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1 Introduction

Pseudomonotone operators were introduced back in 1976 by Karamardian [1]
as a generalization of monotone operators. Actually, before Karamardian, pseu-
domonotonicity has been used by economists to describe a property of a con-
sumer’s demand correspondence. But, for a long time, mathematicians working
on generalized monotonicity notions largely ignored the corresponding develop-
ments in economics.

In the 35 years following Karamardian’s definition, the theory of pseu-
domonotone operators has been considerably developed and found many ap-
plications. The notion has been generalized to multivalued operators, and
applied to variational inequalities. Variational inequalities were a source of
inspiration for further developments: appropriate generalizations were intro-
duced to study vector variational inequalities and pseudomonotone equilibrium
problems. Other lines of research include finding first-order characterizations
of pseudomonotone operators, establishing the relation to generalized convex
functions, solving the revealed preference problem in economics, etc.

This paper contains a survey of the main results in the theory and applica-
tions of pseudomonotone operators, starting by the older ones and reaching the
frontiers of the subject. The proofs of many of these results are contained in
research papers, and in this case we will only give the reference. We will start
by fixing the notation and recalling some definitions in next section. We will
then proceed by giving some examples of pseudomonotone operators, and their
link to pseudoconvex functions. Also, we will give first-order characterizations.
Section 4 is devoted to variational inequalities with pseudomonotone operators.
We will see that a notion of equivalence of pseudomonotone operators arises
quite naturally. In Section 5, we will see how this equivalence gives rise to the
notion of maximal pseudomonotonicity. This in its turn will lead in Section 6,
to the introduction of a particular class of pseudomonotone operators, that are
exactly those suitable to the cutting plane method for the algorithmic solution
of the variational inequality. Section 7 is devoted to the revealed preference
problem in economics and its relation to some very recent developments in the
theory of pseudomonotone operators. The last section contains a selection of
open questions.

Some generalizations will be deliberately omitted: Vector variational in-
equalities and the corresponding pseudomonotonicity notion; pseudomonotone
bifunctions; pseudomonotonicity in the sense of Brezis, etc. We will also omit
almost all other generalized monotonicity notions, unless they are necessary to
the exposition of the theory of pseudomonotone operators.

2 Notation and Definitions

In what follows, X will be a Banach space and X∗ its topological dual. For
x, y ∈ X we set [x, y] = {tx + (1 − t)y : t ∈ [0, 1]}. Given a multivalued
operator T : X ⇒ X∗, we denote by D(T ) its domain and by gr(T ) its graph.
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Also, we will denote by ZT the set of its zeros, i.e., ZT := T−1{0}. For the
upper semicontinuity, lower semicontinuity and other properties of multivalued
operators, the reader is referred to any standard book on nonlinear analysis such
as [2]. We denote ]0,+∞[ by R++. Given a set A in a Banach space, we denote
by convA its convex hull, intA its interior, and we set R++A := ∪t>0tA. For
a proper, lower semi-continuous (lsc) convex function f : X → R ∪ {+∞} we
denote by ∂f the subdifferential of f in the sense of convex analysis.

A multivalued operator T : X ⇒ X∗ is called:

1. monotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ),

〈y∗ − x∗, y − x〉 ≥ 0;

2. pseudomonotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ) the following impli-
cation holds:

〈x∗, y − x〉 ≥ 0⇒ 〈y∗, y − x〉 ≥ 0;

3. quasimonotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ) the following implica-
tion holds:

〈x∗, y − x〉 > 0⇒ 〈y∗, y − x〉 ≥ 0.

It is clear that every monotone operator is pseudomonotone, and every pseu-
domonotone operator is quasimonotone.

There is an important difference between monotone and pseudomonotone
operators, that should be mentioned. If T1 and T2 are two monotone operators,
then T1 + T2 is monotone. For pseudomonotone operators, this does not hold:
the sum of pseudomonotone operators is not pseudomonotone in general. In
fact, if T is such that T + x∗ is quasimonotone (or pseudomonotone) for all
x∗ ∈ X∗, then T is monotone; see [3, Prop. 2.1], or [4] for a stronger result. On
the other hand, if T is any operator and f : D(T ) → ]0,+∞[ is any function,
then f(·)T (·) is pseudomonotone, if and only if T is pseudomonotone. This
property does not hold for monotone operators, and will be the starting point
for the important notion of equivalence in Section 4.

Another, stronger property than pseudomonotonicity is cyclic pseudomono-
tonicity. We recall that an operator T is called cyclically monotone iff for every
finite sequence x1, x2, . . . , xn in X and any choice x∗i ∈ T (xi) one has:

n∑
i=1

〈x∗i , xi+1 − xi〉 ≤ 0,

where we set xn+1 = x1. It is known that the subdifferential ∂f of a proper,
lsc convex function f is cyclically monotone and, conversely, for any cyclically
monotone operator T , there exists a proper, lsc convex function f such that
gr(T ) ⊆ gr(∂f).

An operator T will be called cyclically pseudomonotone iff for every finite
sequence x1, x2, . . . , xn and any choice x∗i ∈ T (xi), i = 1, . . . n the following
implication holds:

〈x∗i , xi+1 − xi〉 ≥ 0 for all i = 1, 2, . . . n− 1⇒ 〈x∗n, x1 − xn〉 ≤ 0
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By considering a sequence consisting of two elements, one sees that any
cyclically pseudomonotone operator is pseudomonotone. Obviously, a cyclically
monotone operator is cyclically pseudomonotone.

3 Examples and Characterizations of Pseudomo-
notone Operators

The simplest class of pseudomonotone operators consists of the gradients of
pseudoconvex functions. Given an open convex set C ⊆ Rn, we recall that a
differentiable function f : C → R is called pseudoconvex iff for every x, y ∈ C,
the following implication holds:

〈∇f(x), y − x〉 ≥ 0⇒ f(y) ≥ f(x).

Karamardian [1] has shown that a differentiable function f is pseudoconvex if
and only if its gradient ∇f is pseudomonotone. This result has been generalized
in many ways for nonsmooth functions and multivalued operators. For instance,
pseudoconvexity may be defined by using the Clarke-Rockafellar subdifferential,
as follows. We first recall that given a lsc function f , one defines the Clarke-
Rockafellar directional derivative at x0 ∈ dom f in the direction d ∈ X by

f↑(x0, d) := sup
ε>0

lim sup
x→f x0,t↘0

inf
‖d′−d‖≤ε

f(x+ td′)− f(x)
t

;

Here, x→f x0 means that x→ x0 and f(x)→ f(x0). Then one defines the
Clarke-Rockafellar subdifferential of f at x0 by

∂↑f(x0) :=
{
x∗ ∈ X∗ : 〈x∗, d〉 ≤ f↑ (x0, d) ,∀d ∈ X

}
.

For x0 /∈ dom f one sets ∂↑f(x0) = ∅.

Definition 3.1 A proper lsc function f : X → R∪{+∞} is called pseudoconvex
[5] iff for every x, y ∈ X the following implication holds:

∃x∗ ∈ ∂↑f(x) : 〈x∗, y − x〉 ≥ 0 =⇒ f(x) ≤ f(y).

In case f be a proper lsc convex function, ∂↑f is equal to the subdifferential
∂f of convex analysis (see Theorem 5 in [6]), hence

∀x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≤ f(y)− f(x).

Consequently, a proper lsc convex function is pseudoconvex.
A proper lsc function is convex, if and only if ∂↑f is monotone [7]. The

following result of [5] (see [8] for the cyclically pseudomonotone part) relates
pseudoconvexity of a function to pseudomonotonicity of its subdifferential.
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Theorem 3.1 Let f be lsc and radially continuous. Then the following are
equivalent:

(i) f is pseudoconvex;
(ii) ∂↑f is pseudomonotone;
(iii) ∂↑f is cyclically pseudomonotone.

Note that, whenever f is pseudoconvex, lsc and radially continuous, it is also
quasiconvex ([5], Corollary 3.1), hence it is actually continuous ([9], Proposition
9).

Of course, there are many examples of pseudomonotone operators that are
not subdifferentials. As we remarked before, if T is any monotone or pseu-
domonotone operator and f : X → ]0,+∞[ is any function, then the operator
T1 defined by T1(x) := f(x)T (x) is pseudomonotone.

Other examples stem from the following characterization of single-valued
differentiable pseudomonotone operators. This deep result is the final fruit of a
series of papers by Crouzeix-Ferland, John, and Brighi. See [10] for a relatively
simple proof.

Theorem 3.2 Let C ⊆ Rn be an open convex set and T : C → Rn be contin-
uously differentiable. Then T is pseudomonotone, if and only if the following
two conditions hold:

x ∈ C, 〈T (x), h〉 = 0⇒ 〈T ′(x)h, h〉 ≥ 0 (1)

x ∈ C, T (x) = 0
T ′(x)h = 0

}
⇒ ∀t̄ > 0,∃t ∈ ]0, t̄] : 〈T (x+ th), h〉 ≥ 0. (2)

We single out two special cases, where condition (1) alone is sufficient to
characterize pseudomonotonicity of an operator T in an open convex subset C
of Rn. Whenever T is differentiable on C and T is never zero, then obviously
(2) is automatically satisfied so (1) is a necessary and sufficient condition for
T to be pseudomonotone. Another case is when T is affine, i.e., has the form
T (x) = Mx + q where M is an n × n matrix and q ∈ Rn. Then T ′ = M so
whenever T (x) = 0 and T ′(x)h = 0 hold, one has T (x+th) = Mx+q+tMh = 0.
Hence condition (2) is again satisfied. Condition (1) becomes

x ∈ C, 〈Mx+ q, h〉 = 0⇒ 〈Mh, h〉 ≥ 0. (3)

Consequently, condition (3) is necessary and sufficient for T to be pseu-
domonotone on C. This result was found initially in [11].

4 Variational Inequalities and Equivalence of Pseu-
domonotone Operators

Given a nonempty subset K of X and an operator T , the Stampacchia Varia-
tional Inequality (VI) is to find x ∈ K such that

∀y ∈ K, ∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0. (VI)
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Variational inequalities have found many applications in optimization and
in other applied fields, especially in mechanics.

In the special case where the values of T on K are nonempty, convex and
weak∗-compact, it is a consequence of the minimax theorem that every solution
x of VI is actually a solution of the strong Stampacchia variational inequality:
find x ∈ K such that

∃x∗ ∈ T (x) : ∀y ∈ K, 〈x∗, y − x〉 ≥ 0. (SVI)

In the case of pseudomonotone operators, VI can be transformed to another,
equivalent problem, the so-called Minty Variational Inequality (MVI) consisting
in finding x ∈ K such that

∀y ∈ K,∀y∗ ∈ T (x) : 〈y∗, y − x〉 ≥ 0. (MVI)

We call T upper sign-continuous at x ∈ D (T ) iff for all v ∈ X, the following
implication holds:

inf
x∗∈T (x+tv)

〈x∗, v〉 ≥ 0, ∀t ∈ ]0, 1[⇒ sup
x∗∈T (x)

〈x∗, v〉 ≥ 0.

Upper sign-continuity is a very weak notion of continuity. For instance, any op-
erator whose restriction on straight lines of its domain is upper semicontinuous
(usc) with respect to the weak∗-topology on X∗, is upper sign-continuous. Any
positive function on R is upper sign-continuous.

The following proposition relates MVI to VI. Let S(T,K) be the set of
solutions of VI, i.e., the set of all x ∈ K satisfying (VI), and let SM (T,K) be
the set of solutions of MVI. The proof is well-known; see for instance [12] for a
version of it.

Proposition 4.1 If T is pseudomonotone, then S(T,K) ⊆ SM (T,K). If T is
upper sign-continuous, then SM (T,K) ⊆ S(T,K).

Due to Proposition 4.1, in order to solve VI for a pseudomonotone, upper
sign-continuous operator, it is enough to solve MVI. A proof for the existence of
solutions of VI first appeared in [13] for single-valued pseudomonotone opera-
tors, then in [14] for multi-valued pseudomonotone operators. Here we present a
version from [15], where it was shown that actually quasimonotonicity is enough.
Let Sstr(T,K) be the set of solutions of (SVI).

Theorem 4.1 Let K be a nonempty, closed and convex subset of a reflexive
Banach space X and T : X ⇒ X∗ be a quasimonotone operator. Assume that T
is upper sign-continuous with nonempty, convex, weakly compact values on K,
and that the following coercivity condition is satisfied:

∃ρ > 0 : ∀x ∈ K, ‖x‖ > ρ,∃z ∈ K, ‖z‖ < ‖x‖ : ∀x∗ ∈ T (x), 〈x∗, x− z〉 ≥ 0.

Then Sstr(T,K) 6= ∅.
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For quasimonotone operators, it is not true that S(T,K) = SM (T,K). In
fact, under the assumptions of Theorem 4.1, one has SM (T,K) ⊆ S(T,K). Note
that SM (T,K) might be empty as shown by concrete examples [16]. However,
whenever K is weakly compact, it can be shown that x ∈ S(T,K) if and only if
x is locally a solution of the MVI. This is the key of the proof of Theorem 4.1.

If T is an operator, say single-valued, and g : X → ]0,+∞[ a function,
then we already remarked that T is pseudomonotone if and only if the operator
T1(x) = g(x)T (x) is pseudomonotone. Further, we note that x ∈ S(T,K)
if and only if x ∈ S(T1,K) for all convex subsets K. Thus, from the point
of view of variational inequalities, T and T1 are indistinguishable. One can
develop this idea further by introducing the notion of equivalence of arbitrary
pseudomonotone operators [17]:

Definition 4.1 Two pseudomonotone operators T1 and T2 are equivalent iff the
following conditions are satisfied:

(i) ZT1 = ZT2 ;
(ii) R++T1(x) = R++T2(x) for all x ∈ X\ZT1 .

This means that T1 and T2 should have the same set of zeros, and for every
x that is not a zero, every element of T1(x) is a positive multiple of an element
of T2(x) and vice versa. We denote the equivalence of T1 and T2 by T1 ∼ T2.
Note that condition (ii) in Definition 4.1 implies that T1 and T2 have the same
domain: if x /∈ D(T1) then ∅ = R++T1(x) = R++T2(x); thus, x /∈ D(T2).

The term “equivalence” is justified by the fact that, under some weak con-
ditions, two pseudomonotone operators are equivalent if and only if the corre-
sponding VI has the same solutions, as the following theorem shows.

Theorem 4.2 Let T1 and T2 be two pseudomonotone operators. If T1 ∼ T2,
then S(T1,K) = S(T2,K) for all convex subsets K of X. Conversely, if
S(T1,K) = S(T2,K) for all straight line segments K of X, and T1, T2 have
convex, weak∗-compact values, then T1 ∼ T2.

Proof. Assume first that T1 ∼ T2. Let K be any convex set. We show that
S(T1,K) ⊆ S(T2,K). Let x ∈ S(T1,K). If x ∈ ZT1 , then x ∈ ZT2 and
this obviously implies that x ∈ S(T2,K). So assume that x /∈ ZT1 . Since
x ∈ S(T1,K), for every y ∈ K there exists x∗ ∈ T1(x) such that 〈x∗, y − x〉 ≥ 0.
But T1(x) ⊆ R++T2(x) by assumption, so there exists t > 0 such that
tx∗ ∈ T2(x). Since 〈tx∗, y − x〉 ≥ 0, we obtain x ∈ S(T2,K), that is,
S(T1,K) ⊆ S(T2,K). Likewise, we obtain the reverse inclusion, consequently
S(T1,K) = S(T2,K).

Now assume that S(T1, [a, b]) = S(T2, [a, b]) holds for all line segments [a, b],
and that T1, T2 have convex, weak∗-compact values. To show equality (i) in
Definition 4.1, assume that x ∈ ZT1 but x /∈ ZT2 . Then 0 /∈ T2(x) and by the
separation theorem, there exists v ∈ X such that for all x∗ ∈ T2(x), one has
〈x∗, v〉 < 0. The last inequality can be written as 〈x∗, (x+ v)− x〉 < 0 for all
x∗ ∈ T2(x), hence it implies that x /∈ S(T2, [x, x+ v]). On the other hand, since
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by assumption 0 ∈ T1(x), we infer that x ∈ S(T1, [x, x + v]) thus arriving to a
contradiction. Hence, (i) holds.

To show condition (ii), let us show first that D(T1) = D(T2). Indeed, for
each x ∈ D(T1) one has S(T2, [x, x]) = S(T1, [x, x]) = {x} 6= ∅, so x ∈ D(T2),
hence D(T1) ⊆ D(T2) and by symmetry we have equality. Consequently, we
need to show condition (ii) only for x ∈ D(T1)\ZT1 . Now assume that there
exists x ∈ D(T1)\ZT1 = D(T2)\ZT2 such that R++T1(x) 6= R++T2(x), say
R++T1(x) * R++T2(x). Then there exists x∗ ∈ T1(x) such that x∗ /∈ R++T2(x).
It follows that the sets R+{x∗} := {tx∗ : t ≥ 0} and T2(x) have an empty
intersection. By the separation theorem, there exists v ∈ X such that for all
z∗ ∈ T2(x) and all t ≥ 0, 〈tx∗, v〉 > 〈z∗, v〉. It follows easily that 〈z∗, v〉 < 0
for all z∗ ∈ T2(x), and 〈x∗, v〉 ≥ 0. These imply that x /∈ S(T2, [x, x + v]) and
x ∈ S(T1, [x, x+ v]), thus contradicting condition (ii). �

The notion of equivalence is a key tool both in the theory and applications
of pseudomonotone operators, as we will see in the next sections.

5 Maximal Pseudomonotone Operators

We recall that a monotone operator T is called maximal monotone iff it has
no monotone extension except for itself; in other words, if S is a monotone
operator such that gr(T ) ⊆ gr(S), then S = T . A somewhat weaker notion
is the following: A monotone operator T is called D-maximal monotone iff it
has no monotone extension with the same domain, except for itself; that is,
gr(T ) ⊆ gr(S) and D(T ) = D(S) imply T = S.

Maximal monotone operators have many nice properties, such as:

P1 If T is monotone, then it has a maximal monotone extension.

P2 If T is D-maximal monotone, then for each x ∈ X, T (x) is weak∗-closed
and convex.

P3 If T is monotone, upper hemicontinuous on D(T ) with weak∗-closed con-
vex values and D(T ) is open, then T is D-maximal monotone. In partic-
ular, T is usc on D(T ).

P4 The subdifferential of a lsc proper convex function is maximal monotone.

P5 A D-maximal monotone operator is usc at every point of intD(T ).

These properties are related with some properties of all monotone operators:

P6 If T is monotone and lsc at x0 ∈ intD(T ), then T is single-valued at x0.
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P7 If T satisfies the Aubin property4 around a point (x, x∗) of its graph, then
T is single-valued for all x in a neighborhood of x.

See for instance [2] for properties P1-P6 and [18] for P7. If one tries to
transcribe these properties to pseudomonotone operators in a straightforward
way, one can see immediately that almost all of them do not hold. For instance,
by analogy to Property P4 above, one would expect that the subdifferential of
a pseudoconvex function is maximal pseudomonotone; however, if f is a con-
tinuously differentiable pseudoconvex function, then one can easily check that
the operator T (x) = f ′(x) is pseudomonotone, but it has a nontrivial pseu-
domonotone extension, namely T1(x) = R++{f ′(x)}. Hence, maximal pseu-
domonotonicity has to be defined differently for Property P4 to hold. Also, the
operator T : R ⇒ R defined by T (x) := ]0,+∞[ for all x ∈ R is pseudomonotone
and lsc, but not single-valued, which is not what one would expect in view of
Property P6.

A solution to this problem is provided by the notion of equivalence. As
we will see, in most cases, a result of the form “if T is monotone, then it has
property A” becomes “if T is pseudomonotone, then there exists an equivalent
operator T that has property A”. This is most welcome in VI, because we can
replace the initially given operator by another one that has better properties,
and still find the same solutions; see [19, Corol. 11] for a concrete application
of this idea to an algorithm solving a VI.

Given a pseudomonotone operator T , let [T ] be its equivalence class:

[T ] := {S : X ⇒ X∗ : S is pseudomonotone, S ∼ T}.

It is easy to check that the operator T̂ defined by T̂ (x) :=
⋃

S∈[T ] S(x) is pseu-
domonotone and is equivalent to T . It is of course the maximum element of
[T ], with respect to graph inclusion. The following proposition gives an explicit
construction for T̂ .

Proposition 5.1 The operator T̂ is given by the formula:

T̂ (x) =
{

NLT,x
, if x ∈ ZT

R++T (x), if x /∈ ZT
(4)

where LT,x is the set

LT,x := {y ∈ D(T ) : ∃y∗ ∈ T (y) : 〈y∗, y − x〉 = 0}

and NLT,x
is the normal cone to LT,x at x:

NLT,x
:= {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ LT,x} .

4Given two Banach spaces X and Y , an operator T : X ⇒ Y is said to satisfy the Aubin
property around (x, y) ∈ gr T iff there exist neighbourhoods V of x, U of y and a positive real
number l such that

T (v) ∩ U ⊆ T (v′) + l‖v′ − v‖BY (0, 1), ∀ v, v′ ∈ V

where BY (0, 1) denotes the closed unit ball of Y .
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Proof. Let us call T1 the operator defined by the right hand-side of (4). We
first show that T1 is pseudomonotone. Let (x, x∗), (y, y∗) ∈ gr(T1) be such that
〈x∗, y − x〉 ≥ 0. Note that there exists x∗1 ∈ T (x) such that 〈x∗1, y − x〉 ≥ 0;
in fact, if x ∈ ZT then we can take x∗1 = 0, otherwise x∗ ∈ R++T (x), so we
can take x∗1 = tx∗ for some t > 0. Since T is pseudomonotone, it follows that
〈z∗, y − x〉 ≥ 0 for all z∗ ∈ T (y). If y /∈ ZT , then obviously 〈z∗, y − x〉 ≥ 0
for all z∗ ∈ T1(y) = R++T (y). If y ∈ ZT , then again pseudomonotonicity of T
implies that 〈x∗1, x− y〉 ≥ 0. Consequently, 〈x∗1, x− y〉 = 0 and x ∈ LT,y. Hence
for any z∗ ∈ T1(y) = NLT,y

one has 〈z∗, y − x〉 ≥ 0, and T1 is pseudomonotone.
It is clear that T1 is equivalent to T . Let S ∈ [T ]. For all x /∈ ZT one has

S(x) ⊆ R++S(x) = R++T (x) = T1(x). Now let x ∈ ZT . We have to show
that S(x) ⊆ NLT,x

, i.e., for each x∗ ∈ S(x) and y ∈ LT,x, 〈x∗, x− y〉 ≥ 0 holds.
We consider two cases: if y ∈ ZS = ZT , then 〈0, x− y〉 = 0 together with the
pseudomonotonicity of S, imply that 〈x∗, x− y〉 ≥ 0 for all x∗ ∈ S(x). In the
second case, assume that y /∈ ZS . By definition of LT,x, there exists y∗ ∈ T (y)
such that 〈y∗, y − x〉 = 0. Since R++T (y) = R++S(y), there exists y∗1 ∈ S(y)
such that 〈y∗, x− y〉 = 0 holds; then we deduce again 〈x∗, x− y〉 ≥ 0 for all
x∗ ∈ S(x). Thus, S(x) ⊆ T1(x) in all cases, so T1 is the maximum element of
[T ], i.e., it is equal to T̂ . �

Note that the definition of T̂ does not exclude that T̂ has a pseudomonotone
extension with the same domain; it only says that it does not have a pseu-
domonotone extension with the same domain, which is equivalent to T . We are
now ready to define maximal pseudomonotonicity:

Definition 5.1 A pseudomonotone operator T is called D-maximal pseudomono-
tone iff T̂ has no pseudomonotone extension with the same domain except for
itself.

There is a practical way to check maximal pseudomonotonicity, provided by
the following lemma. See [17] for the proof.

Lemma 5.1 Let T be a pseudomonotone operator. Suppose that for any
(x, x∗) ∈ (D (T ) \ZT ) ×X∗ such that {(x, x∗)} ∪ gr (T ) is the graph of a pseu-
domonotone operator, one has x∗ ∈ R++T (x). Then T is D-maximal pseu-
domonotone. The converse is also true, provided that D (T ) is convex.

As a first application, we give the following result on the set of zeros ZT of
a D-maximal pseudomonotone operator. If T is pseudomonotone and x ∈ ZT ,
then it is clear that for any (y, y∗) ∈ gr(T ), one has 〈y∗, y − x〉 ≥ 0. In fact, this
is true for all (y, y∗) ∈ gr(T̂ ) since x ∈ ZT̂ . It is interesting that for D-maximal
pseudomonotone operators, the converse also holds:

Proposition 5.2 Let T be a D-maximal pseudomonotone operator and
x ∈ D(T ). Then x ∈ ZT , if and only if

∀ (y, y∗) ∈ gr(T̂ ), 〈y∗, y − x〉 ≥ 0. (5)
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If in addition D(T ) is convex, then x ∈ ZT if and only if

∀ (y, y∗) ∈ gr(T ), 〈y∗, y − x〉 ≥ 0. (6)

Proof. If (5) holds, then for all y∗ ∈ T̂ (y) the following two implications are
true:

〈0, y − x〉 ≥ 0⇒ 〈y∗, y − x〉 ≥ 0
〈y∗, x− y〉 ≥ 0⇒ 〈0, x− y〉 ≥ 0.

It follows that the operator with graph gr(T̂ ) ∪ {(x, 0)} is pseudomonotone.
Since T̂ is D-maximal pseudomonotone, we deduce that 0 ∈ T (x), i.e., x ∈ ZT .

Now assume that D(T ) is convex and (6) holds. With the same argument
as before, gr(T ) ∪ {(x, 0)} is the graph of a pseudomonotone operator. If we
suppose that x /∈ ZT , then it follows from Lemma 5.1 that 0 ∈ R++T (x) thus
0 ∈ T (x), a contradiction. �

In view of the previous proposition, the set of zeros is given by

ZT =
⋂

(y,y∗)∈gr(T̂ )

{x ∈ D(T ) : 〈y∗, y − x〉 ≥ 0. (7)

Hence, ZT is the intersection of D(T ) with a family of closed halfspaces. We
deduce the following corollary:

Corollary 5.1 If T is a D-maximal pseudomonotone operator, then ZT is
closed in D(T ). If in addition D(T ) is convex, then ZT is convex.

We now are in position to show that, in case D(T ) is convex, there is another
equivalent, but more attractive definition of D-maximal pseudomonotonicity.

Proposition 5.3 Let T be pseudomonotone with convex domain. Then T is
D-maximal pseudomonotone if and only if every pseudomonotone extension of
T with the same domain is equivalent to T .

Proof. Let T be D-maximal pseudomonotone and let S be a pseudomonotone
extension of T with D(S) = D(T ). We show first that ZT = ZS . Clearly,
ZT ⊆ ZS since S is an extension of T . If x ∈ ZS , then pseudomonotonicity of
S implies that for every (y, y∗) ∈ gr(S), 〈y∗, y − x〉 ≥ 0. This holds a fortiori
for every (y, y∗) ∈ gr(T ), so x ∈ ZT by Proposition 5.2, hence ZT = ZS .

Given x ∈ D(T )\ZT one has obviously R++T (x) ⊆ R++S(x). Now take any
x∗ ∈ S(x). The operator with graph gr(T )∪ {(x, x∗)} is a restriction of S, thus
it is pseudomonotone. Since T is D-maximal monotone, Lemma 5.1 implies that
x∗ ∈ R++T (x). Accordingly, R++T (x) = R++S(x) so S ∼ T .

Conversely, assume that T is a pseudomonotone operator such that every
pseudomonotone extension of T with the same domain is equivalent to T . If S
is a pseudomonotone extension of T̂ with the same domain, then S is also an
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extension of T , so S ∼ T . Since T̂ is the largest element of [T ], it follows that
S = T̂ . This means that T is D-maximal monotone. �

Let us check if properties P1-P7 of monotone operators can be modified to
hold for pseudomonotone ones. Exactly as for monotone operators, an appli-
cation of Zorn’s lemma shows that Property P1 of monotone operators has its
pseudomonotone counterpart:

Proposition 5.4 Every pseudomonotone operator T has a D-maximal pseu-
domonotone extension with the same domain.

Property P2 of maximal monotone operators is only partially recovered. In
fact, let T be D-maximal pseudomonotone. Then T̂ does not admit a pseu-
domonotone extension except for itself. However, it is easy to see that the op-
erator conv T̂ defined by (conv T̂ )(x) := conv(T̂ (x)) is pseudomonotone. Hence
conv T̂ = T̂ and we deduce the following property:

Proposition 5.5 If T is D-maximal pseudomonotone, then T̂ (x) is convex for
all x ∈ X.

It is not true that T̂ (x) is weak∗-closed, since for x /∈ ZT , T̂ (x) is a cone
without 0. It is not even true that T̂ (x) ∪ {0} is weak∗-closed, unless some
additional conditions are met (see, e.g., [17]).

Property P3 also has its pseudomonotone counterpart [17]:

Proposition 5.6 Let T be pseudomonotone and upper sign-continuous, D (T )
be open and T (x) be weak∗-compact and convex for all x ∈ D (T ). Then T is
D−maximal pseudomonotone.

If f is a locally Lipschitz function, then dom (f) is open, D
(
∂↑f

)
= dom (f),

∂↑f (x) is weak∗-compact and convex for all x ∈ D
(
∂↑f

)
, and ∂↑f is upper semi-

continuous in the strong-to-weak∗ topology [20]. In particular, ∂↑f is upper
sign-continuous. If in addition f is pseudoconvex, then ∂↑f is pseudomono-
tone. Hence, Proposition 5.6 entails the following version of Property P4 for
pseudomonotone operators:

Corollary 5.2 Let f : X → R ∪ {+∞} be a pseudoconvex, locally Lipschitz
function. Then ∂↑f is a D−maximal pseudomonotone operator.

Property P5 cannot be recovered as it is. It is not true that for each
D-maximal pseudomonotone operator, there exists an equivalent pseudomono-
tone operator that is upper semicontinuous (or even upper sign-continuous) at
the interior of its domain. However, in finite dimensions it can be shown (see
[17]) that this is true in a form similar to the one given in the second part of
P3:

Theorem 5.1 Let T : Rk ⇒ Rk be pseudomonotone, upper sign-continuous on
D (T ), with compact convex values. Suppose that D (T ) is an open convex set.
Then there exists a pseudomonotone operator T1 with compact convex values
which is usc on D (T ), and such that T1 ∼ T .
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Regarding properties P6 and P7, we have the following proposition for the
pseudomonotone case. Let us first define two operators T1 and T2 to be locally
equivalent at x0 ∈ X, iff there exists a neighborhood U of x0 such that the
restrictions of T1 and T2 on U are equivalent.

Proposition 5.7 Let T be a pseudomonotone operator and x0 ∈ intD(T ).
(i) If T is lower semicontinuous at x0, then T (x) = {0} or T (x) ⊆ R++{x∗0}

for some x∗0 ∈ T (x0).
(ii) If T is lower semicontinuous in a neighborhood of x0 /∈ ZT , then T

is locally equivalent around x0 to a single-valued, norm-to-weak∗ continuous
operator.

(iii) In case X is finite-dimensional, assertion (ii) is true without the as-
sumption x0 /∈ ZT .

Proof. Part (i) was proved in Prop. 3.9 of [17]. To prove part (ii), we remark
that by Proposition 5.2, we know that there exists (y, y∗) ∈ gr(T̂ ) such that
〈y∗, x0 − y〉 > 0. Let U be an open neighborhood of x0 such that U ⊆ D(T ),
T is lower semicontinuous on U , and 〈y∗, x− y〉 > 0 for all x ∈ U . By pseu-
domonotonicity, we obtain 〈x∗, x− y〉 > 0 for all x∗ ∈ T (x), x ∈ U . Obviously,
U does not intersect ZT . For each x ∈ U , select F (x) ∈ R++T (x) such that
〈F (x), x− y〉 = 1. By part (i), we know that R++T (x) = R++{F (x)}, so T is
locally equivalent to the single-valued operator F .

Now assume that {xn} is a sequence in U converging to x ∈ U . There exists
λ > 0 such that F (x) = λx∗ for some x∗ ∈ T (x). From 〈F (x), y − x〉 = 1
we deduce that λ = 1/ 〈x∗, x− y〉. Since T is lsc, there exist x∗n ∈ T (xn)
such limx∗n = x∗ in the weak∗ topology. There exist λn > 0 such that
F (xn) = λnx

∗
n. Since 〈λnx

∗
n, xn − y〉 = 1 by definition of F (xn), and

lim 〈x∗n, xn − y〉 = 〈x∗, x− y〉 = 1/λ, we deduce that limλn = λ. Consequently,
limF (xn) = F (x) in the weak∗ topology, and F is norm-to-weak∗continuous.

For part (iii) we have only to consider the case x0 ∈ ZT . Let U be a closed
ball with center x0 such that U ⊆ D(T ) and T is lower semicontinuous on U .
Define F : U → X∗ as follows: if x ∈ ZT then F (x) = 0. If x /∈ ZT , then choose
x∗ ∈ T (x) and set F (x) = ρ (x) x∗

‖x∗‖ where ρ (x) is the distance of x from the
closed convex set ZT ∩ U . In view of (i), it is clear that F is equivalent to T .
Also, F is obviously continuous at every point of ZT ∩ U . Continuity at points
x ∈ U\ZT can be proved as in case (ii): if the sequence {xn} in U converges
to x and F (x) = ρ (x) x∗

‖x∗‖ with x∗ ∈ T (x), then by lower semicontinuity, there
exist x∗n ∈ T (xn) such that the sequence {xn} converges to x∗. By the finite
dimensionality of the space and the continuity of ρ, we deduce that {F (xn)}
converges to F (x), hence F is continuous at x. �

Note that lower semicontinuity that we assumed in Proposition 5.7, even in
the norm×norm topology in X × X∗, is a weaker assumption than the Aubin
property assumed in P7; see [21].
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6 Paramonotone and Pseudomonotone∗ Opera-
tors

Many of the algorithms used to solve problems involving monotone operators
make use of assumptions stronger than monotonicity. One of those assumptions
is strict monotonicity: An operator T : X ⇒ X∗ is called strictly monotone iff
for every (x, x∗), (y, y∗) ∈ gr(T ) with x 6= y,

〈y∗ − x∗, y − x〉 > 0.

Likewise, the operator T is called strictly pseudomonotone iff for every
(x, x∗), (y, y∗) ∈ gr(T ) with x 6= y, the following implication holds:

〈x∗, y − x〉 ≥ 0⇒ 〈y∗, y − x〉 > 0.

Strict monotonicity and pseudomonotonicity have some important conse-
quences; for instance, they imply that VI has at most one solution. In search
for less restrictive assumptions, Bruck [22] proposed the following property.

Definition 6.1 A monotone operator T is called paramonotone iff for every
(x, x∗), (y, y∗) ∈ gr(T ),

〈y∗ − x∗, y − x〉 = 0⇒ x∗ ∈ T (y) and y∗ ∈ T (x).

Obviously, strictly monotone maps are paramonotone. It can be shown [22]
that the subdifferential of any proper, lsc convex function is paramonotone,
so paramonotonicity is a significantly less restrictive assumption than strict
monotonicity. In fact, the following proposition holds:

Proposition 6.1 If T : X ⇒ X∗ is cyclically monotone and maximal mono-
tone, then it is paramonotone. Consequently, the subdifferential of a proper, lsc
convex function is paramonotone.

The reason of the usefulness of paramonotone operators is that they possess
the “cutting plane property” (CCP) which is stated as follows, where K is a
subset of X:

x ∈ S(T,K)
z ∈ K

〈z∗, x− z〉 ≥ 0 for some z∗ ∈ T (z)

⇒ z ∈ S(T,K). (CPP)

CCP is useful in algorithms to solve VI for the following reason. Assume
that VI has solutions. If at the nth iteration of an algorithm we find a point
xn that is not a solution of the Stampacchia variational inequality, then CCP
implies that all solutions are contained in the intersection of K with the open
halfspace {x ∈ X : 〈x∗n, x− xn〉 < 0}, where x∗n is any element of xn.

A first attempt to find a notion similar to paramonotonicity, but related
to pseudomonotone operators, was made by Crouzeix, Marcotte and Zhu [23],
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who introduced the following definition: a multivalued operator T : X ⇒ X∗ is
called5 s-pseudomonotone∗ iff it is pseudomonotone, and for every
(x, x∗), (y, y∗) ∈ gr(T ) the following implication holds:

〈x∗, y − x〉 = 〈y∗, y − x〉 = 0⇒ ∃k > 0 : ky∗ ∈ T (x) .

It can be easily shown that s-pseudomonotone∗ operators satisfy CCP; also,
every paramonotone operator is s-pseudomonotone∗. Finally, if f is a differ-
entiable pseudoconvex function, then its gradient is s-pseudomonotone∗ [23].
However, until very recently, it was not known whether this can be generalized
to nonsmooth pseudoconvex functions. An answer was given by Castellani and
Giuli, who have shown by a counterexample that the Clarke subdifferential of a
locally Lipschitz pseudoconvex function is not necessarily s-pseudomonotone∗.
So this notion is not a good candidate to replace paramonotonicity for multival-
ued operators [24]. A better candidate is given through the use of equivalence
of pseudomonotone operators.

Definition 6.2 A pseudomonotone operator T is called pseudomonotone∗ [25]
iff it is pseudomonotone, and for every (x, x∗), (y, y∗) ∈ gr(T ), the following
implication holds:

〈x∗, x− y〉 = 〈y∗, x− y〉 = 0⇒ x∗ ∈ T̂ (y) and y∗ ∈ T̂ (x) .

Pseudomonotone∗ operators have many nice properties. First, all paramono-
tone and all s-pseudomonotone∗ operators are pseudomonotone∗. In fact, a
single-valued operator is s-pseudomonotone∗ if and only if it is pseudomonotone∗
[25]. This is no longer true if we consider multivalued operators [24]. In ad-
dition, the following proposition holds, which is a version of Proposition 6.1
adapted to pseudomonotone∗ operators.

Proposition 6.2 If T is a D-maximal pseudomonotone, cyclically pseudomono-
tone operator with convex domain, then T is pseudomonotone∗. Consequently,
the subdifferential of a locally Lipschitz pseudoconvex function is pseudomonotone∗.

It is easy to see that if T is pseudomonotone∗ and f : X → ]0,+∞[ is any
function, then the operator T1 defined by T1(·) := f(·)T (·) is pseudomonotone∗.
This can be generalized as follows [25]:

Proposition 6.3 If T : X ⇒ X∗ is pseudomonotone∗ and S ∼ T , then S is
pseudomonotone∗.

It is not hard to check that pseudomonotone∗ operators have the cutting
plane property. It is interesting that under the assumptions commonly used in
variational inequalities, they are exactly the operators having the cutting plane
property. Given K ⊆ X and an operator T , let us call T “pseudomonotone on
K” (resp., “pseudomonotone∗ on K), iff its restriction to K is pseudomonotone
(resp., pseudomonotone∗). The proof of the following two results can be found
in [25].

5In order to avoid confusion with the notion of pseudomonotone∗ operator defined below,
we follow [24] and use “s-pseudomonotone∗” for the notion introduced in [23].
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Theorem 6.1 Let T : X ⇒ X∗ be pseudomonotone on a convex set K.
(i) If T is pseudomonotone∗, then CCP holds on every subset of K.
(ii) Conversely, if T has convex, w∗-compact values and has the CCP on

every convex, compact subset of K, then T is pseudomonotone∗ on intK.

In case T is single-valued, we can even drop the assumption of pseudomono-
tonicity:

Corollary 6.1 Let T : K → X∗ be hemicontinuous (i.e., weak∗-continuous
along straight lines). If T has the CCP on every convex compact subset of K,
then it is pseudomonotone on K, and pseudomonotone∗ on intK.

As expected, algorithms making use of CCP can be successfully applied to
pseudomonotone∗ operators. Three such examples can be found in [19, 25].
Another application is the following. Consider the minimization problem

min{f(x) : x ∈ C} (8)

where C ⊆ X and f : X → R∪{+∞} is proper. The following well-known fact is
the so-called minimum principle: if C is convex and f is convex and continuous
at x̄ ∈ C, then x̄ is a solution of (8) if and only if ∂f(x̄) ∩ −N(x̄, C) 6= ∅. In
relation to the minimum principle, Burke and Ferris [26] obtained the following
result. Assume that C is closed and convex and f is continuous and convex.
For any solution x̄ of (8), the set S of all solutions is given by

S = {x ∈ C : ∂f(x) ∩ −N(x,C) = ∂f(x̄) ∩ −N(x̄, C)}. (9)

Whenever f is locally Lipschitz and pseudoconvex, the minimum principle
also holds in the following form: x̄ ∈ C is a solution of (8) if and only if
∂↑f(x̄)∩−N(x̄, C) 6= ∅. Very recently, by using Proposition 6.2, Castellani and
Giuli [24] obtained the following result.

Proposition 6.4 Let C be closed and convex, f a locally Lipschitz pseudocon-
vex function, and S the set of solutions of problem (8). If x̄ ∈ S, then

S = {x ∈ C : ∂̂↑f(x) ∩ −N(x,C) = ∂̂↑f(x̄) ∩ −N(x̄, C)}.

Comparing with (9), we note that ∂f has to be replaced not just by ∂↑f ,
but with the maximum element of its equivalence class.

7 Pseudomonotone Operators and Mathemati-
cal Economics

Pseudomonotonicity appears in consumer theory of mathematical economics.
Suppose that in an economy there are n different commodities. In this case, a
commodity bundle is an element of Rn

+ or, more generally, of a subset K of Rn
+.

It is supposed that for each consumer, a preference relation � is defined on K,
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x � y meaning that the consumer likes x at least as much as y. In many cases,
the preference relation is supposed to be defined by the so-called utility function,
i.e., a function u : K → R such that x � y if and only if u(x) ≥ u(y). Prices
of the n commodities are represented by an element p ∈ Rn

++ = (R++)n. Given
a number w > 0 representing the budget of the consumer, for each price vector
p the consumer chooses a commodity bundle maximizing the utility, among all
bundles x whose value 〈p, x〉 does not exceed w. That is, one has to solve the
following problem:

maximize u(x) s.t. x ∈ K, 〈p, x〉 ≤ w.

It is clear that the solutions of the above problem do not change if one
replaces w by 1 and p by p/w. For this reason, w is usually taken equal to 1.
Then one defines the budget set B(p) by

B(p) := {x ∈ K : 〈p, x〉 ≤ 1}.

The demand correspondence X : Rn
++ ⇒ K is defined by

X(p) := {x ∈ B(p) : u(x) ≥ u(y), ∀y ∈ B(p)}. (10)

The utility function is a mathematically convenient, but artificial way to
express consumer’s preferences. The demand correspondence is supposed to
have a more objective character than the utility function since it can actually
be observed, and can be defined in an obvious way by using only the preference
relation �. The revealed preference problem in consumer theory is the following:
given a demand correspondence X, does there exist a utility function u such
that X is defined by (10), and, if the answer is positive, how can one define u
using X? The answer should be related of course to some assumptions on the
demand correspondence, that should be the result of economic considerations.
Note that if u is a utility function and h : u(X) → R is strictly increasing,
then h◦u is a utility function corresponding to the same preference relation and
producing the same demand correspondence. Given this non-uniqueness of u, in
some cases one chooses a utility function satisfying a normalization condition,
such as: u(te) = t for all t > 0, where e = (1, 1, . . . 1).

The utility function u or, more generally, the preference relation� is assumed
to satisfy some assumptions. For instance, it is assumed that u is continuous
and strictly increasing along half-lines starting at the origin, i.e., u(x) < u(tx)
for all t > 1. This simply expresses that fact that all commodities are desirable
by the consumer. In this case, whenever for some x ∈ K one has 〈p, x〉 < 1, it
follows easily that x ∈ B(p)\X(p). Thus, for any x ∈ X(p) one has 〈p, x〉 = 1.

Now assume that p1, p2, . . . pn is a finite sequence of prices and xi ∈ X(pi) for
i = 1, 2, . . . n. Then 〈pi, xi〉 = 1 for all i. Assume further that 〈pi, xi+1 − xi〉 ≤ 0
for all i = 1, 2, . . . n− 1. Then 〈pi, xi+1〉 ≤ 1 thus xi+1 ∈ B(pi). By definition of
the correspondence X, this implies that u(xi+1) ≤ u(xi) for all i = 1, 2, . . . n−1.
Hence, u(xn) ≤ u(x1). It follows that necessarily 〈pn, x1〉 ≥ 1, otherwise
x1 ∈ B(pn)\X(pn) so that u(x1) < u(xn), a contradiction. Consequently,
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〈pn, x1 − xn〉 ≥ 0. The preceding argument shows that the demand correspon-
dence must satisfy the so-called “Generalized Axiom of Revealed Preference”
GARP [27]:

xi ∈ X(pi), ∀i = 1, 2, . . . n
〈pi, xi+1 − xi〉 ≤ 0, ∀i = 1, 2, . . . n− 1

}
⇒ 〈pn, x1 − xn〉 ≥ 0. (GARP)

Denoting by X−1 the inverse of the operator X, GARP says simply that the
operator −X−1 is cyclically pseudomonotone.

The following property was remarked in [28].

Proposition 7.1 Let Y be a Banach space and T : Y ⇒ Y ∗ be an operator such
that 〈x∗, x〉 = 1 for all (x, x∗) ∈ gr(T ). Then T is cyclically pseudomonotone if
and only if T−1 is cyclically pseudomonotone.

Proof. Assume that T−1 is cyclically pseudomonotone. Consider any finite
sequence x1, x2, . . . xn in Y and any x∗i ∈ T (xi), i = 1, 2, . . . n. Now consider
the finite sequence x∗n, x

∗
n−1, . . . x

∗
1 (in this order). Since xi ∈ T−1(x∗i ), cyclic

pseudomonotonicity of T−1 says that the following implication is true:〈
x∗n−1 − x∗n, xn

〉
≥ 0,

〈
x∗n−2 − x∗n−1, xn−1

〉
≥ 0, . . . 〈x∗1 − x∗2, x2〉 ≥ 0

⇒ 〈x∗n − x∗1, x1〉 ≤ 0.

Since 〈x∗i , xi〉 = 1, this implies〈
x∗n−1, xn

〉
≥ 1,

〈
x∗n−2, xn−1

〉
≥ 1, . . . 〈x∗1, x2〉 ≥ 1⇒ 〈x∗n, x1〉 ≤ 1

or, if we write the left-hand side in reverse order,

〈x∗1, x2 − x1〉 ≥ 0, 〈x∗2, x3 − x2〉 ≥ 0, . . .
〈
x∗n−1, xn − xn−1

〉
≥ 0

⇒ 〈x∗n, x1 − xn〉 ≤ 0.

The last implication expresses the cyclic pseudomonotonicity of T .
The converse follows from the fact that T is the inverse of T−1. �
According to the proposition, GARP says also that −X is cyclically pseu-

domonotone.
Very recently, Crouzeix, Keraghel and Rahmani [29] considered the case

K = Rn
++ and showed the following result. For the sake of this theorem, given a

function u : Rn
++ → R, let us denote by Xu the demand correspondence defined

by u. We call u increasing iff u(x) ≤ u(x+ y) for all x, y ∈ Rn
++.

Theorem 7.1 Assume that X : Rn
++ ⇒ Rn

++ has nonempty values, satisfies
GARP and is such that 〈p, x〉 = 1 for all x ∈ X(p), p ∈ Rn

++. Then there exist
two increasing, quasiconcave functions u− and u+ defined on Rn

++, satisfying
the normalization condition

u+(te) = u−(te) = t, ∀t > 0
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and such that, for all x ∈ X(p), p ∈ Rn
++, and all y ∈ B(p),

u+(x) ≥ u+(y) and u−(x) ≥ u(y)

that is, X(p) ⊆ Xu+(p) and X(p) ⊆ Xu−(p) for all p ∈ Rn
++.

If further u : Rn
++ → R is any increasing, quasiconcave function satisfy-

ing u(te) = t, ∀t > 0 and such that X(p) ⊆ Xu(p) for all p ∈ Rn
++, then

u−(x) ≤ u(x) ≤ u+(x), for all x ∈ Rn
++.

The above result is reminiscent of the result mentioned in Section 2, that
the graph of any cyclically monotone operator is included in the graph of the
subdifferential of a proper, lsc convex function.

8 Open questions

The theory of pseudomonotone operators is rich, but there are still many im-
portant open problems. We mention a few of them here.

1. Theorem 3.2 gives a characterization of single-valued, differentiable pseu-
domonotone operators. On the other hand, it is known that a single-valued
differentiable operator T defined on a simply connected open subset of Rn

is cyclically monotone if and only if T ′ is symmetric and positive semidef-
inite. Is there a characterization for single-valued, differentiable cyclically
pseudomonotone operators?

2. Let X : Rn
++ ⇒ Rn

++ be an operator satisfying GARP and such that
〈p, x〉 = 1 for all x ∈ X(p), p ∈ Rn

++. Which economically justified
assumptions would guarantee that there exists a function u : Rn

++ → R
such that X = Xu for all p ∈ Rn

++, rather than X(p) ⊆ Xu(p)?

3. Under what conditions is a pseudomonotone operator equivalent to a
monotone one?

4. Quasimonotone operators are in some sense more attractive than pseu-
domonotone ones. Besides having applications to economics, they are
related to quasiconvex functions in a very simple way: a lsc function f
is quasiconvex if and only if ∂↑f is quasimonotone [5]. Of course, quasi-
convex functions is a wider and more important class of functions than
pseudoconvex ones. However, dealing with quasimonotone operators is of-
ten more tricky and requires more sophisticated arguments. Many of the
advances for pseudomonotone operators in variational inequalities, have
been also achieved, with some additional effort, for quasimonotone ones.
However, there is no theory concerning the maximality of quasimonotone
operators. Can one invent a suitable definition so that we have similar
theoretical results and applications as for pseudomonotone operators?
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5. The notion of D-maximal monotone operator seems to be very fruitful
and fits very well with other notions such as pseudomonotone∗ operators.
Many properties similar to those of monotone operators have been shown.
However, there is a lot to be done: how to define maximal pseudomonotone
operators without reference to the domain D? Can we have a theorem
similar to Corollary 5.2 for the maximality of subdifferentials of lsc (rather
than locally Lipschitz) pseudoconvex functions? How to extend Theorem
5.1 to infinite dimensional spaces?
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