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Abstract. In this paper, we introduce concepts of well-posedness, and well-

posedness in the generalized sense, for mixed quasivariational-like inequalities where

the underlying map is multivalued. We give necessary and sufficient conditions for

the various kinds of well-posedness to occur. Our results generalize and strengthen

previously found results for variational and quasivariational inequalities.
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1 Introduction

Let E be a real Banach space, E∗ its dual, and K be a nonempty closed convex subset

of E. Let further S : K → 2K and F : K → 2E∗
be multivalued maps with nonempty

values, η : K × K → E be a single-valued mapping, and f : K → R a real-valued

function. We consider the following mixed quasivariational-like inequality problem,

which is to find xo ∈ K such that for some uo ∈ F (xo),

xo ∈ S(xo) and 〈uo, η(xo, y)〉+ f(xo)− f(y) ≤ 0, ∀y ∈ S(xo). (MQVLI)

If f(x) = 0, ∀x ∈ K, η(x, y) = x− y, ∀(x, y) ∈ K ×K, and F is a single-valued

mapping, then (MQVLI) reduces to the classical quasivariational inequality problem

(Refs. 2, 4, 15 ), which consists in finding a point xo ∈ K such that

xo ∈ S(xo) and 〈F (xo), xo − y〉 ≤ 0, ∀y ∈ S(xo). (QVI)

Quasivariational inequalities were extensively studied in recent years due to their

applicability to many problems in economics and engineering (Ref. 7 ).

When E is a real Hilbert space, F is a single-valued mapping, and S(x) = K, ∀x ∈

K, (MQVLI) reduces to the mixed variational-like inequality problem, which consists
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in finding a point xo ∈ K such that

〈F (xo), η(xo, y)〉+ f(xo)− f(y) ≤ 0, ∀y ∈ K. (MVLI)

This problem has been studied intensively (see, e.g., Refs. 1, 21 and the references

therein). Recently, Ansari and Yao (Ref. 1 ) and Zeng (Ref. 21 ) developed some

iterative schemes for finding the approximate solutions of (MVLI) and proved that

these approximate solutions strongly converge to the exact solution of (MVLI).

If S(x) = K, ∀x ∈ K, η(x, y) = x − y, ∀(x, y) ∈ K × K, and F is of the form

F = A ◦ G where G : K → 2E∗\{∅} is a multivalued map and A : E∗ → E∗ is

single-valued, then (MQVLI) reduces to the generalized mixed variational inequality

problem, which consists in finding a point xo ∈ K such that for some uo ∈ G(xo),

〈Auo, xo − y〉+ f(xo)− f(y) ≤ 0, ∀y ∈ K. (GMVI)

This problem has been studied intensively. Recently, Zeng and Yao (Ref. 23 ),

Schaible, Yao and Zeng (Ref. 17 ), and Zeng (Ref. 22 ) considered the existence

of solutions of generalized mixed variational inequalities (GMVI), and proposed and

analyzed iterative algorithms for finding approximate solutions of (GMVI).

Very recently, Lignola (Ref. 10 ) introduced and investigated the concepts of well-

posedness and L-well-posedness for quasivariational inequalities (with a single-valued
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map F ) having a unique solution and the concepts of well-posedness and L-well-

posedness in the generalized sense for quasivariational inequalities having more than

one solution, in analogy to the corresponding concepts for variational inequalities

(Refs. 6, 12 ). In this paper, inspired by these concepts of well-posedness for (QVI),

we introduce and study the concepts of well-posedness and L-well-posedness for mixed

quasivariational-like inequalities having a unique solution and the concepts of well-

posedness and L-well-posedness in the generalized sense for mixed quasivariational-

like inequalities having more than one solution. The results obtained in this paper

generalize the results of Ref. 10 in the more general setting of (MQVLI), but also

strengthen some of them, by imposing weaker assumptions on the multivalued maps S

and F . A necessary and sufficient condition for well-posedness is formulated in terms

of the diameters of the approximate solution sets. In a similar way, well-posedness

in the generalized sense is shown to be equivalent to a condition involving a regular

measure of noncompactness of the approximate solution sets.

This paper is organized as follows: in Section 2, we introduce the necessary nota-

tion and definitions, and we show two basic lemmas, one concerning a generalization

of the so-called Minty Lemma for variational inequalities, and another on a property
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of the Painlevé-Kuratowski limit inferior of a sequence of convex sets in a finite-

dimensional space. In Section 3 we establish necessary and sufficient conditions for

well-posedness and L-well-posedness of (MQVLI), while in Section 4 we do the same

for well-posedness and L-well-posedness in the generalized sense.

2 Preliminaries

Given a Banach space E, for any x ∈ E and A ⊆ E we will set d(x, A) = inf{‖x− y‖ :

y ∈ A} and diamA = sup{‖y − z‖ : y, z ∈ A} for the distance of x from A and the

diameter of A, respectively. We will denote by A, intA and riA the closure, the

interior and the relative interior of A, respectively.

We recall the notion of Mosco convergence (Ref. 14 ). A sequence (Sn)n of subsets

of E Mosco converges to a set S if

S = w − lim sup
n

Sn = lim inf
n

Sn

where w− lim supn Sn and lim infn Sn are, respectively, the Painlevé-Kuratowski weak
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limit superior, and the Painlevé-Kuratowski strong limit inferior of (Sn)n, i.e.,

w − lim sup
n

Sn = {x ∈ E : ∃nk ↑ +∞, nk ∈ N,∃xnk
∈ Sn, with xnk

⇀ x},

lim inf
n

Sn = {x ∈ E : ∃xn ∈ Sn, n ∈ N, with xn → x}.

We shall use the usual abbreviations usc and lsc for “upper semicontinuous” and

“lower semicontinuous”, respectively. For any x, y ∈ E, [x, y] will denote the line

segment {tx + (1 − t)y : t ∈ [0, 1]}, while [x, y) and (x, y) are defined analogously.

We will frequently use s, w and w∗ to denote, respectively, the norm topology on E,

the weak topology on E and the weak∗ topology on E∗. Given a convex set K, a

multivalued map F : K → 2E∗
will be called upper hemicontinuous if its restriction

on any line segment [x, y] ⊆ K is usc with respect to the w∗ topology on E∗. We

refer the reader to Ref. 8 for basic facts about multivalued maps.

Definition 2.1 Let E be a real Banach space and K be a nonempty subset of E.

Let η : K ×K → E be a map, F : K → 2E∗
a nonempty-valued multifunction, and

f : K → R a real-valued function. Then F is said to be

(i) η-pseudomonotone with respect to f if for any x, y ∈ K, u ∈ F (x) and v ∈

F (y),

〈u, η(x, y)〉+ f(x)− f(y) ≤ 0 ⇒ 〈v, η(x, y)〉+ f(x)− f(y) ≤ 0.
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When f = 0 we will simply say that F is η-pseudomonotone.

(ii) η-monotone if for any x, y ∈ K, u ∈ F (x) and v ∈ F (y),

〈u− v, η(x, y)〉 ≥ 0.

It is obvious that an η-monotone map is η-pseudomonotone with respect to any

f .

The following is a kind of “Minty’s Lemma” showing that (MQVLI) can be stated

in an equivalent form:

Lemma 2.1 Let E be a real Banach space and So be a nonempty, closed and convex

subset of E. Let further f : So → R be a convex function, η : So×So → E a mapping

satisfying η(x, x) = 0 for all x ∈ So, and F : So → 2E∗
a multifunction with nonempty,

weakly∗ compact values which is η-pseudomonotone with respect to f and upper

hemicontinuous. If the map y 7→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F (So)× So,

then for each xo ∈ So the following are equivalent:

(i) ∀y ∈ So, ∃v ∈ F (xo), such that 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0;

(ii) ∀y ∈ So, ∀v ∈ F (y), 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0.

We will not prove the above lemma since the argument for its proof is actually

contained in the proof of the next one. The interest of the next lemma is that a
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condition stronger that (i) in Lemma 2.1 in which v is actually independent of y ∈ So,

is shown to be equivalent to a condition weaker that (ii), in which the same inequality

is imposed to hold for y in a smaller set S1, and for some (not all) v ∈ F (y).

Lemma 2.2 Let E be a real Banach space and So be a nonempty, closed and convex

subset of E. Let further f : So → R be a convex lsc function, η : So × So → E a

mapping satisfying η(x, x) = 0 for all x ∈ So, and F : So → 2E∗
a multifunction with

nonempty, weakly∗ compact convex values which is η-pseudomonotone with respect

to f and upper hemicontinuous. Assume that the map y 7→ 〈u, η(x, y)〉 is concave

and usc for each (u, x) ∈ F (So)×So. If S1 be a convex subset of So with the property

that for each x ∈ So and each y ∈ S1, (x, y] ⊆ S1, then for each xo ∈ So, the following

are equivalent:

(i’) ∃vo ∈ F (xo) such that ∀y ∈ So, 〈vo, η(xo, y)〉+ f(xo)− f(y) ≤ 0;

(ii’) ∀y ∈ S1, ∃v ∈ F (y) such that 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0.

Proof. Implication (i’)⇒(ii’) is an obvious consequence of the η-pseudomonotonicity

of F with respect to f .

Suppose that (ii’) holds. Given any y ∈ S1, define yn = 1
n
y + (1− 1

n
)xo for n ∈ N.

By our assumption on S1, yn ∈ S1 for all n ∈ N. According to condition (ii’), there
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exists vn ∈ F (yn) such that 〈vn, η(xo, yn)〉+ f(xo)− f(yn) ≤ 0. Then

0 ≥ 〈vn, η(xo, yn)〉+ f(xo)− f(yn)

= 〈vn, η(xo,
1

n
y + (1− 1

n
)xo)〉+ f(xo)− f(

1

n
y + (1− 1

n
)xo)

≥ 1

n
〈vn, η(xo, y)〉+ (1− 1

n
)〈vn, η(xo, xo)〉+ f(xo)−

1

n
f(y)− (1− 1

n
)f(xo)

=
1

n
[〈vn, η(xo, y)〉+ f(xo)− f(y)],

which implies that

〈vn, η(xo, y)〉+ f(xo)− f(y) ≤ 0, for some vn ∈ F (yn), n ∈ N. (1)

Since F is a weakly∗ compact valued multifunction which is (s, w∗)-usc on the line

[xo, y] = {ty + (1 − t)xo, t ∈ [0, 1]}, the image F ([xo, y]) is weakly∗ compact; hence

{vn}n has a subnet weakly∗ converging to some v ∈ E∗. In addition, the restriction

of F on [xo, y] is closed, hence vn ∈ F (yn) and limn yn = xo imply v ∈ F (xo). By

taking the limit of the subnet in (1) we obtain

∀y ∈ S1, ∃v ∈ F (xo) : 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0. (2)

Define the bifunction φ(v, y) on F (xo)× So by

φ(v, y) = 〈v, η(xo, y)〉+ f(xo)− f(y). (3)
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According to our assumptions, for each y ∈ So, φ(·, y) is weakly∗ lsc and quasi-

convex on the weakly∗ compact convex set F (xo), while for each v ∈ F (xo), φ(v, ·) is

usc and quasiconcave on the convex set S1. Hence, according to the Sion minimax

Theorem (Ref. 18 ),

sup
y∈S1

min
v∈F (xo)

φ(v, y) = min
v∈F (xo)

sup
y∈S1

φ(v, y).

By (2) we have supy∈S1
minv∈F (xo) φ(v, y) ≤ 0; hence, minv∈F (xo) supy∈S1

φ(v, y) ≤

0 which implies that there exists vo ∈ F (xo) such that

〈vo, η(xo, y)〉+ f(xo)− f(y) ≤ 0 (4)

holds for each y ∈ S1.

Finally, for each y ∈ So choose z ∈ S1 and a sequence {yn}n in S1∩(y, z] converging

to y. The function φ(v, ·) is usc and concave on So; hence, its restriction on any line

segment is continuous (Ref. 16 ). Accordingly, (4) implies

〈vo, η(xo, y)〉+ f(xo)− f(y) = lim
n

(〈vo, η(xo, yn)〉+ f(xo)− f(yn)) ≤ 0.

Hence (ii’) holds. �

Remark 2.1 Note that the assumption that F is η-pseudomonotone with respect

to f is used only in implication (i)⇒(ii).

11



Convex subsets S1 of a convex set So with the property (x, y] ⊆ S1 for each x ∈ So

and y ∈ S1 are: the set So itself, the interior intSo (if nonempty), and various kinds

of generalized interiors (if nonempty) such as the set of inner points innSo (Ref. 20 ),

the relative interior riSo etc.

It should be noted also that if the map F is onto (i.e., F (So) = E∗) then the

condition “the map y 7→ 〈u, η(x, y)〉 is concave and usc for each (u, x) ∈ F (So)× So”

is equivalent to the condition “the map y → η(x, y) is affine and (s, w)-continuous for

each x ∈ E”. Indeed, since 〈u, η(x, ·)〉 and 〈−u, η(x, ·)〉 are both usc, we deduce that

〈u, η(x, ·)〉 is continuous for each u ∈ E∗, i.e., η(x, ·) is (s, w)-continuous. A similar

argument shows that η(x, ·) is affine, i.e, convex and concave.

Recall that, after Tykhonov (Ref. 19 ) first defined well-posedness (resp., well-

posedness in the generalized sense) of a minimization problem, some well-posedness

notions for variational inequalities were introduced in Ref. 12 using the Auslender

gap function and in Ref. 5 using the Fukushima gap function. Recently, inspired by

the well-posedness notions for variational inequalities, Lignola (Ref. 10) defined some

concepts of well-posedness for quasivariational inequalities. In this paper, following

the same approach as in Ref. 10, we introduce the concepts of well-posedness for mixed
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quasivariational-like inequalities with the aid of suitable approximating sequences.

Definition 2.2 A sequence {xn}n in K is said to be an approximating sequence

[resp., an L-approximating sequence] for the mixed quasivariational-like inequality

(MQVLI) if there exists a sequence {un}n in E∗ with un ∈ F (xn), ∀n ∈ N, and a

sequence {εn}n in R with εn ↓ 0, such that

d(xn, S(xn)) ≤ εn and 〈un, η(xn, y)〉+ f(xn)− f(y) ≤ εn, ∀y ∈ S(xn), n ∈ N.

[resp., if there exists a sequence {εn}n in R with εn ↓ 0 and such that

d(xn, S(xn)) ≤ εn and 〈v, η(xn, y)〉+f(xn)−f(y) ≤ εn, ∀y ∈ S(xn), v ∈ F (y), n ∈ N.]

If f(x) = 0, ∀x ∈ K, η(x, y) = x−y, ∀(x, y) ∈ K×K and F is single-valued, then

the mixed quasivariational-like inequality reduces to the quasivariational inequality

considered by Lignola (Ref. 10) and our definition of approximating sequences reduces

to the definition introduced in Ref. 10 .

Definition 2.3 A mixed quasivariational-like inequality is termed well-posed [resp.,

L-well-posed] if it has a unique solution xo, and every approximating [resp., L-

approximating] sequence {xn}n strongly converges to xo.
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In order to characterize the well-posedness of the quasivariational inequality, Lig-

nola (Ref. 10 ) defined some concepts of approximate solutions for quasivariational

inequalities. Motivated by these concepts, for every positive number ε, we consider

the sets

Qε = {x ∈ K : d(x, S(x)) < ε and ∃u ∈ F (x) : 〈u, η(x, y)〉+f(x)−f(y) ≤ ε, ∀y ∈ S(x)}

and

Lε = {x ∈ K : d(x, S(x)) < ε and 〈v, η(x, y)〉+f(x)−f(y) ≤ ε, ∀y ∈ S(x), v ∈ F (y)}.

Remark 2.2 (a) Note that any solution of (MQVLI) belongs to Qε for all ε > 0.

Also, the maps ε → Qε and ε → Lε are increasing (i.e., ε ≤ ε′ implies Qε ⊆ Qε′ and

Lε ⊆ Lε′). Finally, if F is η-monotone, then obviously Qε ⊆ Lε for all ε > 0. If F is

only η-pseudomonotone with respect to f the inclusion Qε ⊆ Lε does not necessarily

hold; however, it is easy to see that in this case again, every solution of (MQVLI)

belongs to Lε for all ε > 0.

(b) It should also be noted that, under some mild assumptions (namely, that the

values of F are weak∗ compact and convex, S is convex-valued, f is convex and lsc,

and 〈v, η(x, ·)〉 is concave and usc for each (v, x) ∈ F (K) × K), by applying Sion’s
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minimax theorem to the bifunction

φ(u, y) = 〈u, η(x, y)〉+ f(x)− f(y), (u, y) ∈ F (x)× S(x)

we deduce that Qε can be equivalently defined as

Qε = {x ∈ K : d(x, S(x)) < ε and ∀y ∈ S(x), ∃u ∈ F (x) : 〈u, η(x, y)〉+f(x)−f(y) ≤ ε}

where u might depend on y. This holds also for the definition of approximating

sequence.

The following lemma, taken from Ref. 11 , will be useful in the next sections.

Lemma 2.3 Let {Hn}n be a sequence of nonempty subsets of the space E such

that:

(i) Hn is convex for every n ∈ N;

(ii) Ho ⊆ lim infn Hn;

(iii) there exists m ∈ N such that int
⋂

n≥m Hn 6= ∅.

Then, for every xo ∈ intHo, there exists a positive number δ such that

B(x0, δ) ⊆ Hn, ∀n ≥ m.

If E is a finite dimensional space, then assumption (iii) can be replaced by

(iii’) intHo 6= ∅.
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According to the above lemma, for convex sets in a finite-dimensional space, if xo ∈

intHo ⊆ lim infn Hn then xo ∈ Hn for all n sufficiently large. The usefulness of the

lemma is of course restricted to the case where Ho is full-dimensional, i.e., generates

Ho. In case Ho generates a hyperplane of E then, as the following proposition shows,

xo is the limit of a sequence xn ∈ Hn, n ∈ N, lying on a straight line.

Proposition 2.1 Let Ho and Hn, n ∈ N, be nonempty convex subsets in Rk such

that Ho ⊆ lim infn Hn and dim Ho = k − 1. Then for each x ∈ riHo and each v 6= 0

not belonging to the affine subspace generated by Ho, there exists a sequence (xn)n

in the line {x + t(v − x), t ∈ R}, such that limn xn = xo and xn ∈ Hn for all n ∈ N.

Proof. By translating the sets Ho, Hn and the points x, v by −x, we may assume

that x = 0. Then the affine subspace X generated by Ho is in fact a subspace. Since

dim X = dim Ho = k−1 and 0 ∈ riHo, we can find k−1 linearly independent vectors

vi, i = 1, . . . k−1 in Ho. By choosing these vectors sufficiently small we will also have

vk := − (v1 + . . . vk−1) ∈ Ho. Let ε > 0 be small enough so that for each yi ∈ B(vi, ε),

the set {y1, . . . yk−1} is linearly independent (this is possible since linear independence

can be characterized through determinants). Then each yk ∈ B(vk, ε) can be written

in a unique way as yk =
∑k−1

i=1 λiyi. By continuity of the coefficients we have that for
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yk sufficiently close to vk, λi is close to −1 for all i = 1, . . . k − 1 and in particular is

negative.

For each i = 1, . . . k there exists a sequence {zi
n}n converging to vi such that

zi
n ∈ Hn. The vector v together with X generates Rk, thus each zi

n can be uniquely

written as zi
n = yi

n + tinv where yi
n ∈ X is the oblique projection of zi

n onto X along

v. Since limn zi
n = vi and the projection is continuous, we have limn yi

n = vi and

limn tin = 0. For sufficiently large n, yi
n ∈ B(vi, ε). By the discussion above, yk

n can

be written as yk
n = −

∑k−1
i=1 λi

ny
i
n where λi

n are positive. It follows that there exist

positive numbers µi
n, n ∈ N, i = 1, . . . k, such that

∑k
i=1 µi

n = 1 and
∑k

i=1 µi
ny

i
n = 0,

n ∈ N.

Set xn =
∑k

i=1 µi
nz

i
n, n ∈ N. Then xn ∈ Hn by convexity, and

xn =
k∑

i=1

µi
n

(
yi

n + tinv
)

= v
k∑

i=1

µi
nt

i
n

with

lim
n

xn = v lim
n

k∑
i=1

µi
nt

i
n = 0.

The proof is complete. �
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3 Case of a unique solution

We now establish some necessary and sufficient conditions for well-posedness and

L-well-posedness for mixed quasivariational-like inequalities.

Theorem 3.1 Let E be a real Banach space and K be a nonempty, closed and

convex subset of E. Let f : K → R be convex and lsc, and η : K × K → E be a

mapping with η(x, x) = 0, ∀x ∈ K, which is (s, w)-continuous in each of its variables

separately. Let S : K → 2K and F : K → 2E∗
be multifunctions. Assume that the

following conditions hold:

(i) the multifunction S has nonempty convex values, and for each sequence (xn)n

in K converging to x0, the sequence (S(xn))n Mosco converges to S(x0);

(ii) for every converging sequence {wn}n, there exists m ∈ N such that

int
⋂

n≥m

S(wn) 6= ∅;

(iii) the multifunction F has nonempty, weakly∗ compact and convex values, and

is upper hemicontinuous and η-monotone;

(iv) the functional y 7→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F (K)×K.
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Then, (MQVLI) is well-posed if and only if

Qε 6= ∅, ∀ε > 0, and lim
ε→0

diamQε = 0. (5)

The proof of the theorem relies on the following lemma, which will be also used

in the next section.

Lemma 3.1 Assumptions as in Theorem 3.1. Let {xn}n ⊆ K be an approximating

sequence. If {xn}n converges to some xo ∈ K, then xo is a solution of (MQVLI).

Proof. Since {xn}n an approximating sequence, there exists a sequence {un}n

in E∗ with un ∈ F (xn), ∀n ∈ N, and a sequence {εn}n in R with εn ↓ 0 such that

d(xn, S(xn)) < εn and

〈un, η(xn, y)〉+ f(xn)− f(y) ≤ εn, ∀y ∈ S(xn), n ∈ N.

For each n ∈ N, choose x′n ∈ S(xn) such that ‖xn − x′n‖ < 2d(xn, S(xn)) < 2εn.

Then obviously x′n → x0. By Mosco convergence we have lim infn S(xn) = S(x0).

Thus, x0 ∈ S(x0).

Assumption (ii) applied to the constant sequence wn = x0, n ∈ N, implies that

intS(xo) 6= ∅. Choose y ∈ intS(xo). Since S(xo) = lim infn S(xn), Lemma 2.3

implies that y ∈ S(xn) for n sufficiently large. Using successively that η(·, y) is
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(s, w)-continuous, f is lsc, F is η monotone, and {xn}n is an approximating sequence,

we obtain for every v ∈ F (y):

〈v, η(xo, y)〉+ f(xo)− f(y) ≤ lim inf
n

{〈v, η(xn, y)〉+ f(xn)− f(y)}

≤ lim inf
n

{〈un, η(xn, y)〉+ f(xn)− f(y)}

≤ lim
n

εn = 0.

Thus, for every y ∈ intS(xo) and every v ∈ F (y), 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0

holds. Applying Lemma 2.2 for So = S(xo) and S1 = intS(xo) we obtain the existence

of vo ∈ F (xo) such that ∀y ∈ S(xo), 〈vo, η(xo, y)〉 + f(xo) − f(y) ≤ 0. Thus, xo is a

solution of (MQVLI). �

Proof of Theorem 3.1. Suppose that (5) holds. Let us show that there exists

at most one solution of (MQVLI). Indeed, if there existed two solutions z1 and z2,

then we would have z1, z2 ∈ Qε for all ε > 0, thus limε→0 diamQε ≥ ‖z1 − z2‖,

a contradiction. Note also that there exist approximate sequences for (MQVLI);

indeed, for any sequence {εn}n in Rn with εn ↓ 0, and any choice of xn ∈ Qεn (which

is nonempty by assumption), {xn}n is an approximate sequence. Hence, it suffices to

show that any approximate sequence converges to a solution of (MQVLI).
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Let {xn}n ⊆ K be an approximating sequence for (MQVLI). Then xn ∈ Qεn ⊆

Qεm for each n ≥ m. Using (5) we deduce that {xn} is a Cauchy sequence, thus

converges to some x0 ∈ K. Applying Lemma 3.1 we deduce that xo is a solution of

(MQVLI) and the problem is well-posed.

The converse is standard: assume that the problem (MQVLI) is well-posed. Then

Qε 6= ∅ for every ε > 0, since Qε contains the unique solution of (MQVLI). Given any

sequence {εn}n such that εn → 0, for each n ∈ N we can find x
(1)
n ,x

(2)
n ∈ Qεn such that

‖x(1)
n − x

(2)
n ‖ ≥ 1

2
diamQεn . The sequences {x(1)

n } and {x(2)
n } are approximating. Since

the problem is well-posed, both sequences converge to the unique solution. Thus,

limn ‖x(1)
n − x

(2)
n ‖ = 0. This implies that limn diamQεn = 0 and, since this is true for

any sequence {εn}n, we deduce that limε→0 diamQε = 0. The proof is complete. �

Remark 3.1 a) It follows from the above proof and Lemma 2.3 that in case E is

finite-dimensional, we can replace condition (ii) by the assumption that intS(x) 6= ∅

for all x ∈ K.

b) In some papers (Refs. 10, 13 ) it is assumed that the set-valued mapping S has

nonempty convex values, and is (s, s) lsc, (s, w) closed (with E reflexive) and (s, w)

subcontinuous on K. However, it is known that a map is (s, w) closed and (s, w)
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subcontinuous if and only if it is (s, w) usc and has weakly compact values (see for

instance Ref. 9 ). Thus our assumption (i) is weaker, and it avoids weak compactness

of the values so that S(x) can be unbounded.

If we strengthen the continuity requirements, we may avoid condition (ii) and also

monotonicity of F .

Theorem 3.2 Let E be a real Banach space with the dual E∗ and K be a nonempty,

closed and convex subset of E. Let f : K → R be convex and continuous, and

η : K × K → E be a mapping with η(x, x) = 0, ∀x ∈ K, which is (s × s, s)-

continuous. Let S : K → 2K and F : K → 2E∗
be multifunctions. Assume that the

following conditions hold:

(i) the multifunction S has nonempty convex values, and for each sequence (xn)n

in K converging to x0, the sequence {S(xn)}n Mosco converges to S(x0);

(ii) the multifunction F has nonempty, weakly∗ compact and convex values, and

is (s, w∗)- usc;

(iii) the functional y 7→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F (K)×K.

Then, (MQVLI) is well-posed if and only if

Qε 6= ∅, ∀ε > 0, and lim
ε→0

diamQε = 0.
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We separate again the main argument of the proof, in view of subsequent use:

Lemma 3.2 Assumptions as in Theorem 3.2. Let {xn}n ⊆ K be an approximating

sequence. If {xn}n converges to some xo ∈ K, then xo is a solution of (MQVLI).

Proof. Since {xn}n an approximating sequence, there exists a sequence {un}n in

E∗ with un ∈ F (xn), ∀n ∈ N, and there exists a sequence {εn}n in R with εn ↓ 0

such that d(xn, S(xn)) < εn and

〈un, η(xn, y)〉+ f(xn)− f(y) ≤ εn, ∀y ∈ S(xn), n ∈ N.

As in Lemma 3.1, we infer that xo ∈ S(xo). Since S(xn) Mosco converges to S(xo),

for every y ∈ S(xo) there exists a sequence yn ∈ S(xn), n ∈ N, such that lim yn = y in

the strong topology. By our assumption on η, the sequence {lim η(xn, yn)}n converges

strongly to η(xo, y). Since F is (s, w∗) usc with weakly∗ compact values, the image

of the sequence {xn}n through F is relatively weakly∗ compact; hence there exists a

subnet {uα}α of {un}n weakly∗ converging to some uo ∈ F (xo). The set
⋃

n F (xn) is

bounded by some number m > 0. Consequently, the net {uα}α is also bounded by
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m. It follows that

|〈uα, η(xa, yα)〉 − 〈uo, η(xo, y)〉| ≤ |〈uα, η(xa, yα)− η(xo, y)〉|+ |〈uo − uα, η(xo, y)〉|

≤ m |η(xa, yα)− η(xo, y)|+ |〈uα − uo, η(xo, y)〉| → 0.

Hence,

〈uo, η(xo, y)〉+ f(xo)− f(y) = lim
α

(〈uα, η(xa, yα)〉+ f(xα)− f(yα)) ≤ lim
α

εα = 0.

Thus, xo is a solution of (MQVLI).

Proof of Theorem 3.2. Assume that condition (5) holds. As in the proof of

Theorem 3.1, we have to show that if {xn}n ⊆ K is an approximating sequence for

(MQVLI), then it converges to a solution of (MQVLI). As in Theorem 3.1, {xn}n

converges to a point xo ∈ K. Applying Lemma 3.2 we deduce that xo is a solution

of (MQVLI) and the problem is well-posed. The converse can be shown exactly as in

Theorem 3.1. �

Comparing with Theorem 3.2 in Ref. 10 , we see that besides treating a more

general multivalued problem and imposing weaker conditions on the map S, we also

avoid the monotonicity assumption.

We have analogous results for L-posedness:
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Theorem 3.3 Assumptions as in Theorem 3.1, but with F η-pseudomonotone with

respect to f , instead of η-monotone. Then (MQVLI) is L-well-posed if and only if

Lε 6= ∅, ∀ε > 0, and lim
ε→0

diamLε = 0. (6)

Lemma 3.3 Assumptions in Theorem 3.3. Let {xn}n ⊆ K be an L-approximating

sequence. If {xn}n converges to some xo ∈ K, then xo is a solution of (MQVLI).

Proof. Since {xn}n is an L-approximating sequence, there exists a sequence {εn}n

in R with εn ↓ 0, such that

d(xn, S(xn)) ≤ εn and 〈v, η(xn, y)〉+f(xn)−f(y) ≤ εn, ∀y ∈ S(xn), v ∈ F (y), n ∈ N.

As in the proof of Lemma 3.1, xo ∈ S(xo). For each y ∈ intS(xo), one knows by

virtue of Lemma 2.3 that y ∈ S(xn) for n sufficiently large. Thus for all v ∈ F (y),

〈v, η(xo, y)〉+ f(xo)− f(y) ≤ lim inf
n

{〈v, η(xn, y)〉+ f(xn)− f(y)} ≤ lim
n

εn = 0.

Applying Lemma 2.2 exactly as in Lemma 3.1, we infer that xo is a solution of

(MQVLI). �

Proof of Theorem 3.3. Assume that (6) holds. By Remark 2.2(a), every

solution of (MQVLI) belongs to Lε for all ε > 0. As in Theorem 3.1, this implies

that the solution, if it exists, is unique. Also, L- approximating sequences exist,
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since for each sequence {εn}n in R with εn ↓ 0 and each choice xn ∈ Lεn , {xn}n is

an L-approximating sequence; thus it suffices to show that every L-approximating

sequence for (MQVLI) converges to a solution of (MQVLI).

Let {xn}n ⊆ K be an L-approximating sequence. As in the proof of Theorem 3.1,

{xn}n converges to some xo ∈ K. By Lemma 3.3, xo is a solution of (MQVLI) and

the problem is L-well-posed.

Conversely, assume that the problem is L-well-posed; since F is η-pseudomonotone

with respect to f , we know that the unique solution of (MQVLI) belongs to Lε, thus

Lε 6= ∅ for each ε > 0. The proof concludes as in Theorem 3.1. �

Theorem 3.4 Assumptions as in Theorem 3.2. Assume further that F is η-pseudomonotone

with respect to f . Then (MQVLI) is L-well-posed if and only if condition (6) holds.

Lemma 3.4 Assumptions as in Theorem 3.2. Let {xn}n ⊆ K be an L-approximating

sequence. If {xn}n converges to some xo ∈ K, then xo is a solution of (MQVLI).

Proof. As in Lemma 3.3, we have that xo ∈ S(xo) and

〈v, η(xn, y)〉+ f(xn)− f(y) ≤ εn, ∀y ∈ S(xn), v ∈ F (y), n ∈ N

for some sequence {εn}n in R such that εn ↓ 0.
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Since lim infn S(xn) = S(xo), for each y ∈ S(xo) there exists a sequence yn ∈

F (xn), n ∈ N, strongly converging to y. For each n ∈ N select vn ∈ F (yn). Since F

is (s, w∗) usc with weakly∗ compact values, we can find a bounded subnet {vα}α of

{vn}n, weakly∗-converging to some v ∈ F (y). Hence 〈vα, η(xα, yα)〉 → 〈v, η(xo, y)〉.

Since by assumption

〈vn, η(xn, yn)〉+ f(xn)− f(yn) ≤ εn, n ∈ N

we deduce from the above that

∀y ∈ S(xo), ∃v ∈ F (y) : 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0. (7)

Note that the above relation is true for some (not all) v ∈ F (y). We now apply

Lemma 2.2 to So = S1 = S(xo) and deduce that xo is a solution of (MQVLI). �

Proof of Theorem 3.4. Assume that condition (6) holds. If {xn}n ⊆ K is an

L-approximating sequence, then as in the proof of Theorem 3.1, {xn}n converges to

some xo ∈ K. Lemma 3.4 then implies that xo is a solution of (MQVLI). Thus, the

problem is well-posed. The converse can be proven as in Theorem 3.3. �

We now show that in the special case where E is finite-dimensional and K is

compact, under suitable assumptions, (MQVLI) is L-well-posed if and only if it has a
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unique solution. It is known (Ref. 10) that one cannot hope for such a result without

assuming that K is compact.

Theorem 3.5 Let E = Rk, K be a convex compact subset of Rk, f : K → R

be convex and lsc, F : K → 2Rk
be upper hemicontinuous with nonempty, convex

compact values, and η : K×K → E be continuous with η(x, x) = 0 for all x ∈ K and

such that 〈v, η(x, ·)〉 is concave for each (v, x) ∈ F (K)×K. Let further S : K → 2K

be a continuous multifunction1 such that for each x ∈ K, S(x) is nonempty, convex,

and such that dim(S(x)) ≥ k − 1. Then the mixed quasivariational-like inequality

(MQVLI) is L-well-posed if and only if it has a unique solution.

Proof. Assume that (MQVLI) has a unique solution zo, and let {xn}n be an

L-approximating sequence. Since K is compact, this sequence has a subsequence

converging to some xo. If we show that x0 is a solution, then we would have that

xo = zo and this would imply that the whole sequence converges to zo.

1In a finite-dimensional space, this is equivalent to our usual assumption that for xn → xo, S(xn)

Mosco converges to S(xo). In view of the compactness of K, this is also equivalent to the assumption

that S is closed and lsc, used in Ref. 10 .
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So we can assume with no loss of generality that xn → xo. Since {xn}n is L-

approximating, there exists a sequence {εn}n in R with εn ↓ 0 and such that

〈v, η(xn, y)〉+ f(xn)− f(y) ≤ εn, ∀y ∈ S(xn), ∀v ∈ F (y), n ∈ N (8)

According to Proposition 2.1, for each y ∈ riS(xo) we can find a straight line

passing through y and a sequence {yn}n on this line, such that yn → y and yn ∈ S(xn),

n ∈ N: in fact, if dim S(xo) = k−1, it suffices according to Proposition 2.1 to consider

any straight line that does not belong to the affine subspace generated by S(xo); if

dim S(xo) = k, then according to Lemma 2.3 we can take any line through xo, and

yn = y for all n ∈ N. Choose vn ∈ F (yn), n ∈ N. Since F is upper hemicontinuous,

by choosing a subsequence if necessary, we may assume with no loss of generality that

{vn}n converges to some v ∈ F (y). From (8) it follows that

〈vn, η(xn, yn)〉+ f(xn)− f(yn) ≤ εn, n ∈ N.

According to our assumptions, f(xo) ≤ lim inf f(xn), lim f(yn) = f(y) (because f

as a convex and lsc function, is continuous on any straight line), lim〈vn, η(xn, yn)〉 =

〈v, η(xo, y)〉 and lim εn = 0. Hence

∀y ∈ riS(xo), ∃v ∈ F (y) : 〈v, η(xo, y)〉+ f(xo)− f(y) ≤ 0.
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Using now Lemma 2.2 for So = S(xo) and S1 = riS(xo), we infer that xo is a

solution of (MQVLI), as desired. �

Corollary 3.1 Assumptions as in Theorem 3.5. Assume further that F is η-monotone.

Then (MQVLI) is well-posed if and only if it has a unique solution.

Proof. Assume that (MQVLI) has a unique solution xo. Let {xn}n be an approx-

imating sequence for (MQVLI). Then the η-monotonicity of F immediately implies

that {xn}n is also L-approximating. By Theorem 3.5, (MQVLI) is L-well-posed;

hence, {xn}n converges to xo. Thus (MQVLI) is well-posed. �

4 well-posedness in the generalized sense

The concept of well-posedness has often to be amended to accommodate the possible

existence of more than one solutions of the problem under investigation (optimization

problem, variational inequality or more general). Generalizing the definitions in Refs.

6 and 10 , we give the following definition.

Definition 4.1 A mixed quasivariational-like inequality is called well-posed (resp.

L-well-posed) in the generalized sense if the set of solutions Ω of (MQVLI) is nonempty
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and every approximating sequence (resp., L-approximating sequence) {xn}n has a

subsequence strongly converging to a solution of (MQVLI).

For the study of well-posedness in the generalized sense one usually makes use of

the Kuratowski measure of noncompactness:

Definition 4.2 Given a subset A of a metric space (X.d), the Kuratowski measure

of noncompactness α(A) is the infimum of ε > 0 such that there exists a finite covering

of A by sets of diameter at most ε.

With the help of this measure of noncompactness, we can give necessary and

sufficient conditions for well-posedness in the generalized sense, under continuity and

generalized monotonicity conditions which are the same as the ones we used for well-

posedness.

Theorem 4.1 Assumptions as in Theorem 3.1 or Theorem 3.2. Then (MQVLI) is

well-posed in the generalized sense if and only if

Qε 6= ∅, ∀ε > 0 and lim
ε→0

α(Qε) = 0. (9)

Proof. Assume that (MQVLI) is well-posed in the generalized sense. Then

Qε ⊇ Ω 6= ∅ for all ε > 0. Assume that limε→0 α(Qε) = 0 does not hold; then since
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ε ≥ ε′ implies Qε ⊇ Qε′ and α(Qε) ≥ α(Qε′), there exists δ > 0 such that α(Qε) > δ

for all ε > 0. Define a sequence {xn}n inductively as follows: choose x1 ∈ Q1. Having

chosen x1, . . . , xn−1, we know that the spheres B(xi, δ/2), i = 1, . . . , n − 1 do not

cover Q 1
n

since α(Q 1
n
) > δ and diamB(xi, δ/2) = δ; then choose

xn ∈ Q 1
n
\

n−1⋃
i=1

B(xi, δ/2).

By construction, ‖xn − xm‖ ≥ δ/2 for all n,m ∈ N, thus {xn}n has no converging

subsequence. But xn ∈ Q 1
n

hence {xn}n is an approximating sequence for (MQVLI),

a contradiction.

Conversely, assume that (9) holds. Let {xn}n be an approximating sequence for

(MQVLI). Then there exist εn > 0 such that xn ∈ Qεn ⊆ Qεn , n ∈ N. Since

limn α(Qεn) = limn α(Qεn) = 0, this implies that {xn}n has a subsequence converging

to some x0 ∈ K (cf Ref. 3 page 4). Using Lemma 3.2 or Lemma 3.2, depending on

our set of assumptions, we deduce that xo is a solution and (MQVLI) is well-posed

in the generalized sense. �

Remark 4.1 In the general theory of measures of noncompactness it is shown that

any measure of noncompactness µ has the following property: any sequence {xn}n

with the property limn µ({xn, xn+1, . . .}) = 0 has a cluster point (Ref. 3 pg. 11). It
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is clear from the above proof that if

Qε 6= ∅, ∀ε > 0 and lim
ε→0

µ(Qε) = 0 (10)

holds with any measure of noncompactness µ, then (MQVLI) is well-posed in the gen-

eralized sense. Indeed, if {xn}n is an approximating sequence then {xn, xn+1, . . .} ⊆

Qεn hence limn µ({xn, xn+1, . . .}) = 0 holds, so {xn}n has a converging subsequence;

then the last part of the proof of Theorem 4.1 shows that this subsequence converges

to a solution of (MQVLI). However, the converse is not true for some measures of non-

compactness; if (MQVLI) is well-posed in the generalized sense but not well-posed

and the assumptions of Theorem 3.1 are satisfied, then (10) does not hold for the

measure of noncompactness µ(A) = diam(A). However, if µ is a regular measure

of noncompactness, then there exists a constant c > 0 such that for each nonempty

bounded set A, µ(A) ≤ cα(A) (cf pages 7 and 12 in Ref. 3 ). In this case, condition

(9) implies condition (10). We conclude that Theorem 4.1 holds if α is replaced by

any regular measure of noncompactness µ.

An analogous result holds for L-well-posedness:

Theorem 4.2 Assumptions as in Theorems 3.3 or 3.4. Then (MQVLI) is L-well-
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posed in the generalized sense if and only if

Lε 6= ∅, ∀ε > 0 and lim
ε→0

α(Lε) = 0. (11)

Proof. Assume that (MQVLI) is L-well-posed in the generalized sense. Since

F is η-pseudomonotone with respect to f , one has Lε 6= ∅, ∀ε > 0. Exactly as in

Theorem 4.1, if we assume that limε→0 α(Lε) > 0 we deduce that there exists an

L-approximating sequence which has no convergent subsequence. Thus (11) holds.

Conversely, assume that (11) holds. As in the proof of Theorem 4.1, we deduce

that every L-approximating sequence has a convergent subsequence. In virtue of

Lemmas 3.3 and 3.4, this limit is a solution of (MQVLI), thus the problem is L-well-

posed in the generalized sense. �

Finally, we show that L-well-posedness in the generalized sense can be automati-

cally valid in finite dimensions.

Theorem 4.3 Let E = Rk, K be a convex compact subset of Rk, f : K → R

be convex and continuous, F : K → 2Rk
be upper semicontinuous with nonempty,

convex compact values, and η : K × K → Rn be continuous with η(x, x) = 0 for

all x ∈ K and such that 〈v, η(x, ·)〉 is concave for each (v, x) ∈ F (K) × K. Let
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further S : K → 2K be a continuous multifunction such that for each x ∈ K, S(x) is

nonempty and convex.

Then the mixed quasivariational-like inequality (MQVLI) is well-posed and L-

well-posed in the generalized sense.

Proof. We first show that Ω is nonempty. The proof of this fact actually follows

the proof of Theorem 3.1 in Ref. 4 with small adjustments and is reproduced for

convenience of the reader. Since F is upper semicontinuous with compact values,

the set F (K) is compact, hence also the set D = coF (K) is compact. It is easy

to check that 〈v, η(x, ·)〉 is concave for each (v, x) ∈ D × K. Define the function

ϕ : K ×K ×D → R by ϕ(y, x, v) = 〈v, η(x, y)〉 − f(y). Then ϕ is continuous hence

by the maximum Theorem the map T : K ×D → 2K\{∅} defined by

T (x, v) = argmax
y∈S(x)

ϕ(y, x, v)

is usc with nonempty compact values. Since ϕ(·, x, v) is concave, T (x, v) is a convex

set for (x, v) ∈ K ×D. Define a map T1 : K ×D → 2K×D by

T1(x, v) = {(y, w) : y ∈ T (x, v), w ∈ F (x)}.

Then T1 is usc with nonempty compact convex values. By the Kakutani fixed

point Theorem, there exists (xo, vo) ∈ K × D such that (xo, vo) ∈ T1(xo, vo). This
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implies that vo ∈ F (xo) and xo ∈ T (xo, vo), i.e.,

ϕ(y, xo, vo) ≤ ϕ(xo, xo, vo) = −f(xo), ∀y ∈ S(xo).

Thus, xo ∈ Ω so Ω 6= ∅.

Now let {xn}n be an approximating sequence. Since K is compact, there exists a

subsequence converging to some limit x1. By Lemma 3.2, x1 ∈ Ω. Hence the problem

is well-posed in the generalized sense. Likewise, if {xn}n is an L-approximating

sequence, then it has a converging subsequence which by Lemma 3.4 converges to an

element of Ω. Hence the problem is L-well-posed in the generalized sense. �
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