to misuse/elevate her or his privileges
by exploiting a vulnerability in computer mechanisms, a bug in the
operating system or in a program that is installed on the system.
Unlike R2L attacks, where the hacker breaks into the system from
the outside, in U2R compromise, the local user/attacker is already in
the system and typically becomes a root or a user with higher
privileges. The most common U2R attack is buffer overflow, in
which the attacker exploits the programming error and attempts to
store more data into a buffer that is located on an execution stack.
Since buffers are created to contain a specific amount of data, the
additional information used by the attacker can overflow into
adjacent buffers, corrupting or overwriting the valid data held in
them. This data may contain codes designed to trigger specific
actions, such as damaging user’s files or providing the user with root
access. Many approaches have recently been proposed for detection
and prevention of buffer overflow attacks [49, 71], due to increased

Intrusion Detection: A Survey 27

interest in them. It is important to note that buffer overflow attacks
can also belong to R2L attacks, where remote users attempts to
compromise the integrity of target computer. For example, a
vulnerability discovered in Microsoft Outlook and Outlook Express
in July 2000 [35] allowed the attackers to simply send an e-mail
message and to overflow the specific areas with superfluous data,
which allowed them to execute whatever type of code they desired
on the recipient's computers.

- Viruses/Worms/Trojan horses are programs that replicate on host
machines and propagate through a network.
 Viruses are programs that reproduce themselves by attaching them to

other programs and infecting them. They can cause considerable
damage (e.g. erase files on the hard disk) or they may only do some
harmless but annoying tricks (e.g. display some funny messages on
the computer screen). Viruses typically need human interaction (e.g.
trading files on a floppy or opening e-mail attachments) for
replication and spreading to other computers. One of the most well
known virus examples is Michelangelo virus that infects the hard
disk’s master boot record and activates a destructive code on March
6, which is Michelangelo's birthday. There are various types of
viruses, and classifying them is not easy as many viruses have
multiple characteristics and may fall into multiple categories. The
most common virus classification is according to the environment,
operating system, different algorithms of work and destructive
capabilities [150], although there are other categorizations based on
what and how viruses infect [48, 87].

 Worms are self-replicating programs that aggressively spread
through a network, by taking advantage of automatic packet sending
and receiving features found on many computers. Worms can be
organized into several categories [105, 215, 236]:
• traditional worms (e.g. Slammer [37]) usually use direct

network connections to spread through the system and do not
require any user interaction.

• e-mail (and other client application) worms, (e.g. Melissa worm
[34]) infect other hosts on the network (Internet) by exploiting
user’s e-mail capabilities or utilizing other client applications
(e.g. ICQ – “I seek you”).

• windows file sharing worms (e.g. ExploreZip [221]) replicate
themselves by utilizing MS Windows peer-to peer service,
which is activated every time a networking device is detected in
the system. This type of a worm very often occurs in

28 Chapter 2

combination with other attacks, such as MS-DOS and Windows
viruses.

• hybrid worms (e.g. Nimda [36]) typically exploit multiple
vulnerabilities that fall into different categories specified above.
For example, Nimda used many different propagation
techniques to spread (e-mail, shared network drives and
scanning for backdoors opened by the Code Red II and Sadmind
worms). Success of Nimda demonstrated that e-mail and http
traffic are effective ways to penetrate the network system, and
that the file sharing is quite successful in replicating within the
system [236].

It is important to note that some of the worms that appeared recently
have also been used to launch DoS attacks [83]. For example, the
erkms and li0n worms were used to deploy DDoS tools via BIND
vulnerabilities [83], while Code Red was used to launch TCP SYN
DoS attacks [83]. However, traditional DoS attacks typically target a
single organization, while worms (e.g. SoBig.F worm) typically
affect a broad range of organizations. Over the last few years, many
DoS attacks have gradually mutated and merged with more
advanced worms and viruses (e.g. Blaster worm in August 2003).
Analysts also expect that in the future DoS attacks will be more
often part of worm payloads [83].

- Trojan horses are defined as "malicious, security-breaking programs”
that are disguised as something benign [134]. For example, the user may
download a file that looks like a free game, but when the program is
executed, it may erase all the files on the computer. Victims typically
download Trojan horses from an archive on the Internet or receive them
via peer-to-peer file exchange using IRC/instant messaging/Kazaa etc.
Some actual examples include Silk Rope and Saran Wrap.

Many people use terms like Trojan horse, viruses and worms
interchangeably since it is not easy to make clear distinction between them.
For example, “Love Bug" is at the same time a virus, worm, and Trojan
horse. It is a trojan horse since it pretends to be a love letter but it is a
harmful program. It is a virus because it infects all the image files on the
disk, turning them into new Trojan horses. Finally, it s also a worm since it
propagates itself over the Internet by hiding in trojans that it sends out using
peoples’ email address book, IRC client, etc.

Number of network connections involved in an attack. Attacks can be
classified according to the number of network connections involved in the
attack:
– Attacks that involve multiple network connections. Typical examples of

such attacks are DoS, probing and worms (Figure 2-3).

Intrusion Detection: A Survey 29

– Attacks that involve a single or very few network connections. Typical

attacks in this category usually cause compromises of the computer
system (e.g. buffer overflow).
Source of the attack. Computer attacks may be launched from a single

location (single source attacks) or from several different locations
(distributed/coordinated attacks). Most of the attacks typically originate
from a single location (e.g. simple scanning), but in the case of large
distributed DoS attacks or other organized attacks, multiple source locations
may participate in the attack. In addition, very often distributed/coordinated
attacks are targeted not only to a single computer, but also to multiple
destinations. Detecting such distributed attacks typically requires the
analysis and correlation of network data from several sites.

Environment. Attacks may be categorized according to the environment
where they occur:
– Intrusions on the host machine are intrusions that occur on a specific

machine, which may not even be connected to the network. These attacks
are usually detected by investigating the system information (e.g. system
commands, system logs). The identity of the user that performs an attack
in this case is typically associated with the username, and is therefore
easier to discover.

– Network intrusions are intrusions that occur via computer networks
usually from outside the organization. Detection of such intrusions is
performed by analyzing network traffic data (e.g. network flows,
tcpdump data). However, such analysis often cannot reveal the precise
identity of the attackers, since there is typically no direct association
between network connections and a real user.

– Intrusions in a P2P environment are intrusions that occur in a system
where connected computers act as peers on the Internet. Unlike standard
“client/server” network architectures, in P2P environment, the computers
have equivalent capabilities and responsibilities and do not have fixed IP
address. They are typically located at “the edges of the Internet” [240],
and actually disconnected from the DNS systems. Although P2P file
sharing applications can increase productivity of enterprise networks,
they can also introduce vulnerabilities in them, since they enable users to
download executable codes that can introduce rogue or untraceable
"backdoor" applications on users' machines and jeopardize enterprise
network security.

– Intrusions in wireless networks are intrusions that occur between
computers connected through wireless network. Detection of attacks in
wireless networks is based on analyzing information about the
connections in wireless networks, which is typically collected at wireless

30 Chapter 2

access points [126]. In general, security threats in wireless networks can
be categorized into:

 eavesdropping, when intruder only listens for the data;
 intrusions, when intruder attempts to access or to modify the data;
 communication hijacking, when a rogue node captures the channel,
poses as a rogue wireless access point and attracts mobile nodes to
connect to it and then collects confidential data from them (e.g.
passwords, secret keys, logon names);

 Denial of Service (jamming) attacks, when an attacker disturbs the
communication channel with various frequency domains (cordless
phones, microwave ovens), physical obstacles and disables all
communication on the channel.

Automation level. Depending on the level of the attack automation, there
are several categories of attacks as follows:
– Automated attacks use automated tools that are capable of probing and

scanning a large part of the Internet in a short time period. Using these
easily available tools, even inexperienced attackers may create highly
sophisticated attacks (Figure 2-2). Such attacks are probably the most
common method of attacking the computer systems today.

– Semi-automated attacks deploy automated scripts for scanning and
compromise of network machines and installation of attack code, and
then use the handler (master) machines to specify the attack type and
victim’s address.

– Manual attacks involve manual scanning of machines and typically
require a lot of knowledge and work. Manual attacks are not very
frequent, but they are usually more dangerous and harder to detect than
semi-automated or automated attacks, since they give to attackers more
control over the resources. Experts or organized groups of attackers
generally use these attacks for attacking systems of critical importance.

3. INTRUSION DETECTION SYSTEMS

Since the first model for intrusion detection was developed by Dorothy
Denning [56] at SRI International, many intrusion detection systems (IDSs)
have been proposed both in the research and commercial world. For
information about these research and commercial products, the reader is
referred to Web sites that contain links to them [32, 76, 149, 198, 223].
Although these systems are extremely diverse in the techniques they employ
to gather and analyze data, most of them rely on a relatively general
architectural framework (Figure 2-4), which consists of the following
components:

Intrusion Detection: A Survey 31

– Data gathering device (sensor) is responsible for collecting data from the

monitored system.
– Detector (Intrusion Detection (ID) analysis engine) processes the data

collected from sensors to identify intrusive activities.
– Knowledge base (database) contains information collected by the

sensors, but in preprocessed format (e.g. knowledge base of attacks and
their signatures, filtered data, data profiles, etc.). This information is
usually provided by network and security experts.

– Configuration device provides information about the current state of the
intrusion detection system (IDS).

– Response component initiates actions when an intrusion is detected.
These responses can either be automated (active) or involve human
interaction (inactive).

Information Source - Monitored System

Detector – ID Engine Response
Component

Data gathering (sensors)

Raw data

Events

Knowledge base Configuration

Alarms

Actions

System State

System
State

Figure 2-4. Basic architecture of intrusion detection system (IDS)

3.1 Characteristics of Intrusion Detection Systems

A number of desired characteristics for intrusion detection systems
(IDSs) have been identified [55, 180], as follows:
• Prediction performance. In intrusion detection, simple performance

measure such as prediction accuracy is not adequate. For example, the
network intrusions typically represent a very small percentage (e.g. 1%)
of the entire network traffic, and a trivial IDS that labels all network
traffic as normal, can achieve 99% accuracy. In order to have good

32 Chapter 2

prediction performance, an IDS needs to satisfy two criteria: (i) it must
be able to correctly identify intrusions and (ii) it must not identify
legitimate action in a system environment as an intrusion. Typical
measures for evaluating predictive performance of IDSs include detection
rate and false alarm rate (Table 1). Detection rate is defined as the ratio
of the number of correctly detected attacks and the total number of
attacks, while the false alarm (false positive) rate is the ratio of the
number of normal connections that are incorrectly misclassified as
attacks and the total number of normal connections. In practice, it is very
difficult to evaluate these two measures, since it is usually infeasible to
have global knowledge of all attacks. Since detection rate and false alarm
rate are often in contrast, evaluation of IDSs is also performed using
ROC (Receiver Operating Characteristics) analysis [183]. ROC curve
represents a trade-off between detection rate and false alarm rate as
illustrated in Figure 2-5. The closer the ROC is to the left upper corner of
the graph (point that corresponds to 0% false alarm and 100% detection
rate), the more effective the IDS is.

Table 2-1. Evaluations of intrusions (attacks)
Predicted connection label

Normal Intrusions (Attacks)
Normal

connections True Negative (TN) False Alarm (FP) Actual
connection

label Intrusions
(Attacks) False Negative (FN) Correctly detected intrusions

– True Positive (TP)

• Time Performance. The time performance of an intrusion-detection

system corresponds to the total time that the IDS needs to detect an
intrusion. This time includes the processing time and the propagation
time. The processing time depends upon the processing speed of the IDS,
which is the rate at which the IDS processes audit events. If this rate is
not sufficiently high, then the real time processing of security events may
not be feasible. The propagation time is the time needed for processed
information to propagate to the security analyst. Both times need to be as
short as possible in order to allow the security analyst sufficient time to
react to an attack before much damage has been done, as well as to stop
an attacker from modifying audit information or altering the IDS itself.

Intrusion Detection: A Survey 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Different ROC curves

False alarm rate

D
et

ec
tio

n
ra

te
Perfect
IDS

Random Prediction

Figure 2-5. ROC Curves for different intrusion detection techniques

• Fault tolerance. An IDS should itself be dependable, robust and resistant
to attacks, and should be able to recover quickly from successful attacks
and to continue providing a secure service. This is especially true in the
case of very large distributed DoS attacks, buffer overflow attacks and
various deliberate attacks that can shut down the computer system and
thus IDS too. This characteristic is very important for the proper
functioning of IDSs, since most commercial IDSs run on operating
systems and networks that are vulnerable to different types of attacks. In
addition, IDS should also be resistant to scenarios when an adversary can
cause the IDS to generate a large number of false or misleading alarms.
Such alarms may easily have a negative impact on the availability of the
system, and the IDS should be able to quickly overcome these obstacles.

3.2 Taxonomy of Intrusion Detection Systems (IDSs)

Several classifications of intrusion detection methods have been proposed
in the past [4, 13, 55, 97, 110, 114, 136], but there is still no universally
accepted taxonomy. In this chapter, we present a taxonomy that is based on
the synthesis of a number of existing ones [13, 55]. We use five criteria to
classify IDSs, as summarized in Figure 2-6.

The first criterion is information (data) source, which distinguishes IDSs
based on the system that is monitored, i.e. source of input information (see
Figure 2-4). The source information can be (i) audit trails (e.g. system logs)
on a host, (ii) network connections/packets, (iii) application logs, (iv)

34 Chapter 2

wireless network traffic or (v) intrusion-detection and/or sensor alerts
produced by other intrusion-detection systems.

Figure 2-6. Taxonomy of intrusion detection systems according to proposed six criteria

The analysis strategy describes the characteristics of the detector
(intrusion detection engine from Figure 2-4). When the IDS looks for events
or sets of events that match a predefined pattern of a known attack, this
analysis strategy is called misuse detection. When the IDS identifies
intrusions as unusual behavior that differs from the normal behavior of the
monitored system, this analysis strategy is called anomaly detection.

Time aspects are used to categorize the IDSs into on-line IDSs that detect
intrusions in real time and off-line IDSs that usually first store the monitored
data and then analyze it in batch mode for signs of intrusion.

The architecture of IDSs is used to differentiate between centralized
IDSs that analyze the data collected only from a single monitored system
and distributed IDSs that collect information from multiple monitored
systems in order to investigate global, distributed and coordinated attacks.

IDS

Information
source

Analysis
strategy

Architecture

Time Aspects

Response

Host based
Network based
Application Logs

Wireless networks

Anomaly Detection

Misuse Detection

Real-time prediction

Off-line prediction

Centralized
Distributed & heterogeneous

Active response
Passive reaction

Sensor Alerts

Intrusion Detection: A Survey 35

Detection response describes the reaction of the IDS to an attack
(intrusion). If the IDS reacts to the attack by taking corrective action (e.g.
closing holes) or pro-active action (e.g. logging out possible attackers,
closing down services), the response is called active. If the IDS only
generates alarms (including paging security analysts) and does not take any
actions, the response is called passive.

4. INFORMATION SOURCE

Early intrusion detection systems were largely host-based, since
mainframe computers were common and all users were local to the system.
In such an environment, intrusion-detection was focused only on insider
threats, since interaction with outside world was quite rare. The audit
information collected at the mainframe was analyzed either locally [137] or
on a separate machine [204] and security-suspicious events were reported.

However, with the growth of computer networks, there has been an
increasing focus on IDSs for the networked environment. Initial attempts of
intrusion detection in a networked environment were focused on enabling
communication among host-based intrusion-detection systems [93] and then
exchanging information at several levels, either through a raw audit trail
over the network [80, 204], or issuing alarms generated by local analysis
[205].

In the late nineties, the intrusion detection research community debated
the superiority of network-based vs. host-based approaches. However, today
many systems attempt to provide an integrated tool by incorporating both
variants. These IDSs are usually called hybrid IDSs. For example, in the
distributed intrusion detection system (DIDS) developed by Snapp et al
[205], Haystack [80, 204] is used on each host to detect local attacks, while
network security monitor (NSM) [81] is employed to monitor the network.
Both systems, Haystack and NSM, send information to the DIDS Director,
where the final analysis is performed.

Network/host based IDSs typically analyze past network traffic and host
OS activity, but they are unable to detect unauthorized use of specific
applications. This caused the emergence of application-based IDSs that
focus on monitoring interactions between a user and specific applications.

More recently, increasing popularity of wireless networks has caused
intrusion detection researchers to focus on detecting attacks in wireless
environment. Wireless network are highly sensitive and extremely insecure,
as they are vulnerable to easy eavesdropping and jamming thus requiring
additional security policies as well as specific intrusion detection techniques.

36 Chapter 2

4.1 Host-based IDSs

Host based intrusion detection systems (IDSs) analyze users’ activities
and behavior on a given machine. Host-based IDSs have an advantage that
they are able to work with high quality data that is typically very
informative. However, depending upon the processing performed, host-
based IDSs can significantly impact the performance of the machine they are
running on. In addition, audit sources used in host-based intrusion analysis,
can be easily modified by a successful attack, which represents another
limitation of host-based IDSs. In order to alleviate these drawbacks, host-
based IDSs have to process the audit trail sufficiently fast to be able to raise
alarms before an attacker has an opportunity to observe and/or modify the
audit trail or the intrusion-detection system itself.

There are several types of information that are typically used in host-
based IDSs, e.g. (i) system commands, (ii) system accounting, (iii) syslog
and (iv) security audit information.

4.1.1 System commands

System commands are a useful source of information that can be
employed by host based IDSs for detecting malicious users [51, 116, 145,
193]. By analyzing system commands that users invoke in their sessions, it is
possible to build user profiles, which describe users’ characteristics and
common behavior. Examples of such logged system commands in Unix are
ps, pstat, vmstat, getrlimit. Information about different events
provided by these commands can be very precise and informative. Since the
audit information is collected as unstructured data, and has to be
preprocessed before analysis.

4.1.2 System accounting

System accounting is present in both Windows and Unix operating
systems. Although the interest for system accounting in Windows
environment is increasing, there have not been many intrusion detection
approaches that used this type of data for intrusion analysis. On the other
hand, system accounting is commonly used in the Unix environment to
collect information on system behavior, such as consumption of shared
resources (e.g. processor time, memory, disk) by the users of the system.
Data generated by system accounting can serve as a valuable and convenient
source of information for IDSs [63].

There are two typical Unix accounting logs that are used for easy
extraction of system behavioral information, without extensive kernel

Intrusion Detection: A Survey 37

modifications often required for detailed auditing, namely: process
accounting and login accounting. The standard file for storing the process
accounting information is pacct or acct, while the standard file for the
login accounting information is wtmp. Process accounting keeps track of
information about a process at the time of process completion (e.g. user and
group IDs of those that use the process, beginning and elapsed times of the
process, CPU time for the process, amount of memory used). The login
accounting (wtmp) system records information about users’ login and logout
from the system. When users successfully log in and log out or
unsuccessfully attempt to login, the Unix kernel appends utmp structures to
the log file.

Use of system accounting as a source of information for IDSs has several
advantages. First, all Unix systems have the same format of the accounting
records. Second, the time needed to store system accounting records is
generally small, since information is compressed. Finally, system accounting
is quite common in the modern operating systems, and it is easy to setup and
use. However, using system accounting also has a few drawbacks that limit
their use in security applications. First, in order to perform real time analysis
of system accounting data, all historical profiles have to be compared to each
currently active profile, which can be computationally intensive. This
generally impacts the system load and therefore slows down potential
statistical data analysis. Second, accounting is either enabled for all users or
not enabled at all, and cannot be selectively activated only for particular
individuals of interest. Third, system accounting logs require a large amount
of disk storage, and hence, they must be periodically removed. Fourth, the
accounting structures limit the length of recorded command name to only a
fixed number of characters (typically eight), thus losing important
information (e.g. common arguments are not recorded). Finally, the
accounting data is recorded only when the application terminates, so
continuously running executables such as system daemons (e.g. sendmail)
are never audited (these applications have to be audited using syslogs). In
such cases, it is only possible to perform off-line intrusion analysis.

Due to these drawbacks of system accounting, its use is not very
common. Nevertheless, there are several systems that employ this
information for intrusion detection [54, 63]. For example, the statistical and
neural network modules in Hyperview [54] use system accounting only as
additional information to security audit, but not as a substitute for it, while
anomaly-based detection techniques in Eschrich’s thesis [63] use accounting
logs to identify imposters. Imposters are special class of intruders who are
valid users in a system but gain illegal access to the account of other users.

38 Chapter 2

4.1.3 System log information

System log data contains information that is not available at the network
level, such as when users log in, when they send email, who they send email
to, which ftp logs commands are issued, and which files are transferred.
Capturing and collecting system log file information in a readable format is
typically performed by the syslog daemon.

One of the major drawbacks of using syslog information for intrusion
detection is that syslog information is not very secure, since several syslog
daemons exhibit buffer overflow exploitation [33]. On the other hand, due to
straightforward use of syslog, this information is widely employed by
numerous network services and applications, such as login, sendmail,
nfs, http, as well as security-related tools such as sudo, klaxon, or TCP
wrappers [55]. For example, Swatch [78] and TkLogger [85] perform regular
expression matching against system log files, search for certain patterns and
take appropriate actions when they are found. These tools are especially
useful for identifying things that may indicate very specific problems.

4.1.4 Security audit processing

The security audit trails represent records that contain all potentially
important activities related to the security of the system. Since these
activities are usually logged to a file in chronologically sorted order, their
analysis could allow easier investigation of sequential intrusive patterns. One
of the most popular security audit trails is BSM (Basic Security Module),
auditing facility in Solaris operating system form Sun Microsystems Inc
[219]. BSM monitors security related events and records the “crossing of
instructions executed by the processor in the user space and instructions
executed in the kernel” [219].

In general, the security audit trail can provide information about full
system call traces, which includes detailed user and group identification, the
parameters of system call execution, memory allocation, context switches,
internal semaphores, and successive file reads that typically do not appear in
the regular audit trail. In addition, advantages of using security audit data
include strong user authentication, easier audit system configuration, and
fine-grain parameterization of collected information [55]. On the other hand,
drawbacks of using security audit trails include complex setup, intensive
resource requirement and possible vulnerability to DoS attack due to filling
audit file system [55].

Several research groups [77, 155, 180, 217] have been actively using
security audit trails mainly for host-based intrusion detection systems. The
focus of their research has been mainly to define what information the

Intrusion Detection: A Survey 39

security audit trail should contain in order to increase the IDS prediction
performance as well as to establish an acceptable common format for audit
trail records.

4.2 Network-based information sources

With rapidly growing popularity of the Internet, there have been an
increasing number of attacks aimed at the network itself (e.g. spoofing, TCP
hijacking, port scanning, ping of death) that cannot be (at least not easily)
detected by examining the host audit trail alone. These reasons have led to
the development of specific tools that sniff network packets [161, 175, 224]
in real time and facilitate searching for network attacks. In addition, by
analyzing the payload of the packet, a number of typical attacks against
servers can also be detected.

There are several advantages of using network based IDSs over host-
based IDSs. First, network-based IDSs can be installed such that they do not
have effect on existing computer systems or infrastructures. Second, they are
usually more resistant than host-based IDSs, since they do not reside on the
hosts that may be the targets of certain attacks. Third, the majority of
network-based IDSs typically do not depend on the operating system that is
used and can extract useful information at a network level (e.g. packet
fragmentation). Finally, they can be installed at strategic points in a network
(e.g. routers, borders) where they can be used to watch all traffic passing
through these ports and therefore used to discover network attacks.
However, their major drawbacks are their weak scalability, high possibility
for dropping packets in fast networks under heavy load, and inability to
perform intrusion detection when data is encrypted.

Network based intrusion detection systems analyze various kinds of
information that are obtained by monitoring network infrastructures. Typical
sources of such information are network connections/packets collected by
network sniffers and management information between network devices
collected due to use of Simple Network Management Protocol (SNMP).

4.2.1 Network connections and network packets

Network packet sniffers are commonly used for collecting information
about events that occur on a network. Sniffers capture copies of network
packets directly from the network interface and provide administrators with
detailed information about the IP addresses of senders and receivers, the
number of transferred packets/ bytes and other low-level information about
those packets. Certain sniffers also provide protocol-level analysis of data

40 Chapter 2

flowing through network, packet by packet. This information is typically
beneficial for administrators to diagnose and fix network related problems.

Some organizations also collect information about network events at the
firewalls. There are several categories of firewalls (packet filters, circuit
level gateways, application level gateways and stateful multilayer inspection
firewalls [21, 231]) that all collect firewall logs and use them to detect
suspicious activity and alert human analysts.

Use of network connections/packets as source of intrusion detection data
has several advantages:
– There are numerous network-specific attacks (e.g. large distributed

denial-of-service attacks) that cannot be detected using audit information
on the host but only using information about network infrastructure.

– TCP/IP standardization of network traffic facilitates collecting,
formatting and analyzing information from heterogeneous audit trail
formats that come from different portions of large and complex networks.

– Using the payload information (content of the packets) can be very
informative in detection of attacks against hosts.

However, using network connections/packets also has several drawbacks:
– When an intrusion has been detected, it is not straightforward to identify

an attacker, since there is no direct association between network
connections/packets and the identity of the user who actually performed
the attack.

– If the packets are encrypted, it is practically impossible to analyze the
payload of the packets, as important information may be hidden from
network sniffers. In addition, if the attack signatures are not sufficiently
comprehensive, it is possible to evade detection by making the contents
of the packet more complex [184].
Packet sniffers can be placed at the gateways between the protected

system and the outside world, or on switches within the network. Which of
these is the most appropriate location, it is not always clear. Placing sniffers
on switches gives better audit information but at a higher cost, due to a larger
number of switches in the network. Nevertheless, networks that use switches
are commonly used since they are less vulnerable to sniffer attacks [42, 184].

Network packets are the source of information used by most of the recent
commercial products [8, 47, 89, 159, 160, 210, 222, 238], as well as by
many projects in the research community [61, 120, 142, 174, 188, 192, 216].
Other network-based systems such as Bro [174] have been developed as
network data-acquisition tools, but not as tools to directly support intrusion-
detection task.

Intrusion Detection: A Survey 41

4.2.2 Simple Network Management Protocol (SNMP) information

The Simple Network Management Protocol (SNMP) is the Internet
standard operations and maintenance protocol that facilitates the exchange of
management information between network devices. SNMP was designed to
help network administrators to manage network performance, to find and
solve network problems, and to minimize resources necessary for supporting
network management.

An SNMP-managed network typically consists of three components:
managed devices, agents, and one or more network management systems
(NMSs). A managed device corresponds to any SNMP-compliant equipment
that resides on a managed network, collects management information and
sends this information to NMSs using SNMP. Examples of managed devices
include routers, switches, hubs, workstations, printers, etc. An agent is
typically a “network-management software” module that resides on a
managed device. The agent gathers management information from managed
devices and converts that information into a format that can be passed over
the network using SNMP. Finally, an NMS monitors and controls managed
devices, issues requests and returns responses from devices. Information
collected from NMSs can serve as a useful audit source.

One of the earliest projects that used SNMPv1 Management Information
Base (MIB) for Ethernet and TCP/IP was SECURENET [212]. The
SECURENET project showed that the counters maintained in the SNMPv1
MIBs could be potentially interesting as an audit source for anomaly
detection techniques. SNMPv2 and SNMPv3 have also been used for
security and intrusion detection [100], but the failure of SNMPv2 has
lowered the interest of the intrusion-detection community in these
information sources.

4.3 Application log files

Application based IDSs monitor only specific applications such as
database management systems, content management systems, accounting
systems, etc. An application based IDS has access to types of information
that network based or host based IDSs do not have. For example, by
analyzing application log files, application based IDSs can detect many types
of computer attacks, suspicious activities that can be difficult to detect using
host based or network based IDSs. In addition, they can be used to trace
down unauthorized activities from individual users or to analyze encrypted
data by employing application-based encryption/decryption services [20]. As
application servers have recently become increasingly popular, application
log files are used more often as an information source for intrusion detection.

42 Chapter 2

In general, there are two approaches to implement application based IDSs
[20]. In the first approach, IDS monitors an application and analyzes its audit
log files. This post analysis allows suspicious activities in the application to
be observed easily, but only after they happen. In a second, more complex
approach, application based IDS is integrated into the application itself. This
integration allows IDS to analyze the data at the same time the application
interprets it, to detect attacks in real-time making it possible to take an
immediate action.

The operation of an application based IDS in general is not impacted by
the total amount of network traffic unless most of the traffic is due to the
application (e.g., at a large commercial vendor sites such as Amazon.com,
application-based IDSs highly depend on the network traffic).

In general, application based IDSs offer several advantages:
– Unencrypted information. Unlike the analyzed data at the network level,

the data at the application level is not encrypted, thus giving more
information for intrusion analysis to application based IDSs.

– Prediction performance. Since an application based IDS focuses on
monitoring operations specific to the application, it is easier to define the
normal and the anomalous behavior. There are certain types of
information (e.g. query logs from database applications) that are
available only to application based IDSs but not visible to the operating
system. As a result, application based IDSs can detect intrusions that are
not detectable by host-based IDSs. This results in a lower false alarm
rate, as well as in higher detection rate.

– Complete sessions. Unlike network monitoring where network
connection may be fragmented during recording, the application typically
records complete transaction, and there is no inconsistency involved in
the reconstruction of session records.

– Prevention. When an application based IDS is embedded in the
application module itself, it can stop the intruder from proceeding with
the attack by denying malicious operations.

However, application based IDSs have also certain limitations:
– Performance penalty. When an application based IDS is not a part of an

application itself, it usually needs to be installed on the same host as the
application. In such scenario, this installation could result in a decrease in
the system performance.

– Larger system overhead. Since the application based IDSs have to be
installed on every individual host machine, and the organization may
have numerous hosts, there is a larger administration overhead.

– Non-detectable attacks below the application layer. Although analyzing
the data at the application level allows application-based IDSs access to

Intrusion Detection: A Survey 43

encrypted information, they are not able to detect attacks that target
protocols below the application layer.

– Specific development. Every application based IDS has to be developed
for a specific application, since there is no general application-based IDS.

4.4 Wireless networks

Wireless network systems have become increasingly popular recently,
mainly due to the ease of their installation and maintenance. However, this
convenience comes at a price, since wireless networks pose a serious
security risk. There are numerous, potentially devastating threats that have
emerged in wireless networks that are more difficult to detect due to the
following reasons [3, 88, 126]:
– Physical layer in wireless networks is essentially a broadcast medium and

therefore less secure than in fixed computer networks. For example, an
attacker that enters the wireless network, bypasses existing security
mechanisms and can easily sniff sensitive and confidential information.
In addition, the attacker also has access to all the ports that are regularly
available only to the people within the network. In wired networks,
attempts to access these ports from outside world through Internet are
stopped at the firewalls. Finally, the attacker can also excessively load
network resources thus causing denial of service to regular users.

– There are no specific traffic concentration points (e.g. routers) where
packets can be monitored, so each mobile node needs to run an intrusion
detection system.

– Separation between normal and anomalous traffic is often not clear in
wireless ad-hoc networks, since the difference between compromised or
false node and the node that is temporarily out of synchronization due to
volatile physical movement can be hard to observe.
There are currently only a few commercial wireless IDS solutions [3, 88]

in the market that try to detect a wide range of known attacks as well as
identify abnormal network activities and policy violations for wireless
networks. For Linux operating system, Lin et al have developed a
homegrown wireless IDS [126] along with a freely available software. Other
open source solutions include Snort-Wireless [208] and WIDZ [239].

4.5 Alerts from intrusion detection systems

Due to increase in a traffic volume, current commercial IDSs usually tend
to produce a very large number of alarms [185]. These alarms are raised both
for actual intrusions (attacks), but very often for regular behavior, thus
increasing false alarm rate and overwhelming security administrator. In

44 Chapter 2

addition, a large distributed DoS or scanning attack may trigger multiple
alarms since many network connections are involved in such attacks. This
further increases the number of alarms that security analysts have to analyze.
In order to decrease this number, the threshold for detecting intrusions is
raised, but this can reduce the overall detection rate.

Due to these reasons, a number of researchers have attempted to develop
a new generation of intrusion-detection systems that correlate information
from several, “lower-level” IDSs to identify intrusions [50, 101, 168, 177,
186, 225, 229]. These IDSs employ different correlation and data-mining
techniques in order to reduce both false alarm rate and the burden on the
security analyst. In addition, some of these IDSs can typically provide
security analysts with a summarized view of detected anomalous activities.
Examples of such IDSs include distributed intrusion detection system
(DIDS) [217] that correlates user identification by using information from
sensors and GrIDS [225] that measures the traffic on hosts and network links
and then correlates information from sensors on multiple networks. In
general, there are three basic groups of alert correlation methods:
– Methods based on similarities between alert attributes (features) [101,

229] compare the degree to which alerts have similar features (e.g. source
IP address, destination IP address, ports), and then correlate alerts with a
high degree of feature similarity.

– Correlation methods based on known attack scenarios [50, 186, 225]
utilize the fact that intrusions often require several actions to take place in
order to succeed (e.g. to carry out a DoS attack on the DNS server, the
attacker could first do an nslookup, ping, and scan port 139, and then a
winnuke (sends out-of-Band data to an IP address of a windows
machine)). Every attack scenario has corresponding steps required for the
success of the attack. Low-level alerts from IDS(s) are compared against
the predefined attack scenario before the alerts can be correlated. Major
drawbacks of this method are (i) it requires that human users specify the
attack scenarios and (ii) it is limited to detection of known attacks.

– Correlation methods based on preconditions and consequences of
individual attacks [168] work at a higher level then correlation based on
feature similarities, but at a lower level then correlation based on known
scenarios. Preconditions are defined as conditions that must exist for the
attack to occur, and the consequences of the attack are defined as
conditions that may exist after a specific attack has occurred.

Intrusion Detection: A Survey 45

5. ANALYSIS STRATEGY: MISUSE DETECTION

VS. ANOMALY DETECTION

There are two primary approaches for analyzing events to detect attacks;
namely misuse detection and anomaly detection. Misuse detection is based
on extensive knowledge of known attacks and system vulnerabilities
provided by human experts. The misuse detection approaches look for
hackers that attempt to perform these attacks and/or to exploit known
vulnerabilities. Although the misuse detection can be very accurate in
detecting known attacks, misuse detection approaches cannot detect
unknown and emerging cyber threats.

Anomaly detection, on the other hand, is based on the analysis of profiles
that represent normal behavior of users, hosts, or network connections.
Anomaly detectors characterize normal “legitimate” computer activity using
different techniques and then use a variety of measures to detect deviations
from defined normal behavior as potential anomaly. The major benefit of
anomaly detection algorithms is their ability to potentially recognize
unforeseen attacks. However, the major limitation is potentially high false
alarm rate. Note that deviations detected by anomaly detection algorithms
may not necessarily represent actual attacks, as they may be new or unusual,
but still legitimate, network behavior.

Many contemporary IDSs integrate both approaches to benefit from their
respective advantages [164, 167, 200, 207].

5.1 Misuse Detection

Misuse detection is the most common approach used in the current
generation of commercial intrusion detection systems (IDSs). The misuse
detection approaches can be classified into the following four main
categories: (i) signature-based methods, (ii) rule-based techniques, (iii)
methods based on state-transition analysis, and (iv) data mining based
techniques.

5.1.1 Signature-based techniques

Signature-based IDSs operate analogously to virus scanners, i.e. by
searching a database of signatures for a known identity – or signature – for
each specific intrusion event. In signature-based IDSs, monitored events are
matched against a database of attack signatures to detect intrusions.
Signature-based IDSs are unable to detect unknown and emerging attacks
since signature database has to be manually revised for each new type of
intrusion that is discovered. In addition, once a new attack is discovered and

46 Chapter 2

its signature is developed, often there is a substantial latency in its
deployment across networks [130]. The most well known signature-based
IDSs include SNORT [207], Network Flight Recorder [167], NetRanger
[47], RealSecure [89], Computer Misuse Detection System (CMDS™)
[230], NetProwler [14], Haystack [204] and MuSig (Misuse Signatures)
[127].

SNORT [207] is a widely used open source signature-based network
IDS, which is used for performing real-time traffic logging and analysis over
IP networks. Currently, SNORT has an extensive database of over a
thousand attack signatures. There are three main modes in which SNORT
can be configured; namely sniffer, packet logger, and network IDS. In the
sniffer mode, SNORT monitors the network packets and continuously
displays them on the console. Packet logger mode is used to store (log) the
packets to the disk. In the network intrusion detection mode, the system
analyzes network traffic for matches against a database of user defined rules
and performs one of five corresponding actions:
– Alert – raise an alarm using the selected alert method and then log the

packet;
– Log – log the analyzed packet;
– Pass – ignore the analyzed packet;
– Activate – generate an alert and then turn on another dynamic rule;
– Dynamic – stay inactive until turned on by an activate rule.

Network Flight Recorder (NFR) is a network-based IDS that also creates
alerts based on rules. These rules, called “backends” in NFR terminology,
contain filters (hard-coded signatures) written to trigger in response to
different computer attacks. NFR includes a complete programming
language, called N, designed for packet analysis and creating filters.

NetRanger [47], an IDS developed at Cisco, was introduced to intrusion
detection community in November 1998. Over the years NetRanger grew
into a more complex Cisco IDS [46] that provides complete intrusion
protection and is a component of a SAFE BluePrint Cisco security system.
NetRanger is composed of three major components: sensors, director and
post office. Sensors are network appliances that analyze the network traffic
using a rule-based engine, which distills large volumes of network traffic
into meaningful security events, which are then forwarded to a Director.
Directors are responsible for the management of security across a distributed
network of sensors and can be structured hierarchically to manage large
networks. Finally, the post office provides communication between
NetRanger services and hosts.

RealSecure, is an earlier version of the Proventia system developed at
Internet Security Systems [182]. While Real Secure was principally a
signature-based IDS composed of three modules: network engines, system

Intrusion Detection: A Survey 47

agents, and managers, Proventia provides a more complete security solution
including: inspection firewall, antivirus protection, intrusion detection and
prevention, anti-spam filters and application protection.

CMDS [230] was a predecessor of Intrusion SecureHost [90], which
represents a host-based IDS that monitors and protects applications at the
kernel level of operating system by building a profile of the application's
normal behavior based on the “code paths of a running program”.
NetProwler [14] is another host basd IDS that is based on “Stateful Dynamic
Signature Inspection” virtual processor proposed by Anxent, which was
acquired by Symantec recently. Today, NetProwler is a part of Symantec
Intruder Alert IDS [220]. NetProwler collects various types of information
“sniffed” from the network and then integrates them into more complex
events that are matched against predefined signatures in real time. In
addition, the system can install novel signatures without stopping the
intrusion detection process.

The Haystack prototype [204] was one of the first signature based IDSs
developed for the task of intrusion detection in a multi-user Air Force
computer system. Haystack employs both misuse detection and anomaly
detection strategy for detecting intrusions. The misuse detection module
identifies intrusions according to behavioral constraints (rules) imposed by
official security policies. On the other hand, the anomaly detection module is
based on building profiles of users’ behavior in the past and on constructing
generic user group models that describe generic acceptable behavior for a
particular group of users.

Adaptable real-time misuse detection system (ARMD) [127], developed
at George Mason University, provides a high-level language for abstract
misuse signatures, called MuSigs, and a mechanism to translate MuSigs into
a monitoring program. With the notion of abstract events, the high-level
language specifies a MuSig as a pattern over a sequence of abstract events,
which is described as conditions that the abstract event attributes must
satisfy. In addition, on the basis of MuSigs, the available audit trail, and the
strategy costs, ARMD uses a strategy generator to automatically generate
monitoring strategies to govern the misuse detection process.

Kumar and Spafford proposed a generalized framework for matching
intrusion signatures based on Colored Petri Nets [113]. In this approach,
every signature of an attack is represented as a Petri net, and start states and
final state are used to perform signature matching.

5.1.2 Rule-based systems

Rule-based systems use a set of “if-then” implication rules to characterize
computer attacks. At the early stage of intrusion detection era, rule based

48 Chapter 2

languages represented one of the regular methods for describing the expert’s
knowledge that is collected about numerous attacks and vulnerabilities. In
rule-based IDSs, security events are usually monitored and then converted
into the facts and rules that are later used by an inference engine to draw
conclusions. Examples of such rule-based IDSs include Shadow [170], IDES
[56, 95, 138, 139], NIDX [19], ComputerWatch [58], P-BEST [129], ISOA
[241, 242] and AutoGuard that uses case-based reasoning [66, 67].

IDES [138] is a rule-based expert system trained to detect known
intrusion scenarios, known system vulnerabilities, and site-specific security
policies. IDES can also detect (i) outside attacks from unauthorized users;
(ii) internal attacks from authorized users who masquerade as other users and
(iii) attacks from authorized users who abuse their privileges by avoiding
access controls. NIDX [19] extends the IDES model by including system
dependent knowledge such as a description of file systems, and rules
regarding system policies. It integrates (i) information obtained from the
target computer system, (ii) user profiles built through history and (iii)
intrusion detection heuristics into rules that are used to detect violations from
the audit trail on the target system.

The ComputerWatch [58] data reduction tool was developed as an expert
system IDS by the Secure Systems Department at AT&T. Computer Watch
employs the host audit trail data to summarize system security activities and
provides mechanisms for further investigation of suspicious security events
by security analysts. The tool checks users' actions according to a set of rules
that describe proper usage policy, and flags any suspicious action that does
not match the acceptable patterns.

Production Based Expert System Toolset (P-BEST) [129] is a rule-based,
forward-chaining expert system developed at SRI, and used in the
EMERALD IDS [179]. The system was first deployed in the MIDAS ID
system at the National Computer Security Center, and then used as the rule-
based inference engine of NIDES, which is an IDES successor. P-BEST is a
programmable expert system shell that consists of the definition of several
fact types, and a set of inference rules on these facts. Inference rules are
composed of two parts. The first part is a guard, which tests the existence of
facts satisfying logical expressions; and the second part is composed of
actions upon the fact base (adding, removing, modifying facts) and of calls
to external functions.

ISOA (Information Security Officer's Assistant) [241, 242] is a real time
IDS for monitoring security relevant behavior in computer networks. ISOA
serves as the central point for real-time collection and analysis of audit
information. It has two components; i.e. statistical analysis module and an
expert system. These components cooperate in the automated analysis of
various “concern levels”. If a recognized set of indicators are matched,

Intrusion Detection: A Survey 49

concern levels increase and the IDS starts to analyze the growing classes of
audit events in more details to flag suspicious users or hosts.

5.1.3 State transition analysis

Intrusion detection using state transition analysis requires the
construction of a finite state machine, in which states correspond to different
IDS states, and transitions characterize certain events that cause IDS states to
change. IDS states correspond to different states of the network protocol
stacks or to the integrity and validity of current running processes or certain
files. Every time when the automation reaches a state that is flagged as a
security threat, the intrusion is reported as a sign of malicious attacker
activity. This is the technique first proposed in USTAT (Unix State
Transition Analysis Tool) [86, 178] and later in NetSTAT (Network-based
State Transition Analysis Tool) [232].

USTAT, developed at UC Santa Barbara, is a real-time state transition
analysis tool developed for the Unix system and based on STAT (State
Transition Analysis Tool) [178]. STAT introduced the idea of representing
computer attacks with high level descriptions and providing an expert
system model to detect compromises. In STAT, attack scenarios are
represented as states that describe security status of the system, and
intrusions are detected by modeling the transition between states. The
computer initially exists in a secure state, but as a result of a number of
intrusions it may end up in a compromised target state. USTAT uses the C2
security audit trail data produced by the computer as the source of
information about the system's state transitions. It records only those critical
actions that have visible effect on the system state and must happen in order
to successfully complete the penetration.

NetSTAT is a real-time network-based IDS that employs state transition
analysis techniques from the STAT approach, for detecting intrusions that
occur in a networked environment. The networked environment is
represented by hypergraphs, where network interfaces are modeled as nodes,
and hosts are modeled as edges of the hypergraph. By using state transition
analysis for the states of network attacks, it is possible to automatically
determine which network events have to be monitored in order to support
intrusion analysis.

5.1.4 Data mining based techniques

In data mining methods for misuse detection, each instance in a data set
is labeled as ‘normal’ or ‘intrusive’ and a learning algorithm is trained over
the labeled data. These techniques are able to automatically retrain intrusion

50 Chapter 2

detection models on different input data that include new types of attacks, as
long as they have been labeled appropriately. Research in misuse detection
has focused mainly on classification of network intrusions using various
standard data mining algorithms [16, 74, 121, 140, 202], rare class predictive
models [40, 98, 99], cost sensitive modeling [99] and association rules [16,
122, 143]. Unlike signature-based intrusion detection systems, models of
misuse are created automatically, and can be more sophisticated and precise
than manually created signatures. The advantage of data mining based
misuse detection techniques over signature-based intrusion detection systems
is their high degree of accuracy in detecting known attacks and their
variations.

MADAM ID [120, 122] at Columbia University was one of the first
project that applied data mining techniques to the intrusion detection
problem. Association rules and frequent episodes were extracted from
network connection records to obtain additional features for data mining
algorithms. Three groups of features are constructed, namely: content-based
features that describe intrinsic characteristics of a network connection (e.g.
number of packets, acknowledgments, data bytes from source to
destination), time-based traffic features that compute the number of
connections in some recent time interval (e.g. last few seconds) and
connection based features that compute the number of connections from a
specific source to a specific destination in the last N connections (e.g. N =
1000). In addition to the standard features that were available directly from
the network traffic (e.g. duration, start time, service), these constructed
features were also used by the RIPPER algorithm to learn intrusion detection
rules from DARPA 1998 data set [132, 133].

Other classification algorithms for the intrusion detection problem
include decision trees [24, 202], modified nearest neighbor algorithms [246],
fuzzy association rules [26, 72, 140], neural networks [30, 51, 131, 247],
naïve Bayes classifiers [196], genetic algorithms [26, 145], genetic
programming [158], support vector machines [65, 156], and adaptive
regression splines [157]. Most of these approaches attempt to directly apply
specified standard techniques to some of publicly available intrusion
detection data sets [132, 133], assuming that the labels for normal and
intrusive behavior are already known.

Computer intrusions, however, are much rarer than normal behavior, and
in such scenarios standard classification algorithms do not perform well.
Thus, some researchers have developed specially designed algorithms for
handling rare classes and applied them to the problem of intrusion detection
[40, 98, 99].

Finally, association patterns, often expressed in the form of frequent
itemsets or association rules, have also been found to be valuable for

Intrusion Detection: A Survey 51

analyzing network traffic data [16, 121, 143]. In [121], association patterns
generated at different times were used to study significant changes in the
network traffic characteristics at different periods of time, while in [16, 121,
143] they were used to construct a profile of the normal network traffic
behavior for anomaly detection systems.

5.2 Anomaly Detection

Increase in the number of computer attacks, in their severity and
complexity has raised substantial interest in anomaly detection algorithms
due to their potential for recognizing unforeseen and emerging cyber
activities. There are many anomaly detection algorithms proposed in the
literature that differ according to the information used for analysis and
according to techniques that are employed to detect deviations from normal
behavior. In this section, we provide classification of anomaly detection
techniques based on employed techniques into the following five groups: (i)
statistical methods; (ii) rule based methods; (iii) distance based methods (iv)
profiling methods and (v) model based approaches. Although anomaly
detection algorithms are quite diverse in nature, and thus may fit into more
than one proposed category, our classification attempts to find the most
suitable category for all described anomaly detection algorithms.

5.2.1 Statistical methods

Statistical methods monitor the user or system behavior by measuring
certain variables over time (e.g. login and logout time of each session). The
basic models keep averages of these variables and detect whether thresholds
are exceeded based on the standard deviation of the variable. More advanced
statistical models also compare profiles of long-term and short-term user
activities. These statistical models are used in host-based IDSs, network-
based IDSs, as well as in application-based IDSs for detecting malicious
viruses. Some of the first proposed anomaly detection algorithms were
integrated in well known IDSs such as IDES [56, 95, 138, 139], NIDES [6],
EMERALD [164, 179] and SPADE [214].

IDES [138], whose misuse detection module is explained in section
4.1.2., also has an anomaly detection module. This module characterizes
normal user activity using an audit data and detects deviations from
described normal user behavior. Each new audit record is processed as it
enters the system, and verified against the known profile. To further
distinguish unusual but authorized behavior, the prototype was extended to
handle two sets of profiles for monitored subjects depending on whether the
activity took place on “normal” or “suspicious” days. The security analyst

52 Chapter 2

defines whether working days are “normal” or not. The NIDES system [6]
extends IDES by integrating results from misuse detection component with
the results produced by the anomaly detection module. NIDES monitors
ports and addresses and builds a statistical model of long term behavior over
a period of hours or days, which is assumed to contain few or no attacks. If
short-term behavior (seconds, or a few packets) differs significantly from
normal, then an alarm is raised.

EMERALD [164, 179] has statistical profile-based anomaly detection
module that tracks subject activity through one of four types of statistical
variables: categorical, continuous, traffic intensity (e.g., volume over time),
and event distribution (e.g., a meta-measure of other measures). The eBayes
system [228] is a recently developed module that extends earlier anomaly
detection component from the EMERALD system [164, 179] by encoding
probabilistic models of normal, attack, and anomalous behavior modes with
hypotheses. The eBayes system first collects basic variables of network
sessions as well as derives new ones (e.g. maximum number of open
connections to any unique host), and then applies probabilistic Bayesian
inference to them in order to obtain a belief for the session over the states of
hypotheses. For example, the session hypotheses in the eBayes TCP tree
may correspond to both normal traffic modes (MAIL, FTP, etc.) and to
attack scenario modes PORTSWEEP, SYNFLOOD, etc.). The eBayes builds
a table of conditional probabilities for all the hypotheses and variables,
which is adjusted every time the current observation is made. The eBayes
has an option of detecting novel attacks by dynamically generating new
hypothesis, which is obtained by adding a fake state of hypothesis and a new
conditional probability table row initialized by a uniform distribution.

Similarly to eBayes, many anomaly detection techniques have been
proposed recently to overcome limitations of earlier statistical anomaly
detection algorithms. For example, SPADE [214] is a statistical based
system, that is available as a plug-in for SNORT as a plug-in, and used for
automatic detecting stealthy port scans. Unlike traditional scan detectors that
look for X events in Y seconds, SPADE takes a fundamentally different
approach and looks at the amount of information gained by probing. It has
four different methods of calculating the likelihood of packets, of which
most successful method measures the direct joint probability P(dest IP, dest
Port) between destination IP address and destination port. SPADE examines
TCP-SYN packets and maintains the count of packets observed on (destIP,
destPort) tuples. When a new packet is observed, SPADE checks the
probability of observing that packet on the (dest IP, dest Port) tuple. The
lower the probability of the packet, the higher the anomaly score. However,
in a real life system, SPADE gives a high false alarm rate, since all unseen

Intrusion Detection: A Survey 53

(dest IP, dest Port) tuples are detected as attacks regardless whether or not
they correspond to actual intrusions.

Another recently proposed statistical method employs statistical traffic
modeling [29] for detecting novel attacks against networks. In this approach,
a network activity model is used to detect large classes of Denial of Service
and scanning attacks by monitoring the network traffic volume. By applying
the KolmogorovSmirnov test on the DARPA dataset [132], it was
demonstrated that, for example, normal telnet connections are statistically
different from the attacks that use telnet connections.

Chi-square (χ2) statistics have also been successfully used to detect
anomalies both in host-based and network based intrusion detection. For
host-based IDSs, Ye [245] proposed approach where activities on a host
machine are captured through a stream of events and then characterized by
the event type. For each event type, the profiles of audit events from normal
behavior are defined, and then used to compute χ2 as a measure of difference
between the test audit event and the normal audit event, whereas large
deviations are detected as anomalies. In network based IDS, the chi-square
statistic has also been used [111] to differentiate the payload distribution
(distribution of characters in the content of the network packets) in normal
network packets and anomalous ones.

Some researchers have used outlier detection algorithms for anomaly
detection, since outliers are typically defined as data points that are very
different from the rest of the data. The statistics community has studied the
concept of outliers quite extensively [17]. In these techniques, the data points
are modeled using a stochastic distribution, and points are determined to be
outliers depending on their relationship with this model. For example,
SmartSifter [244] uses a probabilistic model as a representation of
underlying mechanism of data generation, and scores each data example by
measuring how large the model has changed after the learning. Smart sifter
extension [243] gives positive labels to higher scored data and negative to
the lower scored data, and then constructs an outlier filtering rule by
applying supervised learning. Eskin’s approach [64] computes the likelihood
of data distribution Lt(D) at some specific time interval t, removes a data
example at the interval t-1 and measures the likelihood of data distribution
without removed data example Lt-1(D). The probability that removed data
example is an outlier is proportional to the difference between the new
likelihood Lt-1(D) and the original one Lt(D). Information theoretic measures
such as entropy, conditional entropy, relative conditional entropy,
information gain, and information cost [123] were also proposed for
anomaly detection task. These measures were used to characterize the
characteristics of an audit data set by measuring their regularity, and to build
appropriate anomaly detection models according to these regularity

54 Chapter 2

measures. The higher regularity of audit data, the better the anomaly
detection module is.

Statistic based anomaly detection techniques have also been used in
detecting malicious viruses through e-mail messages. For example, the MET
(Malicious Email Tracking) [22] system keeps track of email attachments as
they are exchanged between users through a set of collaborating email
servers that forward a subset of their data to a central data warehouse and
correlation server. Only attachments with a high frequency of appearance are
deemed suspicious, while the email exchange patterns among users are used
to create models of normal behavior. MET system contains MET server and
MET clients. MET server is used to collect data on malicious activity, store
them in a database, and calculate derived statistics, while MET clients
analyze email attachments across all mail domains and then detect email-
based attacks.

5.2.2 Distance based methods

Most statistical approaches have limitation when detecting outliers in
higher dimensional spaces, since it becomes increasingly difficult and
inaccurate to estimate the multidimensional distributions of the data points
[2]. Distance based approaches attempt to overcome limitations of statistical
outlier detection approaches and they detect outliers by computing distances
among points. Several distance based outlier detection algorithms have been
recently proposed for detecting anomalies in network traffic [117]. These
techniques are based on computing the full dimensional distances of points
from one another [107, 187] using all the available features, and on
computing the densities of local neighborhoods [25, 117]. MINDS
(Minnesota Intrusion Detection System) [61] uses net-flow data to extract
useful set of features to be used in anomaly detection. MINDS anomaly
detection module employs an outlier detection algorithm to assign an
anomaly score to each network connection. A human analyst then has to
look at only the most anomalous connections to determine if they are actual
attacks or other interesting behavior. MINDS anomaly detection module is
used at the University of Minnesota and is also incorporated into the
Interrogator architecture at the ARL Center for Intrusion Monitoring and
Protection (CIMP), where network data from multiple sensors are collected
and analyzed by human analysts to detect intrusions and attacks.
Experiments on live network traffic at the University of Minnesota and at the
ARL-CIMP have shown that MINDS is able to routinely detect various
suspicious behavior (e.g. policy violations), worms, as well as various
scanning activities.

Intrusion Detection: A Survey 55

In addition, in several clustering based techniques (fixed-width and
canopy clustering [65]), network intrusions in DARPA 1998 evaluation data
sets have been detected as small clusters when compared to the large ones
that corresponded to the normal behavior.

In another interesting approach [68], artificial anomalies in the network
intrusion detection data are generated around the edges of the sparsely
populated data regions, thus forcing the learning algorithm to discover the
specific boundaries that distinguish these regions from the rest of the data.

5.2.3 Rule based systems

Rule based systems used in anomaly detection characterize normal
behavior of users, networks and/or computer systems by a set of rules.
Examples of rule based IDSs include ComputerWatch [58] and Wisdom &
Sense [124, 125].

ComputerWatch system [58] employs a typical rule based system that
summarizes “normal” security events and then detects anomalous behavior
as deviations from them. The rule system creates rules to describe proper
usage policy, to check users' actions according to these rules, and to flag any
action that does not match the described rule patterns. Wisdom & Sense
[124, 125] employs historic audit data to produce a set of rules describing
normal behavior, forming the “wisdom” of the title. These rules are then fed
to an expert system that evaluates recent audit data for violations of the
rules, and alerts the security analyst when the rules indicate (“sense”)
anomalous behavior.

Recently, Valdes [227] proposed an unsupervised technique that does not
require attack free training data and detects novel scans through pattern-
based anomaly detection. The model assigns network connections into one
of a number of modes discovered by competitive learning. The technique is
applied to port patterns in TCP sessions in simulated and real network
traffic.

5.2.4 Profiling methods

In profiling methods, profiles of normal behavior are built for different
types of network traffic, users, programs etc., and deviations from them are
considered as intrusions. Profiling methods vary greatly ranging from
different data mining techniques to various heuristic-based approaches. In
this section, we provide an overview of several distinguished profiling
methods for anomaly detection.

ADAM (Audit Data and Mining) [16] is a hybrid anomaly detector
trained on both attack-free traffic and traffic with labeled attacks. The

56 Chapter 2

system uses a combination of association rule mining and classification to
discover attacks in tcpdump data. One of the advantages of ADAM is its
ability to detect novel attacks, without depending on attack training data,
through a novel application of the pseudo-Bayes estimator [16]. Recently
reported IDDM system [1] represents an off-line IDS, where the intrusions
are detected only when sufficient amounts of data are collected and
analyzed. The IDDM system describes profiles of network data at different
times, identifies any large deviations between these data descriptions and
produces alarms in such cases.

Human immune system has gained a lot of attention among researchers
in intrusion detection community, especially when analyzing attacks at the
host level [73, 119, 209]. These techniques first collect data patterns
representing the appropriate behavior of the service and extract a reference
table containing all the known good sequences of system calls. These
patterns are then used for live monitoring to check whether the sequences
generated are listed in the table or not. If they are not listed, an alarm is
generated. Wespi [237] also proposed a novel technique for modeling
process behavior by building a table of variable length patterns, which is
based on the Teiresias algorithm. Experimental results show that the variable
length pattern model is significantly better than a fixed length approach, both
in reducing the number of patterns to describe the normal process behavior
and in achieving better detection rates. Although the immune system
approach is interesting and intuitively appealing, so far it has proven to be
difficult to apply [60].

The temporal sequence learning [116] has been shown successful in
profiling Unix user command line data, where user shell commands are used
to build user profiles for activities during an intrusion and for activities
during normal use. By comparing these profiles, it is possible to detect new
types of anomalous user behavior.

Association pattern analysis has been shown to be beneficial in
constructing a profile of normal network traffic behavior [61, 118, 143]. For
example, Manganaris [143] used association rules to characterize the normal
stream of IDS alerts from a sensor and later to distinguish between false
alarms and real ones. On the other hand, MINDS [61] uses association
patterns to provide high-level summary of network connections that are
ranked highly anomalous in the anomaly detection module. These
summaries allow a human analyst to examine a large number of anomalous
connections quickly and to provide templates from which signatures of novel
attacks can be built for augmenting the database of signature-based intrusion
detection systems.

PHAD (packet header anomaly detection) [142] monitors network packet
headers and builds profiles for 33 different fields from these headers by

Intrusion Detection: A Survey 57

observing attack free traffic and building contiguous clusters for the values
observed for each field. The number of clusters is pre-specified and if a new
value that is observed does not fit into any of the clusters, it is treated as a
new cluster and the closest two clusters are merged. The number of updates,
r, is maintained for each field as well as the number of observations, n.
When a new packet is being tested for anomaly, the values of all fields are
checked to see if they fit into the clusters formed in the training phase. If the
values for some fields do not fit into any clusters, then each of them
contributes to the anomaly score value of the packet proportional to the n/r
ratio for the field. ALAD (application layer anomaly detection) [142] uses
the same method for calculating the anomaly scores as PHAD, but it
monitors TCP data and builds TCP streams when the destination port is
smaller than 1024. It constructs five features from these streams as opposed
to 33 fields used in PHAD.

ADMIT (Anomaly-based Data Mining for InTrusions) [201] attempts to
discriminate between masqueraders and true users on computer terminals.
This task is performed by augmenting conventional password authentication
measures and by continuously running a terminal-resident IDS program,
which monitors the terminal usage by each user, creates an appropriate
profile and verifies user data against it.

Call stack information [71] was also effectively used to detect various
exploits on computer systems. The anomaly detection approach, called
VtPath, first extracts return addresses information from the call stack and
generates “abstract execution paths” between two execution points in the
program. These “abstract execution paths” are then compared to the
“abstract execution paths” learned during normal runs of the program.

Finally, there have also been several recently proposed commercial
products that use profiling based anomaly detection techniques. For
example, Antura from System Detection [222] use data mining based user
profiling, while Mazu Profiler form Mazu Networks [147] and Peakflow X
from Arbor networks [8] use rate-based and connection profiling anomaly
detection schemes.

5.2.5 Model based approaches

Many researchers have used different types of models to characterize the
normal behavior of the monitored system. In the model-based approaches,
anomalies are detected as deviations for the model that represents the normal
behavior.

Very often, researchers have used data mining based predictive models
such as replicator neural networks [79] or unsupervised support vector

58 Chapter 2

machines [65, 117]. Replicator four-layer feed-forward neural network
(RNN) [79] have the same number of input and output nodes. During the
training phase, RNNs reconstruct input variables at the output layer, and then
use the reconstruction error of individual data points as a measure of
outlyingness. Unsupervised support vector machines [65, 117] attempt to
separate the entire training data set from the origin, i.e. to find a small region
where most of the data lies and label data points in this region as a normal
behavior. In the test phase they detect deviations from learned models as
potential intrusions. In addition, standard neural networks (NN) were also
used in intrusion detection problems to learn a normal profile. For example
NNs were often used to model the normal behavior of individual users [193],
to build profiles of software behavior [74] or to profile network packets and
queue statistics [122].

User Intention Identification [213] is a technique developed within the
SECURENET project [212]. The goal of this technique is to model the
normal behavior of users using a set of high-level tasks they have to perform
on the system. These tasks are then refined into actions, which in turn are
related to the audit events observed on the system. The analyzer keeps a set
of tasks that each user can perform. Whenever an action occurs that does not
fit the task pattern, an alarm is issued. User intention identification was also
successfully used in several recently proposed approaches [43, 44].

Wagner [234] proposed to statically generate a non-deterministic finite
automaton (NDFA) or a non deterministic pushdown automaton (NDPDA)
from the global control flow graph of the program. The approach first
computes a model of expected application behavior, built statically from
program source code, then monitors program execution online at run time,
and finally checks its system call trace for compliance to the model.

Specification based intrusion detection techniques have been recently
proposed to produce a low rate of false alarms [199], but they have not been
as effective as anomaly detection in detecting novel attacks. Hence,
specification based anomaly detection [199] was designed to mitigate the
weaknesses of both specification based IDSs and anomaly detection
techniques and complement their strengths. The approach begins with state-
machine specifications of network protocols, and augments these state
machines with information about statistics that need to be maintained to
detect anomalies.

Finally, anomaly detection has also been used in embedded systems
[146], where Markov models were employed to determine whether the states
(events) in a sequential data streams, taken from a monitored process, are
normal or anomalous. It computes the probabilities of transitions between
events in a training set, and uses these probabilities to assess the transitions
between events in a test set.

Intrusion Detection: A Survey 59

6. TIME ASPECTS

When considering time aspects of IDSs, we distinguish two main groups:
real-time (on-line) IDSs and off-line IDSs. Real-time (on-line) IDSs attempt
to detect intrusions in real-time or near real-time. They operate on
continuous data streams from information sources and analyze the data while
the sessions are in progress (e.g. network sessions for network intrusion
detection, login sessions for host based intrusion detection). Real-time IDSs
should raise an alarm as soon as an attack is detected, so that action that
affects the progress of the detected attack can be taken. Most commercial
IDSs claim continuous processing capability [8, 147].

Off-line IDSs perform post-analysis of audit data. This method of audit
data analysis is common among security analysts who often examine
network behavior, as well as behavior of different attackers, in an off-line
(batch) mode. Many early host-based IDSs used this timing scheme, since
they used operating system audit trails that were recorded as files [77, 155].

Off-line analysis is also often performed using static tools that analyze
the snapshot of the environment (e.g. host vs. network environment), look
for vulnerabilities and configuration errors and assess the security level of
the current environment configuration. Examples of these tools include
COPS [69] and Tiger [194] for host environments, and Satan [70] and
CyberCop Scanner [163, 197] for networks. Virus detectors belong to static
tools too and they scan the disks searching for patterns matching known
viruses. Although static tools are very popular and broadly used by system
administrators, they are typically not sufficient to ensure high security [55].

Static tools can be also specifically designed for active investigation of
vulnerabilities over the Internet. For example, Tripwire [106] or ATP [233]
can be used to monitor a designated set of files and to detect computer
intrusions that exploited older vulnerable applications. These intrusions
should also be identified and reported to the system administrator as
potential security holes using other tools like COPS [69] or Tiger [194].

7. ARCHITECTURE

There are two principal architectures that are used in IDSs, namely
centralized and distributed IDSs. Most IDSs employ centralized architecture
and detect intrusions that occur in a single monitored system. However, there
is a recent increasing trend towards distributed and coordinated attacks,
where multiple machines are involved, either as attackers (e.g. distributed
denial-of-service) or as victims (e.g. large volume worms). Analysis that
uses data from a single site and that is often employed by many existing

60 Chapter 2

intrusion detection schemes is often unable to detect such attacks. To
effectively combat them, there is a need for distributed IDS and cooperation
among security analysts across multiple network sites.

Unlike a centralized IDS, where the analysis of data is performed on a
fixed number of locations (independent of how many hosts are being
monitored), in a distributed IDS the analysis of data is performed on a
number of locations that is proportional to the number of hosts that are being
monitored [211]. An excellent comparison of centralized and distributed
IDSs, with their advantages and drawbacks, is provided in a paper by
Spafford and Zamboni [211]. Despite several drawbacks of distributed IDSs,
many commercial vendors have realized the need for detecting coordinated
cyber attacks from distributed locations, and adapted their systems to address
these challenges [9, 162].

Starting from the first proposed distributed IDS [205], the most typical
architectures of distributed IDSs assume employment of intelligent agents.
There are several advantages of using mobile agent based intrusion detection
systems over other approaches for distributed intrusion detection [94]. First,
agents are independently running entities and can be added, removed and
reconfigured without altering other components, and without restarting local
IDSs. Second, agents can be tested on their own before introducing them
into a more complex environment. Finally, agents can exchange information
to derive more complex results than any one of them may be able to obtain
on their own. Although IDSs based on mobile agents are still in their infancy
and fully implemented systems are still emerging, there are many agent-
based distributed IDSs [39, 109]. The typical examples include DIDS [59],
AAFID [211], Argus [203], IDA [10], Micael [53].

DIDS [59] and distributed autonomous-agent NID [18] use a similar
architecture that consists of a central analysis server and multiple IDS agents
that communicate with each other. AAFID (autonomous agents for intrusion
detection) [211] has a hierarchical design with three levels. At the lowest
level, agents perform host security monitoring and data analysis. The
information gathered by agents is forwarded to transceivers that distribute
the information either to other agents or monitors, and control and configure
agents at the second level. At the highest level, each monitor collects data
from transceivers and evaluates their input. Intelligent agents in [82] employ
classifier algorithms and travel among collection points, referred to as data
cleaners, and uncover suspicious activities. The architecture is hierarchical,
with a data warehouse at the root, data cleaners at the leaves, and classifier
agents in between. A classifier agent specializes in a specific category of
intrusion and is capable of collaborating with agents of another category to
determine the severity level of an activity deemed suspicious. Moving the
computational analysis to each collection point avoids the costly movement

Intrusion Detection: A Survey 61

of information to an aggregation unit. Argus [203] employs a similar
architecture with low-level agents that serve as data cleansers, and data
mining agents that generate not only rules for matching a normal profile but
also generate feedback for knowledge-based components. These rules can be
used then to update the rule database of the NFR knowledge component
[167]. Bayesian multiple hypothesis tracking was also used to more
effectively analyze information provided by existing IDSs from multiple
networks [28]. Hypotheses that explain the measured intrusion events are
generated and stored, and then evaluated against the understanding of the
sensor behavior in order to determine the likelihood of the hypotheses. The
hypothesis with the greatest likelihood is assumed correct, while other
hypotheses are treated as intrusions.

The Intrusion Detection Agent (IDA) system [10] is a multi-host based
IDS that relies on mobile agents to trace intruders among the various hosts
involved in an intrusion. IDA watches specific events that are related to
various intrusions. These events are called “Marks Left by Suspected
Intruder” (MLSI). If a specific MLSI is identified, IDA collects all the
information related to this MLSI, analyzes this information and determines
whether the MLSI is related to a real attack or not. The IDA system has a
hierarchical tree structure, in which the central manager is placed at the root
of the tree, while numerous agents are located at the leaves.

Micael [53] is a distributed IDS that uses autonomous mobile intelligent
agents able to make various decisions in the process of intrusion detection
(e.g. investigating intrusions and initiating countermeasures against them).
The Micael architecture contains the following agents: (i) headquarters, i.e.
specialized centralized agents that are responsible for creating other agents
and maintaining their executable codes. They receive information about
potential intrusions from sentinel agents and can create new detachment
agents that will be sent to hosts when needed; (ii) sentinels, i.e. immobile
agents that collect data about the activities on the host machines and inform
headquarter agents about detected anomalies; and (iii) detachments, i.e.
mobile agents that are used to face possible intrusions (hazards) by starting a
detailed analysis of log files.

Applying intrusion detection techniques on a system-wide basis allows
the system to be protected against general misuse, but may require
significant resources. By optimizing the placement and configuration of
these tools, it is possible to offer both increased protection for sensitive
systems, and more context-sensitive detection, at the cost of general
protection. For example, distributed IDS deployment often concentrates
monitors in high-risk areas, such as network ingress points (e.g. adjacent to
firewalls), or in the presence of valuable resources (such as network server
farms) [148].

62 Chapter 2

8. RESPONSE

The response of IDSs to identified attacks may be either passive or
active. In the most common scenario, IDSs have passive response and
simply inform responsible personnel of an event, but no countermeasure is
actively applied to thwart the attack. The most common method for such
notifications is through pop-up windows or on-screen alerts or through
recording alerts into a file. These alerts may vary from notification of alarms
only to detailed information about computer attacks such as source IP
address, target of the attack, specific port of interest, the tools used to
perform the attack, the outcome of the attack, etc. Some products also offer
remote notification through sending alarms or alerts to cellular phones and
pagers carried by system security personnel. In addition, notification is often
sent through e-mail messages, but this may be unsafe, as attackers may
monitor email and might even block the message. Certain IDSs (e.g. Cisco
IDS [46]) use SNMP traps and messages to report generated alarms to a
network management system, where network operations personnel can
investigate them. Passive response is often used for off-line analysis.

Alternatively, IDSs can also provide an active response to critical events,
such as “patching” a system vulnerability, logging off a user, re-configuring
routers and firewalls, or disconnecting a port.

Given the speed and frequency at which attacks can occur, an ideal IDS
would automatically respond to computer attacks at machine speed without
requiring any operator intervention. However, this is an unrealistic
expectation, largely due to the difficulty in eliminating false alarms.
Nevertheless, IDS products can still provide a variety of active response
mechanisms that may be used at the discretion of the system administrator.

One of the most harmless, but often most productive, active responses is
to collect additional information about a suspected attack and to perform
damage control. This might involve increasing the sensitivity level of
information sources (e.g., increasing the number of events logged by an
operating system audit trail, or increasing the sensitivity of a network
monitor that captures all packets). Such additional information collected can
help resolve the detection of the attack (assisting the system in diagnosing
whether an attack did or did not take place) thus allowing the IDS to gather
information that can be used to support investigation of the attacker.

In more recent IDS tools, active responses that include countermeasure
against the attacker have become increasingly popular. An example of such a
tool with early countermeasure capability is NetProbe [192], which monitors
a network for undesired connections and immediately terminates them.
There are also other tools with similar capabilities, such as RealSecure [89],
NetRanger [47], and WebStalker [204] that have options to interrupt

Intrusion Detection: A Survey 63

suspicious network connections that carry attacks, to block network traffic
from the hosts that are originating attacks, or to reconfigure routers and
firewalls.

9. CONCLUSIONS

Intrusion detection techniques have improved dramatically over time,
especially in the past few years. Initially developed to automate tedious and
difficult log parsing activity, IDSs have developed into sophisticated, real-
time applications with the ability to have a detailed look at traffic and to
sniff out malicious activity. They can handle high-speed networks and
complex traffic, and deliver detailed insight – previously unavailable – into
active threats against critical online information resources. IDS technology is
developing rapidly and its near-term future is very promising. It is
increasingly becoming an indispensable and integral component of any
comprehensive enterprise security program, since it complements traditional
security mechanisms.

This chapter provides an overview of the current state of the art of both
computer attacks and intrusion detection techniques. The overview is based
on presented taxonomies exemplified with the most illustrative paradigms.
The taxonomy of computer attacks and intrusions provides the current status
and trends in techniques that attackers employ today. The taxonomy of IDSs
highlights their properties and provides an overview of the past and current
developments. Although a variety of techniques have been developed for
detecting different types of computer attacks in different computer systems,
there are still a number of research issues concerning the prediction
performance, efficiency and fault tolerance of IDSs that need to be
addressed. Signature analysis, the most common strategy in the commercial
domain until recently, is increasingly integrated with different anomaly
detection and alert correlation techniques in order to detect emerging and
coordinated computer attacks.

We hope this survey provides actionable information and advice on the
topics, as well as serves to acquaint newcomers with the world of IDSs and
computer attacks. The information provided herein is by no means complete
and we recommend further reading to the interested reader.

ACKNOWLEDGEMENTS

This work was partially supported by Army High Performance
Computing Research Center contract number DAAD19-01-2-0014, NSF

64 Chapter 2

grant IIS-0308264, and ARDA contract number F30602-03-C-0243. The
content of the work does not necessarily reflect the position or policy of the
government and no official endorsement should be inferred. Access to
computing facilities was provided by the AHPCRC and the Minnesota
Supercomputing Institute.

REFERENCES

[1] T. Abraham, IDDM: Intrusion Detection Using Data Mining Techniques, DSTO
Electronics and Surveillance Research Laboratory, Department of Defense, Australia
Technical Report DSTO-GD-0286, 2001.

[2] C.C. Aggarwal and P. Yu, Outlier Detection for High Dimensional Data, In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Santa BArbara, CA, May 2001.

[3] A. AirDefense, http://www.airdefense.net/products/index.html, 2004.
[4] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner, J. Ellis, E. Hayes, J.

Marella and B. Willke, State of the Practice of Intrusion Detection Technologies.,
Carnegie Mellon University, Pittsburgh, PA Technical Report CMU/SEI-99-TR-028,
1999.

[5] E. Amoroso, Fundamentals of Computer Security Technology, Prentice-Hall PTR,
1994.

[6] D. Anderson, T. Lunt, H. Javitz, A. Tamaru and A. Valdes, Detecting Unusual
Program Behavior Using the Statistical Component of the Next-Generation Intrusion
Detection Expert System (NIDES), Computer Science Laboratory, SRI International,
Menlo Park, CA Technical Report SRI-CSL-95-06.

[7] J.P. Anderson, Computer Security Threat Monitoring and Surveillance, James P.
Anderson Co., Box 42, Fort Washington, PA 19034 Technical Report Contract
79F296400, April 1980.

[8] Arbor Networks, Intelligent Network Management with Peakflow Traffic,
http://www.arbornetworks.com/products_sp.php, 2003.

[9] ArcSight, Enterprise Security Management Software, http://www.arcsight.com/.
[10] M. Asaka, S. Okazawa, A. Taguchi and S. Goto, A Method of Tracing Intruders by

Use of Mobile Agents, In Proceedings of the 9th Annual Conference of the Internet
Society (INET'99), San Jose, CA, June 1999.

[11] T. Aslam, A Taxonomy of Security Faults in the UNIX Operating System, Purdue
University Master's thesis, August 1995.

[12] C.R. Attanasio, P.W. Markstein and R.J. Phillips, Penetrating an Operating System: A
Study of VM/370 Integrity, IBM System Journal, vol. 15, 1, pp. 102-116, 1976.

[13] S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy, Dept. of
Computer Engineering, Chalmers University Technical Report 99-15, March 2000.

[14] AXENT Technologies, Inc, NetProwler-Advanced Network Intrusion Detection,
available online at:, http://www.axent.com/iti/netprowler/idtk_ds_word_1.html, 1999.

[15] R. Bace and P. Mell, NIST Special Publication on Intrusion Detection Systems, 2001.

Intrusion Detection: A Survey 65

[16] D. Barbara, N. Wu and S. Jajodia, Detecting Novel Network Intrusions Using Bayes

Estimators, In Proceedings of the First SIAM Conference on Data Mining, Chicago,
IL, April 2001.

[17] V. Barnett and T. Lewis, Outliers in Statistical Data. New York, NY, John Wiley and
Sons, 1994.

[18] J. Barrus and N. Rowe, A Distributed Autonomous-Agent Network-Intrusion
Detection And Response System, In Proceedings of the Command and Control
Research and Technology Symposium, Monterey, CA, 577-586, June 1998.

[19] D.S. Bauer and M.E. Koblentz, NIDX - An Expert System For Real-Time, Computer
Networking Symposium, 1988.

[20] T. Baving, Network vs. Application-Based Intrusion Detection, Network and Internet
Nettwork Security, Computer Science Honours, 2003.

[21] S.M. Bellovin and W.R. Cheswick, Network Firewalls., IEEE Communications
Magazine, vol. 32, 9, pp. 50-57, September 1994.

[22] M. Bhattacharyya, M. Schultz, E. Eskin, S. Hershkop and S. Stolfo, MET: An
Experimental System for Malicious Email Tracking, In Proceedings of the New
Security Paradigms Workshop (NSPW), Hampton, VA, September 2002.

[23] M. Bishop, How Attackers Break Programs, and How To Write Programs More
Securely, In Proceedings of the 8th USENIX Security Symposium, University of
California, Davis, August 1999.

[24] E. Bloedorn, A. Christiansen, W. Hill, C. Skorupka, L. Talbot and J. Tivel, Data
Mining for Network Intrusion Detection: How to Get Started, MITRE Technical
Report, http://www.mitre.org/work/tech_papers/tech_papers_01/bloedorn_datamining,
August 2001.

[25] M.M. Breunig, H.P. Kriegel, R.T. Ng and J. Sander, LOF: Identifying Density Based
Local Outliers, ACM SIGMOD Conference, vol. Dallas, TX, May 2000.

[26] S. Bridges and R. Vaughn, Fuzzy Data Mining and Genetic Algorithms Applied to
Intrusion Detection, In Proceedings of the Twenty-third National Information Systems
Security Conference, Baltimore, MD, October 2000.

[27] H. Burch and B. Cheswick, Tracing Anonymous Packets to Their Approximate
Source, In Proceedings of the USENIX Large Installation Systems Administration
Conference, New Orleans, LA, 319-327, December 2000.

[28] D. Burroughs, L. Wilson and G. Cybenko, Analysis of Distributed Intrusion Detection
Systems Using Bayesian Methods, www.ists.dartmouth.edu/IRIA/projects/
ipccc.final.pdf, 2002.

[29] J. Cabrera, B. Ravichandran and R. Mehra, Statistical Traffic Modeling For Network
Intrusion Detection, In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, San Francisco,
CA, August 2000.

[30] J. Cannady, Artificial Neural Networks For Misuse Detection, In Proceedings of the
National Information Systems Security Conference (NISSC'98), Arlington, VA, 443-
456, October, 1998.

[31] J. Cannady and J. Harrell, A Comparative Analysis of Current Intrusion Detection
Technologies, In Proceedings of the Fourth Technology for Information Security
Conference'96 (TIS'96), Houston, TX, May 1996.

66 Chapter 2

[32] CERIAS Intrusion Detection Resources, http://www.cerias.purdue.edu/coast/ids/ids-

body.html, 2004.
[33] CERT® Advisory CA-1995-13 Syslog Vulnerability - A Workaround for Sendmail,

http://www.cert.org/advisories/CA-1995-13.html, September, 1997.
[34] CERT® Advisory CA-1999-04 Melissa Worm and Macro Virus,

http://www.cert.org/advisories/CA-1999-04.html, March 1999.
[35] CERT® Advisory CA-2000-14 Microsoft Outlook and Outlook Express Cache

Bypass Vulnerability, http://www.cert.org/advisories/CA-2000-14.html, July 2000.
[36] CERT® Advisory CA-2001-26 Nimda Worm, http://www.cert.org/advisories/CA-

2001-26.html, September 2001.
[37] CERT® Advisory CA-2003-04 MS-SQL Server Worm, http://www.cert.org/

advisories/CA-2003-04.html, 2003.
[38] CERT® Advisory CA-2003-25 Buffer Overflow in Sendmail, http://www.cert.org/

advisories/CA-2003-25.html, September, 2003.
[39] P.C. Chan and V.K. Wei, Preemptive Distributed Intrusion Detection Using Mobile

Agents, In Proceedings of the Eleventh IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2002),
Pittsburgh, PA, June 2002.

[40] N. Chawla, A. Lazarevic, L. Hall and K. Bowyer, SMOTEBoost: Improving the
Prediction of Minority Class in Boosting, In Proceedings of the Principles of
Knowledge Discovery in Databases, PKDD-2003, Cavtat, Croatia, September 2003.

[41] C. Cheng, H.T. Kung and K. Tan, Use of Spectral Analysis in Defense Against DoS
Attacks, In Proceedings of the IEEE GLOBECOM, Taipei, Taiwan, 2002.

[42] W.R. Cheswick and S.M. Bellovin, Firewalls and Internet Security - Repelling the
Wily Hacker, Addison-Wesley, ISBN 0-201-63357-4, 1994.

[43] R. Chinchani, S. Upadhyaya and K. Kwiat, A Tamper-Resistant Framework for
Unambiguous Detection of Attacks in User Space Using Process Monitors, In
Proceedings of the IEEE International Workshop on Information Assurance,
Darmstadt, Germany, March 2003.

[44] R. Chinchani, S. Upadhyaya and K. Kwiat, Towards the Scalable Implementation of a
User Level Anomaly Detection System, In Proceedings of the IEEE Conference on
Military Communications Conference (MILCOM), Anaheim, CA, October 2002.

[45] J. Christy, Cyber Threat & Legal Issues, In Proceedings of the ShadowCon'99,
Dahlgren, VA, October 26, 1999.

[46] Cisco Intrusion Detection, www.cisco.com/warp/public/cc/pd/sqsw/sqidsz, May 2004.
[47] Cisco Systems, Inc., NetRanger-Enterprise-scale, Real-time, Network Intrusion

Detection System, http://www.cisco.com/univercd/cc/td/doc/product/iaabu/netrangr/,
1998.

[48] cknow.com Virus Tutorial, http://www.cknow.com/vtutor/vtmap.htm, 2001.
[49] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier and

P. Zhang, StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks, In Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, 63-77.

[50] O. Dain and R. Cunningham, Fusing a Heterogeneous Alert Stream Into Scenarios, In
Proceedings of the ACM Workshops on Data Mining for Security Applications,
Philadelphia, PA, November 2001.

Intrusion Detection: A Survey 67

[51] V. Dao and R. Vemuri, Computer Network Intrusion Detection: A Comparison of

Neural Networks Methods, Differential Equations and Dynamical Systems, Special
Issue on Neural Networks, 2002.

[52] DARPA, DARPA Intrusion Detection Evaluation, http://www.ll.mit.edu/IST/ideval/
pubs/pubs_index.html, 2004.

[53] J. De Queiroz and Carmo L., MICHAEL: An Autonomous Mobile Agent System to
Protect New Generation Networked Applications, In Proceedings of the 2nd Annual
Workshop n Recent Advances in Intrusion Detection, Rio de Janeiro, Brasil, 1999.

[54] H. Debar, M. Becker and D. Siboni, A Neural Network Component for an Intrusion-
Detection System, In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA, 240-250, May 1992.

[55] H. Debar, M. Dacier and A. Wespi, Towards a Taxonomy of Intrusion Detection
Systems, Computer Networks, vol. 31, 8, pp. 805-822, 1999.

[56] D. Denning, An Intrusion-Detection Model, IEEE Transactions on Software
Engineering, vol. 13, 2, pp. 222-232, 1987.

[57] dmoz Open Security Project, Intrusion Detection Systems, http://dmoz.org/
Computers/Security/Intrusion_Detection_Systems/,

[58] C. Dowell and P. Ramstedt, The Computerwatch Data Reduction Tool, In
Proceedings of the 13th National Computer Security Conference, Washington, DC,
1990.

[59] N. Einwechter, An Introduction To Distributed Intrusion Detection Systems,
Security Focus, January 2002.

[60] D. Engelhardt, Directions for Intrusion Detection and Response: A survey, DSTO
Electronics and Surveillance Research Laboratory, Department of Defense, Australia
Technical Report DSTO-GD-0155, 1997.

[61] L Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar and P. Dokas, The
MINDS - Minnesota Intrusion Detection System, in Data Mining: Next Generation
Challenges and Future Directions, A. Joshi H. Kargupta, K. Sivakumar, and Y.
Yesha, Ed., 2004.

[62] L. Ertoz, E. Eilertson, P. Dokas, V. Kumar and K. Long, Scan Detection - Revisited,
Army High Performance Computing Research Center Technical Report, 2004.

[63] S. Eschrich, Real-Time User Identification Employing Standard Unix Accounting,
Florida State University PhD Thesis, Fall 1995.

[64] E. Eskin, Anomaly Detection over Noisy Data using Learned Probability
Distributions, In Proceedings of the International Conference on Machine Learning,
Stanford University, CA, June 2000.

[65] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo, A Geometric Framework for
Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data, in
Applications of Data Mining in Computer Security, Advances In Information Security,
S. Jajodia D. Barbara, Ed. Boston: Kluwer Academic Publishers, 2002.

[66] M. Esmaili, B. Balachandran, R. Safavi-Naini and J. Pieprzyk, Case-Based Reasoning
For Intrusion Detection, In Proceedings of the 12th Annual Computer Security
Applications Conference, San Diego, CA, December 1996.

[67] M. Esmaili, R. Safavi-Naini and B.M. Balachandran, Autoguard: A Continuous Case-
Based Intrusion Detection System, In Proceedings of the Australian Computer Science

68 Chapter 2

Conference, Australian Computer Science Communications, Sydney, Australia, 392-
401, February 1997.

[68] W. Fan, W. Lee, M. Miller, S.J. Stolfo and P.K. Chan, Using Artificial Anomalies to
Detect Unknown and Known Network Intrusions, In Proceedings of the First IEEE
International conference on Data Mining, vol. San Jose, CA, December 2001.

[69] D. Farmer, Cops Overview, http://www.trouble.org/cops/overview.html, May 1993.
[70] D. Farmer and W. Venema, Improving The Security Of Your Site By Breaking Into It,

http://www.trouble.org/security/admin-guide-to-cracking.html,
[71] H. Feng, O. Kolesnikov, P. Fogla, W. Lee and W. Gong, Anomaly Detection Using

Call Stack Information, In Proceedings of the IEEE Symposium Security and Privacy,
Oakland, CA, May 2003.

[72] G. Florez, S. Bridges and R. Vaughn, An Improved Algorithm for Fuzzy Data Mining
for Intrusion Detection, In Proceedings of the North American Fuzzy Information
Processing Society Conference (NAFIPS 2002), New Orleans, LA, June, 2002.

[73] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, A Sense of Self for Unix
Processes, In Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, 120-128, May 1996.

[74] A. Ghosh and A. Schwartzbard, A Study in Using Neural Networks for Anomaly and
Misuse Detection, In Proceedings of the Eighth USENIX Security Symposium,
Washington, D.C., 141-151, August , 1999.

[75] T.M Gil and M. Poletto, MULTOPS: A Data-Structure for Bandwidth Attack
Detection, In Proceedings of the USENIX Security Symposium, Washington, D.C., 23-
28, July 2001.

[76] Google directory, http://directory.google.com/Top/Computers/Security/
Intrusion_Detection_Systems,

[77] N. Habra, B. LeCharlier, A. Mounji and I. Mathieu, ASAX: Software Architecture and
Rule-Based Language for Universal Audit Trail Analysis, In Proceedings of the
Second European Symposium on Research in Computer Security (ESORICS), Vol.
648, Lecture Notes in Computer Science, Springer-Verlag, Toulouse, France,
November 1992.

[78] S.E. Hansen and E.T. Atkins, Automated System Monitoring and Notification With
Swatch., In Proceedings of the Seventh Systems Administration Conference (LISA'93),
Monterey, CA, November 1993.

[79] S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator
Neural Networks, In Proceedings of the 4th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK02), Lecture Notes in Computer
Science 2454, Aix-en-Provence, France, 170-180, September 2002.

[80] Haystack Labs, Inc., Stalker, http://www.haystack.com/stalk.htm, 1997.
[81] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood and D. Wolber, A

Network Security Monitor, In Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, 296-304, May 1990.

[82] G. Helmer, J.S.K Wong, V. Honavar and L. Miller, Intelligent Agents for Intrusion
Detection, In Proceedings of the IEEE Information Technology Conference, Syracuse,
NY, 121-124, September 1998.

[83] K. Houle, G. Weaver, N. Long and R. Thomas, Trends in Denial of Service Attack
Technology, CERT® Coordination Center, Pittsburgh, PA October 2001.

Intrusion Detection: A Survey 69

[84] J.D. Howard, An Analysis of Security Incidents on the Internet, Carnegie Mellon

University, Pittsburgh, PA 15213 Ph.D. dissertation, April 1997.
[85] D. Hughes, TkLogger, ftp://coast.cs.purdue.edu/pub/tools/unix/tklogger.tar.Z,
[86] K. Ilgun, USTAT A Real-time Intrusion Detection System for UNIX, University of

California Santa Barbara Master Thesis, 1992.
[87] Internet Guide, Computer Viruses / Virus Guide, http://www.internet-guide.co.uk/

viruses.html, 2002.
[88] Internet Security Systems Wireless Products, Active Wireless Protection, An X-

Force's white paper, available at: documents.iss.net/whitepapers/
ActiveWirelessProtection.pdf, September 2002.

[89] Internet Security Systems, Inc., RealSecure, http://www.iss.net/prod/rsds.html, 1997.
[90] Intrusion.com, Intrusion SecureHost, white paper available at:

www.intrusion.com/products/hids.asp, 2003.
[91] J. Ioannidis and S. Bellovin, Implementing Pushback: Router-Based Defense Against

DDoS Attacks, In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, February 2002.

[92] K. Jackson, Intrusion Detection System Product Survey, Los Alamos National
Laboratory Research Report, LA-UR-99-3883, June 1999.

[93] R. Jagannathan, T. Lunt, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H. Javitz, P.
Neumann, A. Tamaru and A. Valdes, System Design Document: Next-Generation
Intrusion Detection Expert System (NIDES). SRI International Technical Report
A007/A008/A009/A011/A012/A014, March 1993.

[94] W. Jansen and P. Mell, Mobile Agents in Intrusion Detection and Response, In
Proceedings of the 12th Annual Canadian Information Technology Security
Symposium, Ottawa, Canada, 2000.

[95] H.S. Javitz and A. Valdes, The SRI IDES Statistical Anomaly Detector, In
Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland,
CA, 1991.

[96] N.D. Jayaram and P.L.R. Morse, Network Security - A Taxonomic View, In
Proceedings of the European Conference on Security and Detection, School of
Computer Science, University of Westminster, UK, Publication No. 437, 28-30, April
1997.

[97] A. Jones and R. Sielken, Computer System Intrusion Detection, University of Virginia
Technical Report, 1999.

[98] M. Joshi, R. Agarwal and V. Kumar, PNrule, Mining Needles in a Haystack:
Classifying Rare Classes via Two-Phase Rule Induction, In Proceedings of the ACM
SIGMOD Conference on Management of Data, Santa Barbara, CA, May 2001.

[99] M. Joshi, R. Agarwal and V. Kumar, Predicting Rare Classes: Can Boosting Make
Any Weak Learner Strong?, In Proceedings of the Eight ACM Conference ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Edmonton, Canada, July 2002.

[100] Y.F. Jou, F. Gong, C. Sargor, S.F. Wu and W.R. Cleaveland, Architecture Design of a
Scalable Intrusion Detection System For The Emerging Network Infrastructure,
MCNC Information Technologies Division, Research Triangle Park, NC 27709
Technical Report CDRL A005, April 1997.

70 Chapter 2

[101] K. Julisch, Mining Alarm Clusters to Improve Alarm Handling Efficiency, In

Proceedings of the 17th Annual Conference on Computer Security Applications, New
Orleans, LA, December 2001.

[102] J. Jung, V. Paxson, A. W. Berger and H. Balakrishnan, Fast Portscan Detection Using
Sequential Hypothesis Testing, In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May, 2004.

[103] K. Kendall, A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems, Massachusetts Institute of Technology Master's Thesis, 1998.

[104] A.D. Keromytis, V. Misra and D. Rubenstein, SoS: Secure Overlay Services, In
Proceedings of the ACM SIGCOMM Conference, Pittsburgh, PA, 61-72, August 2002.

[105] D. Kienzle and M. Elder, Recent Worms. A Survey and Trends, In Proceedings of the
The Workshop on Rapid Malcode (WORM 2003), held in conjunction with the 10th
ACM Conference on Computer and Communications Security, Washington, DC,
October 27, 2003.

[106] G. Kim and E. Spafford, The Design and Implementation of Tripwire: A File System
Integrity Checker, In Proceedings of the ACM Conference on Computer and
Communications Security, COAST, Purdue University, IN, 18-29, November 1994.

[107] E. Knorr and R. Ng, Algorithms for Mining Distance based Outliers in Large Data
Sets, In Proceedings of the Very Large Databases (VLDB) Conference, New York
City, NY, August 1998.

[108] I.V. Krsul, Software Vulnerability Analysis, Purdue University Ph.D. dissertation,
May 1998.

[109] C. Kruegel and T. Toth, Distributed Pattern Detection For Intrusion Detection, In
Proceedings of the Network and Distributed System Security Symposium Conference
Proceedings, Internet Society, Los Angeles, CA, February 2002.

[110] C. Krugel and T. Toth, A Survey on Intrusion Detection Systems, Technical
University of Vienna Technical report, TUV-1841-00-11, 2000.

[111] C. Krugel, T. Toth and E. Kirda, Service Specific Anomaly Detection for Network
Intrusion Detection, In Proceedings of the ACM Symposium on Applied Computing,
Madrid, Spain, March 2002.

[112] S. Kumar, Classification and Detection of Computer Intrusion, Computer Science
Department, Purdue University Ph.D. dissertation, August 1995.

[113] S. Kumar and E. Spafford, An Application of Pattern Matching in Intrusion Detection,
Purdue University Technical Report, 1994.

[114] H. Kvarnstrom, A Survey of Commercial Tools for Intrusion Detection, Chalmers
University of Technology, Göteborg, Sweden Technical Report, 1999.

[115] C. Landwehr, A. Bull, J. McDermott and W. Choi, A Taxonomy of Computer
Program Security Flaws, ACM Computing Surveys, vol. 26, 3, pp. 211-254, September
1994.

[116] T. Lane and C. Brodley, Temporal Sequence Learning and Data Reduction for
Anomaly Detection, ACM Transactions on Information and System Security, vol. 2, 3,
pp. 295-331, 1999.

[117] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava and V. Kumar, A Comparative Study
of Anomaly Detection Schemes in Network Intrusion Detection, In Proceedings of the
Third SIAM International Conference on Data Mining, San Francisco, CA, May 2003.

Intrusion Detection: A Survey 71

[118] A. Lazarevic, J. Srivastava and V. Kumar, Cyber Threat Analysis - A Key Enabling

Technology for the Objective Force (A Case Study in Network Intrusion Detection),
In Proceedings of the IT/C4ISR, 23rd Army Science Conference, Orlando, FL,
December 2002.

[119] W. Lee, S. Stolfo and P. Chan, Patterns from Unix Process Execution Traces for
Intrusion Detection, In Proceedings of the AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, Providence, RI, July 1997.

[120] W. Lee, S. Stolfo and K. Mok, Adaptive Intrusion Detection: A Data Mining
Approach., Artificial Intelligence Review, vol. 14, pp. 533-567, 2001.

[121] W. Lee and S.J. Stolfo, Data Mining Approaches for Intrusion Detection, In
Proceedings of the USENIX Security Symposium, San Antonio, TX, January, 1998.

[122] W. Lee and S.J. Stolfo, A Framework for Constructing Features and Models for
Intrusion Detection Systems., ACM Transactions on Information and System Security,
vol. 3, 4, pp. 227-261, 2000.

[123] W. Lee and D. Xiang, Information-Theoretic Measures for Anomaly Detection, In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May
2001.

[124] G. Liepins and H. Vaccaro, Anomaly Detection Purpose and Framework, In
Proceedings of the 12th National Computer Security Conference, Baltimore, MD,
495-504, October 1989.

[125] G. Liepins and H. Vaccaro, Intrusion Detection: It's Role and Validation, Computers
and Security, pp. 347-355, 1992.

[126] Y.X. Lim, T. Schmoyer, J. Levine and H.L. Owen, Wireless Intrusion Detection and
Response, In Proceedings of the IEEE Workshop on Information Assurance, United
States Military Academy, West Point, NY, June 2003.

[127] J.L Lin, X.S. Wang and S. Jajodia, Abstraction-Based Misuse Detection: High-Level
Specifications and Adaptable Strategies, In Proceedings of the 11th IEEE Computer
Security Foundations Workshop, Rockport, MA, June 1998.

[128] U. Lindqvist and E. Jonsson, How to Systematically Classify Computer Security
Intrusions, IEEE Security and Privacy, pp. 154-163, 1997.

[129] U. Lindqvist and P.A. Porras, Detecting Computer and Network Misuse Through the
Production-Based Expert System Toolset (P-BEST), In Proceedings of the IEEE
Symposium on Security and Privacy, Berkeley, CA, May 1999.

[130] R. Lippmann, The Role of Network Intrusion Detection, In Proceedings of the
Workshop on Network Intrusion Detection, H.E.A.T. Center, Aberdeen, MD, March
19-20, 2002.

[131] R. Lippmann and R. Cunningham, Improving Intrusion Detection Performance Using
Keyword Selection and Neural Networks, Computer Networks, vol. 34, 4, pp. 597-
603, 2000.

[132] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba and K. Das, The 1999 DARPA Off-
Line Intrusion Detection Evaluation, Computer Networks, 2000.

[133] R.P. Lippmann, R.K. Cunningham, D.J. Fried, I. Graf, K.R. Kendall, S.E. Webster
and M.A. Zissman, Results of the DARPA 1998 Offline Intrusion Detection
Evaluation, In Proceedings of the Workshop on Recent Advances in Intrusion
Detection, (RAID-1999), West Lafayette, IN, September, 1999.

[134] J. Lo, Trojan Horse Attacks, www.irchelp.org/irchelp/security/trojan.html, April 2004.

72 Chapter 2

[135] D. Lough, A Taxonomy of Computer Attacks with Applications to Wireless

Networks, Virginia Polytechnic Institute PhD Thesis, April 2001.
[136] T. Lunt, A Survey of Intrusion Detection techniques, Computers & Security, vol. 12,

4, pp. 405-418, June 1993.
[137] T. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.G. Neumann, H.S.

Javitz and A. Valdes, IDES: The Enhanced Prototype - A Real-Time Intrusion-
Detection Expert System, SRI International Technical Report SRI-CSL-88-12.

[138] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P.G. Neumann, H.S. Javitz,
A. Valdes and T.D. Garvey, A Real Time Intrusion Detection Expert System (IDES),
SRI Technical report, 1992.

[139] T.F. Lunt, Real-Time Intrusion Detection, In Proceedings of the Thirty Fourth IEEE
Computer Society International Conference (COMPCON), Intellectual Leverage, San
Francisco, CA, February 1989.

[140] J. Luo, Integrating Fuzzy Logic With Data Mining Methods for Intrusion Detection,
Department of Computer Science, Mississippi State University Master's thesis, 1999.

[141] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson and S. Shenker, Controlling
High Bandwidth Aggregates in The Network, ACM Computer Communication
Review, July 2001.

[142] M. Mahoney and P. Chan, Learning Nonstationary Models of Normal Network Traffic
for Detecting Novel Attacks, In Proceedings of the Eight ACM International
Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 376-385,
July 2002.

[143] S. Manganaris, M. Christensen, D. Serkle and K. Hermiz, A Data Mining Analysis of
RTID Alarms, Computer Networks, vol. 34, 4, October 2000.

[144] D. Marchette, Computer Intrusion Detection and Network Monitoring, A Statistical
Viewpoint. New York, Springer, 2001.

[145] J. Marin, D. Ragsdale and J. Surdu, A Hybrid Approach to Profile Creation and
Intrusion Detection, In Proceedings of the DARPA Information Survivability
Conference and Exposition, Anaheim, CA, June, 2001.

[146] R. Maxion and K. Tan, Anomaly Detection in Embedded Systems, IEEE Transactions
on Computers, vol. 51, 2, pp. 108-120, 2002.

[147] Mazu Profiler™, An Overview, http://www.mazunetworks.com/solutions/
white_papers/download/Mazu_Profiler.pdf, December 2003.

[148] M. Medina, A Layered Framework for Placement of Distributed Intrusion Detection
Devices, In Proceedings of the 21st National Information Systems Security
Conference (NISSC'98), Crystal City, VA, October 1998.

[149] Meier. M. and M. Sobirey, Intrusion Detection Systems List and Bibliography,
http://www-rnks.informatik.tu-cottbus.de/en/security/ids.html,

[150] Metropolitan, Metropolitan Network BBS, Inc., Kaspersky.ch, Computer Virus
Classification, http://www.avp.ch/avpve/classes/classes.stm, 2003.

[151] J. Mirkovic, G. Prier and P. Reiher, Attacking DDoS at the Source, 10th IEEE
International Conference on Network Protocols, November 2002.

[152] J. Mirkovic and P. Reiher, A Taxonomy of DDoS Attacks and Defense Mechanisms,
ACM Computer Communication Review, April 2004.

Intrusion Detection: A Survey 73

[153] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N. Weaver, The Spread

of the Sapphire/Slammer Worm, http://www.cs.berkeley.edu/~nweaver/sapphire/,
2003.

[154] D. Moore, G. M. Voeker and S. Savage, Inferring Internet Denial-of-Service Activity,
USENIX Security Symposium, pp. 9-22, August 2001.

[155] A. Mounji, Languages and Tools for Rule-Based Distributed Intrusion Detection,
Facult es Universitaires Notre-Dame de la Paix, Namur, Belgium Doctor of Science
Thesis, September 1997.

[156] S. Mukkamala, G. Janoski and A. Sung, Intrusion Detection Using Neural Networks
and Support Vector Machines, In Proceedings of the IEEE International Joint
Conference on Neural Networks, Honolulu, HI, May 2002.

[157] S. Mukkamala, A. Sung and A. Abraham, Intrusion Detection Systems Using
Adaptive Regression Splines, In Proceedings of the 1st Indian International
Conference on Artificial Intelligence (IICAI-03), Hyderabad, India, December 2003.

[158] S. Mukkamala, A. Sung and A. Abraham, A Linear Genetic Programming Approach
for Modeling Intrusion, In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC2003), Perth, Australia, December, 2003.

[159] NAGIOS Network Monitoring Tool, www.nagios.org, February 2004.
[160] Nessus Network Security Scanner, http://www.nessus.org/, 2004.
[161] Netflow Tools, www.netflow.com,
[162] NetForensics®, Security Information Management, http://www.netforensics.com/,
[163] Network Associates, Inc., Cybercop server, http://www.nai.com/products/security/

cybercopsvr/index.asp, 1998.
[164] P. Neumann and P. Porras, Experience with Emerald to Date, In Proceedings of the

First Usenix Workshop on Intrusion Detection and Network Monitoring, Santa Clara,
CA, 1999.

[165] P.G. Neumann, Computer Related Risks, The ACM Press, a division of the
Association for Computing Machinery, Inc. (ACM), 1995.

[166] P.G. Neumann and D.B. Parker, A Summary of Computer Misuse Techniques, In
Proceedings of the 12th National Computer Security Conference, 396-407, 1989.

[167] NFR Network Intrusion Detection, http://www.nfr.com/products/NID/, 2001.
[168] P. Ning, Y. Cui and D. Reeves, Constructing Attack Scenarios through Correlation of

Intrusion Alerts, In Proceedings of the 9th ACM Conference on Computer &
Communications Security, Washington D.C., 245-254, November 2002.

[169] S. Nomad, Distributed Denial of Service Defense Tactics, http://razor.bindview.com/
publish/papers/strategies.html, 2/14/2000.

[170] S. Northcutt, SHADOW, http://www.nswc.navy.mil/ISSEC/CID/, 1998.
[171] K. P. Park and H. Lee, On the Effectiveness of Router-Based Packet Filtering for

Distributed Dos Attack Prevention in Power-Law Internets, In Proceedings of the
ACM SIGCOMM Conference, San Diego, CA, August 2001.

[172] D.B. Parker, Computer Abuse Perpetrators and Vulnerabilities of Computer Systems,
Stanford Research Institute, Menlo Park, CA 94025 Technical Report, December
1975.

[173] D.B. Parker, COMPUTER CRIME Criminal Justice Resource Manual, U.S.
Department of Justice National Institute of Justice Office of Justice Programs,

74 Chapter 2

Prepared by SRI International under contract to Abt Associates for National Institute
of Justice, U.S. Department of Justice, contract #OJP-86-C-002., 1989.

[174] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, January 1998.

[175] Pcap, libpcap, winpcap, libdnet, and libnet Applications and Resources,
http://www.stearns.org/doc/pcap-apps.html, 2004.

[176] T. Peng, C. Leckie and K. Ramamohanarao, Defending Against Distributed Denial of
Service Attack Using Selective Pushback, In Proceedings of the Ninth IEEE
International Conference on Telecommunications (ICT 2002), Beijing, China, June
2002.

[177] P. Porras, D. Schanckernberg, S. Staniford-Chen, M. Stillman and F. Wu, Common
Intrusion Detection Framework Architecture, http://www.gidos.org/drafts/
architecture.txt, 2001.

[178] P.A. Porras and R.A. Kemmerer, Penetration State Transition Analysis: A Rule-Based
Intrusion Detection Approach, In Proceedings of the Eighth Annual Computer
Security Applications Conference, San Antonio, TX, December, 1992.

[179] P.A. Porras and P.G. Neumann, EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances, In Proceedings of the 20th National Information
Systems Security Conference, Baltimore, MD., 353-365, October, 1997.

[180] P.A. Porras and A. Valdes, Live Traffic Analysis of TCP/IP Gateways, In Proceedings
of the ISOC Symposium on Network and Distributed System Security (NDSS'98), San
Diego, CA, March 1998.

[181] D. Powell and R. Stroud, Conceptual Model and Architecture, Deliverable D2, Project
MAFTIA IST-1999-11583, IBM Zurich Research Laboratory Research Report RZ
3377, Nov. 2001.

[182] Proventia™, Security's Silver Bullet? An Internet Security Systems White Paper,
available at:, http://documents.iss.net/whitepapers/ProventiaVision.pdf, 2003.

[183] F. Provost and T. Fawcett, Robust Classification for Imprecise Environments,
Machine Learning, vol. 42, 3, pp. 203-231, 2001.

[184] T.H. Ptacek and T.N. Newsham, Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection, Secure Networks, Inc Technical Report, January 1998.

[185] Michael Puldy, Lessons Learned in the Implementation of a Multi-Location Network
Based Real Time Intrusion Detection System, In Proceedings of the Workshop on
Recent Advances in Intrusion Detection (RAID 98), Louvain-la-Neuve, Belgium,
September 1998.

[186] X. Qin and W. Lee, Statistical Causality Analysis of INFOSEC Alert Data, In
Proceedings of the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), Pittsburgh, PA, September 2003.

[187] S. Ramaswamy, R. Rastogi and K. Shim, Efficient Algorithms for Mining Outliers
from Large Data Sets, In Proceedings of the ACM SIGMOD Conference, Dallas, TX,
May 2000.

[188] M.J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth and Wall E.,
Implementing a Generalized Tool for Network Monitoring, In Proceedings of the
Eleventh Systems Administration Conference (LISA'97), San Diego, CA, October
1997.

Intrusion Detection: A Survey 75

[189] T. Richardson, The Development of a Database Taxonomy of Vulnerabilities to

Support the Study of Denial of Service Attacks., Iowa State University PhD Thesis,
2001.

[190] T. Richardson, J. Davis, D. Jacobson, J. Dickerson and L. Elkin, Developing a
Database of Vulnerabilities to Support the Study of Denial of Service Attacks, IEEE
Symposium on Security and Privacy, May 1999.

[191] S. Robertson, E. Siegel, M. Miller and S. Stolfo, Surveillance Detection in High
Bandwidth Environments, In Proceedings of the 3rd DARPA Information
Survivability Conference and Exposition (DISCEX 2003), Washington DC, April
2003.

[192] P. Rolin, L. Toutain and S. Gombault, Network Security Probe, In Proceedings of the
2nd ACM Conference on Computer and Communication Security (ACM CCS'94),
Fairfax, VA, 229-240, November 1994.

[193] J. Ryan, M-J. Lin and R. Miikkulainen, Intrusion Detection with Neural Networks, In
Proceedings of the AAAI Workshop on AI Approaches to Fraud Detection and Risk
Management, Providence, RI, 72-77, July 1997.

[194] D. Safford, D. Schales and D. Hess, The Tamu Security Package: An Ongoing
Response to Internet Intruders in an Academic Environment, In Proceedings of the
Fourth USENIX Security Symposium, Santa Clara, CA, 91-118, October 1993.

[195] S. Savage, D. Wetherall, A. Karlin and T. Anderson, Practical Network Support for IP
Traceback, In Proceedings of the ACM SIGCOMM Conference, Stockholm, Sweden,
295-306, August 2000.

[196] M. Schultz, E. Eskin, E. Zadok and S. Stolfo, Data Mining Methods for Detection of
New Malicious Executables, In Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, 38-49, May 2001.

[197] Secure Networks, Inc., Ballista Security Auditing System, http://
www.securenetworks.com/ballista/ballista.html, 1997.

[198] SecurityTechNet.com Intrusion Detection Links, http://cnscenter.future.co.kr/security/
ids.html, 2004.

[199] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou,
Specification Based Anomaly Detection: A New Approach for Detecting Network
Intrusions, In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Washington, D.C., November 2002.

[200] A. Seleznyov and S. Puuronen, HIDSUR: A Hybrid Intrusion Detection System Based
on Real-Time User Recognition, In Proceedings of the 11th International Workshop
on Database and Expert Systems Applications (DEXA'00), Greenwich, London, UK,
September, 2000.

[201] K. Sequeira and M. Zaki, ADMIT: Anomaly-base Data Mining for Intrusions, In
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, July 2002.

[202] C. Sinclair, L. Pierce and S. Matzner, An Application of Machine Learning to
Network Intrusion Detection, In Proceedings of the 15th Annual Computer Security
Applications Conference, Phoenix, AZ, 371-377, December 1999.

[203] S. Singh and Kandula S., Argus: A Distributed Network Intrusion Detection System,
Indian Institute of Technology Kanpur, Department of Computer Science &

76 Chapter 2

Engineering, available at: http://www.cse.iitk.ac.in/research/btp2001/Argus.html
Technical Report, 2001.

[204] S. Smaha, Haystack: An Intrusion Detection System, In Proceedings of the Fourth
Aerospace Computer Security Applications Conference, 37-44, October 1988.

[205] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, T. Heberlein, C. Ho, K.N. Levitt, B.
Mukherjee, S.E. Smaha, T. Grance, D.M. Teal and D. Mansur, DIDS (Distributed
Intrusion Detection System) Motivation, Architecture, and an Early Prototype, In
Proceedings of the 14th National Computer Security Conference, Washington, DC,
167-176, October 1991.

[206] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E Jones, F. Tchakountio, S.T. Kent and
W.T. Strayer, Hash-Based IP Traceback, In Proceedings of the ACM SIGCOMM
Conference, San Diego, CA, 3-14, August 2001.

[207] SNORT Intrusion Detection System, www.snort.org, 2004.
[208] Snort-Wireless Intrusion Detection, http://snort-wireless.org, 2003.
[209] A. Somayaji, S. Hofmeyr and S. Forrest, Principles of a computer immune system, In

Proceedings of the New Security Paradigms Workshop, Langdale, Cumbria UK, 1997.
[210] Sourcefire, Sourcefire Real-time Network Awareness™ (RNA), http://

www.sourcefire.com/products/rna.html, 2004.
[211] E. Spafford and D. Zamboni, Intrusion Detection Using Autonomous Agents,

Computer Networks, vol. 34, pp. 547-570, 2000.
[212] P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre, J. Darzentas, C. Gigante, D.

Karagiannis, P. Kess, H. Putkonen and T. Spyrou, SECURENET: A Network-
Oriented Intelligent Intrusion Prevention And Detection System., Network Security
Journal, vol. 1, 1, November 1994.

[213] T. Spyrou and J. Darzentas, Intention Modelling: Approximating Computer User
Intentions for Detection and Prediction of Intrusions, In Proceedings of the
Information Systems Security, Samos, Greece, 319-335, May 1996.

[214] S. Staniford, J. Hoagland and J. McAlerney, Practical Automated Detection of
Stealthy Portscans, Journal of Computer Security, vol. 10, 1-2, pp. 105-136, 2002.

[215] S. Staniford, V. Paxson and N. Weaver, How to Own the Internet in Your Spare Time,
In Proceedings of the USENIX Security Symposium, San Francisco, CA, 149-167,
August 2002.

[216] S. Staniford-Chen, C.R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C.
Wee, R. Yip and D. Zerkle, GrIDS - A Graph Based Intrusion Detection System for
Large Networks, In Proceedings of the 19th National Information Systems Security
Conference, Baltimore, MD.

[217] S. Staniford-Chen, B. Tung, P. Porras, C. Kahn, D. Schnackenberg, R. Feiertag and
M. Stillman, The Common Intrusion Detection Framework - Data Formats, Internet
Draft Draft-ietf-cidf-data-formats-00.txt, March 1998.

[218] R. Stone, Centertrack: An IP Overlay Network for Tracking DoS Floods, In
Proceedings of the USENIX Security Symposium, Denver, CO, 199-212, July 2000.

[219] SunSHIELD Basic Security Module Guide, http://docs.sun.com/db/doc/802-
1965?q=BSM, 1995.

[220] Symantec Intruder Alert, http://enterprisesecurity.symantec.com/products/
products.cfm?ProductID=171&EID=0, May 2004.

Intrusion Detection: A Survey 77

[221] Symantec Security Response, W32.ExploreZip.L.Worm, http://

securityresponse.symantec.com/avcenter/venc/data/w32.explorezip.l.worm.html,
January 2003.

[222] System Detection, Anomaly Detection: The Antura Difference, http://
www.sysd.com/library/anomaly.pdf, 2003.

[223] Talisker's Network Security Resource, http://www.networkintrusion.co.uk/ids.htm,
[224] TCPDUMP public repository, www.tcpdump.org,
[225] S. Templeton and K. Levit, A Requires/Provides Model for Computer Attacks, In

Proceedings of the Workshop on New Security Paradigms, Ballycotton, Ireland, 2000.
[226] B. Tod, Distributed Denial of Service Attacks, OVEN Digital,

http://www.linuxsecurity.com/resource_files/intrusion_detection/ddos-faq.html, 2000.
[227] A. Valdes, Detecting Novel Scans Through Pattern Anomaly Detection, In

Proceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEX-III 2003), Washington, D.C., April 2003.

[228] A. Valdes and K. Skinner, Adaptive, Model-based Monitoring for Cyber Attack
Detection, In Proceedings of the Recent Advances in Intrusion Detection (RAID
2000), Toulouse, France, 80-92, October 2000.

[229] A. Valdes and K. Skinner, Probabilistic Alert Correlation, In Proceedings of the
Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, October 2001.

[230] J. Van Ryan, SAIC's Center for Information Security, Technology Releases CMDS
Version 3.5, http://www.saic.com/news/may98/news05-15-98.html, 1998.

[231] Vicomsoft White Paper, Firewall White Paper - What Different Types of Firewalls are
There?, available at:, http://www.firewall-software.com/firewall_faqs/
types_of_firewall.html, 2003.

[232] G. Vigna and R.A. Kemmerer, Netstat: A Network-Based Intrusion Detection
Approach, Journal of Computer Security, vol. 7, 1, pp. 37-71, 1999.

[233] D. Vincenzetti and M. Cotrozzi, ATP - Anti Tampering Program, In Proceedings of
the Fourth USENIX Security Symposium, Santa Clara, CA, 79-89, October 1993.

[234] D. Wagner and D. Dean, Intrusion Detection via Static Analysis, In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[235] H. Wang, D. Zhang and K. Shin, Detecting SYN Flooding Attacks, In Proceedings of
the IEEE Infocom, New York, NY, 000-001, June 2002.

[236] N. Weaver, V. Paxson, S. Staniford and R. Cunningham, A Taxonomy of Computer
Worms, In Proceedings of the The Workshop on Rapid Malcode (WORM 2003), held
in conjunction with the 10th ACM Conference on Computer and Communications
Security, Washington, DC, October 27, 2003.

[237] A. Wespi, M. Dacier and H. Debar, Intrusion Detection Using Variable-Length Audit
Trail Patterns, In Proceedings of the Recent Advances in Intrusion Detection (RAID-
2000), Toulouse, FR, 110-129, October 2000.

[238] WheelGroup Corporation, Cisco Secure Intrusion Detection System,
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/csids/index.htm, 2004.

[239] WIDZ Wireless Intrusion Detection System, www.loud-fat-bloke.co.uk/articles/
widz_design.pdf.

[240] D. Winer, Clay Shirky on P2P, davenet.scripting.com/2000/11/15/clayShirkyOnP2p,
November 2000.

78 Chapter 2

[241] J.R. Winkler, A Unix Prototype for Intrusion and Anomaly Detection in Secure

Networks, In Proceedings of the 13th National Computer Security Conference,
Baltimore, MD, October 1990.

[242] J.R. Winkler and L.C. Landry, Intrusion and Anomaly Detection, ISOA Update, In
Proceedings of the 15th National Computer Security Conference, Baltimore, MD,
October 1992.

[243] K. Yamanishi and J. Takeuchi, Discovering Outlier Filtering Rules from Unlabeled
Data, In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, August 2001.

[244] K. Yamanishi, J. Takeuchi, G. Williams and P. Milne, On-line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms, In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Boston, MA, 320-324, August 2000.

[245] N. Ye and Q. Chen, An Anomaly Detection Technique Based on a Chi-Square
Statistic for Detecting Intrusions Into Information Systems, Quality and Reliability
Engineering International, vol. 17, 2, pp. 105-112, 2001.

[246] N. Ye and X. Li, A Scalable Clustering Technique for Intrusion Signature
Recognition, In Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY, June, 2001.

[247] Z. Zhang, J. Li, C.N. Manikopoulos, J. Jorgenson and J. Ucles, HIDE: A Hierarchical
Network Intrusion Detection System Using Statistical Preprocessing and Neural
Network Classification, In Proceedings of the IEEE Workshop on Information
Assurance and Security, United States Military Academy, West Point, NY, June 2001.

[248] E. Zwicky, S. Cooper, D. Chapman and D. Ru, Building Internet Firewalls, 2nd
Edition ed, O'Reilly and Associates, 2000.

