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1.  Introduction 

In order to respond to new challenges in an increasingly complex and dynamic 
environment, modern management is using a vast amount of knowledge from 
various sources.  Depending on the particular problem being investigated, 
managers switch between different perspectives and levels of detail when searching 
for the relevant pieces of knowledge required to provide an appropriate answer.  
However, lacking a centralized knowledge management facility, individual 
managers' access to knowledge is restricted to a relatively small subset of the 
collective organizational knowledge, depending on their status and function within 
the organization.  This may inhibit the recognition of the interactions and 
interdependencies relevant to the problem under study.  

Conceptually, we are looking for an enterprise modeling system (EMS)1 which 
automatically builds and executes task-specific models as needed in response to 
queries posed by the user.  The focus of this paper is on how we can improve 
model building and how we can extract the relevant parts of models to support 
specific analyses of enterprise-wide corporate issues.  We discuss and propose 

                                                      
1 We use the term enterprise modeling in accordance with the definition provided in Petrie (1992), p.19, where 
enterprise is defined as "a collection of business entities ... in functional symbiosis," and thus differs from the 
usage in the business re-engineering area. Business entities mean organizational (sub)units and (groups of) people 
and functional symbiosis refers to the interactions among  a set of intraorganizational as well as interorganizational 
entities sharing a common goal. Hence, the scope of enterprise modeling explicitly includes external partnerships 
like relationships of an organization with its suppliers, subcontractors, customers, and the public.  Some authors, 
for example Carter et al (1992) on p.4, use the term organizational decision support system to describe concepts 
similar to our notion of enterprise modeling. 
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ideas which we see as promising steps towards accomplishing this difficult 
endeavor.  There are two, essentially disjoint, research efforts, one based in the 
artificial intelligence community and the other in the decision support systems 
community, which study model building and reasoning with multiple models.  This 
paper draws upon both of these efforts and develops a synergistic framework for 
future enterprise modeling systems. 

We envision a system whose reasoning about a particular organization is based 
upon a library of model components (or model fragments) representing significant 
organizational phenomena from different perspectives and at different levels of 
detail.  Accomplishing this requires access to multiple sets of heterogeneous model 
fragments which differ in several dimensions, some of which might even be 
mutually inconsistent.  We need to address the issue of model representation and 
model organization.  That is, we need a language for expressing relationships of 
different kinds and for expressing underlying assumptions controlling and guiding 
their applicability. 

Researchers in the DSS and Artificial Intelligence (AI) communities have proposed 
several frameworks which provide partial solutions to this formidable problem.  
Model management in the DSS field can be seen as a natural extension of previous 
work in management science and operations research.  It has advanced 
mathematical modeling from a state where modeling was an uncoordinated task, 
whose success depended mainly on the technical skills and expertise of the user, to 
a state where systems actually know about certain types of mathematical models 
and appropriate solvers [Geoffrion (1987), Liang (1988), Mannino et al (1990), 
Krishnan and Westernberg (1991), Muhanna and Pick (1992), Basu and Blanning 
(1993), Dolk and Kottemann (1993), Raghunathan et al (1993)].  The emphasis of 
AI research has been put more on the issue of the explicit representation of 
modeling assumptions, and the usage and exploration of qualitative knowledge, 
and less on model integration and in particular on solver integration [De Kleer and 
Brown (1984), Kuipers (1988), Addanki et al (1991), Falkenhainer and Forbus 
(FF) (1991), Rickel and Porter (1992), and Weld (1992)]. 

2.  A Framework for Query-Driven Enterprise-Wide Modeling Systems 

We propose a model building strategy which builds models as needed in response 
to user queries.  Given a query, the model formulation problem can be defined as 
selecting the relevant model fragments and generating a composite, task-specific 
model which is coherent and useful in answering it.  Using different sets of 
assumptions and various kinds of knowledge ranging from general, qualitative 
knowledge to specific and precise numerical models, managers analyze 
organizational questions from different perspectives and at different levels of 
detail.  Given a particular task, model building is guided by the selection of an 
appropriate perspective and level of detail, a modeling decision for which little 



K.R. Lang and A.B. Whinston 43 

support is found in current decision support system technology.  When modeling a 
certain organizational phenomenon, it is crucial to focus on the relevant aspects of 
the situation under investigation, that is, to include all the relevant objects and 
constraints, but also to exclude irrelevant ones and ignore unnecessary details.  We 
suggest the software architecture depicted in figure 1 for designing such an EMS.  
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The EMS is designed as an interactive software tool which supports decision 
making and problem solving when exploring various business scenarios.  It 
comprises five functional modules: The query manager, the model manager, the 
candidate evaluation module, the solver, and the report generator . The query 
manager provides the interface between the EMS and the user, typically an 
organizational decision maker or a technical assistant to one.  It processes user's 
queries such as, "How does an increase in price affect net income?"  and translates 
them into a set of executable statements which are submitted to the model manager.   

The core of the EMS is the model manager which controls access to models and 
data in the organizational knowledge base.  The enterprise modeling framework 
requires first the building of a general-purpose organizational knowledge base that 
describes a variety of organizational objects, activities, and processes.  The domain 
theory is represented as a library of model fragments, each describing an 
independent aspect from a particular viewpoint.  It contains general organizational 
laws and rules as well as relationships that are very specific to a particular 
company.  The organizational knowledge described in the domain theory could be 
obtained from research results in the organizational behavior field, which tries to 
formulate theories about organizations in general, that is, to find relationships that 
help understand the behavior of a wide variety of organizations.  Since those 
relationships are supposed to hold for any particular organization of the class, they 
tend to be very qualitative in nature.  Organization-specific information, on the 
other hand, is derived from historical data and experience accumulated within a 
particular company, and therefore, tends to be much more precise.  This 
information is often encoded in a quantitative, management science/operations 
research (MS/OR) type of model like optimization, simulation, or forecasting 
models.  The explicit representation of modeling assumptions in terms of 
abstraction level, approximation, perspective, level of detail, and granularity is 
another essential feature in enterprise modeling.  Reasoning about those 
assumptions enables the EMS to identify a suitable collection of compatible model 
fragments and to build consistent, composite models in response to a query.  
Typically, there is no unique composite model and the model manager might find 
several feasible models, called candidate models, and passes each of them on to the 
next EMS module.  

The candidate evaluation module then collects all candidate models and chooses 
the best candidate as the final scenario model.  In this context, best means the 
simplest possible model that is coherent, comprehensive, and appropriate for the 
task.  The solver module selects the adequate solution method and then solves or 
simulates the scenario model chosen by candidate evaluation. Finally, a report 
generator is employed as a post processor in order to translate the model solution, 
that is, the output of the solver, into an intelligible answer which can be presented 
to the user in return to the original question.  
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3.  The Organizational Knowledge Base 

In this section, we discuss the organizing principles of the organizational 
knowledge base (OKB) underlying our enterprise modeling framework.  We view 
the OKB as a repository of organizational knowledge whose purpose is to provide 
a resource of sharable and reusable model pieces for helping to better understand, 
explain, and predict organizational phenomena in a variety of different situations.  
In order to achieve the necessary depth and versatility, the OKB needs to contain 
knowledge of different types: (i) relationships among organizational variables 
encoded as quantitative or qualitative constraints; (ii) their preconditions and 
associated modeling assumptions that define the presuppositions under which they 
hold; and (iii) knowledge about knowledge expressed as metarules which relate 
modeling assumptions to each other.The observation that a model consists of more 
than just a set of relationships, because a model always assumes a particular 
modeling context, leads us to a definition of an EMS model component (or model 
fragment) where the modeling assumptions are explicitly and separately expressed 
from the actual relationships.  Each model fragment has two sections, one contains 
the specification of modeling assumptions (conditions section) and the other 
(relations section) contains the actual constraints and relationships that apply if the 
model assumptions hold.  Model fragments are essentially of the form 

 

 fragment <NAME>  (input port)  (output port) 

  {verbal description of the functionality of the model fragment} 

 conditions 

  precondition-specifications 

 relations 

  relationship-specifications 

 end 

 

where <NAME> is an identifier of a particular model fragment instance, input port  
is a list of the variables whose values need to be provided, either by computing 
them in other model fragments or by importing them as exogenous quantities, 
output port  is a list of the variables which are computed by this model fragment, 
and which can be shared with other fragments.  The conditions section contains 
precondition-specifications, which define the modeling assumptions that an 
instantiation of a model fragment depends on.  Lastly, the relations section contains 
relationship specifications, which would be constraints of a particular modeling 
language.  We only assume that internally, that is, within a single model fragment, 
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the relationships are of a homogeneous type.  Across model fragments, 
heterogeneous relationship specifications are permitted by using several modeling 
languages.   

Before a model composition algorithm can actually search the model base and 
identify task-specific, relevant model fragments, it needs sufficient information to 
be able to evaluate the predicates in the model assumption section.  This extra 
information needs to be either derived directly from the query or inferred from 
meta knowledge present in the OKB.  Meta knowledge is to be specified separately 
from the model fragments as a set of rules.  These meta rules express integrity 
constraints which rule out incoherent and inconsistent combinations of modeling 
assumptions, and also imply additional conditions as a consequence of modeling 
assumptions that have been already established. 

Now, on the next couple of pages, we give an example that illustrates how the 
EMS principles discussed above apply to the development of an OKB model.  For 
our purpose, showing just a small segment of an OKB shall be sufficient to 
demonstrate the essential features of an OKB.  The complete enterprise description 
would obviously be much more elaborate.  For the sake of simplicity, we have left 
out some details, and included some further restrictions in a separate rules section.  
In particular, rule R-1 limits the model base to quasi-static models, rule R-2 selects 
QSIM as the only solver for purely qualitative scenario models, and rule R-3 
chooses RCR as the only solver for semi-qualitative models2.   

The intelligence of the EMS, however, resides mainly in the interaction graph, 
shown in figure 2, which represents knowledge about organizational knowledge. It 
is used in the OKB as a comprehensive hypermodel of the enterprise.  More 
specifically, the interaction graph relates organizational variables, organizational 
relationships, modeling assumptions, and model fragments to each other.  The 
nodes of the interaction graph represent organizational variables and arcs 
connecting two nodes indicate the existence of a relationship between the two 
corresponding variables.  Arc labels identify model fragments containing such 
relationships.  The specification of a relationship cannot be directly obtained from 
the interaction graph, but must be retrieved from the relations section of the 
containing model fragment.  Likewise,  modeling assumptions are to be found in 
the conditions section of the identified model fragment.  Finally, self-loops, that is, 
arcs which leave from and return to the same node, indicate that the corresponding 
variable could be treated as being exogenous.   

In the lower left corner of figure 2, we can see, for example, that model fragment f2 
contains a relationship among the variables usage of information technology (IT) 
                                                      
2 QSIM and RCR are two modeling languages which allow the user to represent purely qualitative and semi-
qualitative information; see Hinkkanen et al (1995) for a detailed discussion.  
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and Productivity (Prd).  This means that if we want to build a model which predicts 
or explains the value of productivity, we need to consider fragment f2 as a potential 
building block.  The actual specification of the relationship and its associated 
modeling assumptions represented by the arc <IT-Prd> can be looked up in the 
definition of fragment f2, which is shown below.  In this case, we find the 
monotonic relationship Productivity = M+(IT), which holds if the four modeling 
assumptions  
OntologyAssumption=influences, SimplifyingAssumption= qualitative, 
OperatingAssumption=quasi-static, and TimeScaleAssumption= medium are satisfied. 

OKB  CORPX 

ALIASES 
 /Partnership, Pship/ 
 /Product_Quality, PQual/ 
 /Customer_Satisfaction, CSat/ 
 /Customer_Service, CSrv/ 

/Marketing_Position, MPos/ 
/Promotional_Expenditure, PrmExp/ 
/Productivity, Prd/ 
/Information_Technology, IT/ 
/Revenue, Rev/ 
/Net Income, NInc/ 
/Production Cost, PCost/ 
/Performance, Perf/ 
/Goodwill, Gw/ 

END 
ASSUMPTION CLASSES 
 /Ontology Assumption, OntAss/  (influences, cash flow, material flow); 
 /Simplifying Assumption, SimpAss/  (qual, semi-qual, quant); 
 /Operating Assumption, OpAss/  (static, quasi-static, dynamic); 
 /Time Scale Assumption, TScAss/  (short, medium, long) 
END 

 

 

 

fragment f1 (IT) (Pship)   

{qualitative model describing the 
relationship between IT and Partnership} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Partnership = M+(IT) 
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end 

fragment f2 (IT) (Prd)   

{qualitative model describing the 
relationship between IT and Productivity} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Productivity = M+(IT) 

end 

fragment f3 (Prd) (Pship)   

{qualitative model describing the 
relationship between Productivity and 
Partnership} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=long 

relations 

 Productivity = M+(Partnership ) 

end 

 . . . . 

 . . . . 

 

 

fragment f18 (Price) (Sales) 

{marketing model describing the qualitative 
relationship between Price and Sales 
volume} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Sales = M-(Price) 

end 

fragment f19 (Price) (Sales) 

{marketing model describing the semi-
quantitative relationship between Price and 
Sales volume} 

conditions 

 OntAss=cash_flow, SimpAss=qual-
quant,  OpAss=dynamic, TScale=short 

relations 

 Sales(t)=[68000,92000]+[40000,48000]
*Price(t) 

end 

fragment f20 (Price) (Sales) 

{marketing model describing the 
quantitative relationship between Price and 
Sales volume} 

conditions 

 OntAss=cash_flow, SimpAss=quant, 
 OpAss=quasi-static, TScale=short 

relations 

 Sales = 80000 - 44000*Price 

end 

 

 

 

fragment f21 (Sales) (Rev) 

{accounting model describing the qualitative 
relationship between Sales volume and 
Revenue} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Revenue = M+(Sales) 
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end 

 

fragment f22 (Price) (Rev) 

{accounting model describing the qualitative 
relationship between Price and Revenue} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Revenue = M+(Price) 

end 

 

fragment f23 (Price, Sales) (Rev) 

{accounting model describing the 
quantitative relationship between Price, 
Sales volume, and Revenue} 

conditions 

 OntAss=cash_flow, SimpAss=quant, 
 OpAss=quasi-static, TScale=medium 

relations 

 Revenue = Price*Sales 

end 

 

 

fragment f24 (Rev) (NInc) 

{accounting model describing the qualitative 
relationship between Revenue and Net 
Income} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 NetIncome = M+(Revenue) 

end 

 

fragment f25 (Cost) (Price) 

{financial model describing the qualitative 
relationship between Cost and Price} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Price = M+(Cost) 

end 

 

fragment f26 (PCost) (Cost) 

{financial model describing the qualitative 
relationship between Production Cost and 
Total Cost} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static TScale=medium 

relations 

 Cost = M+(ProductionCost) 

end 

 

 

fragment f27 (Cost) (NInc) 

{financial model describing the qualitative 
relationship between Cost and Net Income} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 NetIncome = M-(Cost) 
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end 

 

fragment f28 (Cost, Rev) (NInc) 

{accounting model describing the 
quantitative relationship between Cost, 
Revenue, and Net Income} 

conditions 

 OntAss=cash_flow, SimpAss=quant, 
 OpAss=quasi-static, TScale=medium 

relations 

 NetIncome = Revenue - Cost 

end 

 

fragment f29 (Perf) (Gw)   

{marketing model describing the qualitative 
relationship between Performance and 
Goodwill} 

conditions 

 OntAss=influences, SimpAss=qual, 
 OpAss=quasi-static, TScale=medium 

relations 

 Goodwill = M+(Performance) 

end 

 

  . 

  . 

  . 

 

rules 

 R-1: OpAss(quasi-static)  

 R-2: SimpAss(qual) => solver(QSIM) 

 R-3: SimpAss(qual-quant) => 
solver(RCR) 

 R-4: ... 

  . 

  . 

  . 

end 



K.R. Lang and A.B. Whinston 51 

Hence, if we are building a qualitative model describing, among other things, the 
impact (or influence) of IT usage on productivity, we must consider the inclusion 
of fragment f2 in the composite scenario model to be built.   

In general, arcs emanating from a node x indicate the variables directly influenced 
by variable x.  Thus, usage of IT has, in our enterprise model, a direct impact on 
Partnership, Productivity, and Customer Service.  However, besides the direct 
influence of IT on Productivity, there is also an indirect influence of IT on 
Productivity, via Partnership.  Indirect influences are represented in the interaction 
graph as a sequence of arcs called an interaction path.  Here, the sequence <IT-
Pship>-<Pship-Prd>, or more compactly written as <IT-Pship-Prd>, expresses the 
indirect influence of IT on Productivity. Similarly, IT has many more indirect 
influences on other variables, for example, the interaction paths <It-Prd-Perf-Gw> 
and <IT-CSrv-CSat-Gw> represent alternative possibilities of modeling the indirect 
influence of IT on Goodwill.  Incoming arcs of a node x represent the direct 
influences on variable x.  Our example indicates that Productivity is directly 
influenced by IT usage and Partnership.  However, IT has a self-loop as the only 
incoming arc.  The arc going from node IT back to itself means that the only 
influence on variable IT is IT itself, in other words, IT cannot be explained within 
the enterprise model.  IT has to be determined outside of the model, that is, IT is 
treated as an exogenous variable whose value needs to be imported from a separate 
database when IT is included in a scenario model.  Exogenous variables are 
typically variables which are, at least to some extend, controllable. The level of IT, 
for example, is determined by the budget proposed and passed by the management.   

An arc label actually consists of a list of fragment identifiers.  Such a list may be 
empty, as in the case of arc <IT-IT>, indicating an exogenous variable; may 
contain one identifier, as in <IT-Prd> meaning that the OKB knows only about one 
relationship between IT and Prd; or it may contain several identifiers suggesting 
alternative relationships.  Two examples of multiple relationships are, first, arc 
<Price-Rev> which lists two fragments, f22 and f23, both using a relationship 
between price and revenue, and, second, arc <Price-Sales> which names three 
alternatives,  fragments f18, f19 and f20, of modeling price and sales.  
Relationships involving more than two variables are identified by any of the 
participating variables.  For example, fragment f28, which specifies a relationship 
between three variables  net income (NInc), cost (Cost) and revenue (Rev), must be 
instantiated when either of the two arcs <Cost-NInc> and <Rev-NInc> is 
considered.  

 



Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 52 

MPos
Gw

Perf

Prd

Pship

CSat

CSrv

   IT

PQual

Price

Cost

PCost

Sales

PrmExp

Rev

NInc
{f1}

{f3}
{f2}

{f4}
{f5}

{f6}

{f7}

{f8}
{f10}

{f13}

{f12}

{f11}

{f14}

{f15}

{f16}

{f21, f23}

{f17}

{f18, f19, f20)

{f22, f23}

{f25}

{f26}

{f27, f28}

{f24, f28}

{f29}

{f9}

Figure 2:  Interaction Graph of the CORPX Organizational Knowledge Base. 

4.  Model Composition 

We refer to the real-world phenomenon under study as a scenario, and to the model 
representing it as a scenario model.  Selecting the right model pieces to compose an 
appropriately integrated model for answering a given query requires modeling 
decisions along several dimensions.  What is the best set of variables to be included 
in the model? What level of detail is appropriate? Which are the relevant 
organizational phenomena for studying the posed question? From what perspective 
should the problem be viewed? What kinds of approximations and abstractions 
should be allowed?  Even the most carefully organized model fragment library 
won't provide enough information to find an answer to all of these questions.  
Therefore, we need to derive missing pieces of information from the query itself, 
that is, we need to look for clues provided in the query that could narrow the focus 
of the model composition process and reasonably constrain the set of plausible 
modeling assumptions. 

As an example of composing a scenario model in response to a prediction question, 
let us suppose the user entered the query "How does an increase in price affect net 
income?" Conceptually based on natural language processing, a query elaboration 
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procedure would analyze the issued query and derive from it a set of ground 
expressions which would be passed on to the model manager module of the EMS 
for evaluation.  In the absence of such a sophisticated query analyzer, we could 
simply devise a primitive query language which basically lists a number of ground 
expressions which permit the system to identify objects, quantities and relations of 
interest, where each of these has a referent in the organizational knowledge base.  
Hence, let us consider the simplified query {increase(Price), quantity(NetIncome)}, 
whose ground expressions increase(Price) and quantity(NetIncome) provide the 
input to the model manager.   

The query indicates that we need a scenario model which computes net income.  
While the one ground expression quantity(NetIncome) of the query hints neither to 
a qualitative nor to a quantitative modeling approach, the other ground expression 
does provide a clear clue for a qualitative analysis.  Since the increase operator 
indicates a desired direction of change without further specification, it suggests a 
qualitative model for investigating this effect on net income in the given scenario.  
Now, we could try to enumerate all possible combinations of model fragments, and 
to prune out those which either violate some of the modeling assumptions or prove 
to be irrelevant or insufficient regarding the query.  However, this approach would 
be computationally too costly, considering the many combinations of model 
fragments, which would typically occur in an enterprise-wide environment.  The 
number of modeling assumptions, on the other hand, tends to be much smaller, and 
therefore suggests a computationally better alternative by reasoning about 
combinations of modeling assumptions first, and then to select and integrate a 
suitable set of model fragments.  We will come back to this computational issue 
below and discuss it in more detail. 

Model composition begins with the derivation of an initial set of quantities of 
interest from the query.  Quantities of interest correspond to variables which need 
to be included in the scenario model to be composed.  In our example, we would 
take the query {increase(Price), quantity(NetIncome) and derive {Price, 
NetIncome} as the set of initial quantities of interest.  The quantity operator in the 
second ground expression, {quantity(NetIncome)}, provides a hint that the value of 
the variable NetIncome is desired, which means that we are supposed to model a 
scenario wherein NetIncome is predicted.  Variables to be predicted by a scenario 
model are called goal variables.  The increase operator in the first ground 
expression, increase(Price), describes a manipulation to be performed on a variable.  
In this case we are supposed to (qualitatively) change the current value of price and 
then examine the effect of this change.  Variables like Price which are to be 
changed initially in a way prescribed by manipulation operators in the query are 
called driving variables.  Driving variables are used to drive the model building 
process by trying to establish a connection between them and the goal variables 
such that the values of the goal variables can be determined if an initial state 
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description is given.  In the example, we would try to build a model that computes 
NetIncome from Price.  In order to accomplish this job, the EMS employs a 
compositional modeling approach which searches the OKB for relevant model 
fragments which then can be used to construct an appropriate model. 

Before invoking the model composition process, we need to define a modeling 
environment that selects a set of modeling commitments that are appropriate for the 
given query.  Most importantly, this includes the selection of query-consistent 
modeling assumptions.  In general, this is an indeterminate task.  Ideally, we would 
choose the most suitable option along each of the modeling dimensions.  However, 
we cannot expect that the query presented by the user conveys enough information 
to make indisputable decisions for all modeling assumption classes.  For the sake 
of simplicity, let us suppose, in the example of this paper, that our query analyzer 
derives a uniquely determined modeling environment3.  More specifically,  we 
assume that 

 

(i) the encounter of the generic increase in the query implies a purely 
qualitative analysis,  

(ii) a qualitative analysis requires an ontological commitment to view the 
interactions in the enterprise as general influences between 
organizational variables,  

(iii)  the organizational processes involving price and net income work at a 
medium time scale, and  

(iv) we restrict the analysis to quasi-static models (at least for now).  

 

 Hence, we would select  

(OntAss=influences, SimpAss=qual, OpAss=quasi-static, TScale=medium) 

as the current set of modeling assumptions. 

Unquestionably, many queries would lead to ambiguous decisions about those 
modeling assumptions.  On the other hand, it actually would be desirable in such 
cases that the EMS would generate a scenario model for all plausible modeling 
environments, that is, for all combinations of modeling assumptions that could 

                                                      
3  The user is supposed to have the option to define or redefine the modeling envrironment 
at any time, and thus can explicitly select particular modeling assumptioms or override 
modeling assumptions chosen by the EMS. 
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reasonably be derived from the query.  Furthermore, in order to promote user 
interaction and extend user control with the EMS, the query language should allow 
the user to explicitly  select some of the modeling assumptions anyway.  And 
finally, one of the modeling control parameters could provide a confirmation 
option that forces the EMS to merely suggest important modeling decisions, and to 
seek user confirmation before proceeding.  This would be especially useful in 
ambiguous situations in which the user could prevent the system from generating, 
and subsequently solving, unnecessary or unwanted models.  

In the first step, the driving and goal variables are located in the interaction graph 
depicted in figure 2.  Our example has only one of each, the driving variable price 
and the goal variable net income (NInc).  Now, it needs to be checked whether 
initial values of the driving variables are provided.  Initial values could be derived 
from the query, supplied by an external data base, or computed from other 
variables.  The latter is computationally the most expensive possibility because it 
entails constructing a more complex scenario model, and is thus eschewed unless 
the former two fail.  Our example query has no clue on the initial value of price.  
Fortunately, the second possibility applies, because the node representing price has 
a self-loop.  This means that the variable price can be treated as an exogenous 
variable, that is, its current value can be obtained from an external source.  Next,  
we try to connect the driving variables with the goal variables, that is, we search 
the interaction graph for interaction paths between driving and goal variables.  
Looking at figure 2, there are four interaction paths describing different ways of 
computing net income from price.  Each of the four generated interaction paths 
suggests to make use of a different collection of fragments for building a model 
that predicts how an increase of price would affect the net income of the CORPX 
enterprise.   

 

 Interaction Path # arcs # nodes # frags # models 

1 Price-CSat-Gw-MPos-Sales-Rev-NInc 6 7 8 4 

2 Price-CSat-MPos-Sales-Rev-NInc 5 6 7 4 

3 Price-Sales-Rev-NInc 3 4 7 12 

4 Price-Rev-NInc 2 3 4 4 

 Total    24 

Table 1:  Combinations of Different Interaction Paths.    

Potential scenario models, or model candidates, differ in their complexity 
measured in terms of number of variables and number of fragments involved in 
composing them.  From table 1 we can see that the first interaction path relates 
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seven variables by six arcs identifying eight relationships represented in eight 
fragments.  Since some of the arcs suggest a set of alternative relationships, we can 
choose from several different combinations of relationships and their associated 
fragments.  As another example, the third interaction path in table 1, Price-Rev-
NInc, consists of three arcs <Price-Sales>, <Sales-Rev>, and <Rev-NInc> which 
suggest the sets {f18, f19, f20}, {f21, f23}, and {f24, f28} as possible fragments for 
modeling relationships between respectively price and sales, sales and revenue, and 
revenue and net income.  Thus, any fragment triple 

F1, F2 ,F3 ∈ f18 , f19 , f 20{ }× f21 , f 23{ }× f 24 , f 28{ }
 

is an eligible candidate for a scenario model, resulting in 3*2*2 = 12 combinations 
to choose from.  Likewise, we can produce yet more candidate models, and 
represent them as fragment n-tuples where n denotes the number of participating 
fragments, from the other interaction paths.  Specifically, the first interaction path 
generates four 6-tuples, the second four 5-tuples, and the last four pairs of 
fragments.  All together, table 2 lists a total of 24 candidates to consider when 
building a model of the scenario described in the given query "How does an 
increase in price affect net income?"  Obviously, the number of model candidates 
varies with every query, and, in more intricate scenarios, can quickly reach an 
order of magnitude that is hard to manage. 

In order to keep the model composition task tractable we would like to avoid a 
complete enumeration of possible model candidates.  Since the final scenario 
model has to be internally consistent, we must eliminate those candidates from 
further consideration whose constituting fragment's precondition sections contain 
contradictory modeling assumptions because this would indicate an incompatible 
set of model fragments.  In our example above, we have hitherto ignored the 
modeling assumptions which the fragments are based upon.  Prior to generating 
candidate models, we need to check the consistency of modeling assumptions.  
From the current modeling environment, we obtain the active set of modeling 
assumptions, (OntAss=influences, SimpAss=qual, OpAss=quasi-static, 
TScale=medium) whereon the building of the scenario model rests. 

 

 

 

 

 IP Model Candidate Incompatible Fragments 
1 1 (f12, f8, f9, f14, f21, f24) () 
2 1 (f12, f8, f9, f14, f21, f28) (f28) 
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3 1 (f12, f8, f9, f14, f23, f24) (f23) 
4 1 (f12, f8, f9, f14, f23, f28) (f23, f28) 
5 2 (f12, f10, f14, f21, f24) () 
6 2 (f12, f10, f14, f21, f28) (f28) 
7 2 (f12, f10, f14, f23, f24) (f23) 
8 2 (f12, f10, f14, f23, f28) (f23, f28) 
9 3 (f18, f21, f24) () 
10 3 (f18, f21, f28) (f28) 
11 3 (f18, f23, f24) (f23) 
12 3 (f18, f23, f28) (f23, f28) 
13 3 (f19, f21, f24) (f19) 
14 3 (f19, f21, f28) (f19, f28) 
15 3 (f19, f23, f24) (f19, f23) 
16 3 (f19, f23, f28) (f19, f23, f28) 
17 3 (f20, f21, f24) (f20) 
18 3 (f20, f21, f28) (f20, f28) 
19 3 (f20, f23, f24) (f20, f23) 
20 3 (f20, f23, f28) (f20, f23, f28) 
21 4 (f22, f24) () 
22 4 (f22, f28) (f28) 
23 4 (f23, f24) (f23) 
24 4 (f23, f28) (f23, f28) 

Table 2: Model Candidates generated from Interaction Paths (IP) using 
(OntAss=influences, SimpAss=qual, OpAss=quasi-static, Tscale=medium) 

as the currently active set of modeling assumptions.  

Model Candidate Model Size 
(f12, f8, f9, f14, f21, f24) 13 
(f12, f10, f14, f21, f24) 11 
(f18, f21, f24) 7 
(f22, f24) 5 

Table 3:  Remaining models after eliminating incompatible models.  
Model size measured in terms of the candidate evaluation function: eval(m)=v+r. 

Table 2 shows for each model candidate those fragments that are incompatible 
because they violate some of the active modeling assumptions.  Notice that only 
four (set in boldface) out of twenty-four model candidates are indeed internally 
consistent.  Therefore, we devise a compositional modeling strategy which reasons 
first about the consistency of the modeling assumptions before it starts to assemble 
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composite model candidates.  This approach reduces quickly the search space of 
possible scenario models from 24 to just 4 candidates (see table 3), namely (f12, f8, 
f9, f14, f21, f24), (f12, f10, f14, f21, f24), (f18, f21, f24), and (f22, f24). Thus, our 
compositional modeling method concludes, for this example 

{increase(Price), quantity(NetIncome)} ==> or ((f12, f8, f9, f14, f21, f24), (f22, f24) 
 (f12, f10, f14, f21, f24), (f18, f21, f24)). 

5.  Candidate Evaluation and Model Integration 

After generating a set of feasible scenario model candidates we need to evaluate 
and order them according to their appropriateness in order to choose the most 
appropriate one as the final scenario model.  Unfortunately, there is no single 
criteria that would alone by itself describe appropriateness in a satisfying way, 
which makes it difficult to provide a definition of it that is not arbitrary to some 
extend and, at the same time, operational.  Falkenhainer and Forbus (1991) define 
the final scenario model as the model candidate which is coherent and most useful.  
The former criterion requires the scenario model to be consistent with the modeling 
assumptions to which the EMS committed when exploring the scenario set up by a 
query.  The latter refers to the tradeoff between information cost and significance 
to the query in terms of sufficiency and minimality (Balakrishnan and Whinston 
1991).  Sufficiency means that the answer to the query is firstly not only correct 
but also relevant to the question such that it provides her with the information 
sought, and secondly that the answer is also satisfactorily detailed and accurate. 
Minimality, on the other hand, calls for a parsimonious response and forbids 
elaborate details.  In other words, we are looking for the scenario model which is 
minimal and (a) consistent, (b) valid, (c) relevant, (d) adequately detailed, and (e) 
adequately accurate.   

The candidate evaluation module receives, from the model composition module as 
its input, a set of scenario model candidates, and produces as its output the final 
scenario model.  First, we need to ensure that the scenario model satisfies 
restrictions (a) to (e).  Fortunately,  our compositional modeling method was 
designed such that it generates only feasible model candidates, that is, candidates 
which do satisfy the above restrictions.  Consistency is accomplished through the 
explicit reasoning about underlying modeling assumptions during the model 
building process.  We can assume validity of the relationships used in building 
model candidates because model fragments are only applied if the assumptions 
stated in their preconditions section hold.  We ensure relevance by assuming that 
our query analyzer identifies quantities of interest correctly, and that only such 
fragments are considered which the interaction graph relates to a driving variable 
or a goal variable.  An adequate level of detail and accuracy is achieved by 
assuming that the query analyzer, in connection with user interaction, is able to 
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derive and establish a proper set of modeling assumptions which include an 
appropriate description of level of detail and accuracy required in the given 
scenario.   

Now that we are assured that all remaining candidate models are indeed feasible 
and appropriate in the sense that we can expect them to yield comparably 
satisfactory answers, we want to select the minimal or simplest one.  Let us define 
simplicity of a model in terms of model size and define an evaluation function 

 as a function of number of variables v  and number of relationships eval(m) r , 
for example as eval(m) = v + r .  From table 3 we can see that candidate (f22, f24) 
is chosen as the final scenario model in our example and is passed on to the solver 
for model execution.  

Using candidate model (f22, f24) we obtain  

scenario model  f22-f24 (Price) (NInc) 
conditions 
 OntAss=influences, SimpAss=qual, OpAss=quasi-static, 
TScale=medium 
relations 
 Revenue = M+(Price) 
 NetIncome = M+(Revenue) 
end 

as the final model, the scenario model.  This is not yet a completely specified 
model, one which could be solved as it is.  However, it does show the complete 
specification of the model's constraints, the core part of the final scenario model.  
Although it contains only valid relationships, a price increase leads to higher 
revenues and highter revenues have a positive effect on net income, it may not be 
accurate enough for the user's current analysis.  Model (f22, f24) ignores, for 
example, the influence of price changes on sales which in turn also influence the 
goal variable net income. Hence, after inspecting the suggested scenario model, the 
user may opt for rejecting it, and thus force the EMS to search for an alternative 
scenario model.  In our example, the EMS would suggest model candidate (f18,f21, 
f24) as its next scenario model.   

 

 
scenario model  f18-f21-f24 (Price) (NInc) 
conditions 
 OntAss=influences, SimpAss=qual, OpAss=quasi-static, 
TScale=medium 
relations 
 Sales = M-(Price) 

 



Query-Driven Model Building In Enterprise-Wide Decision-Making Environments 60 

 Revenue = M+(Sales) 
 NetIncome = M+(Revenue) 
end 

The new, more complex model does represent the indirect effect of price on net 
income by including sales as an additional variable and by adding another 
relationship.  Depending on the user's intents, it may be beneficial to trade off some 
model cost (in terms of model complexity) for more accuracy. 

7. Conclusion 

To conclude, we have presented a novel, comprehensive framework for future 
enterprise-wide modeling systems in this paper.  Enterprise computing is a support 
tool to achieve organizational goals.  We believe that future research in model 
building and model management for decision support in organizational 
environments requires more attention to organizational knowledge representation 
and to related model building and model reasoning research in artificial 
intelligence.  One purpose of this paper is to bring to bear some of the stimulating 
results obtained from the AI community, and to indicate how they can be 
incorporated into the DSS research on model building.  Among the new features 
we have proposed, we want to highlight those which, in our mind, map out the 
most promising future research directions.  First, the possibility of both qualitative 
and quantitative model formulations, which introduces a new level of versatility to 
organizational model building, and which should widen the scope of computer 
supported decision tools considerably.  Second, the explicit representation of 
modeling assumptions.  And finally, the application of a compositional modeling 
strategy to automatically build task-specific scenario models, which liberates users 
from having to specify special modules for controlling the modeling integration 
process. 
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