
105

A Designer's Decision Aiding System: DDAS

Jenny Darzentas, Thomas Spyrou, Eftihia Benaki, John Darzentas
Research Laboratory of Samos,

Dept. of Mathematics,
University of the Aegean

This paper describes the development of a working system for aiding
designers of computer systems find appropriate tools and methods to enable
them tackle usability problems. The approach taken for the design of the
system is based on Soft Systems Methodology (SSM) and fuzzy reasoning in
the form of Test Score Semantics and has been extensively described
elsewhere. Here the building of the knowledge base and features of
interaction with system are explained and illustrated with an example. The
importance of the DDAS, lies not just in its usefulness to the designer, who
now has access to bodies of knowledge in direct relation to a problem of
concern, but in its claim to provide a methodology for decision aid in similar
situations where problems exist, and tools to solve them also, but where a
short cut or aid is needed to bring the two together

Keywords: decision aiding systems, design, human computer interaction,
expert systems.

Acknowledgement: The work reported on in this paper was funded by the
ESPRIT Basic Research Action 7040 AMODEUS (Assaying Means of Design
Expressions for Users and Systems)

1. Introduction

The work described in this paper was carried out as part of the Amodeus project,
one of the world's largest multidisciplinary HCI consortiums, developing modelling
and analytical techniques for Human Computer Interaction.

The motivation for the genesis of the DDAS was as a transfer activity i.e.
informing design practitioners of the potential of the Amodeus techniques. The
approach that was taken to study the problem situation and design the system has
been extensively described elsewhere [5,6,7,8].

The starting point for the architecture and development of the system is the
assumption that the design practitioner confronted with a usability problem, - a
problem which may be well articulated or only vaguely suspected, - would need
some help to assess which techniques are best suited to solve this problem. In
effect, by a designer decision aiding system is meant a system whose purpose is to

http://www.syros.aegean.gr/users/tsp/

A Designer's Decision Aiding System: DDAS 106

help a designer by first solving the problem of finding the most appropriate tools,
within a specific array, to tackle the situation of concern.

In developing the DDAS some immediate limitations had to be imposed upon this
scenario, in order to define the scope of the system.

Firstly and most obviously, it is not possible to offer aid for all problems or classes
of problems, but only those that the Amodeus modelling techniques can handle.
However, the array of Amodeus techniques covers design from a user oriented,
task oriented, system oriented and design rationale points of view, and while one
cannot claim that they cover all possible problems, it would probably be true to say
that at least at some level of granularity they touch upon all.

Secondly, it is not possible to allow the designer-user to express his problem freely
in natural language, because all effort would go to processing the input and trying
to match it to the knowledge base of problems handled by Amodeus. Nor would
this state of affairs be very desirable. Recent work in active DSS show that the
user prefers "active" aid from a system, and wants to be prompted [11]. A user
who has a very well formed idea of what his problem is would not mind expressing
it , (though he may wonder if the machine is interpreting it as he wants), but a user
who just "has a feeling" would have difficulties making that intuitive response to a
situation comprehensible to the system.

Thirdly, the DDAS is designed at present to do no more than assess the user’s need
for technique(s) and make a recommendation and present this to him with some
justification which will show the reasoning the system used to arrive at its
conclusion. The system does not store knowledge about how a technique is used,
or what skills are needed to use it. Thus it could be entirely possible that a
recommendation is made which requires a background in software engineering
which the user has not been assessed for. The reason for separating out the “what
it does” from the “how it does it” was to remain faithful to a desire to have the
techniques “compete” on similar terms and eliminate as much as possible
constraints that would impose a too early limiting of choices upon the user. From a
practical point of view as well, if a problem could be aided by a technique which
requires, for instance, skilled personnel, then it is not unlikely that the design
practitioner will take steps to acquire the services of said personnel, if at all
possible.

The ways for dealing with the above three limitations were, firstly, to build a
knowledge base containing descriptions of the aspects of the overall design space
which are relevant to the modelling techniques; secondly, to present these
descriptions to the user and ask him to select those which most closely resemble his
own problem of concern; and lastly, have DDAS complemented by a system, or
even documentation, such as the Executive Summaries [2], or a combination of
multimedia documents describing a technique, showing it in action, etc. that would

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 107

cover supplementary information such as what it is, how it does it, who can do it,
what is needed, how to interpret the results, etc. The approach to eliciting the
knowledge and designing the overall system was based on SSM [3,4] and has been
presented elsewhere [7].

The next section presents details of the implementation of the system, in terms of
architecture, and technical details; building and organising the knowledge base, and
features of the interaction. In section 3 an example session is given to illustrate the
interaction, and section 4 presents conclusions and discussion.

2. Implementation

2.1 Architecture and technical details

The system architecture is represented in Figure 1. This shows the three main
components of the DDAS: the knowledge base; the reasoning module; and the
communication module.

Figure 1. DDAS architecture

1. Designer problem definition

2. Application of test score semantics

3. Interfacing
1.1 Processing
 of user selected
 and system default
 constraints

1.2 Verification
 of designer acceptance
 of formed
 problem identification

2.1 Request the
evaluation

 of a constraint

2.2 Aggregation
 of partial
 scores

2.3 De
fuzzification

3.1 Display current
 designer's problem
 representation

3.2 Browsing the current
 detailed
 designer's problem
 representation

3.3 Input user's
 selections/rejections
 of re levant subsystems

3.4 Input user's
 selections/rejections
 of relationships

3.5 Input constraint
 evaluations

3.6 Communicate final
 recommendations

K
no

w
le

dg
e

m
od

ul
es

A Designer's Decision Aiding System: DDAS 108

Implementation was carried out using CLIPS, an expert system environment
developed by NASA and HARDY, a hypertext based diagram editor for Xwindows
and windows 3.1. developed by AIAI of the University of Edinburgh.[9,10]

2.2 Knowledge base

The design of the content of the knowledge base, in terms of its organisation and its
manipulation is the result of a methodology that goes through four phases:

1. the extraction of statements that describe the potential of the modelling
techniques

2. the extraction of subproblems that the above statements (1) refer to

3. the specification of the relationships of the above subproblems (2) with the
modelling techniques

4. the specification of relationships between and among the above subproblems (2)

2.2.1 Extraction of statements that define the modelling techniques

The modelling techniques were examined in turn and defining statements about
each were taken from the relevant literature [1,2]. The statements were descriptions
of what a technique does in relation to system usability design, as opposed to how
to use an approach.

The statements that were extracted were shown to the modellers to check for
interpretation and consistency in order to arrive at a final set of working statements.
Examples of “what” statements are given below:

CTA (Cognitive Task Analysis) identifies aspects of design that place heavy
demands upon the user’s cognitive resources (memory, attention span, etc.)

FSM (Formal Systems Methods) provides a framework for representing and
understanding the compatibility between functional (system) state and
perceived state.

2.2.2 extraction of subproblems that the above statements (2.2.1) refer to

Considering that for each statement of the modelling techniques, resulting from the
previous phase, there is a purpose that justifies its existence, that purpose is used to
extract the design subproblem that lies behind the claims of the modelling
technique. That is to say, searching for the answers to the question `What problems
does each modelling technique try to solve?’.

The CTA example given above implies that there exist aspects of design which are
difficult for users to cope with cognitively. In metamorphosing from claims to
subproblems, whole sets of subproblems are revealed. It is possible that more than

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 109

one statement of a modelling technique refers to the same subproblem. It is also
possible that more than one statement from different modelling techniques refers to
the same subproblem. In the DDAS, the subproblems are considered in the sense of
Checkland's [3,4] purposeful activity subsystems.

These design subproblems are noted down and then compared and contrasted to see
which are common in order to arrive to a sets of subproblems which eliminates
redundancy.

Some examples of the subproblems are the following:

isolate features that the user will find hardest to learn

reason whether some program correctly implements a given specification

predict reasonable user behaviours that the designer did not intend and did
not want etc.

2.2.3 specification of the relationships of the above subproblems (2.2.2) with the
modelling techniques.

Each one of the subproblems is related with one or more modelling techniques.
Only one type of relationship is considered here, that which specifies how well the
modelling technique satisfies the particular subproblem.

For example, a subproblem A may be well satisfied by the CTA modelling
technique, somewhat less satisfied by the FSM modelling technique and not
satisfied at all by other modelling techniques. This means that the particular
subproblem has this `degree of satisfaction’ relationship with two of the modelling
techniques.

The knowledge about this relationship between the techniques and the subproblems
were elicited from the modellers, who were presented with the sets of subproblems
and were asked to give a degree of satisfaction of their modelling technique to each
one of the subproblems within them. The modellers were given the opportunity to
use either a given scale of quantifiers (a lot ... a little) or to define their own scale
of quantifiers, in order to give the degree of how well their modelling technique
satisfies each one of the subproblems. In the second case, when the modellers
defined their own scale of quantifiers, they had to explicitly state what the scale
meant. The modellers were invited to make comments on the subproblems, and
especially useful were comments regarding the presentation of the subproblems
e.g. as disjointed statements, placed in a hierarchy, etc. Examples were taken from
case studies to illustrate the subproblem descriptions or modelling technique claims

In the spirit of Checkland, the methodology is viewed as a learning process rather
than a requirements/specification process. The modellers were presented with
"problems" that were often little more than paraphrases of statements about

A Designer's Decision Aiding System: DDAS 110

modelling techniques. The modellers, in rating the subproblems, were asked to
ignore these strong associations and to try to assess each subproblem statement as
though it were free of connotations. The modellers commented upon the fact that
this exercise made them aware of the scope of their techniques as well as how they
might be viewed by designers.

2.2.4 specification of relationships among the above subproblems (2.2.2)

Apart from the degree-of-satisfaction type of relationship that each subproblem
may have with one or more modelling techniques, the subproblems may also be
related with one or more other subproblems. These relationships among the
subproblems exist regardless of the modelling techniques. Some of these
relationship types are generality/specificity, low possible concurrency, high
possible concurrency, and are defined below.

Type generality (gen): if A and B are subproblems, members of the relationship 'A
(gen) B’, this means that subproblems B is a more specific subproblem than
subproblem A and subproblem A is more general than B. In other words, B is a
subproblem of subproblem A. This type of relationship includes the type
specificity (spec) as well. Each time there is A (gen) B, there is also B (spec) A.
Such relationships derive from questions asked such as:

• move towards the specific (How can you tell it’s a ...?, Can you give examples
of ...?)

• move towards the general (What have ... got in common?, What are ...
examples of?, What distinguishes ... from..?)

• move orthogonal to the axis (What alternative examples of ... are there to ...?)

 It should be noted that for the following types of relationships A is considered
to be one subproblem or a conjunction of subproblems (A1 [and A2 [and ...Ai]])
and B to be one subproblem or a conjunction of subproblems (B1 [and B2 [and ...
Bj]]).

Type low possible concurrency (lpc): if A and B are subproblems and also
members of the relationship `A (lpc) B’, then the possibility that both A and B are
parts of the user's problem is very low.

Type high possible concurrency (hpc): if A and B are subproblems and also
members of the relationship `A (hpc) B’, then the possibility that both A and B are
parts of the user's problem is very high.

2.2.5 Results of the methodology

Phase 2.2.3 provides a set of subproblems related to the modelling techniques.
Phase 2.2.4 takes this set of subproblems and specifies the relationships among the

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 111

subsystems-problems that follow the above definitions and thus converts the set of
subproblems to a network of related purposeful activity subsystems.

2.3 Interacting with the system

A main assumption of the DDAS is that the designer-user will express his problem
according to the subproblems of this network that have their source in the
modelling techniques. The following sections discuss the presentation of the
subproblems to the user; how the user can be guided to express/identify his
problem and what facilities are available for this; and finally how the system
outputs recommendations.

The interaction with the user is based upon two types of presentation elements: the
graphic display of the subproblems, and the commands that manipulate the
interaction.

The subproblems are displayed in the form of labelled shapes and are laid out in a
series of screens browsable by the user. Two types of shapes are used, one to
represent the fact that there exist more specific problem descriptions in the
knowledge base, while the other shape represents the most specific expression of a
subproblem contained in the knowledge base. In the current version, the former
are shown as rhombii, the latter as circles. Shapes may be linked by arcs which
denote different types of relationships existing between subproblems, for example,
green arcs represent “high possible concurrency” and blue arcs, “low possible
concurrency”.

Commands are displayed as buttons on a toolbar which is permanently on screen.
These commands aid the user to choose amongst the available facilities of the
system, for example the facility of moving to diagrams/screens that correspond to
different levels of analysis is performed by double arrow buttons.

2.3.1 Guiding the user to identify his problem

During the interaction the subproblems are displayed to the user, in order for him
to search for and identify the subproblems descriptions that he considers as most
relevant to his problem. The objective is for him to make a selection of these
relevant subproblems which is a way of expressing his situation of concern. Whilst
selecting (by left-clicking on the subproblems), the user can also specify the degree
of relevance of the subproblems to his problem, and should he change his mind, he
can unselect any subproblems he has already chosen. Each time he clicks on a
subproblem, its colour changes. Each colour shows the degree of importance of the
specific subproblems to the user The set of used colours are white, turquoise,
yellow, magenta and red, signifying least to maximum importance respectively.
This is also the sequence of the colours which appear when left clicking. After red,

A Designer's Decision Aiding System: DDAS 112

(most relevant) comes white again and the user can go through this cycle as many
times as he wants.

In order to guide the user through the network of subproblems, these are presented
to him at various levels of detailed description. This is done by presenting them in
several screens according to the subproblems’ degree of generality. It is possible
for the user to go backwards and forwards between screens (by using the buttons
<< >>).

Another feature of the system is that the user can ask for comments from the
system about the set of the subproblems he has chosen (Comments on
Choices) This facility is available any time during the interaction when
selections are made. The comments that the system is able to give are based on the
relationships of the subproblems that exist in the knowledge base. For instance, the
user who has chosen both of the subproblems that are parts of a “low-possible-
concurrency” relationship, is warned that these subproblems are not usually
concurrent. The subproblems that are mentioned in the warning messages are
highlighted with a black outline in order to find them more easily. The system is
flexible in the sense that it allows the user to ignore the warning messages. Should
the user want to follow the advice given, he may decide how he wants to solve the
implications, by either selecting and unselecting accordingly. Once all the warning
messages that the system has to show according to the relationships have been
displayed, the system reverts to the normal interaction state where the user can
choose/unchoose subproblems or choose one of the other available facilities.

A further facility available at any time is that of providing a formatted text
description of the set of subproblems chosen (Current State). The
relationships that exist in the knowledge base form the basis for the text description
of the chosen subproblems. Once the text description of the set of chosen
subproblems has been presented, the system reverts to state where the user can
choose/unchoose subproblems or choose one of the other available facilities.

Should the user want an illustration of a particular problem description, he can
obtain examples of use of the he by using the example button (or by shift-left-
clicking on the subproblems in question).This feature can be useful in helping the
user decide about how close (if at all) the specific subproblem description is to his
own particular problem.

Finally, the user is also able to see instructions regarding the use of the system
(Help button).

2.3.2 Output of the interaction: Recommending

When the designer-user feels that the subproblems he has chosen describe his
problem situation adequately, he can request a recommendation from the system.

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 113

The DDAS recommends which the modelling technique(s) are suitable for his
problem. This facility is available whenever no other facility is active.

In the current version of DDAS, the recommendation is a formatted text which
recommends the user the most appropriate technique(s). The reasoning behind this
recommendation, which is based upon fuzzy logic, is also given in the formatted
text, in order to give the user the justification of the rationale behind the
recommendation. The compensation oriented score operator from test score
semantics [12] is used to compute the recommendation. For its computation the
degrees that specify how important each chosen most specific subproblems is to the
user (3.2.) and the degrees of how well the modelling techniques satisfy each
chosen subproblems are used (2.3).

3. Example

To illustrate some of the system’s capabilities, an example detailing a designer’s
specific problem and how he can handle it using DDAS follows. In this example, a
designer's concern is that interface users are often confused by the outcome of
clicking a button X. e.g. there can be two different results of clicking the same
button X in two different contexts respectively.

A Designer's Decision Aiding System: DDAS 114

Figure 2. A snapshot of the most general subproblems diagram

The designer wants to resolve this problem. For the sake of the example, it is
assumed that he wants the solution to enable the users of the interface to
distinguish clearly what are the corresponding effects on the system when a button
is pressed. It is also assumed that the designer wants to check that this problem of
the design of the interface does not start from a confusion in the requirements.

The designer is firstly presented with a diagram which uses rhombii to represent
the most general subproblem descriptions, such as that given in Fig 2. The designer
searches through the diagram for labels which come closest to expressing his
problem. In this case, he chooses the rhombii with the following labels and assigns
to them a degree of relevance:

• IDENTIFY FEATURES IN THE DESIGN OF THE INTERFACE THAT
NEED MODIFICATIONS OR EXTENSIONS (red)

• IDENTIFY PROBLEMATIC FEATURES IN THE REQUIREMENTS
(yellow)

• PROVIDE A FRAMEWORK FOR CAPTURING PROPERTIES THAT ARE
GENERALLY REQUIRED TO EXIST BETWEEN THE SYSTEM AND THE
INTERFACE (magenta)

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 115

Figure 3. A snapshot of the most specific subproblems diagram

The designer presses the button with the label «>>« in order to move to the next
diagram with the more specific subproblem descriptions. He is then presented with
a diagram which uses circles and arcs to represent the possible subproblem
descriptions and the relationships between them, such as that given in Fig 3. The
designer searches through the network diagrams for labels which come closest to
expressing his problem. In this case, he chooses the circles with the following
labels and assigns to them a degree of relevance (colour).

• identify features that are sources of ambiguity and confusion (red)

• identify ambiguities and confusions in the requirements and therefore iterate
towards design specifications that are cognitively straightforward (yellow)

• provide a framework for representing and understanding the compatibility
between functional (system) state and perceived state (conformance) (magenta)

• provide a framework for representing and understanding the trade-off between
what the representation in itself will support and what must be supported by the
system (affordance) (turquoise)

A Designer's Decision Aiding System: DDAS 116

• provide a framework for representing and understanding the property of
predictability: supporting the system tasks by providing enough information to
indicate to user what effect his new actions will have (magenta)

Before going on to choose some more subproblem descriptions from the DDAS
diagram, the designer would like to have a commentary from the system about his
choices. He clicks on the «COMMENTS ON CHOICES» grey button. This advice
is given in a message window as shown in Fig. 4.

Figure 4. Comments on Choices message window

In this particular case the displayed message comments that according to the
system, the subproblem description «provide a framework for representing and
understanding the compatibility between functional (system) state and perceived
state (conformance)» usually implies the one with the label «provide a framework
for representing and understanding the feedback which shows that a mistake has
been made and the ease with which an inverse for an incorrect action can be found
(repair and recovery)» and therefore the second could also be chosen.

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 117

Figure 5. Message window with the available example(s) for the chosen specific
subproblem

The designer can shift-left-click on a subproblem in order to see the available
examples (if any) of the specific subproblem. The examples help him understand
some characteristic situations that the subproblem should be chosen. The examples
are given in a message window as shown in Fig. 5.

Each time the designer wants to see a text description of the chosen subproblem he
clicks on the «CURRENT STATE» grey button. A window appears with formatted
text which consists of sentences that contain either one selected subproblems
description or two selected subproblems that are related with a type of relationship
expressed in words. In this example, a part of the text description that the designer
sees is shown on the window in Figure 6.

In this way, the system, utilising its knowledge of the design space, and
subproblems associated with it, prompts the user and aids him to consider
subproblem descriptions which may be relevant to his problem of concern and
which he has not chosen. The user considers the system’s advice and is free to
reject it should he not think it relevant.

A Designer's Decision Aiding System: DDAS 118

Figure 6. Current state message window

Otherwise, the system highlights the subproblems mentioned with a black outline
(Figure 7) to help the user find the subproblems that the message refers to.

The user continues in this way, making selections, reading the comments on
current choices and reselecting until he is satisfies with what the current selection
represents. During this cycle he can get at any time a text description of the current
state.

When the designer is satisfied that he has a final set of chosen subproblem
descriptions (i.e. he doesn’t want to choose any more subproblem descriptions by
clicking on them and that he doesn’t want to change his belief about the importance
he gave to the selected subproblem descriptions, by changing their colour), he then
clicks on the «Recommendation» button to get a recommendation about the most
appropriate modelling technique(s) for his problem. A window appears with the
recommendation. The computation representing the reasoning behind this result is
also displayed in the same window for traceablity. This can be transformed to
formatted text, in order to give the user the opportunity to understand and justify
the system’s reasoning (Figure 8).

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 119

Figure 7. Selected subproblems

Figure 8. Recommendation message window

A Designer's Decision Aiding System: DDAS 120

4. Conclusions and Discussion

Making a generally applicable catalogue of design problems, and/or even making a
taxonomy of such problems, is a difficult task to undertake and it is doubtful, in
view of the rapidly changing nature of technology, and users' responses to it,
whether such a task could be achieved satisfactorily. The DDAS concentrates on
those design space subproblems which can be aided by the modelling techniques
and upon classifying these into a network according to the relationships that exist
among them.

This approach does not compare and contrast the modelling techniques. Instead,
the methodology looks at what design problems these techniques are capable of
dealing with and works by comparing and contrasting the problems, not the
techniques themselves. In this way a network of subproblems is generated. The
network and the relationships within it relate to the degree with which a modelling
technique can deal with a subproblem, as well as to the relationships between the
subproblems themselves. When a user selects a sample set which most closely
resemble his own situation of concern, the system reasons by means of the test
score semantics using a number of operators, to provide a recommendation as to
which modelling technique(s) are the most appropriate for the user's particular
problem, and backs this up with a justification of its rationale.

The importance of the DDAS, lies not just in its usefulness to the designer, who
now has access to bodies of knowledge in direct relation to a problem of concern,
but in its claim to provide a methodology for decision aid in similar situations
where problems exist, and tools to solve them also, but where a short cut or aid is
needed to bring the two together.

5. References

[1] Amodeus, ESPRIT Basic Research Action 3066, 1989-1992, AMODEUS
(Assimilating Models of Designers Users and Systems) and ESPRIT Basic
Research Action 7040 AMODEUS II 1992-1995 (Assaying Means of Design
Expressions for Users and Systems) Documentation available by anonymous
ftp (ftp.mrc-apu.cam.ac.uk) or by www (http://www.mrc-
apu.cam.ac.uk/amodeus/qref.html).

[2] Buckingham Shum S., Jørgensen A.H., Hammond N. and Aboulafia
A.(Eds), Amodeus-2 HCI Modelling and Design approaches: Executive
Summaries and Worked Examples , Amodeus Project Document: TA/WP16.,
1994

[3] Checkland P.B. Systems Thinking, Systems Practice, Wiley, New York,
1981.

J.S. Darzentas, T. Spyrou, E. Benaki and J. Darzentas 121

[4] Checkland P.B., Scholes J. Soft Systems Methodology in action, Wiley, New
York, 1990.

[5] Darzentas J., Darzentas J.S., Spyrou T. Defining the Design “Decision
Space”: Rich Pictures and Relevant Subsystems , Amodeus Project
Document: TA/WP 21, 1994.

[6] Darzentas J., Darzentas J.S., Spyrou T. Fuzzy Reasoning and Systems
Thinking in a Decision Aid for Designers in Proceedings of Second European
Conference on Intelligent Techniques and Soft Computing, Aachen, pp1609-
1614, 1994

[7] Darzentas J., Darzentas J.S., Spyrou T. Designing a Designers' Decision
Aiding System (DDAS): a Designers’ Decision Aiding System, Journal of
Decision Systems Hermes (in press)

[8] Darzentas J., Darzentas J.S., Spyrou T. An Architecture for Designer Decision
Aiding in Brannback, M. and.Leino, T (Eds) DSS-Galore! Ebo Academy
Press, Ebo Ser. A. 427, pp115-132, 1995.

[9] Giarratano J. and Riley G. Expert Systems: Principles and Programming.
PWS Publishing, Boston, MA., 2nd. edition, 1994.

[10] NASA Johnson Space Center, Houston, TX, “Clips Programmer’s Guide,
Version 6.0, JSC-25012”, June 1993.

[11] Raghav Rao H., Sridhar R., Narain S. An active intelligent decision support
system - Architecture and Simulation. Decision Support Systems, 12, pp. 79-
91, 1994

[12] Zadeh L.A. Knowledge Representation in Fuzzy Logic, IEEE Transactions on
Knowledge and Data Engng 1 no 1, pp. 89-100, 1989.

A Designer's Decision Aiding System: DDAS 122

	Introduction
	Implementation
	Architecture and technical details
	Knowledge base
	Extraction of statements that define the modelling technique
	extraction of subproblems that the above statements (2.2.1)
	specification of the relationships of the above subproblems
	specification of relationships among the above subproblems (
	Results of the methodology

	Interacting with the system
	Guiding the user to identify his problem
	Output of the interaction: Recommending

	Example
	Conclusions and Discussion
	References

