
41

Query-Driven Model Building In Enterprise-Wide Decision-
Making Environments

Karl R. Lang* and Andrew B. Whinston**
*Institut für Wirtschaftsinformatik und Operations Research

Freie Universität Berlin
Berlin, Germany;

**Center for Information Systems Management

Department of Management Science and Information Systems
The University of Texas at Austin

Austin, Texas.

1. Introduction

In order to respond to new challenges in an increasingly complex and dynamic
environment, modern management is using a vast amount of knowledge from
various sources. Depending on the particular problem being investigated,
managers switch between different perspectives and levels of detail when searching
for the relevant pieces of knowledge required to provide an appropriate answer.
However, lacking a centralized knowledge management facility, individual
managers' access to knowledge is restricted to a relatively small subset of the
collective organizational knowledge, depending on their status and function within
the organization. This may inhibit the recognition of the interactions and
interdependencies relevant to the problem under study.

Conceptually, we are looking for an enterprise modeling system (EMS)1 which
automatically builds and executes task-specific models as needed in response to
queries posed by the user. The focus of this paper is on how we can improve
model building and how we can extract the relevant parts of models to support
specific analyses of enterprise-wide corporate issues. We discuss and propose

1 We use the term enterprise modeling in accordance with the definition provided in Petrie (1992), p.19, where
enterprise is defined as "a collection of business entities ... in functional symbiosis," and thus differs from the
usage in the business re-engineering area. Business entities mean organizational (sub)units and (groups of) people
and functional symbiosis refers to the interactions among a set of intraorganizational as well as interorganizational
entities sharing a common goal. Hence, the scope of enterprise modeling explicitly includes external partnerships
like relationships of an organization with its suppliers, subcontractors, customers, and the public. Some authors,
for example Carter et al (1992) on p.4, use the term organizational decision support system to describe concepts
similar to our notion of enterprise modeling.

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 42

ideas which we see as promising steps towards accomplishing this difficult
endeavor. There are two, essentially disjoint, research efforts, one based in the
artificial intelligence community and the other in the decision support systems
community, which study model building and reasoning with multiple models. This
paper draws upon both of these efforts and develops a synergistic framework for
future enterprise modeling systems.

We envision a system whose reasoning about a particular organization is based
upon a library of model components (or model fragments) representing significant
organizational phenomena from different perspectives and at different levels of
detail. Accomplishing this requires access to multiple sets of heterogeneous model
fragments which differ in several dimensions, some of which might even be
mutually inconsistent. We need to address the issue of model representation and
model organization. That is, we need a language for expressing relationships of
different kinds and for expressing underlying assumptions controlling and guiding
their applicability.

Researchers in the DSS and Artificial Intelligence (AI) communities have proposed
several frameworks which provide partial solutions to this formidable problem.
Model management in the DSS field can be seen as a natural extension of previous
work in management science and operations research. It has advanced
mathematical modeling from a state where modeling was an uncoordinated task,
whose success depended mainly on the technical skills and expertise of the user, to
a state where systems actually know about certain types of mathematical models
and appropriate solvers [Geoffrion (1987), Liang (1988), Mannino et al (1990),
Krishnan and Westernberg (1991), Muhanna and Pick (1992), Basu and Blanning
(1993), Dolk and Kottemann (1993), Raghunathan et al (1993)]. The emphasis of
AI research has been put more on the issue of the explicit representation of
modeling assumptions, and the usage and exploration of qualitative knowledge,
and less on model integration and in particular on solver integration [De Kleer and
Brown (1984), Kuipers (1988), Addanki et al (1991), Falkenhainer and Forbus
(FF) (1991), Rickel and Porter (1992), and Weld (1992)].

2. A Framework for Query-Driven Enterprise-Wide Modeling Systems

We propose a model building strategy which builds models as needed in response
to user queries. Given a query, the model formulation problem can be defined as
selecting the relevant model fragments and generating a composite, task-specific
model which is coherent and useful in answering it. Using different sets of
assumptions and various kinds of knowledge ranging from general, qualitative
knowledge to specific and precise numerical models, managers analyze
organizational questions from different perspectives and at different levels of
detail. Given a particular task, model building is guided by the selection of an
appropriate perspective and level of detail, a modeling decision for which little

K.R. Lang and A.B. Whinston 43

support is found in current decision support system technology. When modeling a
certain organizational phenomenon, it is crucial to focus on the relevant aspects of
the situation under investigation, that is, to include all the relevant objects and
constraints, but also to exclude irrelevant ones and ignore unnecessary details. We
suggest the software architecture depicted in figure 1 for designing such an EMS.

Query Manager

Model Manager

Candidate Evaluation
Domain
Theory

Interaction Graph

Query Formulation
(SQL, ground
expression, etc.)

Candidate
Models

Scenario
Model

Solver

Solution

"What if ...?"

Question

A
 N

 S W
 E

 R

Organizational Knowledge Base

Assumptionsfragments

EMS Software Architecture.Figure 1:

Report Generator

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 44

The EMS is designed as an interactive software tool which supports decision
making and problem solving when exploring various business scenarios. It
comprises five functional modules: The query manager, the model manager, the
candidate evaluation module, the solver, and the report generator . The query
manager provides the interface between the EMS and the user, typically an
organizational decision maker or a technical assistant to one. It processes user's
queries such as, "How does an increase in price affect net income?" and translates
them into a set of executable statements which are submitted to the model manager.

The core of the EMS is the model manager which controls access to models and
data in the organizational knowledge base. The enterprise modeling framework
requires first the building of a general-purpose organizational knowledge base that
describes a variety of organizational objects, activities, and processes. The domain
theory is represented as a library of model fragments, each describing an
independent aspect from a particular viewpoint. It contains general organizational
laws and rules as well as relationships that are very specific to a particular
company. The organizational knowledge described in the domain theory could be
obtained from research results in the organizational behavior field, which tries to
formulate theories about organizations in general, that is, to find relationships that
help understand the behavior of a wide variety of organizations. Since those
relationships are supposed to hold for any particular organization of the class, they
tend to be very qualitative in nature. Organization-specific information, on the
other hand, is derived from historical data and experience accumulated within a
particular company, and therefore, tends to be much more precise. This
information is often encoded in a quantitative, management science/operations
research (MS/OR) type of model like optimization, simulation, or forecasting
models. The explicit representation of modeling assumptions in terms of
abstraction level, approximation, perspective, level of detail, and granularity is
another essential feature in enterprise modeling. Reasoning about those
assumptions enables the EMS to identify a suitable collection of compatible model
fragments and to build consistent, composite models in response to a query.
Typically, there is no unique composite model and the model manager might find
several feasible models, called candidate models, and passes each of them on to the
next EMS module.

The candidate evaluation module then collects all candidate models and chooses
the best candidate as the final scenario model. In this context, best means the
simplest possible model that is coherent, comprehensive, and appropriate for the
task. The solver module selects the adequate solution method and then solves or
simulates the scenario model chosen by candidate evaluation. Finally, a report
generator is employed as a post processor in order to translate the model solution,
that is, the output of the solver, into an intelligible answer which can be presented
to the user in return to the original question.

K.R. Lang and A.B. Whinston 45

3. The Organizational Knowledge Base

In this section, we discuss the organizing principles of the organizational
knowledge base (OKB) underlying our enterprise modeling framework. We view
the OKB as a repository of organizational knowledge whose purpose is to provide
a resource of sharable and reusable model pieces for helping to better understand,
explain, and predict organizational phenomena in a variety of different situations.
In order to achieve the necessary depth and versatility, the OKB needs to contain
knowledge of different types: (i) relationships among organizational variables
encoded as quantitative or qualitative constraints; (ii) their preconditions and
associated modeling assumptions that define the presuppositions under which they
hold; and (iii) knowledge about knowledge expressed as metarules which relate
modeling assumptions to each other.The observation that a model consists of more
than just a set of relationships, because a model always assumes a particular
modeling context, leads us to a definition of an EMS model component (or model
fragment) where the modeling assumptions are explicitly and separately expressed
from the actual relationships. Each model fragment has two sections, one contains
the specification of modeling assumptions (conditions section) and the other
(relations section) contains the actual constraints and relationships that apply if the
model assumptions hold. Model fragments are essentially of the form

 fragment <NAME> (input port) (output port)

 {verbal description of the functionality of the model fragment}

 conditions

 precondition-specifications

 relations

 relationship-specifications

 end

where <NAME> is an identifier of a particular model fragment instance, input port
is a list of the variables whose values need to be provided, either by computing
them in other model fragments or by importing them as exogenous quantities,
output port is a list of the variables which are computed by this model fragment,
and which can be shared with other fragments. The conditions section contains
precondition-specifications, which define the modeling assumptions that an
instantiation of a model fragment depends on. Lastly, the relations section contains
relationship specifications, which would be constraints of a particular modeling
language. We only assume that internally, that is, within a single model fragment,

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 46

the relationships are of a homogeneous type. Across model fragments,
heterogeneous relationship specifications are permitted by using several modeling
languages.

Before a model composition algorithm can actually search the model base and
identify task-specific, relevant model fragments, it needs sufficient information to
be able to evaluate the predicates in the model assumption section. This extra
information needs to be either derived directly from the query or inferred from
meta knowledge present in the OKB. Meta knowledge is to be specified separately
from the model fragments as a set of rules. These meta rules express integrity
constraints which rule out incoherent and inconsistent combinations of modeling
assumptions, and also imply additional conditions as a consequence of modeling
assumptions that have been already established.

Now, on the next couple of pages, we give an example that illustrates how the
EMS principles discussed above apply to the development of an OKB model. For
our purpose, showing just a small segment of an OKB shall be sufficient to
demonstrate the essential features of an OKB. The complete enterprise description
would obviously be much more elaborate. For the sake of simplicity, we have left
out some details, and included some further restrictions in a separate rules section.
In particular, rule R-1 limits the model base to quasi-static models, rule R-2 selects
QSIM as the only solver for purely qualitative scenario models, and rule R-3
chooses RCR as the only solver for semi-qualitative models2.

The intelligence of the EMS, however, resides mainly in the interaction graph,
shown in figure 2, which represents knowledge about organizational knowledge. It
is used in the OKB as a comprehensive hypermodel of the enterprise. More
specifically, the interaction graph relates organizational variables, organizational
relationships, modeling assumptions, and model fragments to each other. The
nodes of the interaction graph represent organizational variables and arcs
connecting two nodes indicate the existence of a relationship between the two
corresponding variables. Arc labels identify model fragments containing such
relationships. The specification of a relationship cannot be directly obtained from
the interaction graph, but must be retrieved from the relations section of the
containing model fragment. Likewise, modeling assumptions are to be found in
the conditions section of the identified model fragment. Finally, self-loops, that is,
arcs which leave from and return to the same node, indicate that the corresponding
variable could be treated as being exogenous.

In the lower left corner of figure 2, we can see, for example, that model fragment f2
contains a relationship among the variables usage of information technology (IT)

2 QSIM and RCR are two modeling languages which allow the user to represent purely qualitative and semi-
qualitative information; see Hinkkanen et al (1995) for a detailed discussion.

K.R. Lang and A.B. Whinston 47

and Productivity (Prd). This means that if we want to build a model which predicts
or explains the value of productivity, we need to consider fragment f2 as a potential
building block. The actual specification of the relationship and its associated
modeling assumptions represented by the arc <IT-Prd> can be looked up in the
definition of fragment f2, which is shown below. In this case, we find the
monotonic relationship Productivity = M+(IT), which holds if the four modeling
assumptions
OntologyAssumption=influences, SimplifyingAssumption= qualitative,
OperatingAssumption=quasi-static, and TimeScaleAssumption= medium are satisfied.

OKB CORPX

ALIASES
 /Partnership, Pship/
 /Product_Quality, PQual/
 /Customer_Satisfaction, CSat/
 /Customer_Service, CSrv/

/Marketing_Position, MPos/
/Promotional_Expenditure, PrmExp/
/Productivity, Prd/
/Information_Technology, IT/
/Revenue, Rev/
/Net Income, NInc/
/Production Cost, PCost/
/Performance, Perf/
/Goodwill, Gw/

END
ASSUMPTION CLASSES
 /Ontology Assumption, OntAss/ (influences, cash flow, material flow);
 /Simplifying Assumption, SimpAss/ (qual, semi-qual, quant);
 /Operating Assumption, OpAss/ (static, quasi-static, dynamic);
 /Time Scale Assumption, TScAss/ (short, medium, long)
END

fragment f1 (IT) (Pship)

{qualitative model describing the
relationship between IT and Partnership}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Partnership = M+(IT)

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 48

end

fragment f2 (IT) (Prd)

{qualitative model describing the
relationship between IT and Productivity}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Productivity = M+(IT)

end

fragment f3 (Prd) (Pship)

{qualitative model describing the
relationship between Productivity and
Partnership}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=long

relations

 Productivity = M+(Partnership)

end

fragment f18 (Price) (Sales)

{marketing model describing the qualitative
relationship between Price and Sales
volume}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Sales = M-(Price)

end

fragment f19 (Price) (Sales)

{marketing model describing the semi-
quantitative relationship between Price and
Sales volume}

conditions

 OntAss=cash_flow, SimpAss=qual-
quant, OpAss=dynamic, TScale=short

relations

 Sales(t)=[68000,92000]+[40000,48000]
*Price(t)

end

fragment f20 (Price) (Sales)

{marketing model describing the
quantitative relationship between Price and
Sales volume}

conditions

 OntAss=cash_flow, SimpAss=quant,
 OpAss=quasi-static, TScale=short

relations

 Sales = 80000 - 44000*Price

end

fragment f21 (Sales) (Rev)

{accounting model describing the qualitative
relationship between Sales volume and
Revenue}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Revenue = M+(Sales)

K.R. Lang and A.B. Whinston 49

end

fragment f22 (Price) (Rev)

{accounting model describing the qualitative
relationship between Price and Revenue}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Revenue = M+(Price)

end

fragment f23 (Price, Sales) (Rev)

{accounting model describing the
quantitative relationship between Price,
Sales volume, and Revenue}

conditions

 OntAss=cash_flow, SimpAss=quant,
 OpAss=quasi-static, TScale=medium

relations

 Revenue = Price*Sales

end

fragment f24 (Rev) (NInc)

{accounting model describing the qualitative
relationship between Revenue and Net
Income}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 NetIncome = M+(Revenue)

end

fragment f25 (Cost) (Price)

{financial model describing the qualitative
relationship between Cost and Price}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Price = M+(Cost)

end

fragment f26 (PCost) (Cost)

{financial model describing the qualitative
relationship between Production Cost and
Total Cost}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static TScale=medium

relations

 Cost = M+(ProductionCost)

end

fragment f27 (Cost) (NInc)

{financial model describing the qualitative
relationship between Cost and Net Income}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 NetIncome = M-(Cost)

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 50

end

fragment f28 (Cost, Rev) (NInc)

{accounting model describing the
quantitative relationship between Cost,
Revenue, and Net Income}

conditions

 OntAss=cash_flow, SimpAss=quant,
 OpAss=quasi-static, TScale=medium

relations

 NetIncome = Revenue - Cost

end

fragment f29 (Perf) (Gw)

{marketing model describing the qualitative
relationship between Performance and
Goodwill}

conditions

 OntAss=influences, SimpAss=qual,
 OpAss=quasi-static, TScale=medium

relations

 Goodwill = M+(Performance)

end

 .

 .

 .

rules

 R-1: OpAss(quasi-static)

 R-2: SimpAss(qual) => solver(QSIM)

 R-3: SimpAss(qual-quant) =>
solver(RCR)

 R-4: ...

 .

 .

 .

end

K.R. Lang and A.B. Whinston 51

Hence, if we are building a qualitative model describing, among other things, the
impact (or influence) of IT usage on productivity, we must consider the inclusion
of fragment f2 in the composite scenario model to be built.

In general, arcs emanating from a node x indicate the variables directly influenced
by variable x. Thus, usage of IT has, in our enterprise model, a direct impact on
Partnership, Productivity, and Customer Service. However, besides the direct
influence of IT on Productivity, there is also an indirect influence of IT on
Productivity, via Partnership. Indirect influences are represented in the interaction
graph as a sequence of arcs called an interaction path. Here, the sequence <IT-
Pship>-<Pship-Prd>, or more compactly written as <IT-Pship-Prd>, expresses the
indirect influence of IT on Productivity. Similarly, IT has many more indirect
influences on other variables, for example, the interaction paths <It-Prd-Perf-Gw>
and <IT-CSrv-CSat-Gw> represent alternative possibilities of modeling the indirect
influence of IT on Goodwill. Incoming arcs of a node x represent the direct
influences on variable x. Our example indicates that Productivity is directly
influenced by IT usage and Partnership. However, IT has a self-loop as the only
incoming arc. The arc going from node IT back to itself means that the only
influence on variable IT is IT itself, in other words, IT cannot be explained within
the enterprise model. IT has to be determined outside of the model, that is, IT is
treated as an exogenous variable whose value needs to be imported from a separate
database when IT is included in a scenario model. Exogenous variables are
typically variables which are, at least to some extend, controllable. The level of IT,
for example, is determined by the budget proposed and passed by the management.

An arc label actually consists of a list of fragment identifiers. Such a list may be
empty, as in the case of arc <IT-IT>, indicating an exogenous variable; may
contain one identifier, as in <IT-Prd> meaning that the OKB knows only about one
relationship between IT and Prd; or it may contain several identifiers suggesting
alternative relationships. Two examples of multiple relationships are, first, arc
<Price-Rev> which lists two fragments, f22 and f23, both using a relationship
between price and revenue, and, second, arc <Price-Sales> which names three
alternatives, fragments f18, f19 and f20, of modeling price and sales.
Relationships involving more than two variables are identified by any of the
participating variables. For example, fragment f28, which specifies a relationship
between three variables net income (NInc), cost (Cost) and revenue (Rev), must be
instantiated when either of the two arcs <Cost-NInc> and <Rev-NInc> is
considered.

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 52

MPos
Gw

Perf

Prd

Pship

CSat

CSrv

 IT

PQual

Price

Cost

PCost

Sales

PrmExp

Rev

NInc
{f1}

{f3}
{f2}

{f4}
{f5}

{f6}

{f7}

{f8}
{f10}

{f13}

{f12}

{f11}

{f14}

{f15}

{f16}

{f21, f23}

{f17}

{f18, f19, f20)

{f22, f23}

{f25}

{f26}

{f27, f28}

{f24, f28}

{f29}

{f9}

Figure 2: Interaction Graph of the CORPX Organizational Knowledge Base.

4. Model Composition

We refer to the real-world phenomenon under study as a scenario, and to the model
representing it as a scenario model. Selecting the right model pieces to compose an
appropriately integrated model for answering a given query requires modeling
decisions along several dimensions. What is the best set of variables to be included
in the model? What level of detail is appropriate? Which are the relevant
organizational phenomena for studying the posed question? From what perspective
should the problem be viewed? What kinds of approximations and abstractions
should be allowed? Even the most carefully organized model fragment library
won't provide enough information to find an answer to all of these questions.
Therefore, we need to derive missing pieces of information from the query itself,
that is, we need to look for clues provided in the query that could narrow the focus
of the model composition process and reasonably constrain the set of plausible
modeling assumptions.

As an example of composing a scenario model in response to a prediction question,
let us suppose the user entered the query "How does an increase in price affect net
income?" Conceptually based on natural language processing, a query elaboration

K.R. Lang and A.B. Whinston 53

procedure would analyze the issued query and derive from it a set of ground
expressions which would be passed on to the model manager module of the EMS
for evaluation. In the absence of such a sophisticated query analyzer, we could
simply devise a primitive query language which basically lists a number of ground
expressions which permit the system to identify objects, quantities and relations of
interest, where each of these has a referent in the organizational knowledge base.
Hence, let us consider the simplified query {increase(Price), quantity(NetIncome)},
whose ground expressions increase(Price) and quantity(NetIncome) provide the
input to the model manager.

The query indicates that we need a scenario model which computes net income.
While the one ground expression quantity(NetIncome) of the query hints neither to
a qualitative nor to a quantitative modeling approach, the other ground expression
does provide a clear clue for a qualitative analysis. Since the increase operator
indicates a desired direction of change without further specification, it suggests a
qualitative model for investigating this effect on net income in the given scenario.
Now, we could try to enumerate all possible combinations of model fragments, and
to prune out those which either violate some of the modeling assumptions or prove
to be irrelevant or insufficient regarding the query. However, this approach would
be computationally too costly, considering the many combinations of model
fragments, which would typically occur in an enterprise-wide environment. The
number of modeling assumptions, on the other hand, tends to be much smaller, and
therefore suggests a computationally better alternative by reasoning about
combinations of modeling assumptions first, and then to select and integrate a
suitable set of model fragments. We will come back to this computational issue
below and discuss it in more detail.

Model composition begins with the derivation of an initial set of quantities of
interest from the query. Quantities of interest correspond to variables which need
to be included in the scenario model to be composed. In our example, we would
take the query {increase(Price), quantity(NetIncome) and derive {Price,
NetIncome} as the set of initial quantities of interest. The quantity operator in the
second ground expression, {quantity(NetIncome)}, provides a hint that the value of
the variable NetIncome is desired, which means that we are supposed to model a
scenario wherein NetIncome is predicted. Variables to be predicted by a scenario
model are called goal variables. The increase operator in the first ground
expression, increase(Price), describes a manipulation to be performed on a variable.
In this case we are supposed to (qualitatively) change the current value of price and
then examine the effect of this change. Variables like Price which are to be
changed initially in a way prescribed by manipulation operators in the query are
called driving variables. Driving variables are used to drive the model building
process by trying to establish a connection between them and the goal variables
such that the values of the goal variables can be determined if an initial state

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 54

description is given. In the example, we would try to build a model that computes
NetIncome from Price. In order to accomplish this job, the EMS employs a
compositional modeling approach which searches the OKB for relevant model
fragments which then can be used to construct an appropriate model.

Before invoking the model composition process, we need to define a modeling
environment that selects a set of modeling commitments that are appropriate for the
given query. Most importantly, this includes the selection of query-consistent
modeling assumptions. In general, this is an indeterminate task. Ideally, we would
choose the most suitable option along each of the modeling dimensions. However,
we cannot expect that the query presented by the user conveys enough information
to make indisputable decisions for all modeling assumption classes. For the sake
of simplicity, let us suppose, in the example of this paper, that our query analyzer
derives a uniquely determined modeling environment3. More specifically, we
assume that

(i) the encounter of the generic increase in the query implies a purely
qualitative analysis,

(ii) a qualitative analysis requires an ontological commitment to view the
interactions in the enterprise as general influences between
organizational variables,

(iii) the organizational processes involving price and net income work at a
medium time scale, and

(iv) we restrict the analysis to quasi-static models (at least for now).

 Hence, we would select

(OntAss=influences, SimpAss=qual, OpAss=quasi-static, TScale=medium)

as the current set of modeling assumptions.

Unquestionably, many queries would lead to ambiguous decisions about those
modeling assumptions. On the other hand, it actually would be desirable in such
cases that the EMS would generate a scenario model for all plausible modeling
environments, that is, for all combinations of modeling assumptions that could

3 The user is supposed to have the option to define or redefine the modeling envrironment
at any time, and thus can explicitly select particular modeling assumptioms or override
modeling assumptions chosen by the EMS.

K.R. Lang and A.B. Whinston 55

reasonably be derived from the query. Furthermore, in order to promote user
interaction and extend user control with the EMS, the query language should allow
the user to explicitly select some of the modeling assumptions anyway. And
finally, one of the modeling control parameters could provide a confirmation
option that forces the EMS to merely suggest important modeling decisions, and to
seek user confirmation before proceeding. This would be especially useful in
ambiguous situations in which the user could prevent the system from generating,
and subsequently solving, unnecessary or unwanted models.

In the first step, the driving and goal variables are located in the interaction graph
depicted in figure 2. Our example has only one of each, the driving variable price
and the goal variable net income (NInc). Now, it needs to be checked whether
initial values of the driving variables are provided. Initial values could be derived
from the query, supplied by an external data base, or computed from other
variables. The latter is computationally the most expensive possibility because it
entails constructing a more complex scenario model, and is thus eschewed unless
the former two fail. Our example query has no clue on the initial value of price.
Fortunately, the second possibility applies, because the node representing price has
a self-loop. This means that the variable price can be treated as an exogenous
variable, that is, its current value can be obtained from an external source. Next,
we try to connect the driving variables with the goal variables, that is, we search
the interaction graph for interaction paths between driving and goal variables.
Looking at figure 2, there are four interaction paths describing different ways of
computing net income from price. Each of the four generated interaction paths
suggests to make use of a different collection of fragments for building a model
that predicts how an increase of price would affect the net income of the CORPX
enterprise.

 Interaction Path # arcs # nodes # frags # models

1 Price-CSat-Gw-MPos-Sales-Rev-NInc 6 7 8 4

2 Price-CSat-MPos-Sales-Rev-NInc 5 6 7 4

3 Price-Sales-Rev-NInc 3 4 7 12

4 Price-Rev-NInc 2 3 4 4

 Total 24

Table 1: Combinations of Different Interaction Paths.

Potential scenario models, or model candidates, differ in their complexity
measured in terms of number of variables and number of fragments involved in
composing them. From table 1 we can see that the first interaction path relates

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 56

seven variables by six arcs identifying eight relationships represented in eight
fragments. Since some of the arcs suggest a set of alternative relationships, we can
choose from several different combinations of relationships and their associated
fragments. As another example, the third interaction path in table 1, Price-Rev-
NInc, consists of three arcs <Price-Sales>, <Sales-Rev>, and <Rev-NInc> which
suggest the sets {f18, f19, f20}, {f21, f23}, and {f24, f28} as possible fragments for
modeling relationships between respectively price and sales, sales and revenue, and
revenue and net income. Thus, any fragment triple

F1, F2 ,F3 ∈ f18 , f19 , f 20{ }× f21 , f 23{ }× f 24 , f 28{ }

is an eligible candidate for a scenario model, resulting in 3*2*2 = 12 combinations
to choose from. Likewise, we can produce yet more candidate models, and
represent them as fragment n-tuples where n denotes the number of participating
fragments, from the other interaction paths. Specifically, the first interaction path
generates four 6-tuples, the second four 5-tuples, and the last four pairs of
fragments. All together, table 2 lists a total of 24 candidates to consider when
building a model of the scenario described in the given query "How does an
increase in price affect net income?" Obviously, the number of model candidates
varies with every query, and, in more intricate scenarios, can quickly reach an
order of magnitude that is hard to manage.

In order to keep the model composition task tractable we would like to avoid a
complete enumeration of possible model candidates. Since the final scenario
model has to be internally consistent, we must eliminate those candidates from
further consideration whose constituting fragment's precondition sections contain
contradictory modeling assumptions because this would indicate an incompatible
set of model fragments. In our example above, we have hitherto ignored the
modeling assumptions which the fragments are based upon. Prior to generating
candidate models, we need to check the consistency of modeling assumptions.
From the current modeling environment, we obtain the active set of modeling
assumptions, (OntAss=influences, SimpAss=qual, OpAss=quasi-static,
TScale=medium) whereon the building of the scenario model rests.

 IP Model Candidate Incompatible Fragments
1 1 (f12, f8, f9, f14, f21, f24) ()
2 1 (f12, f8, f9, f14, f21, f28) (f28)

K.R. Lang and A.B. Whinston 57

3 1 (f12, f8, f9, f14, f23, f24) (f23)
4 1 (f12, f8, f9, f14, f23, f28) (f23, f28)
5 2 (f12, f10, f14, f21, f24) ()
6 2 (f12, f10, f14, f21, f28) (f28)
7 2 (f12, f10, f14, f23, f24) (f23)
8 2 (f12, f10, f14, f23, f28) (f23, f28)
9 3 (f18, f21, f24) ()
10 3 (f18, f21, f28) (f28)
11 3 (f18, f23, f24) (f23)
12 3 (f18, f23, f28) (f23, f28)
13 3 (f19, f21, f24) (f19)
14 3 (f19, f21, f28) (f19, f28)
15 3 (f19, f23, f24) (f19, f23)
16 3 (f19, f23, f28) (f19, f23, f28)
17 3 (f20, f21, f24) (f20)
18 3 (f20, f21, f28) (f20, f28)
19 3 (f20, f23, f24) (f20, f23)
20 3 (f20, f23, f28) (f20, f23, f28)
21 4 (f22, f24) ()
22 4 (f22, f28) (f28)
23 4 (f23, f24) (f23)
24 4 (f23, f28) (f23, f28)

Table 2: Model Candidates generated from Interaction Paths (IP) using
(OntAss=influences, SimpAss=qual, OpAss=quasi-static, Tscale=medium)

as the currently active set of modeling assumptions.

Model Candidate Model Size
(f12, f8, f9, f14, f21, f24) 13
(f12, f10, f14, f21, f24) 11
(f18, f21, f24) 7
(f22, f24) 5

Table 3: Remaining models after eliminating incompatible models.
Model size measured in terms of the candidate evaluation function: eval(m)=v+r.

Table 2 shows for each model candidate those fragments that are incompatible
because they violate some of the active modeling assumptions. Notice that only
four (set in boldface) out of twenty-four model candidates are indeed internally
consistent. Therefore, we devise a compositional modeling strategy which reasons
first about the consistency of the modeling assumptions before it starts to assemble

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 58

composite model candidates. This approach reduces quickly the search space of
possible scenario models from 24 to just 4 candidates (see table 3), namely (f12, f8,
f9, f14, f21, f24), (f12, f10, f14, f21, f24), (f18, f21, f24), and (f22, f24). Thus, our
compositional modeling method concludes, for this example

{increase(Price), quantity(NetIncome)} ==> or ((f12, f8, f9, f14, f21, f24), (f22, f24)
 (f12, f10, f14, f21, f24), (f18, f21, f24)).

5. Candidate Evaluation and Model Integration

After generating a set of feasible scenario model candidates we need to evaluate
and order them according to their appropriateness in order to choose the most
appropriate one as the final scenario model. Unfortunately, there is no single
criteria that would alone by itself describe appropriateness in a satisfying way,
which makes it difficult to provide a definition of it that is not arbitrary to some
extend and, at the same time, operational. Falkenhainer and Forbus (1991) define
the final scenario model as the model candidate which is coherent and most useful.
The former criterion requires the scenario model to be consistent with the modeling
assumptions to which the EMS committed when exploring the scenario set up by a
query. The latter refers to the tradeoff between information cost and significance
to the query in terms of sufficiency and minimality (Balakrishnan and Whinston
1991). Sufficiency means that the answer to the query is firstly not only correct
but also relevant to the question such that it provides her with the information
sought, and secondly that the answer is also satisfactorily detailed and accurate.
Minimality, on the other hand, calls for a parsimonious response and forbids
elaborate details. In other words, we are looking for the scenario model which is
minimal and (a) consistent, (b) valid, (c) relevant, (d) adequately detailed, and (e)
adequately accurate.

The candidate evaluation module receives, from the model composition module as
its input, a set of scenario model candidates, and produces as its output the final
scenario model. First, we need to ensure that the scenario model satisfies
restrictions (a) to (e). Fortunately, our compositional modeling method was
designed such that it generates only feasible model candidates, that is, candidates
which do satisfy the above restrictions. Consistency is accomplished through the
explicit reasoning about underlying modeling assumptions during the model
building process. We can assume validity of the relationships used in building
model candidates because model fragments are only applied if the assumptions
stated in their preconditions section hold. We ensure relevance by assuming that
our query analyzer identifies quantities of interest correctly, and that only such
fragments are considered which the interaction graph relates to a driving variable
or a goal variable. An adequate level of detail and accuracy is achieved by
assuming that the query analyzer, in connection with user interaction, is able to

K.R. Lang and A.B. Whinston 59

derive and establish a proper set of modeling assumptions which include an
appropriate description of level of detail and accuracy required in the given
scenario.

Now that we are assured that all remaining candidate models are indeed feasible
and appropriate in the sense that we can expect them to yield comparably
satisfactory answers, we want to select the minimal or simplest one. Let us define
simplicity of a model in terms of model size and define an evaluation function

 as a function of number of variables v and number of relationships eval(m) r ,
for example as eval(m) = v + r . From table 3 we can see that candidate (f22, f24)
is chosen as the final scenario model in our example and is passed on to the solver
for model execution.

Using candidate model (f22, f24) we obtain

scenario model f22-f24 (Price) (NInc)
conditions
 OntAss=influences, SimpAss=qual, OpAss=quasi-static,
TScale=medium
relations
 Revenue = M+(Price)
 NetIncome = M+(Revenue)
end

as the final model, the scenario model. This is not yet a completely specified
model, one which could be solved as it is. However, it does show the complete
specification of the model's constraints, the core part of the final scenario model.
Although it contains only valid relationships, a price increase leads to higher
revenues and highter revenues have a positive effect on net income, it may not be
accurate enough for the user's current analysis. Model (f22, f24) ignores, for
example, the influence of price changes on sales which in turn also influence the
goal variable net income. Hence, after inspecting the suggested scenario model, the
user may opt for rejecting it, and thus force the EMS to search for an alternative
scenario model. In our example, the EMS would suggest model candidate (f18,f21,
f24) as its next scenario model.

scenario model f18-f21-f24 (Price) (NInc)
conditions
 OntAss=influences, SimpAss=qual, OpAss=quasi-static,
TScale=medium
relations
 Sales = M-(Price)

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 60

 Revenue = M+(Sales)
 NetIncome = M+(Revenue)
end

The new, more complex model does represent the indirect effect of price on net
income by including sales as an additional variable and by adding another
relationship. Depending on the user's intents, it may be beneficial to trade off some
model cost (in terms of model complexity) for more accuracy.

7. Conclusion

To conclude, we have presented a novel, comprehensive framework for future
enterprise-wide modeling systems in this paper. Enterprise computing is a support
tool to achieve organizational goals. We believe that future research in model
building and model management for decision support in organizational
environments requires more attention to organizational knowledge representation
and to related model building and model reasoning research in artificial
intelligence. One purpose of this paper is to bring to bear some of the stimulating
results obtained from the AI community, and to indicate how they can be
incorporated into the DSS research on model building. Among the new features
we have proposed, we want to highlight those which, in our mind, map out the
most promising future research directions. First, the possibility of both qualitative
and quantitative model formulations, which introduces a new level of versatility to
organizational model building, and which should widen the scope of computer
supported decision tools considerably. Second, the explicit representation of
modeling assumptions. And finally, the application of a compositional modeling
strategy to automatically build task-specific scenario models, which liberates users
from having to specify special modules for controlling the modeling integration
process.

References

Addanki, S., R. Cremonini, and J.S. Penberthy (1991) "Graphs of Models."
Artificial Intelligence. 51: 145-178.

Balakrishnan, A., and A.B. Whinston (1991) "Information Issues in Model
Specification." Information Systems Research. 2(4): 263-286.

Basu, A. and R. Blanning (1994) "Model Integration Using Metagraphs."
Information Systems Research. 5(3): 195-218.

Bhargava, H.K. and R. Krishnan (1991) "Reasoning with Assumptions,
Defeasibility, in Model Formulation." working paper, The H. John Heinz III
School of Public Policy and Management, Carnegie Mellon University.

K.R. Lang and A.B. Whinston 61

Bonczek, R.H., C.W. Holsapple, and A.B. Whinston (1981) Foundations of
Decision Support Systems, Academic Press.

Carter, G.M., M.P. Murray, R.G. Walker, and W.E. Walker (1992), Building
Organizational Decision Support Systems, Academic Press, San Diego, CA.

De Kleer, J., and J.S. Brown (1984) "A Qualitative Physics Based on
Confluences." Artificial Intelligence. 24: 7-83.

Dolk, D. R., and J.E. Kottemann (1993) "Model Integration and a Theory of
Models." Decision Support Systems. 9(1): 51-63.

Falkenhainer, B., and K.D. Forbus (1991) "Compositional Modeling: Finding the
Right Model for the Job." Artificial Intelligence. 51: 95-144.

Geoffrion, A.M. (1987) "An Introduction to Structured Modeling." Management
Science. 33(5): 547-588.

Hinkkanen, A., K.R. Lang, and A.B. Whinston (1995) "On the Usage of
Qualitative Reasoning as Approach Towards Enterprise Modeling." Annals
of Operations Research., in press.

Krishnan, R., P. Piela, A. Westernberg (1991) "On Supporting Reuse in Modeling
Environments." working paper, School of Urban and Public Affairs and
Engineering Design, Carnegie Mellon University.

Kuipers, B. (1988) "Qualitative simulation using time-scale abstraction." Artificial
Intelligence in Engineering. 3(4): 185-191.

Liang, T. (1988) "Development of a Knowledge-Based Model Management
System." Operations Research. 36(6): 849-863.

Mannino, M., B. S. Greenberg, and S. N. Hong (1990) "Model Libraires:
Knowledge Representation and Reasoning." ORSA Journal on Computing.
2(3): 288-301.

Muhanna, W.A., and R.A. Pick (1992) "Meta-Modeling Concepts and Tools for
Model Management: A Systems Approach." forthcoming in Management
Science.

Petrie, C. (Ed) (1992) Enterprise Integration Modeling: Proceedings of the First
International Conference. MIT Press.

Raghunathan, S., R. Krishnan, and J. H. May (1993) "MODFORM: a Knowledge-
Based Tool to Support the Modeling Process." Information Systems
Research. 4(4): 331-358.

Rickel, J. and B. Porter (1992) "Automated Modeling for Answering Prediction
Questions: Exploiting Interaction Paths." In Proceedings of the Sixth

Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 62

International Wrokshop on Qualitative Reasoning. p. 82-95. Edingburgh,
Scotland.

Weld, D.S. (1992) "Reasoning About Model Accuracy." Artificial Intelligence. 56:
255-300.

	1. Introduction
	2. A Framework for Query-Driven Enterprise-Wide Modeling Sy
	3. The Organizational Knowledge Base
	4. Model Composition
	5. Candidate Evaluation and Model Integration
	7. Conclusion
	References

