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Abstract: This chapter provides the overview of the state of the art in intrusion detection 
research. Intrusion detection systems are software and/or hardware 
components that monitor computer systems and analyze events occurring in 
them for signs of intrusions. Due to widespread diversity and complexity of 
computer infrastructures, it is difficult to provide a completely secure 
computer system. Therefore, there are numerous security systems and 
intrusion detection systems that address different aspects of computer security. 
This chapter first provides taxonomy of computer intrusions, along with brief 
descriptions of major computer attack categories. Second, a common 
architecture of intrusion detection systems and their basic characteristics are 
presented. Third, taxonomy of intrusion detection systems based on five 
criteria (information source, analysis strategy, time aspects, architecture, 
response) is given. Finally, intrusion detection systems are classified according 
to each of these categories and the most representative research prototypes are 
briefly described.  

Keywords: intrusion detection, taxonomy, intrusion detection systems, data mining. 

1. INTRODUCTION 

With rapidly growing adoption of the Internet, networked computer 
systems are playing an increasingly vital role in our society. Along with the 
tremendous benefits that the Internet brings, it also has its dark side. 
Specifically, new threats are created everyday by individuals and 
organizations that attack and misuse computer systems. As reported by the 
Computer Emergency Response Team/Coordination Center (CERT/CC) 
[37], the number of computer attacks has increased exponentially in the past 
few years (Figure 2-1). In addition, the severity and sophistication of the 
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attacks is also growing (Figure 2-2). For example, Slammer/Sapphire Worm 
was the fastest computer worm in history. As it began spreading throughout 
the Internet, it doubled in size every 8.5 seconds and infected at least 75,000 
hosts causing network outages and unforeseen consequences such as 
canceled airline flights, interference with elections, and ATM failures [153]. 
Earlier, the intruders needed profound understanding of computers and 
networks to launch attacks. However, today almost anyone can exploit the 
vulnerabilities in a computer system due to the wide availability of attack 
tools (Figure 2-2). 
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Figure 2-1. Growth rate of cyber incidents reported to Computer Emergency Response 
Team/Coordination Center (CERT/CC) 

The conventional approach for securing computer systems is to design 
security mechanisms, such as firewalls, authentication mechanisms, Virtual 
Private Networks (VPN), that create a protective “shield” around them. 
However, such security mechanisms almost always have inevitable 
vulnerabilities and they are usually not sufficient to ensure complete security 
of the infrastructure and to ward off attacks that are continually being 
adapted to exploit the system’s weaknesses often caused by careless design 
and implementation flaws. This has created the need for security technology 
that can monitor systems and identify computer attacks. This component is 
called intrusion detection and is a complementary to conventional security 
mechanisms. 
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Figure 2-2. Attack sophistication vs. Intruder technical knowledge (source: 
http://www.cert.org/present/internet-security-trends) 

The National Institute of Standards and Technology classifies intrusion 
detection [15] as “the process of monitoring the events occurring in a 
computer system or network and analyzing them for signs of intrusions, 
defined as attempts to compromise the confidentiality, integrity, availability, 
or to bypass the security mechanisms of a computer or network".  

Intrusions in computer systems are usually caused by attackers accessing 
the systems from the Internet, or by authorized users of the systems who 
attempt to misuse the privileges given to them and/or to gain additional 
privileges for which they are not authorized. An Intrusion Detection System 
(IDS) can be defined as a combination of software and/or hardware 
components that monitors computer systems and raises an alarm when an 
intrusion happens. 

This chapter provides an overview of the current status of research in 
intrusion detection. It first provides an overview of different types of 
computer intrusions, and then introduces a more detailed taxonomy of 
intrusion detection systems with an overview of important research in the 
field. Both taxonomies are illustrated and supported with several well known 
examples of computer attacks and intrusion detection techniques. Several 
surveys in the intrusion detection have been published in the past [4, 13, 31, 
55, 92, 97, 110, 114, 136]. However, the growth of the field has been very 
rapid, and many new ideas have since emerged. The survey in this chapter 
attempts to build upon these earlier surveys, but is more focused on intrusion 
detection projects proposed in academic institutions and research 
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organizations than on commercial intrusion detection systems, primarily due 
to the lack of detailed technical information available on commercial 
products. The reader interested in commercial IDSs is referred to a survey of 
IDS products [92] and to web sites that maintain lists of such systems [57, 
76]. 

2. TAXONOMY OF COMPUTER ATTACKS AND 
INTRUSIONS  

Research community in computer security has developed numerous 
definitions of computer attacks and intrusions. One of the most popular 
definitions for intrusion [181] is that it represents a “malicious, externally 
induced, operational fault”. Computer intrusions and attacks are often 
considered synonymous. However, other definitions of the word “attack” 
that differentiate it from intrusion have also been proposed in the intrusion 
detection literature. For example, a system can be attacked (either from the 
outside or the inside), but the defensive “shield” around the system or 
resource targeted by the attack may be sufficiently effective to prevent 
intrusion. Therefore, we may say that an attack is an intrusion attempt, and 
an intrusion results from an attack that has been (at least partially) successful 
[181]. 

There have been numerous attempts to categorize and classify computer 
attacks and intrusions [11, 112, 115, 128, 135]. Some of these attempts have 
provided formally developed taxonomies and specified a certain set of 
properties that the taxonomy should satisfy, e.g., they should be: (i) logical 
and intuitive [84], (ii) based on solid technical details [23], (iii) 
comprehensible [128], (iv) complete [5], (v) exhaustive [84, 128], (vi) 
mutually exclusive [84, 128], (vii) objective [108], (viii) repeatable [84, 
108], and (ix) useful [84, 128]. For more details on these characteristics, the 
reader is referred to the above publications, as well as to Lough’s PhD thesis 
[135]. 

Initial work in categorizing different aspects of computer security 
focused on weaknesses in computer systems and design flaws in operating 
systems [12], as well as functional vulnerabilities and computer abuse 
methods [172]. Several taxonomies that were developed later mainly focused 
on two issues: (i) categorization of computer misuse (i.e. attacks) and (ii) 
categorization of the people trying to get unauthorized access to computers 
(perpetrators), and the objectives and results of these attempts. 

In one of earlier attempts for describing types of computer attacks, 
Neumann and Parker developed the SRI Computer Abuse Methods Model 
[165, 166, 173], which outlines about 3000 attack cases and computer 
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misuses collected over nearly twenty years and categorizes them into the 
nine-level tree of attack classes. Lindqvist and Jonsson [128] extended the 
Neumann and Parker model by expanding several attack categories 
(categories 5, 6 and 7 from original nine-level tree of attacks) and by 
introducing the concept of dimension, which represents a basis of the attack 
classification. They specified two interesting criteria for system owners to 
perform attack classification, namely “intrusion techniques” and “intrusion 
results”, and they called these criteria dimensions. Jayaram and Morse [96] 
also developed a taxonomy of security threats to networks, in which they 
provide five “classes of security threats” and two “classes of security 
mechanisms”. Another significant work in computer attack taxonomies is 
performed by the CERIAS group at Purdue University [11, 108, 112]. Their 
first attempt [112] provided a classification of computer intrusions on Unix 
systems using system logs and colored Petri nets. Aslam [11] extended this 
work by providing a taxonomy of security flaws in Unix systems. Finally, 
Krsul [108] reorganized both previous taxonomies and provided a more 
complex taxonomy of computer attacks that contains four main categories 
(design, environmental assumptions, coding faults and configuration errors). 
Richardson [189, 190] extended these taxonomies by developing a database 
of vulnerabilities to help study of the problem of Denial of Service (DoS) 
attacks. The database was populated with 630 attacks from popular sites that 
report computer incidents. These attacks were cataloged into the categories 
that correspond to extensions from Aslam’s taxonomy of security flaws [11] 
and Krsul’s taxonomy of computer attacks [108]. Within the DARPA 
intrusion detection project, Kendall [103] developed a similar database of 
computer attacks that exist in DARPA intrusion detection evaluation data 
sets [52]. An excellent overview of these techniques as well as their 
extensions is provided in Lough’s PhD thesis [135]. 

Anderson presented one of the first categorizations of attack perpetrators 
according to their types. He used a 2x2 table to classify computer threats into 
three groups (external penetration, internal penetration and misfeasance), 
based on whether or not penetrators are authorized to use the computer 
system or to use particular resources in the system [7]. One of the most 
influential taxonomies in categorizing attack perpetrators is the classification 
of types of attackers, used tools, access information, attack consequences 
and the objectives of the attacks, performed by CERT [84]. Researchers at 
Sandia National Laboratories [45] proposed a very similar taxonomy, with a 
few added or merged categories.  

The taxonomy we provide in this survey is more general, and is obtained 
by examining and combining existing categorizations and taxonomies of 
host and network attacks published in the intrusion detection literature, and 
by revealing common characteristics among them. In previously published 
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taxonomies, categories used in classification of attacks were usually either a 
cause of a vulnerability or the result (i.e., effect) of a vulnerability. In the 
taxonomy proposed here, we use traditional cause of vulnerability to specify 
the following categories of attacks: 
• Attack type 
• Number of network connections involved in the attack 
• Source of the attack 
• Environment 
• Automation level 

Attack type. The most common criterion for classifying computer 
attacks and intrusions in the literature is according to the attack type [84, 
103]. In this chapter, we categorize computer attacks into the following 
classes: 
– Denial of Service (DoS) attacks. These attacks attempt to “shut down a 

network, computer, or process; or otherwise deny the use of resources or 
services to authorized users” [144]. There are two types of DoS attacks: 
(i) operating system attacks, which target bugs in specific operating 
systems and can be fixed with patches; and (ii) networking attacks, which 
exploit inherent limitations of networking protocols and infrastructures. 
An example of operating system attack is teardrop, in which an attacker 
exploits a vulnerability of the TCP/IP fragmentation re-assembly code 
that do not properly handle overlapping IP fragments by sending a series 
of overlapping packets that are fragmented. Typical example of 
networking DoS attack is a “SYN flood” attack, which takes advantage 
of three-way handshake for establishing a connection. In this attack, 
attacker establishes a large number of “half-open” connections using IP 
spoofing. The attacker first sends SYN packets with the spoofed (faked) 
IP address to the victim in order to establish a connection. The victim 
creates a record in a data structure and responds with SYN/ACK message 
to the spoofed IP address, but it never receives the final acknowledgment 
message ACK for establishing the connection, since the spoofed IP 
addresses are unreachable or unable to respond to the SYN/ACK 
messages. Although the record from the data structure is freed after a 
time out period, the attacker attempts to generate sufficiently large 
number of “half-open” connections to overflow the data structure that 
may lead to a segmentation fault or locking up the computer. Other 
examples of DoS attacks include disrupting connections between 
machines thus preventing access to a service, preventing particular 
individuals from accessing a service, disrupting service to a specific 
system or person, etc. In distributed DoS (DDoS) attack, which is an 
advanced variation of DoS attack, multiple machines are deployed to 
attain this goal. DoS and DDoS attacks have posed an increasing threat to 
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the Internet, and techniques to thwart them have become an active 
research area [151, 152, 154, 169, 171, 176, 226]. Researchers that 
analyze DoS attacks have focused on two main problems: (i) early 
detection mechanisms and identification of ongoing DoS activities [41, 
75, 218, 235]; and (ii) response mechanisms for alleviating the effect of 
DoS attacks (e.g. damage caused by the attack). Response mechanisms 
include identifying the origin of the attack using various traceback 
techniques [27, 91, 195, 206] and slowing down the attack and reducing 
its intensity [141, 151, 248] by blocking attack packets. In addition to 
these two main approaches, some systems use measures to suppress DoS 
attacks. For example, CenterTrack [218] is an overlay network that uses 
selective rerouting to trace the entrance points of large flooding attack, 
while SOS (Secure Overlay Services) [104] employs a combination of 
“secure overlay tunneling, routing via consistent hashing, and filtering” 
to proactively prevent large flooding DoS attacks. 

– Probing (surveillance, scanning). These attacks scan the networks to 
identify valid IP addresses (Figure 2-3) and to collect information about 
them (e.g. what services they offer, operating system used). Very often, 
this information provides an attacker with the list of potential 
vulnerabilities that can later be used to perform an attack against selected 
machines and services. Examples of probing attacks include IPsweep 
(scanning the network computers for a service on a specific port of 
interest), portsweep (scanning through many ports to determine which 
services are supported on a single host), nmap (tool for network 
mapping), etc. These attacks are probably the most common ones, and 
are usually precursor to other attacks. The existing scan detection 
schemes essentially look for IP addresses that make more than N 
connections in T seconds. These schemes are very good at picking out 
fast and disperse noisy scans. Unfortunately, tools based on these 
techniques are quite inefficient at detecting slow/stealthy scans or scans 
targeted specifically at the monitored enterprise - the type of scans that 
analysts would really be interested in. Stealthy scans can be defined as 
scans that would normally not trigger typical scan alert technology. Due 
to these reasons, sophisticated adversaries typically attempt to adjust their 
scans by reducing the frequency of their transmissions in order to avoid 
detection. For detecting stealthy scans, there are a few recently proposed 
more sophisticated technique based on collecting various statistics [62, 
102, 147, 191, 214, 222]. 
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Figure 2-3. Typical scanning activity 

– Compromises. These attacks use known vulnerabilities such as buffer 
overflows [38] and weak security points for breaking into the system and 
gaining privileged access to hosts. Depending upon the source of the 
attack (outside attack vs. inside attack), the compromises can be further 
split into the following two categories: 

 R2L (Remote to Local) attacks, where an attacker who has the ability 
to send packets to a machine over a network (but does not have an 
account on that machine), gains access (either as a user or as the 
root) to the machine. In most R2L attacks, the attacker breaks into 
the computer system via the Internet. Typical examples of R2L 
attacks include guessing passwords (e.g. guest and dictionary 
attacks) and gaining access to computers by exploiting software 
vulnerability (e.g. phf attack, which exploits the vulnerability of the 
phf program that allows remote users to run arbitrary commands on 
the server). 

 U2R (User to Root) attacks, where an attacker who has an account 
on a computer system is able to misuse/elevate her or his privileges 
by exploiting a vulnerability in computer mechanisms, a bug in the 
operating system or in a program that is installed on the system. 
Unlike R2L attacks, where the hacker breaks into the system from 
the outside, in U2R compromise, the local user/attacker is already in 
the system and typically becomes a root or a user with higher 
privileges. The most common U2R attack is buffer overflow, in 
which the attacker exploits the programming error and attempts to 
store more data into a buffer that is located on an execution stack.  
Since buffers are created to contain a specific amount of data, the 
additional information used by the attacker can overflow into 
adjacent buffers, corrupting or overwriting the valid data held in 
them. This data may contain codes designed to trigger specific 
actions, such as damaging user’s files or providing the user with root 
access. Many approaches have recently been proposed for detection 
and prevention of buffer overflow attacks [49, 71], due to increased 
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interest in them. It is important to note that buffer overflow attacks 
can also belong to R2L attacks, where remote users attempts to 
compromise the integrity of target computer. For example, a 
vulnerability discovered in Microsoft Outlook and Outlook Express 
in July 2000 [35] allowed the attackers to simply send an e-mail 
message  and to overflow the specific areas with superfluous data, 
which allowed them to execute whatever type of code they desired 
on the recipient's computers. 

- Viruses/Worms/Trojan horses are programs that replicate on host 
machines and propagate through a network. 
 Viruses are programs that reproduce themselves by attaching them to 

other programs and infecting them. They can cause considerable 
damage (e.g. erase files on the hard disk) or they may only do some 
harmless but annoying tricks (e.g. display some funny messages on 
the computer screen). Viruses typically need human interaction (e.g. 
trading files on a floppy or opening e-mail attachments) for 
replication and spreading to other computers. One of the most well 
known virus examples is Michelangelo virus that infects the hard 
disk’s master boot record and activates a destructive code on March 
6, which is Michelangelo's birthday. There are various types of 
viruses, and classifying them is not easy as many viruses have 
multiple characteristics and may fall into multiple categories. The 
most common virus classification is according to the environment, 
operating system, different algorithms of work and destructive 
capabilities [150], although there are other categorizations based on 
what and how viruses infect [48, 87]. 

 Worms are self-replicating programs that aggressively spread 
through a network, by taking advantage of automatic packet sending 
and receiving features found on many computers. Worms can be 
organized into several categories [105, 215, 236]: 
• traditional worms (e.g. Slammer [37]) usually use direct 

network connections to spread through the system and do not 
require any user interaction. 

• e-mail (and other client application) worms, (e.g. Melissa worm 
[34]) infect other hosts on the network (Internet) by exploiting 
user’s e-mail capabilities or utilizing other client applications 
(e.g. ICQ – “I seek you”). 

• windows file sharing worms (e.g. ExploreZip [221]) replicate 
themselves by utilizing MS Windows peer-to peer service, 
which is activated every time a networking device is detected in 
the system. This type of a worm very often occurs in 
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combination with other attacks, such as MS-DOS and Windows 
viruses. 

• hybrid worms (e.g. Nimda [36]) typically exploit multiple 
vulnerabilities that fall into different categories specified above. 
For example, Nimda used many different propagation 
techniques to spread (e-mail, shared network drives and 
scanning for backdoors opened by the Code Red II and Sadmind 
worms). Success of Nimda demonstrated that e-mail and http 
traffic are effective ways to penetrate the network system, and 
that the file sharing is quite successful in replicating within the 
system [236]. 

It is important to note that some of the worms that appeared recently 
have also been used to launch DoS attacks [83]. For example, the 
erkms and li0n worms were used to deploy DDoS tools via BIND 
vulnerabilities [83], while Code Red was used to launch TCP SYN 
DoS attacks [83]. However, traditional DoS attacks typically target a 
single organization, while worms (e.g. SoBig.F worm) typically 
affect a broad range of organizations. Over the last few years, many 
DoS attacks have gradually mutated and merged with more 
advanced worms and viruses (e.g. Blaster worm in August 2003). 
Analysts also expect that in the future DoS attacks will be more 
often part of worm payloads [83]. 

- Trojan horses are defined as "malicious, security-breaking programs” 
that are disguised as something benign [134]. For example, the user may 
download a file that looks like a free game, but when the program is 
executed, it may erase all the files on the computer. Victims typically 
download Trojan horses from an archive on the Internet or receive them 
via peer-to-peer file exchange using IRC/instant messaging/Kazaa etc. 
Some actual examples include Silk Rope and Saran Wrap.  

Many people use terms like Trojan horse, viruses and worms 
interchangeably since it is not easy to make clear distinction between them. 
For example, “Love Bug" is at the same time a virus, worm, and Trojan 
horse. It is a trojan horse since it pretends to be a love letter but it is a 
harmful program. It is a virus because it infects all the image files on the 
disk, turning them into new Trojan horses. Finally, it s also a worm since it 
propagates itself over the Internet by hiding in trojans that it sends out using 
peoples’ email address book, IRC client, etc. 

Number of network connections involved in an attack. Attacks can be 
classified according to the number of network connections involved in the 
attack: 
– Attacks that involve multiple network connections. Typical examples of 

such attacks are DoS, probing and worms (Figure 2-3). 
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– Attacks that involve a single or very few network connections. Typical 

attacks in this category usually cause compromises of the computer 
system (e.g. buffer overflow). 
Source of the attack. Computer attacks may be launched from a single 

location (single source attacks) or from several different locations 
(distributed/coordinated attacks). Most of the attacks typically originate 
from a single location (e.g. simple scanning), but in the case of large 
distributed DoS attacks or other organized attacks, multiple source locations 
may participate in the attack. In addition, very often distributed/coordinated 
attacks are targeted not only to a single computer, but also to multiple 
destinations. Detecting such distributed attacks typically requires the 
analysis and correlation of network data from several sites. 

Environment. Attacks may be categorized according to the environment 
where they occur: 
– Intrusions on the host machine are intrusions that occur on a specific 

machine, which may not even be connected to the network. These attacks 
are usually detected by investigating the system information (e.g. system 
commands, system logs). The identity of the user that performs an attack 
in this case is typically associated with the username, and is therefore 
easier to discover. 

– Network intrusions are intrusions that occur via computer networks 
usually from outside the organization. Detection of such intrusions is 
performed by analyzing network traffic data (e.g. network flows, 
tcpdump data). However, such analysis often cannot reveal the precise 
identity of the attackers, since there is typically no direct association 
between network connections and a real user. 

– Intrusions in a P2P environment are intrusions that occur in a system 
where connected computers act as peers on the Internet. Unlike standard 
“client/server” network architectures, in P2P environment, the computers 
have equivalent capabilities and responsibilities and do not have fixed IP 
address. They are typically located at “the edges of the Internet” [240], 
and actually disconnected from the DNS systems. Although P2P file 
sharing applications can increase productivity of enterprise networks, 
they can also introduce vulnerabilities in them, since they enable users to 
download executable codes that can introduce rogue or untraceable 
"backdoor" applications on users' machines and jeopardize enterprise 
network security. 

– Intrusions in wireless networks are intrusions that occur between 
computers connected through wireless network. Detection of attacks in 
wireless networks is based on analyzing information about the 
connections in wireless networks, which is typically collected at wireless 
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access points [126]. In general, security threats in wireless networks can 
be categorized into: 

 eavesdropping, when intruder only listens for the data; 
 intrusions, when intruder attempts to access or to modify the data; 
 communication hijacking, when a rogue node captures the channel, 
poses as a rogue wireless access point and attracts mobile nodes to 
connect to it and then collects confidential data from them (e.g. 
passwords, secret keys, logon names); 

 Denial of Service (jamming) attacks, when an attacker disturbs the 
communication channel with various frequency domains (cordless 
phones, microwave ovens), physical obstacles and disables all 
communication on the channel. 

Automation level. Depending on the level of the attack automation, there 
are several categories of attacks as follows:  
– Automated attacks use automated tools that are capable of probing and 

scanning a large part of the Internet in a short time period. Using these 
easily available tools, even inexperienced attackers may create highly 
sophisticated attacks (Figure 2-2). Such attacks are probably the most 
common method of attacking the computer systems today. 

– Semi-automated attacks deploy automated scripts for scanning and 
compromise of network machines and installation of attack code, and 
then use the handler (master) machines to specify the attack type and 
victim’s address. 

– Manual attacks involve manual scanning of machines and typically 
require a lot of knowledge and work. Manual attacks are not very 
frequent, but they are usually more dangerous and harder to detect than 
semi-automated or automated attacks, since they give to attackers more 
control over the resources. Experts or organized groups of attackers 
generally use these attacks for attacking systems of critical importance. 

3. INTRUSION DETECTION SYSTEMS 

Since the first model for intrusion detection was developed by Dorothy 
Denning [56] at SRI International, many intrusion detection systems (IDSs) 
have been proposed both in the research and commercial world. For 
information about these research and commercial products, the reader is 
referred to Web sites that contain links to them [32, 76, 149, 198, 223]. 
Although these systems are extremely diverse in the techniques they employ 
to gather and analyze data, most of them rely on a relatively general 
architectural framework (Figure 2-4), which consists of the following 
components: 
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– Data gathering device (sensor) is responsible for collecting data from the 

monitored system. 
– Detector (Intrusion Detection (ID) analysis engine) processes the data 

collected from sensors to identify intrusive activities. 
– Knowledge base (database) contains information collected by the 

sensors, but in preprocessed format (e.g. knowledge base of attacks and 
their signatures, filtered data, data profiles, etc.). This information is 
usually provided by network and security experts. 

– Configuration device provides information about the current state of the 
intrusion detection system (IDS). 

– Response component initiates actions when an intrusion is detected. 
These responses can either be automated (active) or involve human 
interaction (inactive). 

Information Source - Monitored System

Detector – ID Engine Response 
Component

Data gathering (sensors)

Raw data

Events

Knowledge base Configuration

Alarms

Actions

System State

System  
State

 

Figure 2-4. Basic architecture of intrusion detection system (IDS) 

3.1 Characteristics of Intrusion Detection Systems 

A number of desired characteristics for intrusion detection systems 
(IDSs) have been identified [55, 180], as follows: 
• Prediction performance. In intrusion detection, simple performance 

measure such as prediction accuracy is not adequate. For example, the 
network intrusions typically represent a very small percentage (e.g. 1%) 
of the entire network traffic, and a trivial IDS that labels all network 
traffic as normal, can achieve 99% accuracy. In order to have good 
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prediction performance, an IDS needs to satisfy two criteria: (i) it must 
be able to correctly identify intrusions and (ii) it must not identify 
legitimate action in a system environment as an intrusion. Typical 
measures for evaluating predictive performance of IDSs include detection 
rate and false alarm rate (Table 1). Detection rate is defined as the ratio 
of the number of correctly detected attacks and the total number of 
attacks, while the false alarm (false positive) rate is the ratio of the 
number of normal connections that are incorrectly misclassified as 
attacks and the total number of normal connections. In practice, it is very 
difficult to evaluate these two measures, since it is usually infeasible to 
have global knowledge of all attacks. Since detection rate and false alarm 
rate are often in contrast, evaluation of IDSs is also performed using 
ROC (Receiver Operating Characteristics) analysis [183]. ROC curve 
represents a trade-off between detection rate and false alarm rate as 
illustrated in Figure 2-5. The closer the ROC is to the left upper corner of 
the graph (point that corresponds to 0% false alarm and 100% detection 
rate), the more effective the IDS is. 

Table 2-1. Evaluations of intrusions (attacks) 
Predicted connection label  

Normal Intrusions (Attacks) 
Normal 

connections True Negative (TN) False Alarm (FP) Actual 
connection  

label Intrusions 
(Attacks) False Negative (FN) Correctly detected intrusions 

– True Positive (TP) 
 
• Time Performance. The time performance of an intrusion-detection 

system corresponds to the total time that the IDS needs to detect an 
intrusion. This time includes the processing time and the propagation 
time. The processing time depends upon the processing speed of the IDS, 
which is the rate at which the IDS processes audit events. If this rate is 
not sufficiently high, then the real time processing of security events may 
not be feasible. The propagation time is the time needed for processed 
information to propagate to the security analyst. Both times need to be as 
short as possible in order to allow the security analyst sufficient time to 
react to an attack before much damage has been done, as well as to stop 
an attacker from modifying audit information or altering the IDS itself. 
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Figure 2-5. ROC Curves for different intrusion detection techniques 

• Fault tolerance. An IDS should itself be dependable, robust and resistant 
to attacks, and should be able to recover quickly from successful attacks 
and to continue providing a secure service. This is especially true in the 
case of very large distributed DoS attacks, buffer overflow attacks and 
various deliberate attacks that can shut down the computer system and 
thus IDS too. This characteristic is very important for the proper 
functioning of IDSs, since most commercial IDSs run on operating 
systems and networks that are vulnerable to different types of attacks. In 
addition, IDS should also be resistant to scenarios when an adversary can 
cause the IDS to generate a large number of false or misleading alarms. 
Such alarms may easily have a negative impact on the availability of the 
system, and the IDS should be able to quickly overcome these obstacles. 

3.2 Taxonomy of Intrusion Detection Systems (IDSs) 

Several classifications of intrusion detection methods have been proposed 
in the past [4, 13, 55, 97, 110, 114, 136], but there is still no universally 
accepted taxonomy. In this chapter, we present a taxonomy that is based on 
the synthesis of a number of existing ones [13, 55]. We use five criteria to 
classify IDSs, as summarized in Figure 2-6. 

The first criterion is information (data) source, which distinguishes IDSs 
based on the system that is monitored, i.e. source of input information (see 
Figure 2-4). The source information can be (i) audit trails (e.g. system logs) 
on a host, (ii) network connections/packets, (iii) application logs, (iv) 
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wireless network traffic or (v) intrusion-detection and/or sensor alerts 
produced by other intrusion-detection systems. 

 

Figure 2-6. Taxonomy of intrusion detection systems according to proposed six criteria 

The analysis strategy describes the characteristics of the detector 
(intrusion detection engine from Figure 2-4). When the IDS looks for events 
or sets of events that match a predefined pattern of a known attack, this 
analysis strategy is called misuse detection. When the IDS identifies 
intrusions as unusual behavior that differs from the normal behavior of the 
monitored system, this analysis strategy is called anomaly detection. 

Time aspects are used to categorize the IDSs into on-line IDSs that detect 
intrusions in real time and off-line IDSs that usually first store the monitored 
data and then analyze it in batch mode for signs of intrusion.  

The architecture of IDSs is used to differentiate between centralized 
IDSs that analyze the data collected only from a single monitored system 
and distributed IDSs that collect information from multiple monitored 
systems in order to investigate global, distributed and coordinated attacks. 
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Detection response describes the reaction of the IDS to an attack 
(intrusion). If the IDS reacts to the attack by taking corrective action (e.g. 
closing holes) or pro-active action (e.g. logging out possible attackers, 
closing down services), the response is called active. If the IDS only 
generates alarms (including paging security analysts) and does not take any 
actions, the response is called passive. 

4. INFORMATION SOURCE 

Early intrusion detection systems were largely host-based, since 
mainframe computers were common and all users were local to the system. 
In such an environment, intrusion-detection was focused only on insider 
threats, since interaction with outside world was quite rare. The audit 
information collected at the mainframe was analyzed either locally [137] or 
on a separate machine [204] and security-suspicious events were reported. 

However, with the growth of computer networks, there has been an 
increasing focus on IDSs for the networked environment. Initial attempts of 
intrusion detection in a networked environment were focused on enabling 
communication among host-based intrusion-detection systems [93] and then 
exchanging information at several levels, either through a raw audit trail 
over the network [80, 204], or issuing alarms generated by local analysis 
[205]. 

In the late nineties, the intrusion detection research community debated 
the superiority of network-based vs. host-based approaches. However, today 
many systems attempt to provide an integrated tool by incorporating both 
variants. These IDSs are usually called hybrid IDSs. For example, in the 
distributed intrusion detection system (DIDS) developed by Snapp et al 
[205], Haystack [80, 204] is used on each host to detect local attacks, while 
network security monitor (NSM) [81] is employed to monitor the network. 
Both systems, Haystack and NSM, send information to the DIDS Director, 
where the final analysis is performed. 

Network/host based IDSs typically analyze past network traffic and host 
OS activity, but they are unable to detect unauthorized use of specific 
applications. This caused the emergence of application-based IDSs that 
focus on monitoring interactions between a user and specific applications. 

More recently, increasing popularity of wireless networks has caused 
intrusion detection researchers to focus on detecting attacks in wireless 
environment. Wireless network are highly sensitive and extremely insecure, 
as they are vulnerable to easy eavesdropping and jamming thus requiring 
additional security policies as well as specific intrusion detection techniques. 
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4.1 Host-based IDSs 

Host based intrusion detection systems (IDSs) analyze users’ activities 
and behavior on a given machine. Host-based IDSs have an advantage that 
they are able to work with high quality data that is typically very 
informative. However, depending upon the processing performed, host-
based IDSs can significantly impact the performance of the machine they are 
running on. In addition, audit sources used in host-based intrusion analysis, 
can be easily modified by a successful attack, which represents another 
limitation of host-based IDSs. In order to alleviate these drawbacks, host-
based IDSs have to process the audit trail sufficiently fast to be able to raise 
alarms before an attacker has an opportunity to observe and/or modify the 
audit trail or the intrusion-detection system itself. 

There are several types of information that are typically used in host-
based IDSs, e.g. (i) system commands, (ii) system accounting, (iii) syslog 
and (iv) security audit information.  

4.1.1 System commands 

System commands are a useful source of information that can be 
employed by host based IDSs for detecting malicious users [51, 116, 145, 
193]. By analyzing system commands that users invoke in their sessions, it is 
possible to build user profiles, which describe users’ characteristics and 
common behavior. Examples of such logged system commands in Unix are 
ps, pstat, vmstat, getrlimit. Information about different events 
provided by these commands can be very precise and informative. Since the 
audit information is collected as unstructured data, and has to be 
preprocessed before analysis. 

4.1.2 System accounting 

System accounting is present in both Windows and Unix operating 
systems. Although the interest for system accounting in Windows 
environment is increasing, there have not been many intrusion detection 
approaches that used this type of data for intrusion analysis. On the other 
hand, system accounting is commonly used in the Unix environment to 
collect information on system behavior, such as consumption of shared 
resources (e.g. processor time, memory, disk) by the users of the system. 
Data generated by system accounting can serve as a valuable and convenient 
source of information for IDSs [63]. 

There are two typical Unix accounting logs that are used for easy 
extraction of system behavioral information, without extensive kernel 
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modifications often required for detailed auditing, namely: process 
accounting and login accounting. The standard file for storing the process 
accounting information is pacct or acct, while the standard file for the 
login accounting information is wtmp. Process accounting keeps track of 
information about a process at the time of process completion (e.g. user and 
group IDs of those that use the process, beginning and elapsed times of the 
process, CPU time for the process, amount of memory used). The login 
accounting (wtmp) system records information about users’ login and logout 
from the system. When users successfully log in and log out or 
unsuccessfully attempt to login, the Unix kernel appends utmp structures to 
the log file. 

Use of system accounting as a source of information for IDSs has several 
advantages. First, all Unix systems have the same format of the accounting 
records. Second, the time needed to store system accounting records is 
generally small, since information is compressed. Finally, system accounting 
is quite common in the modern operating systems, and it is easy to setup and 
use. However, using system accounting also has a few drawbacks that limit 
their use in security applications. First, in order to perform real time analysis 
of system accounting data, all historical profiles have to be compared to each 
currently active profile, which can be computationally intensive. This 
generally impacts the system load and therefore slows down potential 
statistical data analysis. Second, accounting is either enabled for all users or 
not enabled at all, and cannot be selectively activated only for particular 
individuals of interest. Third, system accounting logs require a large amount 
of disk storage, and hence, they must be periodically removed. Fourth, the 
accounting structures limit the length of recorded command name to only a 
fixed number of characters (typically eight), thus losing important 
information (e.g. common arguments are not recorded). Finally, the 
accounting data is recorded only when the application terminates, so 
continuously running executables such as system daemons (e.g. sendmail) 
are never audited (these applications have to be audited using syslogs). In 
such cases, it is only possible to perform off-line intrusion analysis. 

Due to these drawbacks of system accounting, its use is not very 
common. Nevertheless, there are several systems that employ this 
information for intrusion detection [54, 63]. For example, the statistical and 
neural network modules in Hyperview [54] use system accounting only as 
additional information to security audit, but not as a substitute for it, while 
anomaly-based detection techniques in Eschrich’s thesis [63] use accounting 
logs to identify imposters. Imposters are special class of intruders who are 
valid users in a system but gain illegal access to the account of other users. 
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4.1.3 System log information 

System log data contains information that is not available at the network 
level, such as when users log in, when they send email, who they send email 
to, which ftp logs commands are issued, and which files are transferred. 
Capturing and collecting system log file information in a readable format is 
typically performed by the syslog daemon. 

One of the major drawbacks of using syslog information for intrusion 
detection is that syslog information is not very secure, since several syslog 
daemons exhibit buffer overflow exploitation [33]. On the other hand, due to 
straightforward use of syslog, this information is widely employed by 
numerous network services and applications, such as login, sendmail, 
nfs, http, as well as security-related tools such as sudo, klaxon, or TCP 
wrappers [55]. For example, Swatch [78] and TkLogger [85] perform regular 
expression matching against system log files, search for certain patterns and 
take appropriate actions when they are found. These tools are especially 
useful for identifying things that may indicate very specific problems. 

4.1.4 Security audit processing 

The security audit trails represent records that contain all potentially 
important activities related to the security of the system. Since these 
activities are usually logged to a file in chronologically sorted order, their 
analysis could allow easier investigation of sequential intrusive patterns. One 
of the most popular security audit trails is BSM (Basic Security Module), 
auditing facility in Solaris operating system form Sun Microsystems Inc 
[219]. BSM monitors security related events and records the “crossing of 
instructions executed by the processor in the user space and instructions 
executed in the kernel” [219]. 

In general, the security audit trail can provide information about full 
system call traces, which includes detailed user and group identification, the 
parameters of system call execution, memory allocation, context switches, 
internal semaphores, and successive file reads that typically do not appear in 
the regular audit trail. In addition, advantages of using security audit data 
include strong user authentication, easier audit system configuration, and 
fine-grain parameterization of collected information [55]. On the other hand, 
drawbacks of using security audit trails include complex setup, intensive 
resource requirement and possible vulnerability to DoS attack due to filling 
audit file system [55]. 

Several research groups [77, 155, 180, 217] have been actively using 
security audit trails mainly for host-based intrusion detection systems. The 
focus of their research has been mainly to define what information the 
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security audit trail should contain in order to increase the IDS prediction 
performance as well as to establish an acceptable common format for audit 
trail records. 

4.2 Network-based information sources 

With rapidly growing popularity of the Internet, there have been an 
increasing number of attacks aimed at the network itself (e.g. spoofing, TCP 
hijacking, port scanning, ping of death) that cannot be (at least not easily) 
detected by examining the host audit trail alone. These reasons have led to 
the development of specific tools that sniff network packets [161, 175, 224] 
in real time and facilitate searching for network attacks. In addition, by 
analyzing the payload of the packet, a number of typical attacks against 
servers can also be detected. 

There are several advantages of using network based IDSs over host-
based IDSs. First, network-based IDSs can be installed such that they do not 
have effect on existing computer systems or infrastructures. Second, they are 
usually more resistant than host-based IDSs, since they do not reside on the 
hosts that may be the targets of certain attacks. Third, the majority of 
network-based IDSs typically do not depend on the operating system that is 
used and can extract useful information at a network level (e.g. packet 
fragmentation). Finally, they can be installed at strategic points in a network 
(e.g. routers, borders) where they can be used to watch all traffic passing 
through these ports and therefore used to discover network attacks. 
However, their major drawbacks are their weak scalability, high possibility 
for dropping packets in fast networks under heavy load, and inability to 
perform intrusion detection when data is encrypted. 

Network based intrusion detection systems analyze various kinds of 
information that are obtained by monitoring network infrastructures. Typical 
sources of such information are network connections/packets collected by 
network sniffers and management information between network devices 
collected due to use of Simple Network Management Protocol (SNMP). 

4.2.1 Network connections and network packets 

Network packet sniffers are commonly used for collecting information 
about events that occur on a network. Sniffers capture copies of network 
packets directly from the network interface and provide administrators with 
detailed information about the IP addresses of senders and receivers, the 
number of transferred packets/ bytes and other low-level information about 
those packets. Certain sniffers also provide protocol-level analysis of data 
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flowing through network, packet by packet. This information is typically 
beneficial for administrators to diagnose and fix network related problems.  

Some organizations also collect information about network events at the 
firewalls. There are several categories of firewalls (packet filters, circuit 
level gateways, application level gateways and stateful multilayer inspection 
firewalls [21, 231]) that all collect firewall logs and use them to detect 
suspicious activity and alert human analysts. 

Use of network connections/packets as source of intrusion detection data 
has several advantages: 
– There are numerous network-specific attacks (e.g. large distributed 

denial-of-service attacks) that cannot be detected using audit information 
on the host but only using information about network infrastructure.  

– TCP/IP standardization of network traffic facilitates collecting, 
formatting and analyzing information from heterogeneous audit trail 
formats that come from different portions of large and complex networks. 

– Using the payload information (content of the packets) can be very 
informative in detection of attacks against hosts. 

However, using network connections/packets also has several drawbacks: 
– When an intrusion has been detected, it is not straightforward to identify 

an attacker, since there is no direct association between network 
connections/packets and the identity of the user who actually performed 
the attack. 

– If the packets are encrypted, it is practically impossible to analyze the 
payload of the packets, as important information may be hidden from 
network sniffers. In addition, if the attack signatures are not sufficiently 
comprehensive, it is possible to evade detection by making the contents 
of the packet more complex [184]. 
Packet sniffers can be placed at the gateways between the protected 

system and the outside world, or on switches within the network. Which of 
these is the most appropriate location, it is not always clear. Placing sniffers 
on switches gives better audit information but at a higher cost, due to a larger 
number of switches in the network. Nevertheless, networks that use switches 
are commonly used since they are less vulnerable to sniffer attacks [42, 184]. 

Network packets are the source of information used by most of the recent 
commercial products [8, 47, 89, 159, 160, 210, 222, 238], as well as by 
many projects in the research community [61, 120, 142, 174, 188, 192, 216]. 
Other network-based systems such as Bro [174] have been developed as 
network data-acquisition tools, but not as tools to directly support intrusion-
detection task. 



Intrusion Detection: A Survey 41
 
4.2.2 Simple Network Management Protocol (SNMP) information  

The Simple Network Management Protocol (SNMP) is the Internet 
standard operations and maintenance protocol that facilitates the exchange of 
management information between network devices. SNMP was designed to 
help network administrators to manage network performance, to find and 
solve network problems, and to minimize resources necessary for supporting 
network management.  

An SNMP-managed network typically consists of three components: 
managed devices, agents, and one or more network management systems 
(NMSs). A managed device corresponds to any SNMP-compliant equipment 
that resides on a managed network, collects management information and 
sends this information to NMSs using SNMP. Examples of managed devices 
include routers, switches, hubs, workstations, printers, etc. An agent is 
typically a “network-management software” module that resides on a 
managed device. The agent gathers management information from managed 
devices and converts that information into a format that can be passed over 
the network using SNMP. Finally, an NMS monitors and controls managed 
devices, issues requests and returns responses from devices. Information 
collected from NMSs can serve as a useful audit source. 

One of the earliest projects that used SNMPv1 Management Information 
Base (MIB) for Ethernet and TCP/IP was SECURENET [212]. The 
SECURENET project showed that the counters maintained in the SNMPv1 
MIBs could be potentially interesting as an audit source for anomaly 
detection techniques. SNMPv2 and SNMPv3 have also been used for 
security and intrusion detection [100], but the failure of SNMPv2 has 
lowered the interest of the intrusion-detection community in these 
information sources. 

4.3 Application log files 

Application based IDSs monitor only specific applications such as 
database management systems, content management systems, accounting 
systems, etc. An application based IDS has access to types of information 
that network based or host based IDSs do not have. For example, by 
analyzing application log files, application based IDSs can detect many types 
of computer attacks, suspicious activities that can be difficult to detect using 
host based or network based IDSs. In addition, they can be used to trace 
down unauthorized activities from individual users or to analyze encrypted 
data by employing application-based encryption/decryption services [20]. As 
application servers have recently become increasingly popular, application 
log files are used more often as an information source for intrusion detection.  
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In general, there are two approaches to implement application based IDSs 
[20]. In the first approach, IDS monitors an application and analyzes its audit 
log files. This post analysis allows suspicious activities in the application to 
be observed easily, but only after they happen. In a second, more complex 
approach, application based IDS is integrated into the application itself. This 
integration allows IDS to analyze the data at the same time the application 
interprets it, to detect attacks in real-time making it possible to take an 
immediate action. 

The operation of an application based IDS in general is not impacted by 
the total amount of network traffic unless most of the traffic is due to the 
application (e.g., at a large commercial vendor sites such as Amazon.com, 
application-based IDSs highly depend on the network traffic). 

In general, application based IDSs offer several advantages: 
– Unencrypted information. Unlike the analyzed data at the network level, 

the data at the application level is not encrypted, thus giving more 
information for intrusion analysis to application based IDSs. 

– Prediction performance. Since an application based IDS focuses on 
monitoring operations specific to the application, it is easier to define the 
normal and the anomalous behavior. There are certain types of 
information (e.g. query logs from database applications) that are 
available only to application based IDSs but not visible to the operating 
system. As a result, application based IDSs can detect intrusions that are 
not detectable by host-based IDSs. This results in a lower false alarm 
rate, as well as in higher detection rate. 

– Complete sessions. Unlike network monitoring where network 
connection may be fragmented during recording, the application typically 
records complete transaction, and there is no inconsistency involved in 
the reconstruction of session records. 

– Prevention. When an application based IDS is embedded in the 
application module itself, it can stop the intruder from proceeding with 
the attack by denying malicious operations. 

However, application based IDSs have also certain limitations: 
– Performance penalty. When an application based IDS is not a part of an 

application itself, it usually needs to be installed on the same host as the 
application. In such scenario, this installation could result in a decrease in 
the system performance. 

– Larger system overhead. Since the application based IDSs have to be 
installed on every individual host machine, and the organization may 
have numerous hosts, there is a larger administration overhead. 

– Non-detectable attacks below the application layer. Although analyzing 
the data at the application level allows application-based IDSs access to 
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encrypted information, they are not able to detect attacks that target 
protocols below the application layer. 

– Specific development. Every application based IDS has to be developed 
for a specific application, since there is no general application-based IDS. 

4.4 Wireless networks 

Wireless network systems have become increasingly popular recently, 
mainly due to the ease of their installation and maintenance. However, this 
convenience comes at a price, since wireless networks pose a serious 
security risk. There are numerous, potentially devastating threats that have 
emerged in wireless networks that are more difficult to detect due to the 
following reasons [3, 88, 126]:  
– Physical layer in wireless networks is essentially a broadcast medium and 

therefore less secure than in fixed computer networks. For example, an 
attacker that enters the wireless network, bypasses existing security 
mechanisms and can easily sniff sensitive and confidential information. 
In addition, the attacker also has access to all the ports that are regularly 
available only to the people within the network. In wired networks, 
attempts to access these ports from outside world through Internet are 
stopped at the firewalls. Finally, the attacker can also excessively load 
network resources thus causing denial of service to regular users. 

– There are no specific traffic concentration points (e.g. routers) where 
packets can be monitored, so each mobile node needs to run an intrusion 
detection system. 

– Separation between normal and anomalous traffic is often not clear in 
wireless ad-hoc networks, since the difference between compromised or 
false node and the node that is temporarily out of synchronization due to 
volatile physical movement can be hard to observe. 
There are currently only a few commercial wireless IDS solutions [3, 88] 

in the market that try to detect a wide range of known attacks as well as 
identify abnormal network activities and policy violations for wireless 
networks. For Linux operating system, Lin et al have developed a 
homegrown wireless IDS [126] along with a freely available software. Other 
open source solutions include Snort-Wireless [208] and WIDZ [239]. 

4.5 Alerts from intrusion detection systems 

Due to increase in a traffic volume, current commercial IDSs usually tend 
to produce a very large number of alarms [185]. These alarms are raised both 
for actual intrusions (attacks), but very often for regular behavior, thus 
increasing false alarm rate and overwhelming security administrator. In 
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addition, a large distributed DoS or scanning attack may trigger multiple 
alarms since many network connections are involved in such attacks. This 
further increases the number of alarms that security analysts have to analyze. 
In order to decrease this number, the threshold for detecting intrusions is 
raised, but this can reduce the overall detection rate. 

Due to these reasons, a number of researchers have attempted to develop 
a new generation of intrusion-detection systems that correlate information 
from several, “lower-level” IDSs to identify intrusions [50, 101, 168, 177, 
186, 225, 229]. These IDSs employ different correlation and data-mining 
techniques in order to reduce both false alarm rate and the burden on the 
security analyst. In addition, some of these IDSs can typically provide 
security analysts with a summarized view of detected anomalous activities. 
Examples of such IDSs include distributed intrusion detection system 
(DIDS) [217] that correlates user identification by using information from 
sensors and GrIDS [225] that measures the traffic on hosts and network links 
and then correlates information from sensors on multiple networks. In 
general, there are three basic groups of alert correlation methods: 
– Methods based on similarities between alert attributes (features) [101, 

229] compare the degree to which alerts have similar features (e.g. source 
IP address, destination IP address, ports), and then correlate alerts with a 
high degree of feature similarity. 

– Correlation methods based on known attack scenarios [50, 186, 225] 
utilize the fact that intrusions often require several actions to take place in 
order to succeed (e.g. to carry out a DoS attack on the DNS server, the 
attacker could first do an nslookup, ping, and scan port 139, and then a 
winnuke (sends out-of-Band data to an IP address of a windows 
machine)). Every attack scenario has corresponding steps required for the 
success of the attack. Low-level alerts from IDS(s) are compared against 
the predefined attack scenario before the alerts can be correlated. Major 
drawbacks of this method are (i) it requires that human users specify the 
attack scenarios and (ii) it is limited to detection of known attacks. 

– Correlation methods based on preconditions and consequences of 
individual attacks [168] work at a higher level then correlation based on 
feature similarities, but at a lower level then correlation based on known 
scenarios. Preconditions are defined as conditions that must exist for the 
attack to occur, and the consequences of the attack are defined as 
conditions that may exist after a specific attack has occurred. 
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5. ANALYSIS STRATEGY: MISUSE DETECTION 

VS. ANOMALY DETECTION 

There are two primary approaches for analyzing events to detect attacks; 
namely misuse detection and anomaly detection. Misuse detection is based 
on extensive knowledge of known attacks and system vulnerabilities 
provided by human experts. The misuse detection approaches look for 
hackers that attempt to perform these attacks and/or to exploit known 
vulnerabilities. Although the misuse detection can be very accurate in 
detecting known attacks, misuse detection approaches cannot detect 
unknown and emerging cyber threats. 

Anomaly detection, on the other hand, is based on the analysis of profiles 
that represent normal behavior of users, hosts, or network connections. 
Anomaly detectors characterize normal “legitimate” computer activity using 
different techniques and then use a variety of measures to detect deviations 
from defined normal behavior as potential anomaly. The major benefit of 
anomaly detection algorithms is their ability to potentially recognize 
unforeseen attacks. However, the major limitation is potentially high false 
alarm rate. Note that deviations detected by anomaly detection algorithms 
may not necessarily represent actual attacks, as they may be new or unusual, 
but still legitimate, network behavior. 

Many contemporary IDSs integrate both approaches to benefit from their 
respective advantages [164, 167, 200, 207]. 

5.1 Misuse Detection 

Misuse detection is the most common approach used in the current 
generation of commercial intrusion detection systems (IDSs). The misuse 
detection approaches can be classified into the following four main 
categories: (i) signature-based methods, (ii) rule-based techniques, (iii) 
methods based on state-transition analysis, and (iv) data mining based 
techniques. 

5.1.1 Signature-based techniques 

Signature-based IDSs operate analogously to virus scanners, i.e. by 
searching a database of signatures for a known identity – or signature – for 
each specific intrusion event. In signature-based IDSs, monitored events are 
matched against a database of attack signatures to detect intrusions. 
Signature-based IDSs are unable to detect unknown and emerging attacks 
since signature database has to be manually revised for each new type of 
intrusion that is discovered. In addition, once a new attack is discovered and 
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its signature is developed, often there is a substantial latency in its 
deployment across networks [130]. The most well known signature-based 
IDSs include SNORT [207], Network Flight Recorder [167], NetRanger 
[47], RealSecure [89], Computer Misuse Detection System (CMDS™) 
[230], NetProwler [14], Haystack [204] and MuSig (Misuse Signatures) 
[127]. 

SNORT [207] is a widely used open source signature-based network 
IDS, which is used for performing real-time traffic logging and analysis over 
IP networks. Currently, SNORT has an extensive database of over a 
thousand attack signatures. There are three main modes in which SNORT 
can be configured; namely sniffer, packet logger, and network IDS. In the 
sniffer mode, SNORT monitors the network packets and continuously 
displays them on the console. Packet logger mode is used to store (log) the 
packets to the disk. In the network intrusion detection mode, the system 
analyzes network traffic for matches against a database of user defined rules 
and performs one of five corresponding actions:  
– Alert – raise an alarm using the selected alert method and then log the 

packet; 
– Log – log the analyzed packet; 
– Pass – ignore the analyzed packet; 
– Activate – generate an alert and then turn on another dynamic rule; 
– Dynamic – stay inactive until turned on by an activate rule.  

Network Flight Recorder (NFR) is a network-based IDS that also creates 
alerts based on rules. These rules, called “backends” in NFR terminology, 
contain filters (hard-coded signatures) written to trigger in response to 
different computer attacks. NFR includes a complete programming 
language, called N, designed for packet analysis and creating filters. 

NetRanger [47], an IDS developed at Cisco, was introduced to intrusion 
detection community in November 1998. Over the years NetRanger grew 
into a more complex Cisco IDS [46] that provides complete intrusion 
protection and is a component of a SAFE BluePrint Cisco security system. 
NetRanger is composed of three major components: sensors, director and 
post office. Sensors are network appliances that analyze the network traffic 
using a rule-based engine, which distills large volumes of network traffic 
into meaningful security events, which are then forwarded to a Director. 
Directors are responsible for the management of security across a distributed 
network of sensors and can be structured hierarchically to manage large 
networks. Finally, the post office provides communication between 
NetRanger services and hosts. 

RealSecure, is an earlier version of the Proventia system developed at 
Internet Security Systems [182]. While Real Secure was principally a 
signature-based IDS composed of three modules: network engines, system 
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agents, and managers, Proventia provides a more complete security solution 
including: inspection firewall, antivirus protection, intrusion detection and 
prevention, anti-spam filters and application protection. 

CMDS [230] was a predecessor of Intrusion SecureHost [90], which 
represents a host-based IDS that monitors and protects applications at the 
kernel level of operating system by building a profile of the application's 
normal behavior based on the “code paths of a running program”. 
NetProwler [14] is another host basd IDS that is based on “Stateful Dynamic 
Signature Inspection” virtual processor proposed by Anxent, which was 
acquired by Symantec recently. Today, NetProwler is a part of Symantec 
Intruder Alert IDS [220]. NetProwler collects various types of information 
“sniffed” from the network and then integrates them into more complex 
events that are matched against predefined signatures in real time. In 
addition, the system can install novel signatures without stopping the 
intrusion detection process. 

The Haystack prototype [204] was one of the first signature based IDSs 
developed for the task of intrusion detection in a multi-user Air Force 
computer system. Haystack employs both misuse detection and anomaly 
detection strategy for detecting intrusions. The misuse detection module 
identifies intrusions according to behavioral constraints (rules) imposed by 
official security policies. On the other hand, the anomaly detection module is 
based on building profiles of users’ behavior in the past and on constructing 
generic user group models that describe generic acceptable behavior for a 
particular group of users. 

Adaptable real-time misuse detection system (ARMD) [127], developed 
at George Mason University, provides a high-level language for abstract 
misuse signatures, called MuSigs, and a mechanism to translate MuSigs into 
a monitoring program. With the notion of abstract events, the high-level 
language specifies a MuSig as a pattern over a sequence of abstract events, 
which is described as conditions that the abstract event attributes must 
satisfy. In addition, on the basis of MuSigs, the available audit trail, and the 
strategy costs, ARMD uses a strategy generator to automatically generate 
monitoring strategies to govern the misuse detection process. 

Kumar and Spafford proposed a generalized framework for matching 
intrusion signatures based on Colored Petri Nets [113]. In this approach, 
every signature of an attack is represented as a Petri net, and start states and 
final state are used to perform signature matching. 

5.1.2 Rule-based systems 

Rule-based systems use a set of “if-then” implication rules to characterize 
computer attacks. At the early stage of intrusion detection era, rule based 
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languages represented one of the regular methods for describing the expert’s 
knowledge that is collected about numerous attacks and vulnerabilities. In 
rule-based IDSs, security events are usually monitored and then converted 
into the facts and rules that are later used by an inference engine to draw 
conclusions. Examples of such rule-based IDSs include Shadow [170], IDES 
[56, 95, 138, 139], NIDX [19], ComputerWatch [58], P-BEST [129], ISOA 
[241, 242] and AutoGuard that uses case-based reasoning [66, 67]. 

IDES [138] is a rule-based expert system trained to detect known 
intrusion scenarios, known system vulnerabilities, and site-specific security 
policies. IDES can also detect (i) outside attacks from unauthorized users; 
(ii) internal attacks from authorized users who masquerade as other users and 
(iii) attacks from authorized users who abuse their privileges by avoiding 
access controls. NIDX [19] extends the IDES model by including system 
dependent knowledge such as a description of file systems, and rules 
regarding system policies. It integrates (i) information obtained from the 
target computer system, (ii) user profiles built through history and (iii) 
intrusion detection heuristics into rules that are used to detect violations from 
the audit trail on the target system. 

The ComputerWatch [58] data reduction tool was developed as an expert 
system IDS by the Secure Systems Department at AT&T. Computer Watch 
employs the host audit trail data to summarize system security activities and 
provides mechanisms for further investigation of suspicious security events 
by security analysts. The tool checks users' actions according to a set of rules 
that describe proper usage policy, and flags any suspicious action that does 
not match the acceptable patterns. 

Production Based Expert System Toolset (P-BEST) [129] is a rule-based, 
forward-chaining expert system developed at SRI, and used in the 
EMERALD IDS [179]. The system was first deployed in the MIDAS ID 
system at the National Computer Security Center, and then used as the rule-
based inference engine of NIDES, which is an IDES successor. P-BEST is a 
programmable expert system shell that consists of the definition of several 
fact types, and a set of inference rules on these facts. Inference rules are 
composed of two parts. The first part is a guard, which tests the existence of 
facts satisfying logical expressions; and the second part is composed of 
actions upon the fact base (adding, removing, modifying facts) and of calls 
to external functions. 

ISOA (Information Security Officer's Assistant) [241, 242] is a real time 
IDS for monitoring security relevant behavior in computer networks. ISOA 
serves as the central point for real-time collection and analysis of audit 
information. It has two components; i.e. statistical analysis module and an 
expert system. These components cooperate in the automated analysis of 
various “concern levels”. If a recognized set of indicators are matched, 
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concern levels increase and the IDS starts to analyze the growing classes of 
audit events in more details to flag suspicious users or hosts. 

5.1.3 State transition analysis 

Intrusion detection using state transition analysis requires the 
construction of a finite state machine, in which states correspond to different 
IDS states, and transitions characterize certain events that cause IDS states to 
change. IDS states correspond to different states of the network protocol 
stacks or to the integrity and validity of current running processes or certain 
files. Every time when the automation reaches a state that is flagged as a 
security threat, the intrusion is reported as a sign of malicious attacker 
activity. This is the technique first proposed in USTAT (Unix State 
Transition Analysis Tool) [86, 178] and later in NetSTAT (Network-based 
State Transition Analysis Tool) [232]. 

USTAT, developed at UC Santa Barbara, is a real-time state transition 
analysis tool developed for the Unix system and based on STAT (State 
Transition Analysis Tool) [178]. STAT introduced the idea of representing 
computer attacks with high level descriptions and providing an expert 
system model to detect compromises. In STAT, attack scenarios are 
represented as states that describe security status of the system, and 
intrusions are detected by modeling the transition between states. The 
computer initially exists in a secure state, but as a result of a number of 
intrusions it may end up in a compromised target state. USTAT uses the C2 
security audit trail data produced by the computer as the source of 
information about the system's state transitions. It records only those critical 
actions that have visible effect on the system state and must happen in order 
to successfully complete the penetration. 

NetSTAT is a real-time network-based IDS that employs state transition 
analysis techniques from the STAT approach, for detecting intrusions that 
occur in a networked environment. The networked environment is 
represented by hypergraphs, where network interfaces are modeled as nodes, 
and hosts are modeled as edges of the hypergraph. By using state transition 
analysis for the states of network attacks, it is possible to automatically 
determine which network events have to be monitored in order to support 
intrusion analysis. 

5.1.4 Data mining based techniques 

In data mining methods for misuse detection, each instance in a data set 
is labeled as ‘normal’ or ‘intrusive’ and a learning algorithm is trained over 
the labeled data. These techniques are able to automatically retrain intrusion 
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detection models on different input data that include new types of attacks, as 
long as they have been labeled appropriately. Research in misuse detection 
has focused mainly on classification of network intrusions using various 
standard data mining algorithms [16, 74, 121, 140, 202], rare class predictive 
models [40, 98, 99], cost sensitive modeling [99] and association rules [16, 
122, 143]. Unlike signature-based intrusion detection systems, models of 
misuse are created automatically, and can be more sophisticated and precise 
than manually created signatures. The advantage of data mining based 
misuse detection techniques over signature-based intrusion detection systems 
is their high degree of accuracy in detecting known attacks and their 
variations. 

MADAM ID [120, 122] at Columbia University was one of the first 
project that applied data mining techniques to the intrusion detection 
problem. Association rules and frequent episodes were extracted from 
network connection records to obtain additional features for data mining 
algorithms. Three groups of features are constructed, namely: content-based 
features that describe intrinsic characteristics of a network connection (e.g. 
number of packets, acknowledgments, data bytes from source to 
destination), time-based traffic features that compute the number of 
connections in some recent time interval (e.g. last few seconds) and 
connection based features that compute the number of connections from a 
specific source to a specific destination in the last N connections (e.g. N = 
1000). In addition to the standard features that were available directly from 
the network traffic (e.g. duration, start time, service), these constructed 
features were also used by the RIPPER algorithm to learn intrusion detection 
rules from DARPA 1998 data set [132, 133]. 

Other classification algorithms for the intrusion detection problem 
include decision trees [24, 202], modified nearest neighbor algorithms [246], 
fuzzy association rules [26, 72, 140], neural networks [30, 51, 131, 247], 
naïve Bayes classifiers [196], genetic algorithms [26, 145], genetic 
programming [158], support vector machines [65, 156], and adaptive 
regression splines [157]. Most of these approaches attempt to directly apply 
specified standard techniques to some of publicly available intrusion 
detection data sets [132, 133], assuming that the labels for normal and 
intrusive behavior are already known. 

Computer intrusions, however, are much rarer than normal behavior, and 
in such scenarios standard classification algorithms do not perform well. 
Thus, some researchers have developed specially designed algorithms for 
handling rare classes and applied them to the problem of intrusion detection 
[40, 98, 99]. 

Finally, association patterns, often expressed in the form of frequent 
itemsets or association rules, have also been found to be valuable for 
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analyzing network traffic data [16, 121, 143]. In [121], association patterns 
generated at different times were used to study significant changes in the 
network traffic characteristics at different periods of time, while in [16, 121, 
143] they were used to construct a profile of the normal network traffic 
behavior for anomaly detection systems. 

5.2 Anomaly Detection 

Increase in the number of computer attacks, in their severity and 
complexity has raised substantial interest in anomaly detection algorithms 
due to their potential for recognizing unforeseen and emerging cyber 
activities. There are many anomaly detection algorithms proposed in the 
literature that differ according to the information used for analysis and 
according to techniques that are employed to detect deviations from normal 
behavior. In this section, we provide classification of anomaly detection 
techniques based on employed techniques into the following five groups: (i) 
statistical methods; (ii) rule based methods; (iii) distance based methods (iv) 
profiling methods and (v) model based approaches. Although anomaly 
detection algorithms are quite diverse in nature, and thus may fit into more 
than one proposed category, our classification attempts to find the most 
suitable category for all described anomaly detection algorithms. 

5.2.1 Statistical methods 

Statistical methods monitor the user or system behavior by measuring 
certain variables over time (e.g. login and logout time of each session). The 
basic models keep averages of these variables and detect whether thresholds 
are exceeded based on the standard deviation of the variable. More advanced 
statistical models also compare profiles of long-term and short-term user 
activities. These statistical models are used in host-based IDSs, network-
based IDSs, as well as in application-based IDSs for detecting malicious 
viruses. Some of the first proposed anomaly detection algorithms were 
integrated in well known IDSs such as IDES [56, 95, 138, 139], NIDES [6], 
EMERALD [164, 179] and SPADE [214]. 

IDES [138], whose misuse detection module is explained in section 
4.1.2., also has an anomaly detection module. This module characterizes 
normal user activity using an audit data and detects deviations from 
described normal user behavior. Each new audit record is processed as it 
enters the system, and verified against the known profile. To further 
distinguish unusual but authorized behavior, the prototype was extended to 
handle two sets of profiles for monitored subjects depending on whether the 
activity took place on “normal” or “suspicious” days. The security analyst 
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defines whether working days are “normal” or not. The NIDES system [6] 
extends IDES by integrating results from misuse detection component with 
the results produced by the anomaly detection module. NIDES monitors 
ports and addresses and builds a statistical model of long term behavior over 
a period of hours or days, which is assumed to contain few or no attacks. If 
short-term behavior (seconds, or a few packets) differs significantly from 
normal, then an alarm is raised.  

EMERALD  [164, 179] has statistical profile-based anomaly detection 
module that tracks subject activity through one of four types of statistical 
variables: categorical, continuous, traffic intensity (e.g., volume over time), 
and event distribution (e.g., a meta-measure of other measures). The eBayes 
system [228] is a recently developed module that extends earlier anomaly 
detection component from the EMERALD system [164, 179] by encoding 
probabilistic models of normal, attack, and anomalous behavior modes with 
hypotheses. The eBayes system first collects basic variables of network 
sessions as well as derives new ones (e.g. maximum number of open 
connections to any unique host), and then applies probabilistic Bayesian 
inference to them in order to obtain a belief for the session over the states of 
hypotheses. For example, the session hypotheses in the eBayes TCP tree 
may correspond to both normal traffic modes (MAIL, FTP, etc.) and to 
attack scenario modes PORTSWEEP, SYNFLOOD, etc.). The eBayes builds 
a table of conditional probabilities for all the hypotheses and variables, 
which is adjusted every time the current observation is made. The eBayes 
has an option of detecting novel attacks by dynamically generating new 
hypothesis, which is obtained by adding a fake state of hypothesis and a new 
conditional probability table row initialized by a uniform distribution. 

Similarly to eBayes, many anomaly detection techniques have been 
proposed recently to overcome limitations of earlier statistical anomaly 
detection algorithms. For example, SPADE [214] is a statistical based 
system, that is available as a plug-in for SNORT as a plug-in, and used for 
automatic detecting stealthy port scans. Unlike traditional scan detectors that 
look for X events in Y seconds, SPADE takes a fundamentally different 
approach and looks at the amount of information gained by probing. It has 
four different methods of calculating the likelihood of packets, of which 
most successful method measures the direct joint probability P(dest IP, dest 
Port) between destination IP address and destination port.  SPADE examines 
TCP-SYN packets and maintains the count of packets observed on (destIP, 
destPort) tuples. When a new packet is observed, SPADE checks the 
probability of observing that packet on the (dest IP, dest Port) tuple. The 
lower the probability of the packet, the higher the anomaly score. However, 
in a real life system, SPADE gives a high false alarm rate, since all unseen 
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(dest IP, dest Port) tuples are detected as attacks regardless whether or not 
they correspond to actual intrusions. 

Another recently proposed statistical method employs statistical traffic 
modeling [29] for detecting novel attacks against networks. In this approach, 
a network activity model is used to detect large classes of Denial of Service 
and scanning attacks by monitoring the network traffic volume. By applying 
the KolmogorovSmirnov test on the DARPA dataset [132], it was 
demonstrated that, for example, normal telnet connections are statistically 
different from the attacks that use telnet connections. 

Chi-square (χ2) statistics have also been successfully used to detect 
anomalies both in host-based and network based intrusion detection. For 
host-based IDSs, Ye [245] proposed approach where activities on a host 
machine are captured through a stream of events and then characterized by 
the event type. For each event type, the profiles of audit events from normal 
behavior are defined, and then used to compute χ2 as a measure of difference 
between the test audit event and the normal audit event, whereas large 
deviations are detected as anomalies. In network based IDS, the chi-square 
statistic has also been used [111] to differentiate the payload distribution 
(distribution of characters in the content of the network packets) in normal 
network packets and anomalous ones. 

Some researchers have used outlier detection algorithms for anomaly 
detection, since outliers are typically defined as data points that are very 
different from the rest of the data. The statistics community has studied the 
concept of outliers quite extensively [17]. In these techniques, the data points 
are modeled using a stochastic distribution, and points are determined to be 
outliers depending on their relationship with this model. For example, 
SmartSifter [244] uses a probabilistic model as a representation of 
underlying mechanism of data generation, and scores each data example by 
measuring how large the model has changed after the learning. Smart sifter 
extension [243] gives positive labels to higher scored data and negative to 
the lower scored data, and then constructs an outlier filtering rule by 
applying supervised learning. Eskin’s approach [64] computes the likelihood 
of data distribution Lt(D) at some specific time interval t, removes a data 
example at the interval t-1 and measures the likelihood of data distribution 
without removed data example Lt-1(D). The probability that removed data 
example is an outlier is proportional to the difference between the new 
likelihood Lt-1(D) and the original one Lt(D). Information theoretic measures 
such as entropy, conditional entropy, relative conditional entropy, 
information gain, and information cost [123] were also proposed for 
anomaly detection task. These measures were used to characterize the 
characteristics of an audit data set by measuring their regularity, and to build 
appropriate anomaly detection models according to these regularity 
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measures. The higher regularity of audit data, the better the anomaly 
detection module is.  

Statistic based anomaly detection techniques have also been used in 
detecting malicious viruses through e-mail messages. For example, the MET 
(Malicious Email Tracking) [22] system keeps track of email attachments as 
they are exchanged between users through a set of collaborating email 
servers that forward a subset of their data to a central data warehouse and 
correlation server. Only attachments with a high frequency of appearance are 
deemed suspicious, while the email exchange patterns among users are used 
to create models of normal behavior. MET system contains MET server and 
MET clients. MET server is used to collect data on malicious activity, store 
them in a database, and calculate derived statistics, while MET clients 
analyze email attachments across all mail domains and then detect email-
based attacks. 

5.2.2 Distance based methods 

Most statistical approaches have limitation when detecting outliers in 
higher dimensional spaces, since it becomes increasingly difficult and 
inaccurate to estimate the multidimensional distributions of the data points 
[2]. Distance based approaches attempt to overcome limitations of statistical 
outlier detection approaches and they detect outliers by computing distances 
among points. Several distance based outlier detection algorithms have been 
recently proposed for detecting anomalies in network traffic [117]. These 
techniques are based on computing the full dimensional distances of points 
from one another [107, 187] using all the available features, and on 
computing the densities of local neighborhoods [25, 117]. MINDS 
(Minnesota Intrusion Detection System) [61] uses net-flow data to extract 
useful set of features to be used in anomaly detection. MINDS anomaly 
detection module employs an outlier detection algorithm to assign an 
anomaly score to each network connection. A human analyst then has to 
look at only the most anomalous connections to determine if they are actual 
attacks or other interesting behavior. MINDS anomaly detection module is 
used at the University of Minnesota and is also incorporated into the 
Interrogator architecture at the ARL Center for Intrusion Monitoring and 
Protection (CIMP), where network data from multiple sensors are collected 
and analyzed by human analysts to detect intrusions and attacks. 
Experiments on live network traffic at the University of Minnesota and at the 
ARL-CIMP have shown that MINDS is able to routinely detect various 
suspicious behavior (e.g. policy violations), worms, as well as various 
scanning activities. 
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In addition, in several clustering based techniques (fixed-width and 
canopy clustering [65]), network intrusions in DARPA 1998 evaluation data 
sets have been detected as small clusters when compared to the large ones 
that corresponded to the normal behavior. 

In another interesting approach [68], artificial anomalies in the network 
intrusion detection data are generated around the edges of the sparsely 
populated data regions, thus forcing the learning algorithm to discover the 
specific boundaries that distinguish these regions from the rest of the data. 

5.2.3 Rule based systems 

Rule based systems used in anomaly detection characterize normal 
behavior of users, networks and/or computer systems by a set of rules. 
Examples of rule based IDSs include ComputerWatch [58] and Wisdom & 
Sense [124, 125]. 

ComputerWatch system [58] employs a typical rule based system that 
summarizes “normal” security events and then detects anomalous behavior 
as deviations from them. The rule system creates rules to describe proper 
usage policy, to check users' actions according to these rules, and to flag any 
action that does not match the described rule patterns. Wisdom & Sense 
[124, 125] employs historic audit data to produce a set of rules describing 
normal behavior, forming the “wisdom” of the title. These rules are then fed 
to an expert system that evaluates recent audit data for violations of the 
rules, and alerts the security analyst when the rules indicate (“sense”) 
anomalous behavior. 

Recently, Valdes [227] proposed an unsupervised technique that does not 
require attack free training data and detects novel scans through pattern-
based anomaly detection. The model assigns network connections into one 
of a number of modes discovered by competitive learning. The technique is 
applied to port patterns in TCP sessions in simulated and real network 
traffic. 

5.2.4 Profiling methods 

In profiling methods, profiles of normal behavior are built for different 
types of network traffic, users, programs etc., and deviations from them are 
considered as intrusions. Profiling methods vary greatly ranging from 
different data mining techniques to various heuristic-based approaches. In 
this section, we provide an overview of several distinguished profiling 
methods for anomaly detection. 

ADAM (Audit Data and Mining) [16] is a hybrid anomaly detector 
trained on both attack-free traffic and traffic with labeled attacks. The 
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system uses a combination of association rule mining and classification to 
discover attacks in tcpdump data. One of the advantages of ADAM is its 
ability to detect novel attacks, without depending on attack training data, 
through a novel application of the pseudo-Bayes estimator [16]. Recently 
reported IDDM system [1] represents an off-line IDS, where the intrusions 
are detected only when sufficient amounts of data are collected and 
analyzed. The IDDM system describes profiles of network data at different 
times, identifies any large deviations between these data descriptions and 
produces alarms in such cases. 

Human immune system has gained a lot of attention among researchers 
in intrusion detection community, especially when analyzing attacks at the 
host level [73, 119, 209]. These techniques first collect data patterns 
representing the appropriate behavior of the service and extract a reference 
table containing all the known good sequences of system calls. These 
patterns are then used for live monitoring to check whether the sequences 
generated are listed in the table or not. If they are not listed, an alarm is 
generated. Wespi [237] also proposed a novel technique for modeling 
process behavior by building a table of variable length patterns, which is 
based on the Teiresias algorithm. Experimental results show that the variable 
length pattern model is significantly better than a fixed length approach, both 
in reducing the number of patterns to describe the normal process behavior 
and in achieving better detection rates. Although the immune system 
approach is interesting and intuitively appealing, so far it has proven to be 
difficult to apply [60]. 

The temporal sequence learning [116] has been shown successful in 
profiling Unix user command line data, where user shell commands are used 
to build user profiles for activities during an intrusion and for activities 
during normal use. By comparing these profiles, it is possible to detect new 
types of anomalous user behavior. 

Association pattern analysis has been shown to be beneficial in 
constructing a profile of normal network traffic behavior [61, 118, 143]. For 
example, Manganaris [143] used association rules to characterize the normal 
stream of IDS alerts from a sensor and later to distinguish between false 
alarms and real ones. On the other hand, MINDS [61] uses association 
patterns to provide high-level summary of network connections that are 
ranked highly anomalous in the anomaly detection module. These 
summaries allow a human analyst to examine a large number of anomalous 
connections quickly and to provide templates from which signatures of novel 
attacks can be built for augmenting the database of signature-based intrusion 
detection systems. 

PHAD (packet header anomaly detection) [142] monitors network packet 
headers and builds profiles for 33 different fields from these headers by 
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observing attack free traffic and building contiguous clusters for the values 
observed for each field.  The number of clusters is pre-specified and if a new 
value that is observed does not fit into any of the clusters, it is treated as a 
new cluster and the closest two clusters are merged.  The number of updates, 
r, is maintained for each field as well as the number of observations, n. 
When a new packet is being tested for anomaly, the values of all fields are 
checked to see if they fit into the clusters formed in the training phase.  If the 
values for some fields do not fit into any clusters, then each of them 
contributes to the anomaly score value of the packet proportional to the n/r 
ratio for the field. ALAD (application layer anomaly detection) [142] uses 
the same method for calculating the anomaly scores as PHAD, but it 
monitors TCP data and builds TCP streams when the destination port is 
smaller than 1024.  It constructs five features from these streams as opposed 
to 33 fields used in PHAD. 

ADMIT (Anomaly-based Data Mining for InTrusions) [201] attempts to 
discriminate between masqueraders and true users on computer terminals. 
This task is performed by augmenting conventional password authentication 
measures and by continuously running a terminal-resident IDS program, 
which monitors the terminal usage by each user, creates an appropriate 
profile and verifies user data against it. 

Call stack information [71] was also effectively used to detect various 
exploits on computer systems. The anomaly detection approach, called 
VtPath, first extracts return addresses information from the call stack and 
generates “abstract execution paths” between two execution points in the 
program. These “abstract execution paths” are then compared to the 
“abstract execution paths” learned during normal runs of the program. 

Finally, there have also been several recently proposed commercial 
products that use profiling based anomaly detection techniques. For 
example, Antura from System Detection [222] use data mining based user 
profiling, while Mazu Profiler form Mazu Networks [147] and Peakflow X 
from Arbor networks [8] use rate-based and connection profiling anomaly 
detection schemes. 

 

5.2.5 Model based approaches 

Many researchers have used different types of models to characterize the 
normal behavior of the monitored system. In the model-based approaches, 
anomalies are detected as deviations for the model that represents the normal 
behavior. 

Very often, researchers have used data mining based predictive models 
such as replicator neural networks [79] or unsupervised support vector 



58 Chapter 2
 
machines [65, 117]. Replicator four-layer feed-forward neural network 
(RNN) [79] have the same number of input and output nodes. During the 
training phase, RNNs reconstruct input variables at the output layer, and then 
use the reconstruction error of individual data points as a measure of 
outlyingness. Unsupervised support vector machines [65, 117] attempt to 
separate the entire training data set from the origin, i.e. to find a small region 
where most of the data lies and label data points in this region as a normal 
behavior. In the test phase they detect deviations from learned models as 
potential intrusions. In addition, standard neural networks (NN) were also 
used in intrusion detection problems to learn a normal profile. For example 
NNs were often used to model the normal behavior of individual users [193], 
to build profiles of software behavior [74] or to profile network packets and 
queue statistics [122]. 

User Intention Identification [213] is a technique developed within the 
SECURENET project [212]. The goal of this technique is to model the 
normal behavior of users using a set of high-level tasks they have to perform 
on the system. These tasks are then refined into actions, which in turn are 
related to the audit events observed on the system. The analyzer keeps a set 
of tasks that each user can perform. Whenever an action occurs that does not 
fit the task pattern, an alarm is issued. User intention identification was also 
successfully used in several recently proposed approaches [43, 44]. 

Wagner [234] proposed to statically generate a non-deterministic finite 
automaton (NDFA) or a non deterministic pushdown automaton (NDPDA) 
from the global control flow graph of the program. The approach first 
computes a model of expected application behavior, built statically from 
program source code, then monitors program execution online at run time, 
and finally checks its system call trace for compliance to the model. 

Specification based intrusion detection techniques have been recently 
proposed to produce a low rate of false alarms [199], but they have not been 
as effective as anomaly detection in detecting novel attacks. Hence, 
specification based anomaly detection [199] was designed to mitigate the 
weaknesses of both specification based IDSs and anomaly detection 
techniques and complement their strengths. The approach begins with state-
machine specifications of network protocols, and augments these state 
machines with information about statistics that need to be maintained to 
detect anomalies. 

Finally, anomaly detection has also been used in embedded systems 
[146], where Markov models were employed to determine whether the states 
(events) in a sequential data streams, taken from a monitored process, are 
normal or anomalous. It computes the probabilities of transitions between 
events in a training set, and uses these probabilities to assess the transitions 
between events in a test set. 
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6. TIME ASPECTS 

When considering time aspects of IDSs, we distinguish two main groups: 
real-time (on-line) IDSs and off-line IDSs. Real-time (on-line) IDSs attempt 
to detect intrusions in real-time or near real-time. They operate on 
continuous data streams from information sources and analyze the data while 
the sessions are in progress (e.g. network sessions for network intrusion 
detection, login sessions for host based intrusion detection). Real-time IDSs 
should raise an alarm as soon as an attack is detected, so that action that 
affects the progress of the detected attack can be taken. Most commercial 
IDSs claim continuous processing capability [8, 147]. 

Off-line IDSs perform post-analysis of audit data. This method of audit 
data analysis is common among security analysts who often examine 
network behavior, as well as behavior of different attackers, in an off-line 
(batch) mode. Many early host-based IDSs used this timing scheme, since 
they used operating system audit trails that were recorded as files [77, 155]. 

Off-line analysis is also often performed using static tools that analyze 
the snapshot of the environment (e.g. host vs. network environment), look 
for vulnerabilities and configuration errors and assess the security level of 
the current environment configuration. Examples of these tools include 
COPS [69] and Tiger [194] for host environments, and Satan [70] and 
CyberCop Scanner [163, 197] for networks. Virus detectors belong to static 
tools too and they scan the disks searching for patterns matching known 
viruses. Although static tools are very popular and broadly used by system 
administrators, they are typically not sufficient to ensure high security [55]. 

Static tools can be also specifically designed for active investigation of 
vulnerabilities over the Internet. For example, Tripwire [106] or ATP [233] 
can be used to monitor a designated set of files and to detect computer 
intrusions that exploited older vulnerable applications. These intrusions 
should also be identified and reported to the system administrator as 
potential security holes using other tools like COPS [69] or Tiger [194]. 

7. ARCHITECTURE 

There are two principal architectures that are used in IDSs, namely 
centralized and distributed IDSs. Most IDSs employ centralized architecture 
and detect intrusions that occur in a single monitored system. However, there 
is a recent increasing trend towards distributed and coordinated attacks, 
where multiple machines are involved, either as attackers (e.g. distributed 
denial-of-service) or as victims (e.g. large volume worms). Analysis that 
uses data from a single site and that is often employed by many existing 
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intrusion detection schemes is often unable to detect such attacks. To 
effectively combat them, there is a need for distributed IDS and cooperation 
among security analysts across multiple network sites. 

Unlike a centralized IDS, where the analysis of data is performed on a 
fixed number of locations (independent of how many hosts are being 
monitored), in a distributed IDS the analysis of data is performed on a 
number of locations that is proportional to the number of hosts that are being 
monitored [211]. An excellent comparison of centralized and distributed 
IDSs, with their advantages and drawbacks, is provided in a paper by 
Spafford and Zamboni [211]. Despite several drawbacks of distributed IDSs, 
many commercial vendors have realized the need for detecting coordinated 
cyber attacks from distributed locations, and adapted their systems to address 
these challenges [9, 162]. 

Starting from the first proposed distributed IDS [205], the most typical 
architectures of distributed IDSs assume employment of intelligent agents. 
There are several advantages of using mobile agent based intrusion detection 
systems over other approaches for distributed intrusion detection [94]. First, 
agents are independently running entities and can be added, removed and 
reconfigured without altering other components, and without restarting local 
IDSs. Second, agents can be tested on their own before introducing them 
into a more complex environment. Finally, agents can exchange information 
to derive more complex results than any one of them may be able to obtain 
on their own. Although IDSs based on mobile agents are still in their infancy 
and fully implemented systems are still emerging, there are many agent-
based distributed IDSs [39, 109]. The typical examples include DIDS [59], 
AAFID [211], Argus [203], IDA [10], Micael [53]. 

DIDS [59] and distributed autonomous-agent NID [18] use a similar 
architecture that consists of a central analysis server and multiple IDS agents 
that communicate with each other. AAFID (autonomous agents for intrusion 
detection) [211] has a hierarchical design with three levels. At the lowest 
level, agents perform host security monitoring and data analysis. The 
information gathered by agents is forwarded to transceivers that distribute 
the information either to other agents or monitors, and control and configure 
agents at the second level. At the highest level, each monitor collects data 
from transceivers and evaluates their input. Intelligent agents in [82] employ 
classifier algorithms and travel among collection points, referred to as data 
cleaners, and uncover suspicious activities. The architecture is hierarchical, 
with a data warehouse at the root, data cleaners at the leaves, and classifier 
agents in between. A classifier agent specializes in a specific category of 
intrusion and is capable of collaborating with agents of another category to 
determine the severity level of an activity deemed suspicious. Moving the 
computational analysis to each collection point avoids the costly movement 
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of information to an aggregation unit. Argus [203] employs a similar 
architecture with low-level agents that serve as data cleansers, and data 
mining agents that generate not only rules for matching a normal profile but 
also generate feedback for knowledge-based components. These rules can be 
used then to update the rule database of the NFR knowledge component 
[167]. Bayesian multiple hypothesis tracking was also used to more 
effectively analyze information provided by existing IDSs from multiple 
networks [28]. Hypotheses that explain the measured intrusion events are 
generated and stored, and then evaluated against the understanding of the 
sensor behavior in order to determine the likelihood of the hypotheses. The 
hypothesis with the greatest likelihood is assumed correct, while other 
hypotheses are treated as intrusions. 

The Intrusion Detection Agent (IDA) system [10] is a multi-host based 
IDS that relies on mobile agents to trace intruders among the various hosts 
involved in an intrusion. IDA watches specific events that are related to 
various intrusions. These events are called “Marks Left by Suspected 
Intruder” (MLSI). If a specific MLSI is identified, IDA collects all the 
information related to this MLSI, analyzes this information and determines 
whether the MLSI is related to a real attack or not. The IDA system has a 
hierarchical tree structure, in which the central manager is placed at the root 
of the tree, while numerous agents are located at the leaves. 

Micael [53] is a distributed IDS that uses autonomous mobile intelligent 
agents able to make various decisions in the process of intrusion detection 
(e.g. investigating intrusions and initiating countermeasures against them). 
The Micael architecture contains the following agents: (i) headquarters, i.e. 
specialized centralized agents that are responsible for creating other agents 
and maintaining their executable codes. They receive information about 
potential intrusions from sentinel agents and can create new detachment 
agents that will be sent to hosts when needed; (ii) sentinels, i.e. immobile 
agents that collect data about the activities on the host machines and inform 
headquarter agents about detected anomalies; and (iii) detachments, i.e. 
mobile agents that are used to face possible intrusions (hazards) by starting a 
detailed analysis of log files. 

Applying intrusion detection techniques on a system-wide basis allows 
the system to be protected against general misuse, but may require 
significant resources. By optimizing the placement and configuration of 
these tools, it is possible to offer both increased protection for sensitive 
systems, and more context-sensitive detection, at the cost of general 
protection. For example, distributed IDS deployment often concentrates 
monitors in high-risk areas, such as network ingress points (e.g. adjacent to 
firewalls), or in the presence of valuable resources (such as network server 
farms) [148]. 
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8. RESPONSE 

The response of IDSs to identified attacks may be either passive or 
active. In the most common scenario, IDSs have passive response and 
simply inform responsible personnel of an event, but no countermeasure is 
actively applied to thwart the attack. The most common method for such 
notifications is through pop-up windows or on-screen alerts or through 
recording alerts into a file. These alerts may vary from notification of alarms 
only to detailed information about computer attacks such as source IP 
address, target of the attack, specific port of interest, the tools used to 
perform the attack, the outcome of the attack, etc. Some products also offer 
remote notification through sending alarms or alerts to cellular phones and 
pagers carried by system security personnel. In addition, notification is often 
sent through e-mail messages, but this may be unsafe, as attackers may 
monitor email and might even block the message. Certain IDSs (e.g. Cisco 
IDS [46]) use SNMP traps and messages to report generated alarms to a 
network management system, where network operations personnel can 
investigate them. Passive response is often used for off-line analysis. 

Alternatively, IDSs can also provide an active response to critical events, 
such as “patching” a system vulnerability, logging off a user, re-configuring 
routers and firewalls, or disconnecting a port. 

Given the speed and frequency at which attacks can occur, an ideal IDS 
would automatically respond to computer attacks at machine speed without 
requiring any operator intervention. However, this is an unrealistic 
expectation, largely due to the difficulty in eliminating false alarms. 
Nevertheless, IDS products can still provide a variety of active response 
mechanisms that may be used at the discretion of the system administrator. 

One of the most harmless, but often most productive, active responses is 
to collect additional information about a suspected attack and to perform 
damage control. This might involve increasing the sensitivity level of 
information sources (e.g., increasing the number of events logged by an 
operating system audit trail, or increasing the sensitivity of a network 
monitor that captures all packets). Such additional information collected can 
help resolve the detection of the attack (assisting the system in diagnosing 
whether an attack did or did not take place) thus allowing the IDS to gather 
information that can be used to support investigation of the attacker.  

In more recent IDS tools, active responses that include countermeasure 
against the attacker have become increasingly popular. An example of such a 
tool with early countermeasure capability is NetProbe [192], which monitors 
a network for undesired connections and immediately terminates them. 
There are also other tools with similar capabilities, such as RealSecure [89], 
NetRanger [47], and WebStalker [204] that have options to interrupt 
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suspicious network connections that carry attacks, to block network traffic 
from the hosts that are originating attacks, or to reconfigure routers and 
firewalls. 

9. CONCLUSIONS 

Intrusion detection techniques have improved dramatically over time, 
especially in the past few years. Initially developed to automate tedious and 
difficult log parsing activity, IDSs have developed into sophisticated, real-
time applications with the ability to have a detailed look at traffic and to 
sniff out malicious activity. They can handle high-speed networks and 
complex traffic, and deliver detailed insight – previously unavailable – into 
active threats against critical online information resources. IDS technology is 
developing rapidly and its near-term future is very promising. It is 
increasingly becoming an indispensable and integral component of any 
comprehensive enterprise security program, since it complements traditional 
security mechanisms. 

This chapter provides an overview of the current state of the art of both 
computer attacks and intrusion detection techniques. The overview is based 
on presented taxonomies exemplified with the most illustrative paradigms. 
The taxonomy of computer attacks and intrusions provides the current status 
and trends in techniques that attackers employ today. The taxonomy of IDSs 
highlights their properties and provides an overview of the past and current 
developments. Although a variety of techniques have been developed for 
detecting different types of computer attacks in different computer systems, 
there are still a number of research issues concerning the prediction 
performance, efficiency and fault tolerance of IDSs that need to be 
addressed. Signature analysis, the most common strategy in the commercial 
domain until recently, is increasingly integrated with different anomaly 
detection and alert correlation techniques in order to detect emerging and 
coordinated computer attacks.  

We hope this survey provides actionable information and advice on the 
topics, as well as serves to acquaint newcomers with the world of IDSs and 
computer attacks. The information provided herein is by no means complete 
and we recommend further reading to the interested reader. 
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