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Abstract— We show that given a convex subset K of a topological vector
space X and a multivalued map T : K = X*, if there exists a straight line S
which is not perpendicular to K and such that 7'+ w is quasimonotone for each
w € K, then T is monotone. No differentiability or even continuity assumption
is imposed, thus generalizing some recent results in the literature.
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Let X be a real topological vector space, X* be its dual space, and K C X
be nonempty and convex. A multivalued map T : K = X* is called pseu-
domonotone (in the Karamardian’s sense) [1] if for every z,y € K, z* € T(x)
and y* € T(y), the following implication holds:

(zy—2) > 0= (y*y—2) >0
while it is called quasimonotone if the following implication holds:
<l'*,y —l‘) >0= (y*ay _'T> Z 0.

A monotone map is pseudomonotone, while a pseudomonotone map is quasi-
monotone. The converse is not true.

If T is pseudomonotone (resp., quasimonotone) and w € X*, then T + w
is not pseudomonotone (resp., quasimonotone) in general. In case of a single-
valued, linear map T defined on the whole space R", it is known for instance
that if T+ w is quasimonotone, then T is monotone [2]. Other results in this
direction are given in [3].

Very recently, He [4] and Isac and Motreanu [5] studied the more general case
of a nonlinear map 7' and showed the following interesting result: Let X be a
Hilbert space (X = R" for [4]) and K be a convex subset of X with nonempty
interior. If T': K — X is a single-valued, continuous map which is Gateaux
differentiable on the interior of K and such that T+ w is quasimonotone for
all w in a straight line S, then T is monotone. In both papers, differentiabil-
ity is essential since the argument is based on first-order characterizations of
generalized monotonicity found in [6, 7].

The purpose of this paper is to extend this result to multivalued maps de-
fined on a convex subset of a real topological vector space. No assumption of
differentiability or even continuity will be made, and the domain need not have
a nonempty interior, thus permitting the application of the result to domains
such as the positive cone of [P or LP, p > 1.

Before stating the main result, we recall some definitions. Given v € X* and
a nonempty set K C X, we say that v is perpendicular to K if v is constant
on K, ie., (v,z) = (v,y) for all z,y € K. If S = {u+tv:t € R}, u € X*,



v € X*\{0} is a straight line in X*, we say that S is perpendicular to K if v
is perpendicular to K. Given z,y € X, we denote by [z,y] the line segment
{@-t)z+ty:te]0,1]}.

Theorem 1 Let X be a real topological vector space, K C X be nonempty and
convex and T : K = X* be a map. Assume that there exists a straight line
S = {u+tv:t€R} in X*, not perpendicular to K, which is such that for
everyw € S, T 4+ w is quasimonotone. Then T is monotone.

We first prove a lemma.

Lemma 2 Assumptions as in Theorem 1. Then the restriction of T on any
line segment of K which is not perpendicular to S is monotone.

Proof. Let [ be a line segment of K which is not perpendicular to S. Assume
that there exist z,y € [, z* € T'(x) and y* € T'(y) such that (y* — 2*,y — z) < 0.
This means that
'y —z) < (=% y—x).
Note that (v,y — z) # 0, otherwise v would be constant on [. It follows that
the range of the function g(t) := — (u,y — x) — t (v,y — x) is equal to R; hence
there exists tg € R such that

(W y—x) < —(u,y —x) —to (v,y —x) < (2*,y — ).

Setting w = u+tov, we deduce that (z* + w,y — z) > 0 while (y* + w,y — z) <
0, thus contradicting the quasimonotonicity of the map T+ w. =
Proof. (of Theorem 1). Let z,y € K, * € T(x) and y* € T(y) be arbitrary.
If (v,y — x) # 0, then S is not perpendicular to [z,y], thus by the lemma T is
monotone on [z,y] and
(y* —zx*,y —x) >0. (1)

Now assume that (v,y —z) = 0. Since S is not perpendicular to K, we
may choose some z € K such that (v,z) # (v,z) = (v,y). For all s € (0,1)

set z, = sz + (1 —s) Zx2. Then S is not perpendicular to the line segments

[z, 25], [y, 2] and [£EL, 2], thus its restriction to each of these line segments

is monotone. We deduce that for any z¥ € T'(zs) and z* € T'(z) the following
inequalities hold:

(25,25 —x) > (x¥,2s — ) (2
(25,25 —y) > (¥",2s — y) 3
(z%,2 —z5) > (22,2 — 2z5) . (4

From (2) and (3) it follows that
(25,22, — (x+y)) 2 (@, 25 — @) + (¥, 2 — ¥)
thus

2s<z;‘,z—x—;y>Z(x*,zs—a:)+(y*,zs—y>. (5)



Since z — 2z, = (1 — 5) (2 — ££¥), (4) implies

<z*,z—x—;y>2<z;‘,z—x—;y>. (6)

Combining (5) with (6) we obtain

2s <Z*,Z— x—;y> Z <$*,Zs —l‘) + (y*azs _y>

Letting s — 0 and taking into account that z, — ¥ we obtain again (1),

i.e., T'is monotone. m ’

We note that the assumption “S is not perpendicular to K” is automatically
satisfied if K has nonempty interior. We recall that zo € K is called a quasi-
interior point [8] if there exists no supporting hyperplane of K at zo, i.e., if
there exists no * € X*\{0} such that for all x € K, (z*, 2 — o) > 0. It is clear
that if there exists some v € X*\{0} which is perpendicular to K, then K has
no quasi-interior points. Hence the assumption “S is not perpendicular to K” is
also automatically satisfied if K has nonempty quasi-interior. For instance the
positive cone lﬂ for p > 1 has empty interior, but its quasi-interior is nonempty.

Finally we note that the assumption “S is not perpendicular to K” cannot be
omitted from the theorem. Indeed, set X = R?, K = Rx {0}, and S = {0} x R.
If we define T : K — R? by T'(z,0) = e 2 (1,0), then T is not monotone, while
T +w is pseudomonotone for every w € S. Hence, even if we assume in Theorem
1 that T+ w is pseudomonotone (rather than quasimonotone) for all w € S, the
assumption of S not being perpendicular to K is still necessary.
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