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1 Introduction

The notion of asymptotic cone of an unbounded set has been introduced in

order to study its behavior at infinity. The asymptotic cone of the epigraph of

a function, which yields its asymptotic function, provides a description of the

function at infinity.

Those notions are an outstanding tool for studying problems with un-

bounded data and have given rise to the branch of mathematics called asymp-

totic analysis (see [1]). They have been employed for studying optimization

problems such as scalar minimization, vector optimization, variational inequal-

ities and equilibrium problems (see [1–6] and references therein).

Clearly, convexity is a simplifying assumption, when studying minimization

problems. In convex minimization, any local minimizer is global, first order

necessary optimality conditions become also sufficient, and the asymptotic

cones of nonempty sublevel sets coincide. For nonconvex functions, none of

the above holds in general.

As was noted in [7,8], the usual asymptotic function is not good enough

to describe the behavior of a nonconvex function at infinity. In the particular

case of quasiconvex functions, many alternative generalized asymptotic func-

tions were given in the last years (see [8–11] and references therein). All those
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attempts provide a similar characterization of the nonemptiness and compact-

ness of the solution set of the original function, while other properties and

calculus rules are lost.

In this paper, we introduce a new notion of asymptotic function to deal with

quasiconvexity, which provides information on the value of the original func-

tion at infinity. Our definition preserves many properties and calculus rules of

the usual asymptotic function, beyond the characterization of the nonempti-

ness and compactness of the solution set for scalar minimization problems.

The new asymptotic function can also be used to study some properties of

the original function. However, in contrast to previous definitions, the new

asymptotic function is related to the sublevel sets of the function, rather than

to its epigraph. This is natural, since we are dealing with quasiconvexity.

The paper is organized as follows. In Section 2, we include notation and

preliminaries. We review some standard facts on asymptotic analysis and ge-

neralized convexity. In Section 3, we introduce our new asymptotic function for

dealing with the quasiconvex case. We also provide several properties, calcu-

lus rules and the comparison with previous notions of generalized asymptotic

functions. Finally, in Section 4, we apply our new definition to characterize

the boundedness (from below and above) of the function, to characterize the

nonemptiness and compactness of the set of minimizers, and to provide a su-

fficient condition to ensure the closedness of the image of a closed and convex

set via a quasiconvex vector-valued function. We also provide some examples
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of evaluation of the new asymptotic function for some fundamental particular

cases, such as quadratic functions and fractions of two affine functions.

2 Preliminaries and Basic Definitions

In this paper, we denote the scalar product between two elements of Rn by

〈·, ·〉 and the norm by ‖·‖. For K ⊆ Rn, its closure is denoted by clK, its

boundary by bdK, its topological interior by intK, its relative interior by

riK and its convex hull by convK. By K∗ we denote the positive polar

cone of K. The indicator function of K is defined by δK(x) := 0, if x ∈ K,

and by δK(x) := +∞ elsewhere. The support function of K is defined by

σK(y) := supx∈K〈x, y〉. By B(x, δ) we mean the open ball with center at

x ∈ Rn and radius δ > 0.

Given any function f : Rn → R := R ∪ {±∞}, the effective domain of f

is defined by dom f := {x ∈ Rn : f(x) < +∞}. We say that f is a proper

function if f(x) > −∞ for every x ∈ Rn and dom f is nonempty. For a function

f , we adopt the usual convention inf∅ f := +∞ and sup∅ f := −∞.

We denote by epif := {(x, t) ∈ domf × R : f(x) ≤ t} its epigraph and for

a given λ ∈ R by Sλ(f) := {x ∈ Rn : f(x) ≤ λ} its sublevel set at value λ. As

usual, argminKf := {x ∈ K : f(x) ≤ f(y), ∀ y ∈ K}.

A proper function f is said to be:



A Quasiconvex Asymptotic Function with Applications in Optimization 5

(a) semistrictly quasiconvex, if its domain is convex and for every x, y ∈ dom f

with f(x) 6= f(y),

f(λx+ (1− λ)y) < max{f(x), f(y)}, ∀ λ ∈]0, 1[.

(b) quasiconvex, if for every x, y ∈ dom f ,

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}, ∀ λ ∈ [0, 1].

Every convex function is quasiconvex, and every semistrictly quasicon-

vex and lower semicontinuous (lsc from now on) function is quasiconvex (see

[12, Theorem 2.3.2]). The continuous function f : R → R with f(x) :=

min{|x|, 1}, is quasiconvex, without being semistrictly quasiconvex.

Recall that

f is convex⇐⇒ epi f is a convex set.

f is quasiconvex⇐⇒ Sλ(f) is a convex set, for all λ ∈ R.

For a further study on generalized convexity, we refer to [12–14].

As explained in [1], the notions of asymptotic cone and the associated

asymptotic function have been employed in optimization theory in order to

handle unbounded and/or nonsmooth situations, in particular when standard

compactness hypotheses are absent. We recall some basic definitions and pro-

perties of asymptotic cones and functions, which can be found in [1].
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For a nonempty set K ⊆ Rn its asymptotic cone is defined by

K∞ :=

{
u ∈ Rn : ∃ tk → +∞, ∃ xk ∈ K,

xk
tk
→ u

}
.

We adopt the convention that ∅∞ = ∅.

When K is a closed and convex set, it is known that the asymptotic cone

is equal to (see [1, Proposition 2.1.5])

K∞ =
{
u ∈ Rn : x0 + λu ∈ K, ∀ λ ≥ 0

}
for any x0 ∈ K. (1)

The basic properties of the asymptotic cone are listed below.

Proposition 2.1 Let ∅ 6= K ⊆ Rn, then

(a) If K0 ⊆ K, then (K0)∞ ⊆ K∞.

(b) (K + x0)∞ = K∞ for all x0 ∈ Rn.

(c) K∞ = (K)∞.

(d) K∞ = {0} iff K is bounded.

(e) Let {Ki}i∈I be a family of sets from Rn. Then
⋃
i∈I(Ki)

∞ ⊆ (
⋃
i∈I Ki)

∞.

The equality holds when |I| < +∞.

(f) Let {Ki}i∈I be a family of sets from Rn satisfying
⋂
i∈I Ki 6= ∅. Then

(⋂
i∈I

Ki

)∞
⊆
⋂
i∈I

(Ki)
∞.

The equality holds when every Ki is closed and convex.
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The asymptotic function f∞ : Rn → R ∪ {±∞} of a proper function f as

before, is the function for which

epi f∞ := (epi f)∞. (2)

From this, one may show that

f∞(u) = inf

{
lim inf
k→+∞

f(tkuk)

tk
: tk → +∞, uk → u

}
. (3)

Moreover, when f is lsc and convex, for all x0 ∈ dom f we have

f∞(u) = sup
t>0

f(x0 + tu)− f(x0)

t
= lim
t→+∞

f(x0 + tu)− f(x0)

t
. (4)

A function f is called coercive if f(x)→ +∞ as ‖x‖ → +∞. If f∞(u) > 0

for all u 6= 0, then f is coercive. In addition, if f is convex and lsc, then (see

[1, Proposition 3.1.3])

f is coercive⇐⇒ f∞(u) > 0, ∀ u 6= 0⇐⇒ argminRn f 6= ∅ and compact.

(5)

The problem of finding an adequate definition of an asymptotic function

has been studied in the last years, since the usual asymptotic function is not

well suited for the description of the behavior of a nonconvex function at

infinity. Several attempts to deal with the quasiconvex case have been made

in [7–10] while applications to optimization can be found in [10,11].
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The following two asymptotic functions to deal with quasiconvexity were

introduced in [9]. Recall that, given a proper function f : Rn → R ∪ {+∞},

the q-asymptotic function is defined by

f∞q (u) := sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
. (6)

Given λ ∈ R with Sλ(f) 6= ∅, the λ-asymptotic function is defined by

f∞(u;λ) := sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

. (7)

If f is lsc and quasiconvex, by [9, Theorem 4.7] we have

f∞q (u) > 0, ∀ u 6= 0 ⇐⇒ argminRn f 6= ∅ and compact, (8)

and by [9, Proposition 5.3]

f∞(u;λ) > 0, ∀ u 6= 0 ⇐⇒ Sλ(f) 6= ∅ and compact. (9)

If f is quasiconvex (resp. lsc), then fq(·) and f∞(·;λ) are quasiconvex (resp.

lsc). Furthermore, the following relations hold for any λ ∈ R with Sλ(f) 6= ∅,

f∞ ≤ f∞(·;λ) ≤ f∞q . (10)

Both inequalities could be strict even for quasiconvex functions, as was proved

in [9, Example 5.6].



A Quasiconvex Asymptotic Function with Applications in Optimization 9

Finally, it is important to point out that the fact that f∞q (u) > 0 for all

u 6= 0 does not imply that f is coercive as the function f(x) := |x|
1+|x| shows.

Hence, the characterization (8) goes beyond coercivity.

3 A Quasiconvex Asymptotic Function

In this section, we introduce a new definition of an asymptotic function to

deal with quasiconvex functions. We establish properties and calculus rules

and compare with previous notions of asymptotic function.

3.1 Definition and Properties

The usual definition of the asymptotic function involves the asymptotic cone

of the epigraph. This explains why that definition is useful mainly for convex

functions. Our definition, quite naturally, involves the asymptotic cone of the

sublevel sets of the original function.

Definition 3.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex

function. We define the qx-asymptotic function fqx : Rn → R of f by

fqx(u) := inf {λ : u ∈ (Sλ(f))∞} . (11)

Since f is lsc and quasiconvex, Sλ(f) is a closed and convex set. For any

λ such that Sλ(f) 6= ∅, by Proposition 2.1(f) we have

Sλ(fqx) =
⋂
µ>λ

(Sµ(f))∞ =

⋂
µ>λ

Sµ(f)

∞ = (Sλ(f))∞. (12)
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The following remark follows immediately from the previous equation.

Remark 3.1

(i) The first equality in (12) holds for every λ ∈ R and implies that Sλ(fqx)

is a closed and convex cone. Hence fqx is lsc, quasiconvex, and positively

homogeneous of degree 0.

(ii) The qx-asymptotic function is monotone in the sense that f1 ≤ f2 implies

that (f1)qx ≤ (f2)qx. In fact, take λ ∈ R such that Sλ(f2) 6= ∅, then

Sλ(f2) ⊆ Sλ(f1) =⇒ (Sλ(f2))∞ ⊆ (Sλ(f1))∞ ⇐⇒ Sλ(f2)qx ⊆ Sλ(f1)qx,

which means that (f1)qx ≤ (f2)qx. The previous monotonicity property does

not hold for f∞q , as the continuous quasiconvex functions f1, f2 : R→ R given

by f1(x) = |x|
1+|x| and f2(x) ≡ 1 show.

An analytic formula for the qx-asymptotic function is given below.

Proposition 3.1 Let f : Rn → R ∪ {+∞} be a proper lsc and quasiconvex

function, then for any u ∈ Rn we have

fqx(u) = inf
x∈Rn

sup
t≥0

f(x+ tu). (13)

Proof For all λ > fqx(u) we have u ∈ (Sλ(f))∞. Then we can find x ∈ Sλ(f),

such that for all t ≥ 0 we have x+ tu ∈ Sλ(f). Thus, there exists x ∈ Rn such

that supt≥0 f(x + tu) ≤ λ, which implies that infx∈Rn supt≥0 f(x + tu) ≤ λ.

This is true for all λ > fqx(u). Thus, infx∈Rn supt≥0 f(x+ tu) ≤ fqx(u).
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Conversely, if infx∈Rn supt≥0 f(x+ tu) < λ, then there exists x ∈ Rn such

that for all t ≥ 0, x+ tu ∈ Sλ(f). Hence u ∈ (Sλ(f))
∞

, so fqx(u) ≤ λ.

This shows that fqx(u) ≤ infx∈Rn supt≥0 f(x + tu) and proves equality

(13). ut

Remark 3.2 Let C ⊆ Rn be a closed and convex set. Then (δC)qx = δC∞ . For

the usual asymptotic function, a similar result is [1, Corollary 2.5.1].

Another analytic formula for fqx is given below.

Proposition 3.2 Let f : Rn → R ∪ {+∞} be a proper lsc and quasiconvex

function. Then for each u ∈ Rn,

fqx(u) = inf
x∈Rn

lim
t→+∞

f(x+ tu). (14)

Proof We know by [13] that for a quasiconvex function defined on an interval

I in R, there exist two consecutive disjoint intervals I1, I2 (one of them might

be empty) with I = I1 ∪ I2, such that the function is decreasing on I1 and

increasing on I2. Thus,

sup
t≥0

f(x+ tu) = max

{
f(x), lim

t→+∞
f(x+ tu)

}
.

Since obviously

fqx(u) = inf
x∈Rn

max

{
f(x), lim

t→+∞
f(x+ tu)

}
≥ inf
x∈Rn

lim
t→+∞

f(x+ tu), (15)
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in order to show (14) it is enough to show that strict inequality in (15) is not

possible. Assume that strict inequality holds. Then there exists x0 ∈ Rn such

that limt→+∞ f (x0 + tu) < fqx(u).

Take t0 large enough so that f(x0 + t0u) < fqx(u). Set x1 := x0 + t0u.

Then obviously limt→+∞ f(x1 + tu) = limt→+∞ f(x0 + tu). Thus,

max

{
f(x1), lim

t→+∞
f(x1 + tu)

}
< fqx(u) = inf

x∈Rn
max

{
f(x), lim

t→+∞
f(x+ tu)

}
,

which is a contradiction. ut

Remark 3.3 From (13) we get that fqx(0) = infx∈Rn f(x). Also from the same

formula, for all u ∈ Rn we have fqx(u) ≥ infx∈Rn f(x). Consequently,

inf
x∈Rn

f(x) = inf
u∈Rn

fqx(u) = fqx(0). (16)

Hence, f and fqx has the same optimal value, the qx-asymptotic function

obtains the optimal value at u = 0.

From the geometric point of view, the qx-asymptotic function provides the

behavior of the value of the original quasiconvex function at infinity, rather

than the behavior of the slope, as f∞ does. The next example ilustrates our

interpretation.

Example 3.1 Let f : R→ R be the continuous quasiconvex function given by

f(x) =


x2, x ≤ 0,

x
1+x , x > 0.
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An easy calculation shows that

fqx(u) =


+∞, u < 0,

0, u = 0,

1, u > 0.

The following proposition provides calculus rules for the qx-asymptotic

function. We recall that the composition of an increasing function h with a

quasiconvex function g is also quasiconvex.

Proposition 3.3 The following assertions hold,

(a) Let g : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex function,

and h : R → R ∪ {+∞} be an increasing continuous function such that

domh ∩ g(Rn) 6= ∅. We extend h to R by setting h(±∞) = limt→±∞ h(t).

Then (h ◦ g)qx = h(gqx).

(b) Let fi : Rn → R∪{+∞} be a family of proper, lsc and quasiconvex functions

with I an arbitrary index set. Then

(
sup
i∈I

fi

)qx
≥ sup

i∈I
(fi)

qx. (17)

Proof (a) : Obviously, h ◦ g is proper, lsc and quasiconvex. Take u ∈ Rn, then

(h ◦ g)qx(u) = inf
x∈Rn

lim
t→+∞

(h ◦ g)(x+ tu) = inf
x∈Rn

lim
t→+∞

h(g(x+ tu))

= inf
x∈Rn

h

(
lim

t→+∞
g(x+ tu)

)
= h

(
inf
x∈Rn

lim
t→+∞

g(x+ tu)

)
= h(gqx(u)).
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(b) Set f := supi∈I fi. Then

fqx(u) = inf
x∈Rn

sup
t≥0

sup
i∈I

fi(x+ tu) = inf
x∈Rn

sup
i∈I

sup
t≥0

fi(x+ tu)

≥ sup
i∈I

inf
x∈Rn

sup
t≥0

fi(x+ tu) = sup
i∈I

(fi)
qx(u).

Hence (17) holds. ut

Note that in general equality does not hold in (17).

Example 3.2 Define on R2 the convex functions given by f1(x1, x2) = |x1 − 1|

and f2(x1, x2) = |x1 + 1|, and f = max {f1, f2} = 1 + |x1|. Take u = (0, 1).

Then

(f1)qx (u) = inf
(x1,x2)∈R2

sup
t≥0
|x1 − 1| = 0, (f2)qx (u) = inf

(x1,x2)∈R2
sup
t≥0
|x1 + 1| = 0,

fqx(u) = inf
(x1,x2)∈R2

sup
t≥0

(1 + |x1|) = 1.

Thus, fqx(u) > max {(f1)qx(u), (f2)qx(u)}.

Another formula for computing the qx-asymptotic function is given below.

Proposition 3.4 Let g : Rm → R ∪ {+∞} be a proper, lsc and quasiconvex

function, let A : Rn → Rn be a linear map with A(Rn) ∩ dom g 6= ∅, and let

f(x) := g(Ax). Then f is lsc, quasiconvex and

fqx(u) ≥ gqx(Au), ∀ u ∈ Rn. (18)

Whenever A is onto, equality holds in (18).
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Proof It is clear that f is lsc and quasiconvex. Now, take any u ∈ Rn, then

fqx(u) = inf
x∈Rn

sup
t≥0

f(x+ tu) = inf
x∈Rn

sup
t≥0

g(Ax+ t(Au))

≥ inf
z∈Rm

sup
t≥0

g(z + t(Au)) = gqx(Au).

If A is onto, then Ax takes on all values z ∈ Rm so equality holds. ut

3.2 Comparison with Other Asymptotic Functions

Let us compare the three asymptotic functions f∞, f∞q and f∞(·;λ) that are

known from the literature, with the function fqx introduced in the previous

subsection.

When f is convex, the three functions f∞, f∞q and f∞(·;λ) are equal, see

also [9, Proposition 5.4]:

Proposition 3.5 Let f be convex and λ be such that Sλ(f) 6= ∅. Then

f∞ = f∞q = f∞(·;λ).

Proof Only f∞ = f∞(·;λ) needs a proof. We note that for x ∈ Sλ(f), the

functions t 7→ f(x+tu)−f(x)
t and t 7→ f(x)−λ

t are increasing, thus t 7→ f(x+tu)−λ
t

is increasing too, and

sup
t>0

f(x+ tu)− λ
t

= lim
t→+∞

f(x+ tu)− λ
t

= lim
t→+∞

f(x+ tu)− f(x)

t
= f∞(u).
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It follows that

f∞ (u;λ) = sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

= f∞(u),

and the proof is complete. ut

In contrast to the above, when f is convex, fqx is in general not equal to

f∞. For example, consider the constant function f(x) := α. Here, f∞ ≡ 0

and fqx ≡ α. Hence, for α > 0 we have f∞ < fqx, while for α < 0 we have

fqx < f∞. The same example shows that there is no connection between fqx

and f∞q or f∞(·;λ). This difference is not surprising, since f∞ is related to

the slope of the function f at infinity, whereas fqx is related to the value of f

at infinity.

The qx-asymptotic function fqx is also convex whenever f is convex. In

fact, it is constant in its domain:

Proposition 3.6 Let f be proper, convex and lsc. Then fqx = inf f + δC ,

where C := {u ∈ Rn : f∞(u) ≤ 0}.

Proof By [1, Proposition 2.5.3], for each α ∈ R such that Sα(f) 6= ∅, one has

the equality: (Sα(f))
∞

= S0(f∞). Thus, fqx has just one sublevel set, and its

value on this sublevel set is inf fqx = inf f . ut

The asymptotic functions fqx, f∞ and f∞(·;λ) are not convex in general

if f is not convex. In contrast, f∞q is always convex, for any proper function

f . To see this, we first recall the notion of recession cone of an arbitrary set

[15,16].
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Definition 3.2 Let K be any nonempty subset of Rn. Its recession cone is

the set

recK := {u ∈ Rn : x+ tu ∈ K, ∀ x ∈ K, ∀ t > 0} .

Note that K is not required to be closed or convex. If K is closed and

convex, then recK = K∞, the usual asymptotic cone of K.

It is known (see [15, Exercise 6.34], or [16, Lemma 2.1]) that for any

nonempty set K from Rn, the set recK is always a convex cone.

A natural definition is the following.

Definition 3.3 Let f : Rn → R ∪ {+∞} be a proper function. We define the

(generalized) recession function of f as the function frec : Rn → R for which

epi frec := rec(epi f). (19)

The recession function is well-defined, as shown by the following proposi-

tion, which is useful to understand the nature of the q-asymptotic function.

Proposition 3.7 Let f : Rn → R ∪ {+∞} be a proper function. Then for

every u ∈ Rn

frec(u) = sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
= f∞q (u). (20)
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Proof Observe that

(u, α) ∈ rec(epi f)⇐⇒ (x, λ) + t(u, α) ∈ epi f, ∀ (x, λ) ∈ epi f, ∀ t > 0

⇐⇒ (x+ tu, f(x) + tα) ∈ epi f, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ f(x+ tu) ≤ f(x) + tα, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ f(x+ tu)− f(x)

t
≤ α, ∀ x ∈ dom f, ∀ t > 0

⇐⇒ sup
x∈dom f

sup
t>0

f(x+ tu)− f(x)

t
≤ α

⇐⇒ (u, α) ∈ epi f∞q .

This shows that rec(epi f) = epi f∞q , so frec is well defined and is equal to

f∞q . ut

As a result, we have:

Proposition 3.8 For any proper function f , its q-asymptotic function f∞q is

convex.

Proof Set K := epif , by [16, Lemma 2.1] or [15, Exercise 6.34] we have that

rec(epif) = epif∞q is convex. Thus, f∞q is convex. ut

Remark 3.4 The λ-asymptotic function g := f∞(·;λ) satisfies

S0(g) = rec(Sλ(f)).
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Indeed, u ∈ rec(Sλ(f)) is equivalent to x + tu ∈ Sλ(f) for all x ∈ Sλ(f) and

all t > 0. This is equivalent to f(x+ tu) ≤ λ, ∀ x ∈ Sλ(f), ∀ t > 0, that is,

sup
x∈Sλ(f)

sup
t>0

f(x+ tu)− λ
t

≤ 0.

This in turn means u ∈ S0(g).

As seen in Proposition 3.6, the qx-asymptotic function fqx is very particu-

lar when the function f is proper, convex and lsc. However, in some situations,

even in this case, fqx gives us information about the behavior of the function

at infinity while other asymptotic functions fail to do so.

Example 3.3 Let f : R → R ∪ {+∞} be the proper, lsc and convex function

given by f(x) = −
√
x for x ≥ 0, and f(x) = +∞ otherwise. Here

f∞(u) = f∞q (u) = f∞(u;λ) = 0, u ≥ 0,

and no information about the unboundedness from below of f was detected.

On the other hand, for u > 0 we have fqx(u) = −∞. Which means that f is

not bounded from below.

4 Applications in Optimization

In this section, applications for quasiconvex optimization problems are given.

We analyze the link between our new results with previous ones for the convex

case. We also show that our new asymptotic function has some properties that

previous quasiconvex asymptotic functions do not have.
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The next proposition is straightforward, since f and fqx have the same

infimum and fqx attains its infimum at 0.

Proposition 4.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex

function. Then f is bounded from below iff fqx > −∞.

A characterization result for boundedness from below for convex functions

using first and second order asymptotic functions can be found in [10, Section

3.3].

The qx-asymptotic function characterizes the boundedness of a quasicon-

vex function as the next proposition shows. For the convex case, a related

result is [1, Proposition 2.5.5].

Proposition 4.2 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex

function. Then f is bounded iff fqx is real-valued.

Proof If f is bounded, then obviously fqx is real-valued, by formula (14).

Conversely, assume that fqx is real-valued, then f is bounded from below

by the previous proposition. For showing that f is bounded from above, we

observe that since fqx is real-valued, Rn =
⋃
k∈N Sk(fqx).

As the sets Sk(fqx) are closed, by Baire’s theorem there exists k0 ∈ N

such that the interior of Sk0(fqx) is nonempty. Thus, there exist x0 ∈ Rn

and ε > 0 such that B(x0, ε) ⊆ Sk0(fqx). Now, let m ∈ N be such that

m > max{fqx(−x0), k0}. Then −x0 ∈ Sm(fqx) and B(x0, ε) ⊆ Sm(fqx),

thus conv ({−x0} ∪B(x0, ε)) ⊆ Sm(fqx). It follows that 0 ∈ int Sm(fqx) and
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since Sm(fqx) is a cone, Sm(fqx) = Rn. Since Sm(fqx) = (Sm(f))
∞

, then

Sm(f) = Rn, so f is bounded from above by m and the result follows. ut

Remark 4.1 We notice that the previous proposition does not hold for the q-

asymptotic function. In fact, set f : R → R given by f(x) = min{
√
|x|, 3},

which is continuous, bounded and quasiconvex. Here f∞q (u) = +∞ for all

u 6= 0. On the other hand, for the function f(x) = |x|, the function f∞q is real

valued, but f is unbounded.

The next result provides a characterization of the nonemptiness and com-

pactness of the solution set of a lsc quasiconvex function.

Theorem 4.1 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex

function. Then the following assertions are equivalent.

(a) argminRn f is nonempty and compact.

(b) argminRn f
qx is nonempty and compact.

(c) fqx(u) > fqx(0) for all u 6= 0.

Proof Obviously (c) implies (b). If (b) holds and u0 ∈ argminRn fqx, then

tu0 ∈ argminRn f
qx for all t > 0 since fqx is 0-homogeneous. Hence necessarily

u0 = 0, so (c) holds.

(c) ⇒ (a): If (a) does not hold, then there exists a sequence (xk) with

f(xk)→ infRn f and ‖xk‖ → +∞. By selecting a subsequence if necessary, we

may assume that xk
‖xk‖ → u. For every λ > infRn f we have that xk ∈ Sλ(f)

for k large enough, so u ∈ (Sλ(f))
∞

= Sλ(fqx), that is, fqx(u) ≤ λ. Hence,

fqx(u) ≤ infRn f = fqx(0), contradicting (c).
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(a) ⇒ (c): Suppose for the contrary that (c) does not hold. It follows

that there exists u 6= 0 such that fqx(u) ≤ fqx(0) = infRn f . Then

u ∈ Sinf f (fqx) = (Sinf f (f))
∞

. Choose x ∈ argminRn f . Then x ∈ Sinf f (f).

Thus for every t > 0, we have that x + tu ∈ Sinf f (f). This implies that

x+ tu ∈ argminRn f , which contradicts the compactness of argminRn f . ut

Remark 4.2 Since for a proper, lsc and convex function f∞(0) = 0, the pre-

vious characterization for quasiconvexity is similar to the characterization (5).

Another similar characterization for quasiconvexity is (8) (see [9, Theorem

4.7]) since f∞q (0) = 0.

In the next example, we study the quasiconvex quadratic case, that is the

case when the function f is given by f(x) := 1
2 〈x,Ax〉 + 〈a, x〉 + α, where

A ∈ Rn×n is symmetric, a belongs to Rn and α belongs to R. To that end,

we first recall that whenever f is quadratic, f is convex on Rn iff f is quasi-

convex on Rn (see [12, Theorem 6.3.1]). Thus, a quadratic function f can be

quasiconvex without being convex, only if its domain is a proper subset K of

Rn. We say that f is merely quasiconvex on K if f is a quasiconvex function

without being convex on K [12, page 120]. If intK is nonempty, a necessary

condition for a quadratic f to be merely quasiconvex is the existence of exactly

one simple negative eigenvalue of A (see [12, Remark 6.3.1]). The properties

of quasiconvex quadratic functions are investigated in depth in [12, Chapter

6].

Example 4.1 Let K be a nonempty closed, convex and proper subset of Rn

and f : K → R a quasiconvex quadratic function f(x) = 1
2 〈x,Ax〉+ 〈a, x〉+α.



A Quasiconvex Asymptotic Function with Applications in Optimization 23

As usual, we extend f to the whole of Rn by setting f(x) = +∞ for x /∈ K.

Observe that if x ∈ K and u ∈ K∞, then

f(x+ tu) = f(x) + t〈∇f(x), u〉+
1

2
t2〈u,Au〉.

Accordingly, by Proposition 3.2,

fqx(u) = inf
x∈K

lim
t→+∞

(
f(x) + t 〈∇f(x), u〉+

1

2
t2 〈u,Au〉

)
.

– If 〈u,Au〉 > 0, then the limit equals +∞ for all x ∈ K, so fqx(u) = +∞.

– If 〈u,Au〉 < 0, then fqx(u) = −∞, so inf f = −∞.

– If 〈u,Au〉 = 0, then the limit is +∞ for all x ∈ K such that 〈∇f(x), u〉 > 0.

These x can be omitted from the calculation of the infimum. In case

〈∇f(x), u〉 < 0 for some x ∈ K, then fqx(u) = −∞.

Thus, fqx is given by the following formula:

fqx(u) =



+∞, if 〈u,Au〉 > 0,

−∞, if 〈u,Au〉 < 0,

−∞, if 〈u,Au〉 = 0 and u /∈ {∇f(K)}∗ ,

inf
x∈K, 〈∇f(x),u〉=0

f(x), if 〈u,Au〉 = 0 and u ∈ {∇f(K)}∗ .

Remark 4.3

(i) Characterizations for the nonemptiness and compactness of the solution set

for quasiconvex quadratic functions are well-known. See for instance

[17, Theorem 4.6] where the authors use the q-asymptotic function.
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(ii) The term 〈u,Au〉 is exactly the second order asymptotic function f∞∞

introduced in [17] (see [17, Example 3.5]).

We provide another classical example for a class of nonconvex functions.

Example 4.2 Consider the affine functions defined by h(x) = 〈a, x〉 + α and

g(x) = 〈b, x〉 + β with a, b ∈ Rn and α, β ∈ R, and the closed and convex set

K := {x ∈ Rn : g(x) ≥ 1}. Let f : Rn → R ∪ {+∞} be the linear fractional

function

f(x) =


h(x)

g(x)
, if x ∈ K,

+∞, if x 6∈ K.

It is well-known that f is semistrictly quasiconvex on K and quasiconvex (see

[12,18]), and K∞ = {u ∈ Rn : 〈b, u〉 ≥ 0}. Notice that, for u ∈ K∞,

fqx(u) = inf
x∈K

lim
t→+∞

f(x+ tu) = inf
x∈K

lim
t→+∞

h(x) + t〈a, u〉
g(x) + t〈b, u〉

. (21)

We have three cases:

(i) If 〈b, u〉 > 0, then it is easy to see that fqx(u) = 〈a,u〉
〈b,u〉 .

(ii) If 〈b, u〉 < 0, then for t sufficiently large, x + tu /∈ K so f(x + tu) = +∞.

In this case, fqx(u) = +∞.

(iii) If 〈b, u〉 = 0, then again we have three cases: For 〈a, u〉 > 0 we find from

(21) that fqx(u) = +∞. For 〈a, u〉 < 0 we find fqx(u) = −∞. Finally, for

〈a, u〉 = 0, relation (21) gives

fqx(u) = inf
x∈K

h(x)

g(x)
= inf
x∈K

f(x) = fqx(0).
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Before we introduce our next proposition, we remind that for a proper lsc

convex function, f∞(0) = 0 so f∞(u) ≤ 0 is equivalent to f∞(u) ≤ f∞(0).

Also, for proper lsc quasiconvex functions, one has fqx(0) = inf f = inf fqx so

fqx(u) ≤ fqx(0) is equivalent to fqx(u) = fqx(0).

Proposition 4.3 Let f : Rn → R ∪ {+∞} be a proper, lsc and quasiconvex

function and u ∈ Rn. Then fqx(u) = fqx(0) iff for every x ∈ domf , the

function t 7→ f(x+ tu), t > 0 is decreasing.

Proof For u = 0 it is obvious, so we assume that u 6= 0.

(⇒) Take x ∈ domf . Since fqx(u) = fqx(0) = inf f , we have fqx(u) ≤ f(x)

so u ∈ Sf(x)(fqx) =
(
Sf(x)(f)

)∞
. From x ∈ Sf(x)(f), for every t ≥ 0 we have

that x + tu ∈ Sf(x)(f), that is, f(x + tu) ≤ f(x). Thus, for every x ∈ domf

and every t > 0 we have f(x+tu) ≤ f(x). For every t′ > t > 0, set x′ := x+tu

and t′′ := t′ − t. Then we have f(x′ + t′′u) ≤ f(x′), so f(x+ t′u) ≤ f(x+ tu).

Consequently, the function t 7→ f(x+ tu), t > 0 is decreasing.

(⇐) Assume that for each x ∈ domf , the function t 7→ f(x+ tu), t > 0 is

decreasing. Suppose to the contrary that fqx(u) > fqx(0). As fqx(0) = inf f ,

we can choose x ∈ domf with f(x) < fqx(u). Then

f(x) < fqx(u) ≤ lim
t→+∞

f(x+ tu).

It follows that t 7→ f(x+ tu), t > 0 cannot be decreasing, a contradiction. ut

Remark 4.4 If f is a proper, lsc and convex function, then the following

assertions are equivalent: f∞(u) ≤ 0; for each x ∈ domf , the function
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t 7→ f(x + tu), t > 0 is decreasing (see [1, Theorem 2.5.2] and [19, Theorem

8.6]); for some (equivalently, for every) x ∈ domf, limt7→+∞ f (x+ tu) < +∞.

Note that for a convex function, or more generally for a quasiconvex func-

tion, t 7→ f(x+ tu), t > 0 is monotone for large values of t, so the limit always

exist and the lim inf or lim sup used in [1, Theorem 2.5.2] and [19, Theorem

8.6] are not needed. In contrast with convex functions, if f is quasiconvex, it is

possible that t 7→ f(x+ tu), t > 0 is decreasing only for some x ∈ domf . For

example, consider the quasiconvex function f(x) = min {‖x‖ − 1, 0}, x ∈ R2. If

e1 and e2 are the usual basis vectors, then t 7→ f(e2 + te1), t > 0 is decreasing,

while t 7→ f(−e1 + te1), t > 0 is not.

Now, we will recall [10, Theorem 3.1]. To this end, we first recall the fo-

llowing class of functions. As a consequence of [19, Theorem 8.6], this class

includes those functions that are convex or coercive.

Definition 4.1 ([10, Definition 3.1]) A function f : Rn → R ∪ {+∞} is said

to be in C if for all x ∈ domf and u ∈ (domf)∞, the function t 7→ f(x+ tu),

t > 0, is either unbounded from above or decreasing.

Now the mentioned theorem.

Theorem 4.2 ([10, Theorem 3.1]) Let F = (f1, . . . , fm) : Rn → Rm be a

vector function with each fj, j = 1, 2, . . . ,m, being a continuous, semistrictly

quasiconvex function belonging to C, and let K ⊆ Rn be closed and convex.

Assume that

Lj := {u ∈ K∞ : (fj)
∞
q (u) ≤ 0}, (22)
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is a linear subspace for all j ∈ {1, 2, . . . ,m}. Then F (K) is closed.

Using the qx-asymptotic function, we can rewrite the previous theorem.

First, we express C in terms of fqx.

Proposition 4.4 A proper, lsc and quasiconvex function belongs to C iff for

every u ∈ Rn, fqx(u) = +∞ or fqx(u) = fqx(0).

Proof If for every u ∈ Rn one has fqx(u) = +∞ or fqx(u) = fqx(0), then by

Propositions 3.1 and 4.3, the function t 7→ f(x + tu) is either unbounded or

decreasing for all x ∈ dom f .

Conversely, assume that for each x ∈ domf and u ∈ (domf)∞, the function

t 7→ f(x + tu) is either unbounded from above or decreasing. Then also for

each u ∈ Rn the function t 7→ f(x + tu) is either unbounded from above or

decreasing, because for u /∈ (domf)∞, one has x + tu /∈ domf for t large.

In fact, if this is not true, then there is a sequence tn → +∞ such that

xn := x + tnu ∈ domf . But then lim (xn−x)
tn

= lim xn
tn

= u ∈ (domf)∞, a

contradiction.

Now, assume that fqx(0) < fqx(u) < +∞. Since inf f = fqx(0), we

may choose x such that f(x) < fqx(u). From Proposition 3.2 it follows that

limt→+∞ f(x + tu) ≥ fqx(u) > f(x), so the function t 7→ f(x + tu) is not

decreasing. Also, for λ > fqx(u), Definition 3.1 shows that u ∈ (Sλ(f))
∞

so

x+ tu ∈ Sλ(f) for all t > 0. This means that t 7→ f(x+ tu) is neither decrea-

sing, nor unbounded from above, a contradiction. ut
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From the definition of f∞q and Proposition 4.3, it is clear that for a proper,

lsc and quasiconvex function f , f∞q (u) ≤ 0 is equivalent to fqx(u) = fqx(0).

Using then Proposition 4.4, we can rewrite Theorem 4.2 as follows:

Corollary 4.1 Let F := (f1, f2, . . . , fm) : Rn → Rm be a vector function

with each fj, j = 1, 2, . . . ,m, being a continuous and semistrictly quasiconvex

function. Let K ⊆ Rn be a closed and convex set. Assume that for every

j ∈ {1, 2, . . . ,m}, one has (fj)
qx(u) = +∞ or (fj)

qx(u) = (fj)
qx(0) for all

u ∈ K∞, and

(Lj)
qx := {u ∈ K∞ : (fj)

qx(u) = (fj)
qx(0)}, (23)

is a linear subspace for all j ∈ {1, 2, . . . ,m}. Then F (K) is a closed set.

Notice that the same result was written only in terms of the qx-asymptotic

function and no class of functions was used.

5 Conclusions

The qx-asymptotic function has been proved to be useful to deal with the

family of quasiconvex functions. This function preserves important properties

and calculus rules, which were ensured only convex functions when the usual

asymptotic function is used. The applications show that the description of

the value of a quasiconvex function at infinity is enough for the study of the

boundedness of the function in the whole effective domain, for the characteri-



A Quasiconvex Asymptotic Function with Applications in Optimization 29

zation of the nonemptiness and compactness of the set of minimizers, and also

for providing elegant sufficient conditions for closedness criteria.
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