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Abstract. In keeping with very recent efforts to establish a useful con-

cept of an “exceptional family of elements” for variational inequality prob-

lems rather than complementarity problems as in the past we propose such a

concept. It generalizes previous ones to multivalued variational inequalities

in general normed spaces and allows us to obtain several existence results

for variational inequalities corresponding to earlier ones for complementar-

ity problems. Compared with the existing literature, we consider problems

in more general spaces and under considerably weaker assumptions on the

defining map.
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1 Introduction

In the study of complementarity problems (CP) and the more general varia-

tional inequality problems (VIP) considerable emphasis has been placed on

the question of existence of solutions. Necessary as well as sufficient con-

ditions have been derived both for bounded and unbounded domains using

different approaches. Some authors deal with the unbounded case using the

same assumptions as in the bounded case together with a suitable coercivity

condition necessary to obtain the nonemptiness of the solution set. Other

authors use the concept of an “exceptional family of elements”. Several such

concepts have been proposed depending on the particular assumptions on

the problem under investigation. Results in this stream of literature usually

take on the form: if a problem does not have a solution, then there exists

an exceptional family of elements. This immediately leads to the following

existence result: if an exceptional family of elements does not exist, then

the problem has a solution. This second approach usually involves a strong

continuity assumption of the map.



Until very recently exceptional families of elements were studied in the

context of CP as initially (Ref. 1). Meanwhile some efforts have been made

to introduce similar concepts for VIP. The definition depends on the partic-

ular assumptions on the VIP. The present article proposes a new concept of

an exceptional family of elements under rather general assumptions on the

VIP. With help of it we are able to derive several existence results for multi-

valued VIP in a general normed space for maps defining the VIP which are

considerably more general than those studied before in the literature. Indeed

we can prove our existence result without making use of strong continuity

assumptions on the map, but under the same assumptions as for a bounded

domain.

In Section 2 we provide the necessary background from the literature be-

fore we generalize in Section 3 some of the existing concepts of an exceptional

family of elements for a rather large class of VIP. Here we obtain our main

results. Section 4 demonstrates how the results in Section 3 can be used

to derive existence results for multivalued VIP in normed spaces with and



without generalized monotonicity assumptions.

2 Background

In this section we review some of the earlier results related to our study.
Let a normed space X, a convex subset K of X and a multivalued map
T : K = X* be given, where X* denotes the topological dual of X. We

recall that the Variational Inequality Problem (VIP) is the following:

find zy € K : 3z € T(xg) such that Vo € K, (x5, —x9) > 0.  (VIP)

Note that this is the so-called strong VIP, and it is the only one we
consider in this paper. Whenever K is a convex cone, we get as a particular

case the Complementarity Problem (CP):

find zy € K : Jx; € T'(xp) such that 25 € K* and (x5, z0) =0.  (CP)

Here K* = {z* € X*: (z*,z) > 0,Vz € K} is the dual cone of K.
In recent years several papers were devoted to the study of the com-

plementarity problem through the use of “exceptional families of elements”.
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These were defined in the special case of a Hilbert space and for a multivalued

map as follows (Ref. 2).

Definition 2.1 Given a convex cone K in a Hilbert space H and a map
T : K = H, afamily {2,},., C K is an exceptional family of elements
for T', if for every r > 0 there exist a real number y, > 0 and an element
x; € T (z,) such that the following conditions are satisfied:

(i) uy :== prx, + xp € K*,

(it) (ur, z,) = 0,

(i) ||x,|| — oo as r — +oo.

This notion was first introduced in the form of an exceptional sequence
of elements by Smith (Ref. 1) for the particular case where T is a single-

n

valued map and H = R". Later on this notion was explored mainly by
Isac and many others who generalized it to multivalued maps and to Hilbert
spaces; e.g., Refs. 2-5. In these papers 7' is assumed to be a “completely

upper semicontinuous field”. This means that T' has a representation of the

form T'= x — h(xz) where h : H — H is a completely continuous mapping,
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namely for any bounded set A C H, the image of A through the map h(z) =

x — T'(x) is relatively compact. The following result (Theorem 4.1 in Ref. 2)

is characteristic of the results of the above papers.

Theorem 2.1 Let H be a Hilbert space, K’ C H be a pointed closed convex

cone and T : H = H be a multivalued, completely upper semicontinuous

field, with nonempty compact contractible values. If there does not exist a

solution of CP, then there exists an exceptional family of elements for 7.

Theorems of this kind were proven valuable for showing the existence

of solutions of complementarity problems; indeed, for a map satisfying the

assumptions of the theorem, in order to show the existence of a solution for

CP it is sufficient to show that there does not exist an exceptional family of

elements. However complete upper semicontinuity is a stringent restriction

in infinite dimensional Hilbert spaces. For instance a constant map is not a

completely upper semicontinuous field. The necessity for such an assumption

is due to the fact that tools such as degree theory are used.

Generalizations of the above theorem by weakening the assumptions have



followed various directions. In Refs. 6-9 exceptional families were generalized
to variational inequality problems with single-valued completely continuous
fields defined in R™ or more generally in a Hilbert space. Many definitions
have been proposed; we recall the definition of exceptional families as intro-

duced in Ref. 9.

Definition 2.2 Given an unbounded convex subset K of a Hilbert space H,

amap T : K — H and a point & € H, a family {z,},_, C K is an exceptional

family of elements for 7" with respect to z, if for every r sufficiently large there

exists a real number p, > 0 such that the following conditions are satisfied:
(i) ||zr|| = o0 as r — 400,

(ii) T(z,) + pr(x, — &) € —=Ng(x,).

Here Ni(x,) is the normal cone to K at the point z,; i.e.,

Ni(z,)={2" e K : (", 2 —x,) <0,Vz € K}.

It is easy to see that in the case of single-valued maps this definition

generalizes the corresponding definition for complementarity problems where



K is a cone and & = 0 (see Definition 2.1).

Variational inequalities in Hilbert spaces with multivalued, completely

upper semicontinuous fields were considered in Ref. 7. But there the defini-

tion of an exceptional family is different. Relation (ii) is replaced by another

one where T" and N are calculated at different points. Very recently in Ref.

10 exceptional families for single-valued complementarity problems were con-

sidered for the first time in Banach spaces. These spaces are assumed to be

uniformly smooth and uniformly convex. Finally in what concerns the as-

sumption that 7" is a completely upper semicontinuous field, for the case of

a complementarity problem it was replaced by the weaker assumption that

T is “regularly completely continuous” in Ref. 11 (in case of a single-valued

map T') and by a very weak continuity assumption in Ref. 12.

The main result of this paper generalizes the above results in several di-

rections. We will define the notion of an exceptional family of elements for

a multivalued variational inequality problem in a general normed space and

derive a theorem from which results like Theorem 2.1 follow. No further as-



sumption on the space will be made, and the map 7" need not be a completely
continuous field. Also, the map is not necessarily defined on the whole space
as it is the case in all papers mentioned on the subject except for Refs. 11

and 12.

3 Main Results

In preparation of the new definition of an exceptional family we introduce
the following notation. Given a set A and a point x in a normed space X,
dist(x, A) will be the distance from z to A, Ry A = {tx :t > 0and z € A}
and Ry, A= {tx:t>0and z € A}.

The so-called duality map .J is defined as follows:

J(z) = {a* € X*: (2", 2) = |la||” = ||«*||}.

In other words, J(z) contains all elements z* of X* with norm equal to
||z|| such that the maximum of (x*,-) on the closed ball B(0, ||z||) is attained

at z. In the special case where X* is a strictly convex normed space, J(x)



is a singleton. If in addition X is a Hilbert space H and we identify H with
H*, then we get J(z) = {z}.

Let & € X be fixed throughout the paper. Given z € X, let L(z) =
N i (®)\{0} be the normal cone to the closed ball B(z, ||z — z||) at «
from which we extract 0. The set L(x) is nonempty since B(%,||Z — z||) has
a nonempty interior for all x # Z. The multivalued map L can be written in
terms of the duality map J of the space X. Obviously the normal cone to

B(0,]|z]|) at = is R, J(z). Hence we get by parallel translation

L(z) =Ry y J (2 — &) (1)

Our definition of an exceptional family of elements runs as follows.

Definition 3.1 Given an unbounded convex subset K of a normed space
X,amap T : K = X* and a point # € X, a family of elements {z,},_ of

K is an exceptional family of elements (EFE) for T' with respect to & if

(i) lim, 4o ||2,]| = +00 and

(ii) for any r > ry := dist(Z, K) there exists = € T(z,) and y} € L(z,)
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such that x+y* € —Ng (z,); in set language, 0 € T'(z,)+R, J (z, — &)+

NK(IT).

Note that condition (ii) means that x, solves VIP on the whole set K

for the map T'(x) + L(z). In the special case where X is a Hilbert space

J(z) = {x}, and by relation (1), L(z) = {u(x — Z) : p > 0}. Thus, condition

(ii) above becomes: there exist zf € T'(z,) and p, > 0 such that =} +

pr (x, — &) € —Ng(z,); i.e., we recover Definition 2.2. Hence Definition 3.1

generalizes Definition 2.2 to multivalued maps in normed spaces. If further

K is a cone and we take £ = 0, then obviously ry = 0. In this case condition

(ii) means that

Vee K, (z)+ px,,x—x,)>0.

Since K is a cone, it is a standard trick to show that the vector u, :=

xf + pyx, satisfies (u,, z,) = 0 and u, € K*; see for instance Ref. 13. Hence,

we recover Definition 2.1 of exceptional families for CP. Thus Definition 3.1

also generalizes Definition 2.1 to variational inequality problems in normed

spaces.
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In view of (i) and (ii) in Definition 3.1 it is sufficient to define an EFE
for r > rq as above. For 0 < r < ry it can be defined arbitrarily.
We set K, = K N B(Z,r). The result below relates exceptional families

to partial solutions of VIP and it is the key result of this section.

Theorem 3.1 Let K be an unbounded closed convex set in a normed space
X, T: K = X*beamap and £ € X be fixed. Assume that for every
r > ro there exists z, € K, and z} € T(z,) such that (z}, x — z,) > 0 holds

for every x € K,, but not for every z € K. Then {x,} is an exceptional

r>ro

family of elements for 7" with respect to z.

Proof. First, note that ||z, — Z|| = r. Indeed, it is known that whenever

*

& —x,) > 0 holds for every z € K (see Lemma

|z, — ]| < r, then (z
3.1 in Ref. 12); but this is excluded by our assumption. It follows that
lim, o0 ||z, ]| = +00.

Since (—z¥, x — x,) < 0 for all z € K, we infer from the definition of Ny,

that z* € —Ng, (z,). Since K, = K N B(#,7) and B(Z,r) has a nonempty

interior, it is known that N, (z,) = Nk (2,) + Np@(zr) (Ref. 14, Theorem
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4.1.16 ). Hence there exists y; € Np; ,(7,) such that x7 +y; € —Ng(z,).
Note that z¥ ¢ —Ng(x,) since otherwise we would have (z%, z — z,) > 0 for
every € K, a contradiction. It follows that y* # 0. Using ||z, — || = r we

infer that y € L(z,). Consequently, the family {z, },~,, is an EFE according

to Definition 3.1. =

Corollary 3.1 Let K be an unbounded closed convex set in a normed space
X,z€ X,and T : K = X* be a map such that VIP has a solution in every
K,, r > dist(z, K). If there is no solution for VIP in all K, then there exists

an exceptional family of elements for T with respect to z.

Proof. Assume that VIP has no solution in K. For each r > ry = dist(z, K),
let z, be a solution of VIP in K,. Then there exists z} € T(z,) such that

(xf, 2 —x,) > 0 for all x € K,. Since z, is not a solution of VIP in K,

T

Theorem 3.1 entails that {x,}, .  is an exceptional family of elements for T

r>ro

with respect to . m
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4 Applications

In this section we derive two implications of Theorem 3.1 and Corollary 3.1
above. The first one is obtained under a generalized monotonicity assumption
and a weak continuity assumption. The second result is derived with a strong
continuity assumption, without a generalized monotonicity assumption.

We first assume that 7" is a quasimonotone map. Recall that T : K = X*
is called quasimonotone if for every z,y € K and z* € T'(z), y* € T(y), the

following implication holds:
(" y—2) >0 = (y",y—x)>0.

We impose a very weak kind of continuity (Ref. 15): T is called upper
sign-continuous if for all z,y € K the following implication holds, where

r=ty+ (1—1t)a:

<Vt€(0,1), inf (x*,y—x>20>:> sup (z",y—2x)>0

x*€T () z*€T(z) -
Corollary 4.1 Let K be a closed convex set in a normed space X, z € X

and T : K = X* be a quasimonotone, upper sign-continuous map with
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nonempty, w*-compact and convex values. Assume that for every r > rq =
dist(z, K) the set K, is weakly compact. If there is no solution for VIP in
all K, then there exists an exceptional family of elements for T" with respect

A

to z.

Proof. According to Theorem 2.1 in Ref. 16, the assumptions guarantee

that for every r > ry VIP has a solution in K. Hence Corollary 3.1 applies

and yields the desired result. m

We note that if X is reflexive, the sets K, are weakly compact as required

in the above corollary.

If we do not impose any generalized monotonicity assumption, we get an

analogous result, at the expense of a much stronger continuity assumption.

As an example, we consider regular completely upper semicontinuous maps,

i.e., maps T : K = X* with the following two properties:

(P1) the image of any bounded subset of K is relatively compact;

(P2) if the sequence z,, € K, n € N converges weakly to x and the

sequence z} € T'(x,) converges strongly to x*, then z* € T'(z).
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This is a generalization of the notion of a regular completely continuous
map considered in Ref. 11, adapted to the multivalued case. We note that
“regular complete continuity” is the weakest continuity assumption used so
far in papers dealing with EFE, with the exception of Ref. 12 where quasi-

monotonicity was also imposed. We first show the following lemma.

Lemma 4.1 Let X be a reflexive Banach space, K C X be a bounded
closed convex set and T : K == X* be a regular completely upper semicon-

tinuous map with nonempty convex values. Then VIP has a solution.

Proof. For every x € K, the set T(x) is relatively compact by property
(P1). Hence for each sequence (z,),.y C 1'(x), there exists a subsequence
converging to some element x* € T(x). Property (P2) ensures that z* €

T(x). Thus, T'(r) is compact.

For each z € K define the set

G(z) ={y € K : 3y* € T(y) such that (y*,z —y) > 0}.

We show that G(z) is compact. Indeed, let (y,),.y be a sequence in
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G(z). Choose y: € T(y,) such that (y*,z —y,) > 0 holds. Since K is
bounded, T(K) is relatively compact. Hence there exists a subsequence
(y;k)keN of (y:),en converging to some element y* € T(K). Since X is
reflexive and (yy, ),y is bounded, there exists a subsequence <yn’”>leN of
(ynk)kEN converging weakly to some y € K. By our assumption on T, y* €
T(y). By taking the limit as [ — +oo we infer that (y*,x —y) > 0, i.e.,
y € G(z) and G(x) is compact.

The rest of the proof is a routine application of KKM theory. One first

shows that the map G satisfies the KKM property, i.e., for all x1,z,...2,

in K and all z € co{xy,zy,...2,},

holds. From the well-known Ky Fan Lemma it follows that U G(z) # 0.
rzeK

Let z € U G(z). Then

reEK

Vo € K,Jx* € T(xy) such that (z*, 2z — x¢) > 0.

This means that min,ex max,-cy ) (v, — x9) > 0. By applying the
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minimax theorem we infer that maxg-cr(z,) mingex (2%, — 29) > 0, hence

Zp is a solution of the variational inequality problem. m

Corollary 4.2 Let X be a reflexive Banach space, K C X be an unbounded
closed convex set, T € X and T : K = X* be a regular completely upper
semicontinuous map with nonempty convex values. If there is no solution for
VIP in all K, then there exists an exceptional family of elements for 7" with

respect to .

Proof. This is an obvious consequence of Lemma 4.1 and Corollary 3.1. =
The above Corollary was also shown in Ref. 11 for the particular case

where X is a Hilbert space, T is single-valued and K is a cone.
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