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Abstract 
 
A model of malicious intrusions in infrastructure facilities is developed, using a network 
representation of the system structure together with Markov models of intruder progress and strategy. 
This structure provides an explicit mechanism to estimate the probability of successful breaches of 
physical security, and to evaluate potential improvements. Simulation is used to analyze varying levels 
of imperfect information on the part of the intruders in planning their attacks. An example of an 
intruder attempting to place an explosive device on an airplane at an airport gate illustrates the 
structure and potential application of the model.  
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1. Introduction 
 
There is widespread interest in protection of critical infrastructures from malicious attack. The attacks 
might be either physical intrusions (e.g., to steal vital material, plant a bomb, etc.) or cyber intrusions 
(e.g., to disrupt information systems, steal data, etc.). The attackers may be international terrorists, 
home-grown hackers, or ordinary criminals. In 1997, the report of the U.S. President’s Commission on 
Critical Infrastructure Protection identified eight critical infrastructures “whose incapacity or 
destruction would have a debilitating impact on our defense and economic security” [11]. In 
subsequent years, this list of critical infrastructures was expanded and a set of 13 critical infrastructure 
sectors are included in the National Strategy for Homeland Security [4]. These 13 are: agriculture, 
food processing, water, public health, government, emergency services, banking and finance, 
telecommunications, energy, transportation, the chemical industry, postal and shipping services, and 
the defense industrial base. 
 
In this analysis, we focus primarily on transportation facilities, but the approach we suggest could also 
be used in other infrastructure contexts. For example, a similar type of analysis has been applied to 
information systems [3]. The objective of the analysis presented here is to provide guidance to system 
owners and operators regarding effective ways to reduce vulnerabilities of specific facilities. To 
accomplish this, we develop a Markov Decision Process (MDP) model of how an intruder might try to 
penetrate the various barriers designed to protect the facility. This intruder model provides the basis 
for consideration of possible strategies to reduce the probability of a successful attack on the facility. 
 
We represent the system of interest as a network of nodes and arcs.  Nodes represent barriers that an 
intruder must penetrate, and arcs represent movements between barriers that an intruder can make 
within the system. The adversaries first must penetrate entry points to the system, and if an attempted 
penetration at a particular entry node is successful, they can traverse edges from the successfully 
breached node to other nodes in the network that are connected to the one breached.  Traversing an 
edge entails a risk of detection. The adversary is assumed to make the decision that maximizes the 
probability of successful attack. 
 
Several previous authors have used graph-based methods to represent attackers or defenders in 
security analyses.  Phillips and Swiler [10] introduced the concept of an “attack graph” to represent 
sets of system states and paths for an attacker to pursue an objective in disrupting an information 
system.  Several subsequent papers (e.g., [5], [14], [16]) have extended these initial ideas. 
 
A number of authors have used Markov models to represent uncertainties in system state in the face of 
attacks, especially in computer systems (e.g., [5], [7], [14], [15]).  In particular, Hidden Markov 
Models (HMM) focus on intruder detection using indicators that indirectly reflect potential attacker 
activities (see, for example, [8], [15], [17]). 
 
Jha et al. [5] introduced the idea of using Markov Decision Processes (MDP) for situations in which 
the intruder’s path is probabilistic. By interpreting attack graphs as Markov Decision Processes they 
computed a probability of intruder success for each attack represented by the graph. In the current 
work, we also use the idea of computing the probability of a successful attack by characterizing the 
problem as an MDP. However, our graph structure is different from the normal attack graph structure 
used in information systems, and thus the underlying network over which the MDP is formulated is 
different from that used in [5]. 
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Our primary attention is on a class of adversaries that is rational – i.e., the adversaries follow a strategy 
that maximizes the probability of their attack being successful.  Their ability to actually optimize their 
attacks depends also on the level of information that they have about the system, and part of our 
analysis is to focus on how varying levels of information about the infrastructure system affects the 
strategies of potential intruders, how the overall probability of intruder success is affected by their 
level of information, and what implications this has for effective defense of the system against 
intrusion. 
 
We first construct an HMM to represent an intruder’s actions at a single node (barrier) in a system.  
Then we develop an aggregated representation of that single-node model for inclusion in an MDP 
model of intruder strategy within a network representation of the entire system. Finally, we explore 
how varying levels of information on the part of the intruder affect the intruder’s strategy and 
likelihood of success. 
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2. Intrusion Attempts at a Node 
 
An attempt to penetrate a system barrier (node) and the interaction between the intruder and the 
intrusion-detection system is modeled using a Hidden Markov Model (HMM).  The general concept of 
such a model is represented in Figure 1.  The intruder’s actions (the lower portion of the diagram) are 
assumed to progress through a set of states as a Markov process. The diagram in Figure 1 shows a 
simplified representation in which transitions are only to sequential states, but the transition matrix 
used can be more general. Occupancy of various states may result in emanations that are observable by 
the system operator (represented by the “signals” in Figure 1). For example, the intruder may be 
attempting to pick the lock of a door where there is video surveillance. Picking the lock requires an 
uncertain amount of time, represented by transition through a series of Markov states. While the 
intruder occupies those states (i.e., during the time that the intruder is attempting to pick the lock), 
there is a probability that his/her presence will be detected by the video surveillance system. The 
general structure of the HMM allows considerable flexibility in defining various types of signals and 
resulting actions by the system operator. For example, some signals may cause an increased level of 
surveillance without an alarm being raised. For our current purposes, we use a straightforward 
definition that a recognized signal from any state constitutes detection and the end of the attempted 
intrusion. If the intruder reaches a ”breach” state without being detected, we say that the node (barrier) 
has been breached, and no further emanations will cause the system to detect the intruder at that node. 
We also include a “retreat” state that corresponds to an unsuccessful, but undetected, attempt to 
penetrate the barrier. In that outcome, the intruder can withdraw without raising an alarm. 
 

 
Figure 1. A Hidden Markov Model characterizing an attack at a system node. 

 
We use a discrete-time, discrete-state HMM characterized by the following equations: 
 

n
T

n XAX =+1        (1) 
 

nn BXY =        (2) 
 
for transition steps n = 1, 2, …, ∞.  The state of the system (i.e., presence of the intruder in some node 
in the lower portion of Figure 1) is represented by the (column) probability vector, X.  The dynamics 
of the system are governed by (1), where A is a transition matrix (i.e., it satisfies the properties 0ija ≥  
and 1=∑

j
ija .)  The states of the system are not observed directly.  The process Y is observed, which is 

a function of the state of the underlying Markov process, X.  Each column of B specifies a conditional 
probability distribution over the possible observations, given that the underlying (hidden) system is in 
a particular state. The estimated values for B in a given application should reflect any efforts that 
might be taken by an intruder to reduce the likelihood of detection (e.g., attempting to defeat sensors, 
create diversions, etc.). 
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For our purposes, we assume that A and B are known (or have been estimated).  We want to use the 
estimated HMMs at various nodes as the basis for a network-level model of intruder strategy.  In large 
networks, it is useful to abstract the HMM at node v to a simpler representation, as shown in Figure 2. 
An intruder enters an “Attempt” state for that barrier (node).  The intruder continues to occupy that 
state until the attempted penetration is detected (and an alarm is raised), the penetration is successful 
and the barrier is breached, or the intruder retreats. 

 

 
Figure 2. Aggregated abstraction of the HMM at a node. 

 
To make the abstraction in Figure 2 useful, we must be able to derive the transition probabilities p, s, d 
and r from the underlying A and B matrices of the HMM.  The “attempt” state in Figure 2 is a transient 
state, and the other three states are absorbing. The transition probabilities s, d and r are specified so 
that the probabilities of detection, successful breach and retreat match those from the original HMM. 
The transition probability p is specified so the expected length of residence in the “attempt” state 
matches the duration of the attempted penetration in the original HMM. 
 
To determine the transition probabilities, we construct an augmented state space for the HMM by 
adding a detection state.  The transition probabilities to the detection state are given by the bij values 
from the B matrix corresponding to emanations that are specified to cause detection.  The original 
transition probabilities (in the A matrix) are adjusted to account for the probability of detection.  The 
resulting transition matrix for the augmented state space will be denoted as P. 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

H
ZQ

P
0

      (3) 

 
The submatrix Q represents transitions among the transient states, Z represents transitions from the 
transient states into the absorbing states, and H represents transitions within the set of absorbing states.  
In applications of interest here, H is an identity matrix. 
 
The Fundamental Matrix ( ) 1−−=Φ QI  contains elements φij, interpreted as the expected number of 
visits to state j before absorption, given that the system started in state i (see, for example, [13]). In 
general, the expected number of transitions prior to absorption for an attacker who enters in state i is: 
 

∑=
j

ijin φ       (4) 
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For the reduced representation in Figure 2, the expected number of transitions prior to absorption is: 
 

 
p

n
−

=
1

1
      (5) 

 
If there is only one entry state, i, in the original HMM, then we can equate (4) and (5) to solve for p as: 
 

∑
−=

j
ij

p
φ

11       (6) 

 
If the HMM has multiple entry states, denoted by a set E, with probability of entry in state Ei ∈  
denoted by iρ , we can compute the unconditional expected number of transitions prior to absorption 

as ∑
∈

=
Ei

ii nn ρ , and the equation for p becomes: 

n
p 11−=       (6’) 

 
In Markov chains that have both transient and absorbing states, if j is one of the absorbing states, the 
probability that the system is absorbed in state j, given that the initial state was state i, is given by the 
ijth element of the matrix ΦZ (for a proof of this result, see [2], page 157).  We denote this conditional 
probability as )( jf i : 
 

[ ]iji Zjf Φ=)(       (7) 
 
Thus, the probability of successful breach in the original HMM is: 
 

∑
∈

=
Ei

i successfsuccess )()Pr(      (8a) 

 
Similarly, the probabilities of detection and retreat are: 
 

∑
∈

=
Ei

i detectedfdetected )()Pr(     (8b) 

 

∑
∈

=
Ei

i retreatfretreat )()Pr(      (8c) 

 
In the reduced state representation (Figure 2), equation (7) allows us to write parallel expressions: 
 

rds
ssuccess

++
=)Pr(      (9a) 

 

rds
ddetected

++
=)Pr(      (9b) 
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rds
rretreat

++
=)Pr(      (9c) 

 
By equating (8a) and (9a), (8b) and (9b), and (8c) and (9c), and by noting that prds −=++ 1 , we 
can solve for the required transition probabilities s, d and r in the reduced representation. 
 
The value of the aggregated representation is that it allows us to construct a Markov Decision Process 
(MDP) of the intruder’s strategy at the system level, without carrying along all the detail of states 
within each node.  This is the focus of the following section. 
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3. Expanding to the System Level 
 
At the system level, we represent a network of barriers and potential movements as shown in the 
simple example in Figure 3. Each node can be expanded using a representation like the one in Figure 
2. If the intruder is successful at breaching a particular barrier, he/she has choices about where to go 
next (which arc to cross). Crossing arc ij entails a probability of detection ijδ , and this is represented 
in the transition matrix. 

 
We can pose the problem of finding the intruder’s optimal strategy as an MDP over an infinite 
horizon.  We define the expected “reward” to the intruder as a value associated with reaching the 
“success” state of a goal node (such as node 8 in the example in Figure 3), which represents an 
undetected exit from the system after accomplishing a desired action (such as placing a bomb, etc.). If 
we define this reward value as 1, then the expected rewards calculated at all earlier nodes in the 
network can be interpreted as probabilities of success, given that the intruder has reached that node. 
 

1

2

3

4

5

6

7

8

 
Figure 3. Simple system-level network. 

 
We assume that the objective of the intruder is to maximize his/her expected reward (probability of 
successful attack), and we examine the problem of finding the optimal strategy for this objective.  
Solving this problem positions us to adopt the perspective of the system operator and consider the 
actions that can have the largest impact on reducing the probability of successful intrusions. 
 
If the intruder is in state i and chooses action ai, we denote the expected value of the future stream of 
rewards by w(i,ai).  Each possible action ai implies a change in the transition probabilities that govern 
the process.  We denote the elements of the transition matrix resulting from choosing action ai as 
Pij(ai). The MDP we define for this problem is positive bounded, and we can find the optimal policy 
through either policy iteration or linear programming. 
 
From a computational standpoint, policy iteration is generally preferable to linear programming for 
finding solutions, but the linear programming formulation can yield insights that are significant for our 
current purposes.  Puterman [12] describes the linear programming formulation for positive bounded 
expected total reward models.  The formulation seeks the decision policy (choice of ai) that maximizes 
the expected value of the reward stream, w(i,ai).  We denote the resulting optimal expected value as 
w*(i). 
 
As [12] describes in detail, the set of w*(i) is the smallest set of values of w(i) for which the following 
inequalities hold for all states, i: 
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∑+≥
j

iijii jwaPaRiw )()()()(      (10) 

where )( ii aR  is the immediate reward for selecting action ai when the system state is i. In our 
application, 0)( =ii aR  for all states i other than the goal state, g, and 1)( =gg aR  for the dummy action, 
ag, after achieving the goal state. 
If we then introduce an arbitrary set of positive scalars, βi , with the requirement that 1i

i
β =∑ , the 

linear program can be written as follows: 
 

∑
i

i iw )(min β        (11) 

subject to: 
 

iii
j

iij aiaRjwaPiw ,)()()()( ∀≥−∑           (12) 

  iiw ∀≥ 0)(       (13) 
 
This linear program has a dual that can be expressed as follows: 
 

max ( ) ( )
i

i i i i
i a

R a x a∑∑       (14) 

 
subject to: 
 ( ) ( ) ( )

i i

i i ij i i i i
a j a

x a P a x a iβ− ≤ ∀∑ ∑∑       (15) 

      
( ) 0 ,i i ix a i a≥ ∀       (16) 

 
In our case, because all but one of the  )( ii aR  values are zero, the dual objective function can be 
simplified to: 
 

)(max gg ax        (16’) 
 
The primal linear program has many more constraints than variables, so it is more effective to solve 
the dual problem.  In addition, it can be shown (see [12]) that in an optimal solution to the dual 
problem (14)–(16), there is no more than one non-zero xi(ai) for each state i.  The ai for which xi(ai) is 
non-zero indicates the optimal action *

ia  for each i. The shadow prices on the dual constraints (15) are 
the values of w*(i), indicating the probability of successful attack, given that the intruder has reached 
state i. 
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4. An illustrative application 
 

As an example of system-level analysis for a specific infrastructure facility, consider an intruder who 
is attempting to place an explosive device aboard an aircraft while it is sitting at an airport gate, with 
the intent that it will explode later after the aircraft is in flight. A simplified representation of the 
barrier network and possible intruder actions is shown in Figure 4 (the network structure is the same as 
in Figure 3, but the nodes and links have now been labeled as specific barriers and movements). 
 
The intruder must first gain access to the apron area of the terminal. We postulate that this can occur 
either by gaining illicit access through the employee gate (e.g., by stealing an employee ID and using 
it to enter the area), or by entering in a service vehicle at a gate (e.g., in a catering truck). If the 
intruder is successful in getting access to the area, he/she must then impersonate a legitimate worker in 
the aircraft gate area – either an airline employee or a service contractor. The “cross-over” arcs 
between “entry” and “impersonation” in Figure 4 indicate that even if the intruder gains access to the 
apron area using an employee ID, he/she may switch ID’s and impersonate a service contractor within 
the area (or vice versa). This impersonation must be successful for the period of time required to get 
from the entrance to the aircraft itself. 
 

Employee
Gate

Service
Vehicle

Airline
Employee

Contractor

Landing
Gear

Cargo
Hold

Galley

Undetected
Exit

Entry 
Nodes

Impersonation 
Nodes

Aircraft 
Nodes 

Move within 
Area

Approach 
Aircraft

Place 
Device

 
 

Figure 4.  Illustrative network for analyzing an attempted placement 
 of an explosive device on an aircraft. 

 
Approaching the aircraft carries a risk of detection, and the approachable areas on the aircraft if the 
intruder is impersonating an employee may be different from those that are approachable if he/she is 
impersonating a service contractor. For example, a person who appears to be an airline maintenance 
employee might not attract attention approaching the under-wing area around the landing gear, 
whereas a person who appears to be a catering contractor would. For purposes of this example, we 
consider in Figure 4 three areas of the aircraft where an explosive device might be hidden – inside the 
wing around the landing gear, in the cargo hold, or in the catering supplies delivered to the galley. 
 
If access to the aircraft is gained, the device must be placed without arousing suspicion. This is 
represented by the arcs connecting the aircraft area nodes to the exit node. Each of these arcs has a 
probability of detection. 
 
Finally, if the intruder succeeds in gaining access to the aircraft and placing the device, he/she must 
exit without detection, and this represents the last barrier. Our modeling premise is that if the intruder 
is detected after placing the device, it will trigger a thorough search of the aircraft and the device will 
be discovered, so that the attempted attack will be foiled. 
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Table 1 summarizes the hypothetical node data used for the example analysis, and Table 2 shows the 
probabilities of detection used for the arcs in the example network. Note that we assume there is no 
retreat at the stage of exiting after placing the device – at that stage either the attack is successful or it 
is detected. Also note that the probability of detection on the arcs leading to the “impersonation” nodes 
is zero. This is because we are treating impersonation process (and time) as a barrier (node), so the 
probability of detection is lumped at the nodes, rather than on the arcs. 
 
If an intruder knew the structure of the network (Figure 4) and the values in Tables 1 and 2, we would 
consider him/her to be perfectly informed. Under this assumption, an optimal intrusion strategy (i.e., 
one that maximizes the probability of successful attack) can be constructed by solving the MDP. For 
the set of input data in Figure 4 and Tables 1 and 2, the solution for the optimal intruder strategy can 
be summarized as shown in Figure 5. To the left of each node is the probability of successful attack, 
given that the intruder is “arriving at” that barrier. To the right of each node is the probability of 
success, given that the intruder has successfully negotiated that barrier. There is only one value shown 
for the exit node (i.e., the “approaching” probability), because once that node is successfully 
negotiated, the attack has been a success, by definition. 
 
 

Table 1.  Example data for network nodes. 

Node (see Figure 4) Expected Time for Attempted 
Breach (min) Prob. of Success Prob. of Detection Prob. of Retreat 

Employee Gate 1 0.2 0.65 0.15 

Service Gate 2 0.25 0.7 0.05 

Impersonate Employee 10 0.2 0.6 0.2 

Impersonate Contractor 15 0.4 0.5 0.1 

Landing Gear 5 0.15 0.8 0.05 

Cargo Hold 3 0.1 0.75 0.15 

Galley 15 0.15 0.75 0.1 

Undetected Exit 10 0.8 0.2 0 

 
 

Table 2.  Probability of detection for possible moves. 
Arc Prob. of 

Detection  
Empl. Gate – Impersonate Employee 0 
Empl. Gate – Impersonate Contractor 0 

Service Gate – Impersonate Empl. 0 
Service Gate – Impersonate Contr. 0 
Impersonate Empl. – Landing Gear 0.7 
Impersonate Empl. – Cargo Hold 0.7 
Impersonate Contr. – Cargo Hold 0.6 

Impersonate Contr. – Galley 0.6 
Landing Gear – Exit 0.4 
Cargo Hold – Exit 0.2 

Galley – Exit 0.3 
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The optimal path for an intruder (i.e., the path that maximizes the probability of success) is the path of 
greatest vulnerability to the system. In our simple example, we would compute a probability of 
successful attack of 0.0034 for an intruder whose strategy is to gain entry to the apron area through the 
service vehicle gate, then impersonate a contractor (probably a catering service worker) to access the 
aircraft galley and place the device there before exiting. 
 

 

 
Figure 5. Summary of intruder strategy and probability of success. 

 
 
The existence of this strategy does not mean that all intruders will always proceed in exactly the way 
indicated. It does mean that if an intruder were perfectly informed, this would be a strategy through 
which the probability of a successful attack could be maximized. In actuality, the probability of 
successful attack is likely to be less than this maximum value because intruders will have less-than-
complete information and may not optimize their strategy. The solution to the MDP also provides 
useful information on the conditional probability of success for an attacker that reaches a certain point 
in the network, regardless of whether or not he/she followed the optimal strategy. For example, if an 
intruder succeeds in reaching the cargo hold of the aircraft (despite the fact that this is not an optimal 
strategy), the probability of a successful attack from that point on is 0.064. 
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5.  Representing Imperfect Information 
 
One useful representation of imperfect information is to assume that a potential intruder does not know 
the values of the probabilities in Tables 1 and 2, but has perceptions of those probabilities that contain 
errors. An intruder with imperfect information will attempt to construct an optimal strategy, but 
because of errors in perception of detection probabilities, the strategy is likely to actually be 
suboptimal against the real probabilities. Simulation is an effective tool to explore the effects of 
imperfect information represented in this way. 
 
Suppose that the perception of a given detection probability is represented as a beta random variable 

with parameters a > 0 and b > 0. The mean of such a random variable is  
ba

a
+

, and the variance is 

2))(1( baba
ab

+++
. If the intruder’s perception of an unknown probability π is unbiased, π=

+ ba
a  , and 

we can express one of the parameters in terms of the other – e.g., 
π
π ab )1( −=  . By varying a, we can 

change the variance (i.e., the level of uncertainty in the perception of π) and set b in terms of a to 
maintain the same expected value. A convenient way to create experiments is to set the coefficient of 
variation for the distribution and then solve for the values of a and b that will maintain the desired 
mean and achieve the required standard deviation. The coefficient of variation for the beta distribution 

is  
)1( ++ baa

b . 

 
Alternatively, we can assume that the intruder’s perception of the unknown probability may be biased. 

If we specify both the coefficient of variation in the distribution and the degree of bias (
ba

a
+

−π  ), we 

can solve for values of a and b to satisfy those requirements. 
 
For any setting of the values for the parameters a and b, we can sample from the perception 
distribution to simulate an intruder operating with some specified level of imperfect information. Of 
course, this concept extends to imperfect information with respect to any number of probability 
estimates. Replicating this simulated sampling leads to varying choices of paths through the network 
by the imperfectly informed intruder, each of which has a different probability of success. This allows 
construction of an estimated probability distribution for the likelihood of successful attack by an 
intruder operating at that level of imperfect information, as well as a probability distribution over 
possible paths through the network. The distribution of path choices allows us to reach some 
conclusions regarding the likelihood that an intruder will appear at certain points in the network. 
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6.  Illustrative Simulation Results 
 
To illustrate these ideas, we will consider a series of experiments using the basic network from Figure 
1, and compare the results to the perfect-information solution in Figure 5. As a first experiment we 
assume that the intruder’s perception of the detection probabilities (at the nodes and along the arcs) is 
unbiased, but has a coefficient of variation of 0.1 for all non-zero probabilities (i.e., excluding the first 
four entries in Table 2). 
 
As an example of the beta distribution parameter computations, consider the detection probability for 
the arc connecting “Impersonate Contractor” to “Cargo Hold” (the seventh row of Table 2). The true 
value for this probability is 0.6. To determine the a and b parameters of the beta distribution to 
represent imperfect information, we establish the two equations: 

 

6.0=
+ ba
a        (17) 

 

1.0
)1(

=
++ baa

b       (18) 

 
We then solve for a and b, leading to the values a = 39.4 and b = 26.27. This computation is repeated 
(for different underlying probabilities in equation 17) to produce a and b parameters for all the non-
zero detection probabilities. 
 
In each simulation experiment, the success probability for a given node or arc is adjusted to 
accommodate the sampled value of the detection probability. The retreat probabilities at the nodes are 
unchanged. This adjustment ensures that the required probabilities sum to 1.0. 
 
Table 3 summarizes the results of 30 replications of the simulation. The path descriptors use the node 
numbering scheme from Table 1, and are listed in order of decreasing probability of success. The 
probabilities of use are rounded to two decimal places, and may not add exactly to 1.0. The path found 
in the perfect-information case (2-4-7-8) is one of the two most likely paths when the intruder has 
imperfect information, but approximately 63% of the time, the imperfectly informed intruder will 
choose a suboptimal path, even when the variability in the perceptions of detection probabilities (as 
measured by the coefficient of variation) is relatively small (0.1). The average probability of success 
for an intruder with this level of information is .00279, approximately 17% lower than for the perfect 
information case. This experiment indicates that even a little reduction in information about the system 
can have a significant effect on reducing the likelihood of a successful attack. 

 
 

Table 3: Summary of results when probability estimates are 
unbiased and coefficient of variation is 0.1. 

 
Chosen Path Probability of Use Probability of Success 

2-4-7-8 0.37 .00336 
1-4-7-8 0.17 .00269 
2-4-6-8 0.37 .00256 
1-4-6-8 0.07 .00205 
2-3-5-8 0.03 .00108 
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In addition to information on average probability of success, the path data and probabilities in Table 3 
can be used to estimate the likelihood that an intruder will appear at a given point in the network, 
given the level of imperfect information hypothesized. This is done simply by summing probabilities 
for paths that include a given node or arc. For example, we might be particularly interested in the 
relative likelihoods of attempts to place explosives in the three different areas of the aircraft. In this 
case, we could use the results in Table 3 to conclude that the probabilities of an intruder attempting to 
use the landing gear (node 5), the cargo hold (node 6) and the galley (node 7) are .03, .44 and .54, 
respectively (again rounded to two decimal places). 
 
Further insight into the effects of imperfect information can be obtained by increasing the level of 
uncertainty. A second experiment increased the coefficient of variation in the detection probability 
perceptions to 0.3. The perceptions are still considered to be unbiased. Table 4 summarizes the results, 
again based on 30 replications of the simulation. 
 
Comparing Table 4 to Table 3, we see that the increase in uncertainty about the correct detection 
probabilities causes the optimal path to be chosen less frequently, and a very suboptimal path (1-3-5-8) 
appears in the list of possibilities. Overall, the average probability of success is .00266. This is a 
decrease from the case where the coefficient of variation is 0.1, but only about 5%. In this sample 
problem at least, a small amount of uncertainty in the perceived detection probabilities is important, 
but making that uncertainty much larger has relatively little effect on the expected probability of 
successful attack, as long as the perceptions are unbiased. 
 
 

Table 4: Summary of results when probability estimates 
are unbiased and coefficient of variation is 0.3. 

 
Chosen Path Probability of Use Probability of Success 

2-4-7-8 0.33 .00336 
1-4-7-8 0.23 .00269 
2-4-6-8 0.27 .00256 
1-4-6-8 0.07 .00205 
2-3-5-8 0.03 .00108 
1-3-5-8 0.07 .00086 

 
 
There is a somewhat more noticeable effect of the increase in uncertainty on the probabilities of the 
intruder attempting to use different parts of the aircraft. From the results in Table 4, we can compute 
estimates of the probability that the intruder would attempt to use the landing gear (node 5), the cargo 
hold (node 6) and the galley (node 7) as 0.1, 0.34, and 0.56, respectively. There is a noticeable shift in 
likelihood from the cargo hold to the landing gear for less well-informed intruders. This insight can be 
helpful to security forces. 
 
To test the effects of biased perceptions, we have conducted a third simulation experiment. The 
coefficients of variation in the detection probability perceptions are set to 0.1, as in the first 
experiment, but we introduce a bias on two of the perceived probabilities – the detection probabilities 
associated with a contractor approaching the aircraft, either the cargo hold or the galley. In Table 2, 
the “true” values are indicated to be 0.6, but we assume that the intruder believes (on average) that the 
values are 0.9 for both probabilities. Intuitively, we expect that these misperceptions will tend to drive 
the intruder’s attack path away from paths that use those two arcs, and since one of the two arcs is part 
of the optimal path under perfect information, the net effect should be a reduction in success 
probability for the intruder. 
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Table 5 summarizes the results of the experiment, again based on 30 simulation replications. The 
overall average probability of success for an attack is reduced to .00144, a reduction of 48% from the 
value in experiment 1 (.00279), and a reduction of 57% from the original value based on perfect 
information. The misperception of detection probabilities on the two arcs makes it much less likely 
that the intruder will attempt to use those arcs (probability of 0.23 versus 0.97 in the first experiment). 
Attacks are much more likely to be focused on paths (and areas of the aircraft) where the real detection 
probability is higher, leading to much lower success probability for the intruder. In the results shown 
in Table 5, the probability of the intruder attempting to use the landing gear area is 0.37, as compared 
to 0.03 in experiment 1, and the probability of attempts through the galley has decreased from 0.54 to 
0.1. 
 
The level of bias in the perceptions of the detection probabilities on arcs 4-6 and 4-7 used in this 
experiment is substantial, and smaller assumed biases would create less dramatic results. However, we 
have only introduced the bias on two arcs in the network. More widespread misperceptions would be 
likely in a larger system. This experiment does indicate that creating biased perceptions of detection 
probabilities among potential intruders can be very effective in reducing the likelihood of successful 
attacks by “steering” those attacks into areas where detection really is very likely. 
 
 

Table 5: Summary of results when probability estimates 
are biased on arcs 4-6 and 4-7. 

 
Chosen Path Probability of Use Probability of Success 

2-4-7-8 0.10 .00336 
2-4-6-8 0.13 .00256 
2-3-5-8 0.33 .00108 
2-3-6-8 0.33 .00096 
1-3-5-8 0.03 .00086 
1-3-6-8 0.07 .00077 

 
 
There are several means through which a system operator might create such misperceptions. 
Implementing inexpensive, highly visible (though perhaps not really very effective) detection 
mechanisms might be one means. Supplying disinformation about real operations or procedures may 
be another, although this has obvious drawbacks as well. 
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7. Optimizing Resource Allocation for Security 
Improvement 

 
The illustrative analysis leads us to an obvious question: If it were possible to estimate a cost function 
for changes within the network that would reduce the likelihood of a successful intrusion, could we 
identify the most effective (i.e., minimum cost) way of achieving a desired (small) probability of 
successful intrusion? This question can be answered using a bi-level optimization formulation. At the 
“upper level” we have an optimization that determines changes at nodes and arcs in the network so as 
to minimize cost, subject to a constraint that the resulting probability of successful attack is no greater 
than a specified value. However, the probability of successful attack is determined as the solution to a 
“lower level” optimization (optimizing the intruder’s strategy, given the characteristics of the network 
he/she is facing and his/her level of knowledge about that system). 
 
To be more specific about this optimization, consider again the model of the intruder’s strategy 
expressed in equations (11)-(13). There are at least five ways that the system operator (or “defender”) 
can act to reduce the likelihood that the intruder will be successful: 

• Increase the probability of detection at barrier (node) i ; this might be accomplished either by 
increasing the sensitivity of the detection process, or by increasing the time required to penetrate 
the barrier, allowing the existing detection mechanisms more time to be effective. 

• Increase the probability of detection on movement arcs ij between nodes. 
• Add new barriers that must be negotiated; this is represented by a new node in the network, with 

reconnection of existing arcs to force some (or all) intruders’ paths to go through the new node. 
• Remove existing arcs in the network; this represents some additional constraints (either physical 

or virtual) on movement within the system. 
• Reduce the level of information that potential intruders have about the system structure and 

detection probabilities, creating additional uncertainty for the intruders, and perhaps some level 
of “disinformation” that would lead them to make poor choices in their attack strategy. 

 
From the standpoint of the model we have defined, the third and fourth strategies listed can be 
considered to be special (extreme) cases of the first two strategies. The fifth strategy is quite different 
from the first two, and is analyzed via the methods described in Sections 5 and 6. 
 
Consider, for the moment, the first two strategies for reducing the vulnerability of the system 
(implicitly including the third and fourth as well). Suppose that the initial detection probability at node 
i is denoted 0

id , and the increase in that probability is denoted iΔ , so that the actual detection 
probability in effect is iii dd Δ+= 0 . 
 
Similarly, we will assume that the initial detection probability on arc ij is 0

ijδ , and the increase in that 

probability is ijγ , so the actual detection probability in effect is ijijij γδδ += 0 . Increases in the 

detection probabilities are assumed to require expenditures )( iiC Δ  and )( ijijK γ . In the current 
formulation, the cost functions are separable by node and arc, but a more general cost function could 
be used without changing the structure of the bi-level optimization formulation. 
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We will use E to denote the set of entry nodes to the system network, and then express the “upper 
level” problem as follows: 

 
Min ∑∑ +Δ

ij
ijij

i
ii KC )()( γ       (19) 

 
subject to: 

 
EiWiw ∈∀≤ ** )(       (20) 

 
idd iii ∀Δ+= 0        (21) 

 
ijijijij ∀+= γδδ 0        (22) 

 
ii ∀≥Δ 0         (23) 

 
ijij ∀≥ 0γ        (24) 

 
In (20), the )(* iw  values are the optimal solution to the “lower level” problem, specified as follows: 
 

∑
i

i iw )(min β        (25) 

subject to: 
 

i
j

ijiiij agijwdaPiw ,0)(),|()( ≠∀≥−∑ δ          (26) 

 

g
j

gjgggj ajwdaPgw ∀≥−∑ 1)(),|()( δ          (27) 

 
 iiw ∀≥ 0)(        (28) 

 
In (26) and (27), the transition matrix is written as ),|( ijiiij daP δ  to reflect the fact that it depends on 

the values of id and ijδ  determined in the upper problem. The lower problem in (25)-(28) is the same 

problem as in (11)-(13), but is re-written to reflect the specific knowledge of )( ii aR  values that 
relevant to this problem, and to emphasize its connection to the upper problem in (19)-(24). 
 
A solution procedure for this bi-level optimization searches over possible values of iΔ and ijγ , and for 

each set of values, solves the lower problem to find )(* iw  (after translating the id and ijδ values into a 

new transition matrix ),|( ijiiij daP δ ). A general issue (which is endemic to bi-level models) is that it 
is difficult to guarantee convergence of solution algorithms to true optimal solutions in the upper 
model. Bard [1] describes this general difficulty. 
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8.  Extensions 
 
Several possible extensions to this analysis are possible. First, the bi-level optimization problem 
formulated in Section 7 is likely to be difficult to solve to optimality, and investigation of potential 
solution methods is an important direction for further work. 
 
Second, other aspects of imperfect intruder information could be included, such as imperfect 
knowledge about what barriers (nodes) and arcs exist in the system. This type of imperfect information 
can be incorporated into the general analysis framework described in this paper. 
 
A third useful extension is to consider where improvements in security (i.e., increases in detection 
probability) would be most effective against several classes of potential intruders (i.e., intruders with 
differing levels of information about the system).  
 
A fourth useful extension is to create semi-Markov models for the processes of attempted penetration 
of barriers. This would allow more accurate representation of the uncertain time required to penetrate a 
given barrier, as well as offer the opportunity for time-dependent detection probabilities (i.e., the 
longer an intruder is present at a barrier, the more likely it becomes that he/she will be detected). This 
extension could improve the range of applicability of the model. 
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9.  Conclusions 
 
The objective of the analysis presented here is to provide guidance to system owners and operators 
regarding effective ways to reduce vulnerabilities of specific infrastructure facilities. To accomplish 
this, we have developed a Markov Decision Process (MDP) model of how an intruder might try to 
penetrate the various barriers designed to protect the facility. The solution to this MDP model provides 
insight into the level of vulnerability of the facility (the probability of successful intrusion) and 
indicates where the vulnerabilities are (the most likely paths for the intruder). 
 
Lower level models of intruder detection at barriers (nodes) of the system can be built as Hidden 
Markov Models, and the results of those lower level models can be aggregated for use in the MDP of 
intruder strategy for attacking the system. A key aspect of this analysis is representing imperfect 
information on the part of the intruders. Simulation is used as a tool to evaluate the effects of varying 
levels of imperfect information, sampling from distributions of detection probabilities and using those 
samples to construct distributions of intruder path choices through the network and overall success 
probability. 
 
A small example problem illustrates that even relatively small amounts of uncertainty in the 
information the intruders have about the system can significantly affect the probability that they can 
mount a successful attack. If the uncertainty is combined with bias in the perceptions of some system 
parameters, the effect on the intruders is magnified. In the small example studied, biased perceptions 
of two key detection probabilities combined with small amounts of uncertainty in perceptions of all 
the detection probabilities reduces the likelihood of a successful attack by a factor of about two. In 
addition to allowing us to estimate the probability of a successful intrusion, the simulation also allows 
us to estimate the likelihood of attacks appearing at specific locations in the network. This is very 
useful information for security forces. 
 
The intruder model also provides the basis for consideration of possible strategies to reduce the 
probability of a successful attack on the facility. The process of searching for cost-effective strategies 
to reduce system vulnerability can be formally cast as a bi-level optimization problem, as discussed in 
section 7. This provides a promising direction for further work. 
 
Successful implementation of the model described in this paper depends very directly on two 
important tasks: 1) constructing large-scale networks that represent the various barriers and movement 
possibilities in a system; and 2) estimating the various probabilities embedded in the A and B matrices 
that are elements of the HMM’s at each network node. Quite clearly, if the constructed network does 
not reflect accurately the barriers to intrusion and possible paths for intruders, the resulting 
computations from the model will be flawed. Constructing an accurate network representation requires 
significant system knowledge and also the ability to “think like an attacker.” Estimating the 
probabilities is also a challenging task. There are tools that have been created for estimating HMM 
matrices in other application contexts, and the experience gained in those other contexts should 
provide important insight for this task. 
 
The process of testing, implementing and enhancing the model is an ongoing one, with the expectation 
that this approach will become an important new tool for the protection of critical infrastructure 
facilities. 
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