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Abstract “... nihil omnino in mundo contingint, in quo non maximi minimive ratio quapiam eluceat”,

translated into “... nothing in all the world will occur in which no maximum or minimum rule is somehow

shining forth”, used to say L.EULER in 1744. This is confirmed by numerous applications of mathematics

in physics, mechanics, economy, etc. In this note, we show that it is also the case for the classical “cen-

tres” of a tetrahedron, more specifically for the so-called MONGE point (the substitute of the notion of

orthocentre for a tetrahedron). To the best of our knowledge, the characterization of the MONGE point of a

tetrahedron by optimization, that we are going to present, is new.
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1 Introduction: To Begin with... What Kind of Tetrahedron?

Let T = ABCD be a tetrahedron in the three dimensional space R3(equipped with the usual Euclidean

and affine structures); the points A,B,C,D are supposed not to lie in a plane, of course. We begin with

two particular types of tetrahedra and, then, with increase in generality, we can classify the tetrahedra into

several classes. Here they are:

- The regular tetrahedron. This tetrahedron enjoys so many symmetries that it is not very interesting

from the optimization viewpoint: all the “centres” usually associated with a tetrahedron (and that we are

going to visit again in the next paragraph) coincide.

- The trirectangular tetrahedra. They are generalizations to the space of rectangular triangles in the

plane. A trirectangular tetrahedron OABC has (two by two) three perpendicular faces OBC,OAB,OAC and

a “hypothenuse-face” ABC; such a tetrahedron enjoys a remarkable relationship between areas of its faces

(see [1]); its vertex O, opposite the hypothenuse-face, is the orthocentre and MONGE point, as we shall see

below.

- The orthocentric tetrahedra. Curiously enough, the four altitudes of a tetrahedron generally do not

meet at a point; when this happens, the tetrahedron is called orthocentric. A common characterization of

orthocentric tetrahedra is as follows: a tetrahedron is orthocentric if and only if the opposite edges (two by

two) are orthogonal. This class of tetrahedra is by far the most studied one in the literature. Regular and

trirectangular tetrahedra are indeed orthocentric.

- General tetrahedra. Like for triangles, three specific “centres” can be defined for any tetrahedron:

the centroid or isobarycentre, the incentre and the circumcentre. We shall see their characterization by

optimization, as for some other points, in the next section. As said before, the altitudes do not necessarily

meet at a point; moreover, the projection of any vertex on the opposite face does not necessarily coincide

with the orthocentre of this face. The notion of orthocentre will be held by a new point: the so-called

MONGE point.
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2 Characterization by Optimization of the Centroid, Incentre, Circumcentre, etc. of a Tetrahedron

Let us revisit the usual centres of a tetrahedron T = ABCD and their characterizations by optimization.

They are similar to the ones developed for the centres of a triangle in [2].

- The centroid or isobarycentre (also called centre of mass, centre of gravity) G of T is the best known

of them: it can be defined as the barycentre of the four vertices A,B,C,D with equal weights. In terms of

optimization, it is the point which minimizes (on T or on R3) the following objective function or criterion

P 7−→ f1(P) = (PA)2 +(PB)2 +(PC)2 +(PD)2. (1)

Should f1 represent a temperature function, the point G would be the coolest point. Indeed, f1 is a

quadratic and strictly convex function. According to the well-known necessary and sufficient condition

for optimality in unconstrained convex minimization, the G point is characterized by the vectorial relation

−−→
∇ f1(G) =

−→
0 , which can be written here as

−→
GA+

−→
GB+

−→
GC+

−→
GD =

−→
0 . (2)

- The incentre I of T is the centre of the largest sphere included in T ; it is also the point (in T )

equidistant from the four faces of T . In terms of optimization, it is the point which minimizes (on T or

on R3) the following function

P 7−→ f2(P) = max(PA′,PB′,PC′,PD′), (3)

where A′,B′,C′,D′ denote the projections of P on the faces of T (A′ lies in the face opposite the vertex A,

and so on). This new temperature function f2 is again strictly convex, but nondifferentiable.

- The circumcentre O is the centre of the smallest sphere containing T ; it is also the point equidistant

from the four vertices of T . When it lies in the interior of T , this point is the one which minimizes on T

(as also on R3) the following function

P 7−→ f3(P) = max(PA,PB,PC,PD). (4)

As for f2, this function f3 is strictly convex and nondifferentiable.
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The above characterizations of the incentre and circumcentre in terms of optimization do not seem to

be well-known. The difficulty there is that they involve a nonsmooth convex function (to be minimized),

while the function to be minimized in (1) is convex and smooth. However, people involved in approximation

theory are familiar with such kinds of minimization problems. We add three further interesting points to

our list, even far less known however.

- The first LEMOINE point of T is the one which minimizes on T the function

P 7−→ f4(P) = (PA′)2 +(PB′)2 +(PC′)2 +(PD′)2, (5)

where A′,B′,C′,D′ denote, as above, the projections of P on the faces of T . See [3, page 79] for another

characterization of this point.

- The second LEMOINE point of T is, this time, the one which minimizes on T the function

P 7−→ f5(P) = (P PAB)
2 +(P PAC)

2 +(P PAD)
2 +(P PBC)

2 +(P PBD)
2 +(P PCD)

2, (6)

where PAB,PAC,... denote the projections of P on the six edges of T .

In the case of a triangle, there is only one LEMOINE point ([3, page 24]); for a tetrahedron, there are

two.

- The FERMAT or FERMAT & TORRICCELLI point of T is the one which minimizes the function

P 7−→ f6(P) = PA+PB+PC+PD. (7)

It is usually located inside the tetrahedron, but it could also be one of the vertices.

Again, the functions appearing in (5), (6) and (7) are convex, but the one in (7) is not differentiable at

the points A,B,C or D. So, characterizing the FERMAT point is different if a vertex of the tetrahedron is

a candidate for optimality or not; however, subdifferential calculus and optimality conditions for convex

functions, be they smooth or nonsmooth, cover all the cases [4, chapter D].

3 Properties of the Centroid: an Example of Reasoning with Convexity

Here we illustrate how techniques from convex analysis allow us to derive easily some properties of “cen-

tres” in a tetrahedron; for this, we choose the particular case of the centroid. Let xA, ...,xD denote the vectors
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of cartesian coordinates of the points A, ...,D and xG that of the barycentre G of (A,α),(B,β ),(C,γ),(D,δ ).

Here, the weights α, ...,δ are those of a convex combination (i.e., positive and summing up to 1); for the

centroid, these weights are exactly equal. We express xG as a convex combination of xA, ...,xD :

xG = αxA +βxB + γxC +δxD. (8)

We now proceed like in the proofs of results in convex analysis (page 28 in [4] for example) and transform

(8) into:

xG = (α +β )(
α

α +β
xA +

β

α +β
xB)+(γ +δ )(

γ

γ +δ
xC +

δ

γ +δ
xD); (9)

or

xG = (α +β + γ)(
α

α +β + γ
xA +

β

α +β + γ
xB +

γ

α +β + γ
xC)+δxD. (10)

In (9): α

α+β
xA + β

α+β
xB =: xAB lies on the line-segment AB (it is the midpoint of AB in the case of

centroid), γ

γ+δ
xC + δ

γ+δ
xD =: xCD lies on the line-segment CD; therefore, the xG appears as a new con-

vex combination of xAB and xCD (it is again the mid-point in the case of centroid). In (10) the point

α

α+β+γ
xA + β

α+β+γ
xB + γ

α+β+γ
xC =: xABC lies on the triangle ABC (it is its centroid in the case where

α = β = γ = δ = 1/4). In doing so, we have proved, without referring to any geometric argument (angles,

distances, vector calculus) that:

- the centroid xG lies exactly in the middle of the line-segments joining midpoints of edges (there are

three situations like this);

- the centroid xG is situated on the lines joining vertices to centroids of the opposite triangles (there are

four situations like this), the corresponding barycentric weights being 3/4 and 1/4.

See Figure 1 for a graphical illustration.
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Fig. 1

4 The Monge Point

By an extraordinary geometrical intuition, G.MONGE (1746-1818) proposed a substitute for the notion of

orthocentre of a tetrahedron. Here is its basic definition. Consider the six planes perpendicular to the edges

of a tetrahedron T and passing through the midpoints of the respective opposite sides; then these six planes

meet at just one point; the point common to these planes is the so-called MONGE point of the tetrahedron.

Our question is: can the MONGE point be viewed as the minimizer on T of some appropriate criterion ?

In other words, what is the temperature function on T (a convex, possibly differentiable, function) such

that the coolest point is exactly the MONGE point? Before answering this question, we review the main

properties of the MONGE point; they can be found in some classical books on solid geometry, or in the

paper [5] that we recommend.

- If the tetrahedron is orthocentric, the orthocentre does exist as the intersection of the four altitudes,

and the MONGE point coincides with it. So, the MONGE point is the direct generalization of the notion of

orthocentre to arbitrary tetrahedra.
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- If G denotes the centroid of the tetrahedron and O its circumcentre, the MONGE point M satisfies

the following vectorial property:
−−→
OM = 2

−→
OG. In other words, the MONGE point is the symmetric of the

circumcentre with respect to the centroid.

- Another geometrical construction. A.MANNHEIM’s theorem (1895): the four planes determined by

the four altitudes of a tetrahedron and the orthocentres of the corresponding faces pass through the MONGE

point. For example, in a trirectangular tetrahedron OABC (see section 1), the MONGE point is the vertex O.

- The MONGE point, more precisely its projection on faces, holds a compromise between the projections

of vertices on faces and orthocentres of faces: the MONGE point is equidistant from the orthocentre of a

face and the projection on it of the opposite vertex (that holds true for the four faces). Again, in the case of

orthocentric tetrahedra, the orthocentre of a face and the projection on it of the opposite vertex coincide;

this common point is the projection of the orthocentre-MONGE point of the tetrahedron.

Now, we make the definition of MONGE point “variational”, that is to say in terms of optimization. Our

procedure will illustrate the following well-known adage: “This problem, when solved, will be simple”. So,

for each edge σ , denote by −→vσ a unitary vector directing σ (for example (xB− xA)/‖xB− xA‖ for the edge

joining the vertices A and B) and xσ the midpoint of the opposite edge ; then, since our aim is to look for a

point x such that 〈x− xσ ,
−→vσ 〉= 0 for all σ , define the function

P (or vector x) 7−→ f7(P) =
1
2

σ6

∑
σ1

[〈x− xσ ,
−→vσ 〉]2 , (11)

Theorem 4.1 The f7 function is quadratic and strictly convex. It is uniquely minimized at the MONGE

point.

Proof As a sum of squares of affine forms, the f7 function is clearly quadratic. The gradient vector ∇ f7(x)

and the hessian matrix ∇2 f7(x) of f7 at x are as follows:

∇ f7(x) =
σ6

∑
σ1

〈x− xσ ,
−→vσ 〉 −→vσ ; (12)

∇
2 f7(x) =

σ6

∑
σ1

−→vσ .(
−→vσ )

T .

To show that ∇2 f7(x) is positive definite, consider the quadratic form

h ∈ R3 7−→ q(h) = 〈∇2 f7(x)h,h〉=
σ6

∑
σ1

〈−→vσ ,h〉2.
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Clearly, q(h) is nonnegative on R3 and q(h) = 0 if and only if h = 0 (that is due to the fact that three

among the six vectors −→vσ are linearly independent). Hence the f7 function is strictly convex.

The MONGE point is indeed the unique minimizer of the nonnegative function f7 since it is the only

point where f7 achieves the 0 value. ut

Remark 4.1 As the proof clearly shows, it suffices to consider in (11) a summation over three linearly

independent edges, for example the three edges arising from a vertex.

Remark 4.2 The f7 function contains distances (to points or lines) in a hidden form. Indeed, consider the

following construction: for each edge σ , let ∆σ be the line passing through (the opposite midpoint) xσ and

parallel to σ ; we call it the mirror (edge or) line to σ . Then, because the vectors −→vσ have been chosen

unitary, the square of the distance from x to the mirror line ∆σ is

d2(x,∆σ ) = ‖x− xσ‖2− [〈x− xσ ,
−→vσ 〉]2 . (13)

So, the f7 function is

P (or vector x) 7−→ f7(P) =
1
2

σ6

∑
σ1

[
‖x− xσ‖2−d2(x,∆σ )

]
. (14)

Other substitutes for the criterion to be minimized could be the following functions:

P (or vector x) 7−→ f8(P) =
σ6

∑
σ1

[‖x− xσ‖−d(x,∆σ )] ; (15)

P (or vector x) 7−→ f9(P) = max
σ1,...,σ6

[‖x− xσ‖−d(x,∆σ )] . (16)

Hence, minimizing the f8 function or the f9 function yields again the MONGE point. However, in

comparison with the f7 function, we loose properties like convexity and differentiability (on R3).

Remark 4.3 What about the numerical computation of the Monge point ? We may use the (primary) defini-

tions of this point as the intersection of appropriate planes. The results dealing with optimization, presented

above, are also easily amenable to computations: either to solve the system ∇ f7(x) = 0 or, better, to mini-

mize f7 (summation over only three independent edges). In that case, the stopping rule of any minimization

algorithm is: | f7(xk)|6 ε. In all cases, simple computations with MATLAB work well.
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Remark 4.4 Back to the triangle ([6]). Analogous functions to those presented above can be defined to find

(by minimization) the orthocentre of an acute triangle ABC. If σ is one side of the triangle, xσ the vertex

opposite to it, −→vσ a unitary vector directing σ , and ∆σ the line passing through xσ and parallel to σ , then

the line orthogonal to σ and passing through xσ has for equation: 〈x−xσ ,
−→vσ 〉= 0, or ‖x− xσ‖= d(x,∆σ ).

As a result, the three functions f7, f8, f9 (where the summations or the max operation are taken over the

threes sides of the triangle) are minimized on R2 at a unique point: the orthocentre of the triangle. Actually,

the f8 function coincides on T with the one presented in [6], minus a constant (which equals the sum of

the three altitudes of the triangle). This means, at least for an acute triangle: in order to find the orthocentre

of a triangle, instead of minimizing the sum of distances from a point P to the vertices, plus the sum of

distances from P to the sides, one could minimize the difference of two sums: the sum of the distances

from P to the vertices, and the sum of the distances from P to the mirror sides (i.e., parallels to the sides,

which are drawn through the vertices). That amounts to minimizing

P (or vector x) 7−→ f10(P) = PA+PB+PC− (d1 +d2 +d3)

= (PA+PB+PC)+(PH1 +PH2 +PH3)− (e1 + e2 + e3),

where the e1,e2,e3 stand for the distances between the three sides and their mirrors (or the lengths of the

three altitudes). See Figure 2.

P

A

B CH1

H2

H3

d1

d2

d3

Fig. 2. The case of a triangle
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5 Generalization to n Dimensions

Consider n+1 points in Rn that generate a convex polyhedron of full dimension n. The
(n+1

n

)
hyperplanes

that pass through the barycentres of any n− 1 points and are orthogonal to the edge passing through the

remaining two, meet exactly at one point. This point is called again the MONGE point of the polyhedron; it

has been studied recently in [7, 8]. This point can also be found by minimizing a strictly convex function

like in (11).

6 Conclusion

Among the usual centres of a tetrahedron, the Monge point has a particular flavor. In our main theorem

(Theorem 4.1), we have proved that the Monge point of a tetrahedron is the unique minimizer of a quadratic

strictly convex function, which is expressed in terms of distances to vertices and edges.
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2. Hiriart-Urruty, J.-B.: La géométrie du triangle et l’optimisation convexe font bon ménage. Quadrature 94, 1–12 (2014)

3. Andreescu, T., Mushkarov, O., Stoyanov, L.: Geometric Problems on Maxima and Minima. Birkhäuser, Berlin (2006)
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