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Abstract The purpose of this paper is to prove the existence of solutions

of the Stampacchia variational inequality for a quasimonotone multivalued

operator without any assumption on the existence of inner points. Moreover

the operator is not supposed to be bounded valued. The result strengthens

a variety of other results in the literature.
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1 Introduction and Definitions

Given a Banach space X with topological dual X*, a subset K of X and a

multivalued operator T : K — 2%, the Stampacchia variational inequality

problem is to find x € K such that

Vye K,3z* €T (z) : (z",y —z) > 0. (1)

Existence of solutions of (1) under a generalized monotonicity assumption

for T has been intensively investigated in recent years. In most cases, T

was assumed to be pseudomonotone (in the sense of Karamardian), see e.g.

Refs. 1-2. Extension of these results to the broader class of quasimonotone

operators has also been established, but only at the cost of restrictive assump-

tions. For instance, in Ref. 3, K was assumed to contain “inner points”; in

addition, in case T is multivalued, its values were assumed to be compact

in the norm topology (Ref. 4); in Ref. 5, T was assumed to be “densely

pseudomonotone” which is more restrictive than quasimonotone, etc.

The purpose of this note is to show existence of solutions of (1) for quasi-



monotone operators with no additional assumptions apart from those used

for pseudomonotone operators (i.e., a kind of continuity along lines and w*-

compactness and convexity of the values). In fact, even the latter assump-

tions will be stated in a very weak form.

We recall that an operator 7T is called quasimonotone (Ref. 6) if for all

(z,2%), (y,y*) in the graph grT,

(5 y—2) >0= (y"y —2) >0

The operator T is called properly quasimonotone (Ref. 7) if for all z4,...,x,

€ domT, and all z € co{xy,xs,...,2,}, there exists i € {1,2,...,n} such

that

Va* € T (z;) : (x*,2; —x) > 0.

Finally, T is called pseudomonotone (in the Karamardian sense (Ref. 6)) if

for all (z,z*), (y,y*) € grT,

(5 y—x)>0= (y',y —x) > 0.

Pseudomonotone operators are properly quasimonotone, and properly quasi-
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monotone operators are quasimonotone. We denote by S(T, K) the set of

solutions of the Stampacchia variational inequality

re€ST K)<=reKandVye K, 32" €T(x): (z",y—x)>0

and by Sy, (T, K) the set of “strong” solutions of the same inequality:

r€ S (T,K) <= re€ Kandz* € T(x): Vye K, (z*,y —x) > 0.

Also, we denote by M (T, K) the set of solutions of the Minty variational

inequality :

reMT,K)<=zecKandVye K,Vy" €T (y): (y*,y—=x) >0.

Finally, we call x € K a local solution of the Minty variational inequality if

there exists a neighborhood U of x such that = € M (T, KNU). We denote by

LM(T, K) the set of these local solutions. Clearly, M (T, K) C LM(T, K).

In the following lemma we will clarify the relations between those different

sets of solutions. Before this, let us recall (Ref. 8) the definition of a very

weak kind of continuity: Given a convex subset K C X and an operator



T : K — 2% with nonempty values, T is called upper sign-continuous on K

if for any x,y € K, the following implication holds:

(Vt €]o, 1], inf (z*,y—2x)>0)= sup (z",y—x) >0
z* €T (zt) z* €T ()

where z; = (1 — t)x + ty. If for example T is upper hemicontinuous (i.e.,

the restriction of T to every line segment of K is usc with respect to the

w*-topology in X*), then T is upper sign-continuous. Any strictly positive

real function is upper sign-continuous.

2 Existence Result

It is known that a solution of the Minty variational inequality is also a strong

solution of the Stampacchia variational inequality, provided that T is upper

hemicontinuous with convex, w*-compact values. Using essentially the same

argument, we show that the same is true under weaker assumptions.

Lemma 2.1 Let K be a nonempty convex subset of the Banach space X

and T : K — 2% be an operator.



(i) If T is pseudomonotone, then LM (T, K) = M (T, K).

(ii) If for every x € K there exists a convex neighborhood V, of = and an
upper sign-continuous operator S, : V, N K — 2% with nonempty,
w*-compact values satisfying S, (y) C T(y), Vy € V; N K, then

LM(T,K) C S(T, K).

(iii) If additionally to the assumptions of (ii), the operators S, are convex

valued, then LM (T, K) C S(T, K) = Sy (T, K).

Proof :

(i) Let x be an element of LM (T, K). Then there exists a neighborhood
U of z such that © € M(T,K NnU). For any y € K, there exists z =
r+t(y —x), t €]0,1[, such that z € K NU. Then for any 2* € T(z),
(¥, y—2) = %(z*, z —z) > 0. By pseudomonotonicity, (y*,y — x) > 0, for
all y* € T(y). Therefore x is an element of M (T, K).

(ii) Let = be an element of LM (T, K). Thus there exists a neighborhood

U of x such that x € M(S,, KNV, NU). Let y € KNV,. Since K NV} is



convex, there exists § € |z, y] for which [z,9] C (K NV, NU) and thus

inf inf (u*,u—2x)>0.
u€ ]z,y] u* €Sz (u)

By upper sign-continuity of S,

sup (z*,y —x) > 0.
r* €Sz ()

But S, () is w*-compact and we deduce that

inf “y— 1) >0 2
yelvr;mgl%)@ Y —T) > (2)

which means that for all y € V, N K, there exists z* € S,(z) C T'(x) such

that (z*,y — x) > 0. Therefore x is an element of S(T, K) since, using the

convexity of K one can easily prove that the above relation holds for any

y e K.

(iii) This is a consequence of the Sion’s minimax theorem applied to

relation (2). O

If in particular T itself is upper sign-continuous and has nonempty, convex

and w*-compact values, then we can take in the lemma V, = K, S, = T.



However, the lemma in its present form (as well as the forthcoming Theorem

2.1) permits application to operators whose values are unbounded, such as

cone-valued operators.

We now establish an alternative, valid for every quasimonotone operator:

Proposition 2.1 Let K be a nonempty, convex subset of the Banach space

X and T : K — 2" be quasimonotone. Then one of the following assertions

holds:

(i) T is properly quasimonotone

(i) LM(T,K) # 0.

If in addition K is weakly compact, then LM (T, K) # () in both cases.

Proof : Suppose that T is not properly quasimonotone. Then there exist

Ty xy € K, 2f € T(zy),i=1,...,n and = € co{xy,...,2,} such that

(xf,x—x;) > 0,7i=1,...,n. By continuity of the functionals x}, there exists

a neighborhood U of z such that for any y € K N U one has

(xf,y —x3) > 0.
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By quasimonotonicity, for all y* € T(y), (y*,y — x;) > 0. Since x €

co{x1,...,x,}, it follows easily that

Yy €T (y),(y",y —x) >0. (3)

Thus z € LM (T, K) since the previous inequality holds for every y € K NU.

It remains to show that LM (T, K) # 0 whenever K is weakly compact

and T’ is properly quasimonotone. But under such assumptions, it is known

(Ref. 7)) that M (T, K) # 0; since M(T,K) C LM(T, K), it follows that

LM(T,K) # 0. 0

Combination of the lemma with Proposition 2.1 leads to a result of ex-

istence of solutions for the Stampacchia variational inequality without any

assumption on the existence of inner points.

Theorem 2.1 Let K be a nonempty convex subset of X. Let further T :

K — 2% be a quasimonotone operator such that the following coercivity
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condition holds:
3p>0, Vo e K\ B(0,p), Iy € K with [ly|| < [|]]

(4)

such that Vz* € T'(z), (z*,x — y) > 0.

Suppose that there exists p' > p such that K N B(0, p') is nonempty weakly
compact. Suppose moreover that for every x € K there exist a convex
neighborhood V. of x and an upper sign-continuous operator S, : V, N K —

2%" with nonempty, convex, w*-compact values satisfying S,(y) C T(y),

Vy eV, NK. Then Sy, (T, K) # 0.

Proof : The set K, := K N B(0, p') is nonempty, convex and weakly com-
pact. According to Proposition 2.1, LM(T, K,) # 0. By Lemma 2.1 the set

Sstr(T, K ) is also nonempty. Choose xy € Sg;(T', K,y). Then

dageT(x) : Vye Ky, (x5,y—x9) >0. (5)

According to (4), there exists yo € B(0, p') N K such that

Va* € T(xg), (x*,m¢—yo) > 0. (6)
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(If ||zo|| < p" we can take yo = xp). From (5) and (6) it follows that

(25,50 — mo) = 0. (7)

Now for every y € K there exists ¢ € [0, 1] such that (1 —t)y + tyy € K,;
hence,

(75, (1 =)y + tyo — zo) > 0. (8)

If follows immediately from (7) and (8) that (z},y — xo) > 0, i.e. xy €

Sr(T, K). 0

Note that in Theorem 2.1 the condition on the compactness of KNB(0, p')
is automatically satisfied if K is weakly compact, or X is reflexive and K is
closed; the coercivity condition is also automatically satisfied if K is bounded.
Finally, the condition on the existence of S, is satisfied if 7" itself is upper
sign-continuous with nonempty, convex, w*-compact values. Thus Theo-
rem 2.1 generalizes corresponding results for pseudomonotone operators (Ref.
1), quasimonotone operators where K is assumed to contain “inner points”

(Ref. 3), densely pseudomonotone operators (Ref. 5) etc.
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Finally, let us compare the results of this paper with Theorem 5.1 of Ref.

7; there, it is established (using no continuity assumption) that for every

properly quasimonotone operator 7' defined on a weakly compact convex

subset K, M(T, K) # () holds. Starting from this, one usually deduces that

S(T,K) # () by adjoining some suitable assumptions (for instance that T is

upper hemicontinuous with convex, w*- compact values). If the operator T'

is quasimonotone, but not properly quasimonotone, then M (T, K) may be

empty. However, according to Proposition 2.1, LM (T, K) # 0. This last

property is again sufficient for proving that S(7, K) # () under the same (or

even weaker) additional assumptions, as shown by Theorem 2.1.
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