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1 Introduction

In recent years, several algorithms for the solution of variational inequalities
were based on paramonotone maps. The introduction of these maps goes back
to 1976 [2], but a more systematic study was initiated in [3] and continued in
[14] and other papers thereafter. Paramonotone maps form a class which is more
restricted than monotone but larger than strictly monotone maps, and contains
the subdifferentials of proper, convex, lsc functions. They posses a property, the
so-called cutting plane property, that makes them suitable in several interior
point algorithms.

Paramonotone maps were subsequently generalized to pseudomonotone∗ maps.
This was done in [4] for the single valued case and in [13] for the multivalued
case. Pseudomonotone∗ maps form a class that lies between pseudomonotone
and strictly pseudomonotone maps and contains the subdifferentials of locally
Lipschitz pseudoconvex functions. These maps also have the cutting plane prop-
erty, and in a sense are exactly the set of maps that always have this property
[13].

The aim of the present paper is to show that pseudomonotone∗ maps may
indeed succesfully replace other, more restricted, classes of maps in several ap-
plications, and exhibit their relation to the so-called “maximum priciple suf-
ficiency” [17]. In Section 2 we recall the maximum principle sufficiency and
minimum principle sufficiency as they were defined for variational inequality
problems with single valued maps, and generalize them to the case of multival-
ued maps. Further, we show that pseudomonotone∗ maps are exactly the class
of maps for which the maximum principle sufficiency always holds.

In Section 3 we present an application of pseudomonotone∗ maps to a cutting
plane algorithm proposed in [9]. We obtain a result similar to the one in [9] but
in a more general setting (with a map which is multivalued pseudomonotone∗
rather than single valued pseudomonotone+), and with a weaker continuity
assumption. In Section 4 we show how pseudomonotone∗ maps can be used
instead of paramonotone maps, in a proximal point algorithm.

We first fix the notation and recall some preliminary results. In the following,
X will be a Banach space and X∗ its topological dual. For a set K ⊆ X we
denote by NK(x) the normal cone to K at x. For A ⊆ X∗, we set R++A =
{tx∗ : t > 0, x∗ ∈ A}. Given a multivalued map T : X → 2X

∗
, D(T ) will denote

its domain and ZT its set of zeros, i.e., the set ZT = {x ∈ X : 0 ∈ T (x)}. An
element x ∈ K is called a solution of the Stampacchia variational inequality
problem VIP if

∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0 for all y ∈ K. (VIP)

It is called a solution of the Minty variational inequality problem MVIP if

∀y ∈ K, ∀y∗ ∈ T (y), 〈y∗, y − x〉 ≥ 0. (MVIP)

We denote by S(T,K) (resp., SM (T,K)) the set of solutions of the VIP
(resp., MVIP).
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There are two quite different notions of pseudomonotonicity we will employ.
One is mainly related to continuity and is due to Brezis and Browder: we will
follow [18] and call it t-pseudomonotonicity (t- stands for topological).

Definition 1 A multivalued map T : X → 2X
∗

with closed convex domain
D(T ) is called t-pseudomonotone on D(T ) if for every {xk} ⊆ D(T ) converging
weakly to some x ∈ D(T ) and every choice x∗k ∈ T (xk) such that

lim sup
k→+∞

〈x∗k, xk − x〉 ≤ 0

the following holds: For every y ∈ D(T ) there exists x∗ ∈ T (x) (depending in
general on y) such that

〈x∗, x− y〉 ≤ lim inf
k→+∞

〈x∗k, xk − y〉 .

The other notion was introduced by Karamardian, and we will call it simply
pseudomonotonicity, as it is indeed a generalization of monotonicity.

Definition 2 A multivalued map T : X → 2X
∗

is called pseudomonotone if for
every x, y ∈ X and every x∗ ∈ T (x), y∗ ∈ T (y), the following implication holds:

〈x∗, y − x〉 ≥ 0⇒ 〈y∗, y − x〉 ≥ 0.

We recall some more necessary definitions and facts. Details can be found
in [11, 12]. Two pseudomonotone maps T1, T2 are called equivalent (T1 ∼ T2)
if they have the same domain, the same set of zeros, and for every x ∈ X\ZT1 ,
R++T1(x) = R++T2(x). This is an equivalence relation. The equivalence class
of a pseudomonotone map T has a maximum element T̂ with respect to graph
inclusion, given by

T̂ (x) =
{

NLT,x
(x), if x ∈ ZT

R++T (x), if x /∈ ZT .

Here, LT,x is the set

LT,x = {y ∈ D(T ) : ∃y∗ ∈ T (y) : 〈y∗, y − x〉 = 0}

and NLT,x
(x) is the normal cone to LT,x at x:

NLT,x
(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ LT,x} .

Definition 3 A multivalued map T : X → 2X
∗

is called:
(i) paramonotone [2, 3], if it is monotone and for every x, y ∈ X and x∗ ∈

T (x), y∗ ∈ T (y), 〈x∗ − y∗, x− y〉 = 0 implies that x∗ ∈ T (y) and y∗ ∈ T (x)
(ii) pseudomonotone∗ [13], if it is pseudomonotone and for every x, y ∈ X

and x∗ ∈ T (x), y∗ ∈ T (y), 〈x∗, y − x〉 = 〈y∗, y − x〉 = 0 implies that x∗ ∈ T̂ (y)
and y∗ ∈ T̂ (x).
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The class of pseudomonotone∗ maps is significantly larger than the class of
paramonotone maps. As an example, the Clarke subdifferential of a locally Lips-
chitz pseudoconvex function is pseudomonotone∗; also, if T is pseudomonotone∗
and S ∼ T , then S is pseudomonotone∗ [13].

Paramonotone maps have the following “cutting plane property” (CPP).
This property runs as follows:

x ∈ S(T,K)
z ∈ K

〈z∗, x− z〉 ≥ 0 for some z∗ ∈ T (z)

⇒ z ∈ S(T,K). (CPP)

Also pseudomonotone∗ maps have the CPP. What is more interesting, these
maps are in a sense characterized by the CPP: if a pseudomonotone map T has
convex, w∗-compact values and has the CPP on every convex, compact subset
of K, then T is pseudomonotone∗ on intK (cf Theorem 4.1 in [13]).

In Section 3 we will use the following very weak notion of continuity.

Definition 4 A multivalued map T is called upper sign-continuous at x ∈ D(T )
if for every v ∈ X the following implication holds:

∀t ∈ (0, 1), inf
x∗∈T (x+tv)

〈x∗, v〉 ≥ 0⇒ sup
x∗∈T (x)

〈x∗, v〉 ≥ 0.

For instance, any upper hemicontinuous map (i.e., a map whose restriction
on any line segment in D(T ) is upper semicontinuous with respect to the weak∗-
topology on X∗) is upper sign-continuous. Any positive function in R is upper
sign-continuous.

2 Maximum principle sufficiency and CPP

Let f : K → R be a Gâteaux differentiale convex function andK∗ = argminx∈K f(x).
The so-called minimum principle for convex programs asserts that for every
x ∈ K∗, the elements of K∗ minimize 〈∇f(x), ·〉 over K, i.e.,

z ∈ K∗ ⇒ ∀y ∈ K, 〈∇f(x), y − z〉 ≥ 0. (1)

If the reverse implication is also true for every x ∈ K∗, then one says that
the minimum principle sufficiency (MinPS) holds (see for instance [7]). This
has been generalized subsequently to variational inequalities for a single-valued
monotone [8] or pseudomonotone [15] map T with the help of the primal gap
function g : K → R ∪ {+∞} defined by

g(x) := sup
y∈K
〈T (x), x− y〉 . (2)

It is known that g(x) ≥ 0 for all x ∈ K, and g(x) = 0 if and only if
x ∈ S(T,K). For every x ∈ X set

Γ(x) = argsup
y∈K

〈T (x), x− y〉 = arginf
y∈K

〈T (x), y〉

= {z ∈ K : 〈T (x), y − z〉 ≥ 0,∀y ∈ K} .
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Then pseudomonotonicity of T implies that for each x ∈ S(T,K) one has
S(T,K) ⊆ Γ(x) (minimum principle). If for each x ∈ S(T,K) one has S(T,K) =
Γ(x) then one says that the minimum principle sufficiency holds.

Minimum principle sufficiency is a very strong assumption, which is true in
the special cases of quadratic programs and linear monotone complementarity
problems with a nondegenerate solution [7]. It was studied in connection with
the concept of weak sharp solutions and with the so-called pseudomonotone+

maps, which are a rather restricted class of maps [15, 17].
In [17] another principle was introduced. Define the dual gap function

G(x) := sup
y∈K
〈T (y), x− y〉

and

Λ(x) = argsup
y∈K

〈T (y), x− y〉

= {z ∈ K : 〈T (z), x− z〉 ≥ 〈T (y), x− y〉 ,∀y ∈ K} .

One can easily show for a pseudomonotone map T that for each x ∈ S(T,K),
S(T,K) ⊆ Λ(x) holds. If for each x ∈ S(T,K) one has S(T,K) = Λ(x), then
one says that the maximum principle sufficiency (MaxPS) holds.

On what follows, we will generalize these principles to the multivalued case
and show the relation between them and the connection to pseudomonotone∗
maps.

Consider a multivalued map T : K → 2X
∗\{0} with convex, weak∗-compact

values. Then one can define the primal gap function g : K → R by any of the
following expressions

g(x) = min
x∗∈T (x)

sup
y∈K
〈x∗, x− y〉 = sup

y∈K
min

x∗∈T (x)
〈x∗, x− y〉 (3)

where the two expressions on the right are equal by the Sion minimax theorem.
Likewise, one defines the dual gap function G : K → R by

G(x) = sup
y∈K

max
y∗∈T (y)

〈y∗, x− y〉 .

The following properties are obvious: g(x) ≥ 0 for all x ∈ K, and g(x) = 0
if and only if x ∈ S(T,K). Likewise, G(x) ≥ 0 for all x ∈ K, and G(x) = 0 if
and only if x ∈ SM (T,K).

We can generalize the so-called minimum principle sufficiency (MinPS) and
the maximum principle sufficiency (MaxPS) to the multivalued case as follows.
Define

Γ(x) = argsup
y∈K

min
x∗∈T (x)

〈x∗, x− y〉 ={
z ∈ K : min

x∗∈T (x)
〈x∗, x− z〉 ≥ min

x∗∈T (x)
〈x∗, x− y〉 , ∀y ∈ K

}
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and

Λ(x) = argsup
y∈K

max
y∗∈T (y)

〈y∗, x− y〉

=
{
z ∈ K : max

z∗∈T (z)
〈z∗, x− z〉 ≥ max

y∗∈T (y)
〈y∗, x− y〉 ,∀y ∈ K

}
.

Proposition 5 (i) For every x ∈ S(T,K), SM (T,K) ⊆ Γ(x) holds.
(ii) For every x ∈ SM (T,K), S(T,K) ⊆ Λ(x) holds.
Thus if, in particular, T is pseudomonotone, then x ∈ S(T,K) implies

S(T,K) ⊆ Γ(x) and S(T,K) ⊆ Λ(x).

Proof. Let x ∈ S(T,K). Then g(x) = 0 hence

min
x∗∈T (x)

〈x∗, x− y〉 ≤ 0, ∀y ∈ K. (4)

If z ∈ SM (T,K), then 〈y∗, y − z〉 ≥ 0 for every (y, y∗) ∈ grT . This implies
that minx∗∈T (x) 〈x∗, x− z〉 ≥ 0. Combining with (4) we obtain

min
x∗∈T (x)

〈x∗, x− z〉 = 0 ≥ min
x∗∈T (x)

〈x∗, x− y〉 , ∀y ∈ K,

i.e, z ∈ Γ(x). Thus SM (T,K) ⊆ Γ(x).
Now let x ∈ SM (T,K). Then G(x) = 0 hence

max
y∗∈T (y)

〈y∗, x− y〉 ≤ 0 ∀y ∈ K.

If z ∈ S(T,K) then for some z∗0 ∈ T (z), 〈z∗0 , y − z〉 ≥ 0 holds for all y ∈ K;
It follows that

max
z∗∈T (z)

〈z∗, x− z〉 ≥ 〈z∗0 , x− z〉 ≥ 0 ≥ max
y∗∈T (y)

〈y∗, x− y〉 ∀y ∈ K,

i.e., z ∈ Λ(x). Thus S(T,K) ⊆ Λ(x).
The last part of the proposition follows since for a pseudomonotone map T ,

S(T,K) ⊆ SM (T,K).
Generalizing [7] to the multivalued VIP, we call the property in Proposition

5(i) “minimum principle”. Further, generalizing [7, 17] we say that VIP has the
minimum principle sufficiency (MinPS) if Γ(x) = S(T,K) for all x ∈ S(T,K).
Finally, generalizing [17], we will say that VIP has the maximum principle
sufficiency (MaxPS) if Λ(x) = S(T,K) for all x ∈ S(T,K). The following
proposition relates MinPS to MaxPS.

Proposition 6 Let T be pseudomonotone. Then MinPS implies MaxPS.

Proof. Let x ∈ S(T,K). Then x ∈ SM (T,K), hence G(x) = 0. For each
z ∈ Λ(x), by definition of argsup we deduce that maxz∗∈T (z) 〈z∗, x− z〉 = 0 thus
there exists z∗0 ∈ T (z) such that 〈z∗0 , x− z〉 = 0. Using pseudomonotonicity we
deduce that 〈x∗, x− z〉 ≥ 0 for all x∗ ∈ T (x). Hence minx∗∈T (x) 〈x∗, x− z〉 ≥ 0.
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Using g(x) = 0 and the definition of Γ(x) we infer that z ∈ Γ(x). By MinPS,
Γ(x) = S(T,K). Hence z ∈ S(T,K), which shows that Λ(x) ⊆ S(T,K). Since
the reverse inclusion always holds, MaxPS follows.

When VIP stems from a convex program, i.e., T = ∇f where f is convex and
Gâteaux differentiable (or more generally T = ∂f where f is convex and lsc) it
is not hard to show that, in contrast to MinPS, MaxPS always holds. This is
true in much more general situations. First we compare MaxPS with CPP:

Proposition 7 Let T be pseudomonotone. VIP has the MaxPS if and only if
CPP holds.

Proof. Assume that CPP holds. Fix x ∈ S(T,K). As in the proof of the
previous proposition we get that for every z ∈ Λ(x) there exists z∗0 ∈ T (z) such
that 〈z∗0 , x− z〉 = 0. By CPP we infer that z ∈ S(T,K), thus Λ(x) ⊆ S(T,K).

Conversely, assume that MaxPS holds. Take x ∈ S(T,K) and z ∈ K such
that 〈z∗, x− z〉 ≥ 0 for some z∗ ∈ T (z). Then x ∈ SM (T,K) implies

〈z∗, x− z〉 ≥ 0 ≥ 〈y∗, x− y〉 , ∀y ∈ K, ∀y∗ ∈ T (y).

Thus z ∈ Λ(x). By the MaxPS, z ∈ S(T,K) thus CPP holds.
An obvious consequence of the above proposition and the properties of

pseudomonotone∗ maps that we mentioned in the introduction is:

Corollary 8 If T is pseudomonotone∗ then MaxPS holds. Conversely, if T
is pseudomonotone with convex, w∗-compact values and MaxPS holds on every
convex, compact subset of K, then T is pseudomonotone∗ on intK.

In particular, if we have a program defined by a convex (resp., pseudoconvex)
differentiable function f , then ∇f is a paramonotone (resp. pseudomonotone∗)
map. Since paramonotone maps are pseudomonotone∗, in both cases MaxPS
holds. By the same argument, in a program defined by a locally Lipschitz
pseudoconvex function, MaxPS holds.

3 A cutting plane algorithm

Because of the close relation between pseudomonotone∗ maps and the cutting
plane property, these maps are naturally suited for cutting plane algorithms
for solving VIP. We illustrate this point by an application to a cutting plane
algorithm for solving a multivalued VIP, where the cutting planes pass through
approximate analytic centers. This algorithm was proposed in [9] for a VIP
with a single valued, Lipschitz, pseudomonotone+ map. In our case we will
generalize to a multivalued, upper sign-continuous, pseudomonotone∗ map.

Let K be a bounded full-dimensional polyhedron in Rn:

K = {x ∈ Rn : Ax ≤ b}

where A is a m × n matrix and b ∈ Rm. Let T : Rn → 2Rn

be a multivalued
map. We first recall the following existence result.
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Theorem 9 Assume that T has nonempty, convex, compact values on K. As-
sume further that T is either upper semicontinuous, or it is upper sign-continuous
and pseudomonotone. Then S(T,K) 6= ∅.

In the upper semicontinuous case, this result is well-known. In the pseu-
domonotone case, one may consult [18].

The algorithm for finding an element of S(T,K) relies on the following idea.
Assume that T is pseudomonotone∗. If an element x0 is not a solution of VIP,
then by the CPP we know that all solutions are in the intersection

K1 := K ∩ {x ∈ Rn : 〈x∗0, x− x0〉 < 0}

where x∗0 is any element of T (x∗0). Thus, if x0 is “somewhere in the middle” of
K, we will be sure that S(T,K) is bound to be in K1 which is a smaller set. By
continuing in this way, one can hope to produce a decreasing sequence of sets
and, at the limit, arrive to a solution of VIP. The role of points “somewhere in
the middle” will be played by approximate analytic centers. For the convenience
of the reader, we briefly recall the definition from [9]. We write K as

K = {x ∈ Rn : Ax+ s = b, s ∈ Rm+}.

A point x̄ ∈ K is the analytic center if the vector s̄ = b−Ax̄ ∈ Rm+ maximizes

the strictly concave potential ϕ(s) =
m∑
j=1

ln(sj). The analytic center is the

unique solution of the Karush-Kuhn-Tucker system

AT ȳ = 0
Ax̄+ s̄ = b

Ȳ s̄ = e

where ȳ ∈ Rm is the corresponding dual vector, Ȳ is the m × m diagonal
matrix whose diagonal elements are the coordinates of ȳ, and e is the vector
(1, 1, . . . 1) ∈ Rm. Given η ∈ (0, 1), an approximate analytic center is a vector
x ∈ C such that for some s ∈ Rm+ and y ∈ Rm one has

AT y = 0
Ax+ s = b

‖Y s− e‖ ≤ η

where Y is the diagonal matrix whose diagonal elements are the coordinates of
y.

We will use the same η ∈ (0, 1) at all iterations of the algorithm below. The
algorithm runs as follows.

1. Initialization.
k = 0, Ak = A, bk = b.

2. Computation of an approximate analytic center.
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Set Ck = {x ∈ Rn : Akx ≤ bk}. Find an approximate analytic center xk of
Ck.

3. Stopping rule.
Compute g(xk). If g(xk) = 0, then stop. Otherwise go to Step 4.

4. Generation of a cutting plane.
Choose x∗k ∈ T (xk) and set

Ak+1 =
(
Ak
x∗k

)
, bk+1 =

(
bk

〈x∗k, xk〉

)
.

Set k := k + 1 and go to Step 2.

We will use the following property P of the algorithm, taken from [9]:

Given any open ball B(x, ε) lying in K, there exists
an iteration index k such that B(x, ε) * Ck. (P)

Note that property (P) holds for any method of generating a cutting plane
at step 4; in particular it does not depend on the properties of T .

We first examine the case where T is upper semicontinuous.

Theorem 10 Let the set K = {x ∈ Rn : Ax ≤ b} be bounded and such that
intK 6= ∅. Assume that T : K → 2Rn

is a pseudomonotone∗, upper semicon-
tinuous map with nonempty, convex, compact values. Then the algorithm either
stops with a solution of VIP or defines an infinite sequence which has a limit
point that is a solution of VIP.

Proof. Assume that the algorithm does not stop with a solution of VIP. Then
it defines a bounded sequence {xk} such that xk /∈ S(T,K) for all k ∈ N.

By Theorem 9, S(T,K) is nonempty. Choose z ∈ S(T,K) and let {zi}, i ∈ N
be any sequence in intK converging to z. For each i ∈ N choose εi > 0 such
that B(zi, εi) ⊆ intK and limi→+∞ εi = 0. By Property (P), for each i ∈ N we
can choose inductively k(i) ∈ N such that B(zi, εi) * Ck for all k ≥ k(i) and
k(i) > k(i− 1), i ≥ 2. Choose yi ∈ B(zi, εi)\Ck(i). Since yi /∈ Ck(i), one has

∀i ∈ N,
〈
x∗k(i), yi

〉
>
〈
x∗k(i), xk(i)

〉
. (5)

Furthermore, yi ∈ B(zi, εi) together with limi→+∞ zi = z and limi→+∞ εi =
0 imply that limi→+∞ yi = z. By compactness of K, the sequence {xk(i)} has
a subsequence {xk(i′)}, i′ ∈ N′ with N′ ⊆ N which converges to some element
x0 ∈ K. Since T is upper semicontinuous with compact values, the sequence
{x∗k(i′)} has a subsequence {x∗k(i′′)}, i

′′ ∈ N′′ with N′′ ⊆ N′, converging to some
x∗0 ∈ T (x0). By taking the limit in (5), we deduce that 〈x∗0, z − x0〉 ≥ 0. Using
property CPP we deduce that x0 ∈ S(T,K).

This element x0 cannot be equal to any element of the sequence {xk} since
xk /∈ S(T,K) for all k ∈ N. Hence it is a limit point of {xk}.

The case of an upper sign-continuous map can be reduced to the upper
semicontinuous case, by using the properties of the equivalence relation.
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Corollary 11 Let the set K = {x ∈ Rn : Ax ≤ b} be bounded and such that
intK 6= ∅. Assume that T : Rn → 2Rn

is a pseudomonotone∗, upper sign-
continuous map such that K ⊆ intD(T ), with nonempty, convex, compact values
on intD(T ). Then the algorithm either stops with a solution of VIP or defines
an infinite sequence which has a limit point that is a solution of VIP.

Proof. We assume again that the algorithm does not stop, hence it gener-
ates and infinite sequence {xk} whose elements are not solutions of VIP. We
will show that we can assume, without loss of generality, that T is upper semi-
continous on K. By restricting the domain of T if necessary, we can assume
that D(T ) = intD(T ). According to Theorem 3.7 of [11], there exists an upper
semicontinuous pseudomonotone map T ′ with nonempty, compact convex values
which is equivalent to T . By Proposition 3.11 of [13], T ′ is pseudomonotone∗.
We show by induction that T and T ′ produce the same sets Ck and the same
sequence {xk}. Assume that this statement is true for some k ∈ N, i.e., at
iteration k both maps give rise to the same set Ck and the same element xk.

Since xk /∈ S(T,K), it is clear that xk /∈ ZT = ZT ′ . By the definition of the
equivalence relation, for any choice of x∗k ∈ T (xk), there exists λk > 0 such that
λkx

∗
k ∈ T ′(xk) and vice versa. It follows that the set Ck+1 is the same for the

two maps T and T ′. Also, the element xk+1 depends only on Ck+1 and not on
the map T or T ′.

The corollary follows from Theorem 10.

4 A proximal point algorithm for solving VIP

In the following, X will be a reflexive Banach space. Given a multivalued
map T : X → 2X

∗
and a nonempty closed convex set K ⊆ X, Burachik and

Scheimberg [1] (and many others) used Bregman functions in a version of the
proximal point method, in order to solve the Stampacchia variational inequality.

Let f : X → R∪{+∞} be a strictly convex, proper, lsc function with closed
domain D = dom(f) which is Gâteaux differentiable on the nonempty interior
of D. For this function, the Bregman distance Df (y, x) is defined on D × intD
by

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉 .

The following “three point property” is obvious:

Df (x, z) +Df (z, y) = Df (x, y) + 〈∇f(z)−∇f(y), z − x〉 . (6)

Following [1] we will say that f is a Bregman function if the following as-
sumptions hold:

B1. The right level sets of Df (x, ·):

Rfα(x) = {y ∈ intD : Df (x, y) ≤ α}

are bounded, for all α ∈ R and x ∈ D.
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B2. If {xk} ⊆ intD and {yk} ⊆ intD converge weakly to x and limk→+∞Df (xk, yk) =
0, then

lim
k→+∞

(Df (x, xk)−Df (x, yk)) = 0.

B3. If {xk} ⊆ D is bounded, {yk} ⊆ intD is such that w-limk→+∞ yk = y and
limk→+∞Df (xk, yk) = 0, then w-limk→+∞ xk = y.

For example, in X = Lp or lp with p ∈ (0, 1), f(x) = ‖x‖pp is a Bregman
function. A Bregman function in Rn whose domain is the positive orthant Rn+
is the Shannon function h(x) =

n∑
i=1

xi lnxi with the convention 0 ln 0 = 0.

Let a Bregman function f be given. Assume that K ⊆ D(T ) ∩ intD. Con-
sider the following proximal point algorithm.

1. Initialization.
Choose x0 ∈ K.

2. Solution of a simpler VIP.
Given xk, define xk+1 by the inclusion

0 ∈ (µkT +NK +∇f)xk+1 −∇f (xk) (7)

for some µk > 0.

3. Stoping rule.
If xk+1 = xk, then stop. Otherwise set k = k + 1 and go to Step 2.

Note that (7) can be stated equivalently as follows: xk+1 is a solution of the
variational inequality: for some x∗k+1 ∈ T (xk+1),〈

µkx
∗
k+1 +∇f(xk+1)−∇f (xk) , y − xk+1

〉
≥ 0, ∀y ∈ K. (8)

If the algorithm stops at xk, then it is obvious that xk is a solution of
VIP. Otherwise, the goal is to show that the infinite sequence provided by the
algorithm (or a subsequence of it) converges to a solution of VIP. For this, we
will use the following theorem of [1].

Theorem 12 Assume that the sequence generated by the algorithm is well de-
fined and infinite. If X∗ 6= ∅, then the following hold:

(i) The sequence {xk} is bounded,
(ii)

∑+∞
k=0Df (xk+1, xk) < +∞,

(iii) For each x̄ ∈ S(T,K), Df (x̄, xk) converges.

The following theorem generalizes Theorem 3.4.(A1) of [1].

Theorem 13 Assume that S(T,K) is nonempty, that µk > µ for some µ >
0, and that the algorithm produces a well-defined infinite sequence. If T is t-
pseudomonotone and pseudomonotone∗, then every weak limit point of {xk}k∈N
belongs to S(T,K).

11



Proof. We follow mainly the arguments of [1]. By Theorem 12, the sequence
{xk}k∈N is bounded. Let

{
xkj

}
j∈N be a subsequence of {xk}k∈N, weakly con-

verging to some point x. By Theorem 12(ii), limkj→+∞Df (xkj+1, xkj
) = 0. By

condition B3, w-limxkj+1 = x.
Using B2 we deduce that

lim
j

(
Df

(
x, xkj+1

)
−Df

(
x, xkj

))
= 0. (9)

By using successively (8), the three-point property (6) and (9), we get

lim inf
j

µkj

〈
x∗kj+1, x− xkj+1

〉
≥ lim inf

j

〈
∇f(xkj

)−∇f(xkj+1), x− xkj+1

〉
= lim inf

j

(
Df

(
x, xkj+1

)
−Df

(
x, xkj

)
+Df

(
xkj+1, xkj

))
= 0.

Since µkj
> µ, we arrive at lim infj

〈
x∗kj+1, x− xkj+1

〉
≥ 0. By t-pseudo-

monotonicity, given x̄ ∈ S(T,K) there exists x∗ ∈ T (x) such that

〈x∗, x− x̄〉 ≤ lim inf
j

〈
x∗kj+1, xkj+1 − x̄

〉
. (10)

Using successively: the fact that x̄ is a solution of MVIP, (8) and the three-
point property, we deduce

0 ≤ µkj

〈
x∗kj+1, xkj+1 − x̄

〉
≤
〈
∇f(xkj+1)−∇f

(
xkj

)
, x̄− xkj+1

〉
= Df

(
x̄, xkj

)
−Df

(
x̄, xkj+1

)
−Df

(
xkj+1, xkj

)
.

By theorem 12(iii) the sequence {Df (x̄, xk)} is converging. Hence the above

relation implies that limj

〈
x∗kj+1, xkj+1 − x̄

〉
= 0. Combining with (10), we

arrive at 〈x∗, x− x̄〉 ≤ 0. Finally, using that T is pseudomonotone∗, we infer
from (CPP) that x ∈ S(T,K).

If further ∇f is weakly continuous, then it can be shown by standard argu-
ments (see for instance Theorem 3.5 in [1]) that the whole sequence {xk} weakly
converges to a solution of VIP.
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