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Abstract. A coercivity condition is usually assumed in variational in-

equalities over non-compact domains to guarantee the existence of a solution.

We derive minimal, i.e., necessary coercivity conditions for pseudomonotone

and quasimonotone variational inequalities to have a nonempty, possibly un-

bounded solution set. Similarly, a minimal coercivity condition is derived for

quasimonotone variational inequalities to have a nonempty, bounded solu-

tion set, hereby complementing recent studies for the pseudomonotone case.

Finally, for quasimonotone complementarity problems previous existence re-

sults involving so-called exceptional families of elements are strengthened by

considerably weakening assumptions in the literature.
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1 Introduction

The study of variational inequality problems (VIP) over unbounded domains

is usually based on a coercivity condition, which is set in order to guarantee

existence of solutions. Such conditions abound in the literature. Some of

them are clearly stronger than others. In some cases, a comparison between

different coercivity conditions is not obvious; at first look, a condition may

seem stronger than another. But in closer examination one may prove that

the two conditions are equivalent.

In recent years, there has been some effort to find “minimal” coerciv-

ity conditions, i.e., conditions that cannot be weakened. In a sense, these

conditions should not only be sufficient, but also necessary for the solution

set to be nonempty (provided that some other generalized monotonicity and

continuity assumptions hold). In this direction, Crouzeix (Ref. 1) found a

minimal coercivity condition for a finite-dimensional, pseudomonotone VIP

to have a nonempty, bounded set of solutions. In Ref. 2, Crouzeix’ result



was generalized to infinite-dimensional spaces. It was also shown that sev-

eral seemingly different coercivity conditions are actually equivalent to each

other.

Other authors focused their efforts on finding minimal coercivity condi-

tions that permit the solution set to be unbounded. To this end, Smith (Ref.

3) in a study of complementarity problems introduced a condition involving

a so-called “exceptional sequence of elements” instead of using a coercivity

condition. His results and methods were considerably extended by Isac and

other authors who instead use the notion of “exceptional family of elements”

(Refs. 4-7). Another approach is that of Flores-Bazan who even considered

the more general (pseudomonotone) equilibrium problems by using recession

cones (Refs. 8-9).

In this paper, we will consider various coercivity conditions in connection

with the nonemptiness and the boundedness of the set of solutions. Following

the preliminary Section 2, in Section 3 we will show that for pseudomonotone



VIP two of the frequently encountered coercivity conditions are equivalent

to each other as well as to the nonemptiness of the set of solutions. Also, a

minimal coercivity condition is given for single-valued, quasimonotone VIP.

In both cases very weak assumptions are used. For instance, for the quasi-

monotone case we do not use any assumption on the existence of inner points

as in Ref. 10 or that the map is densely pseudomonotone as in Ref. 11. In

Section 4, we focus our attention on multivalued quasimonotone VIP and

give a minimal coercivity condition for the solution set to be nonempty and

bounded. The necessity of the coercivity condition is established under the

assumption that the VIP has nontrivial solutions. For reasons we will ex-

plain, this assumption cannot be avoided.

Finally, in Section 5 we relate our results to those involving exceptional

families of elements rather than a coercivity condition. We show that one

can obtain results analogous to those existing in the literature under consid-

erably weaker assumptions: the map needs to be only quasimonotone rather



than pseudomonotone and needs to satisfy only a very weak continuity as-

sumption. It may well be discontinuous.

2 Notation and Preliminary Results

Let X be a normed space and X* be its dual. For every closed convex subset

K of X and every r > 0 we define

K, ={ze K:|z| <r}, K ={reK:|z| <r}.

Let T : K = X* be a multivalued map. The variational inequality
problem (VIP) and the Minty variational inequality problem (MVIP) are
defined as follows:

(VIP) find xy € K such that

Ve € K,3z; € T (o) : (x5, — x0) > 0

and



(MVIP) find xy € K such that

Vo e K,Vo* € T (x) : (%, — x9) > 0.

A solution zy € K of VIP is called strong if there exists zf € T (z) such

that (zf, 2 — o) > 0 holds for all x € K, i.e., if 2§ in VIP does not depend

on z. Let S(K) be the set of solutions of VIP, Sy, (K) the set of strong

solutions of VIP and S); (K) the set of solutions of MVIP in the set K.

In Ref. 12, another notion of solution was introduced. An element 2y € K

is called a local solution of MVIP if there exists a neighborhood U of xy such

that xy € Sy (K NU). The set of such local solutions will be denoted by

SLM (K) ObViOllSly, SM (K) g SLM (K)

A map T is called:

(i) pseudomonotone, if for every z,y € K and every z* € T (z), y* €

T (y), the following implication holds

(5 y—x)y>0= (y',y—x) >0

(ii) quasimonotone, if for every =,y € K and every z* € T (z), y* € T (y),
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the following implication holds

(z5y—2) >0=(y"y —2) >0

It is well known that properties of 1" entail some relations between the
sets S, Sy, and Sy. Following Ref. 13, we call T upper sign-continuous if for

all z,y € K the following implication holds, where z; = ty + (1 — t) x:

Vte (0,1), inf (zy—2)>0)= sup (z",y—x)>0.
m*ET(It) % ET(&?)

For example, any upper hemicontinuous map is upper sign-continuous.
We recall that a map is upper hemicontinuous if its restriction to every line
segment of K is upper semicontinuous with respect to the w*-topology on
X*. Also, any positive function in R is upper sign-continuous. The following

proposition is true; see, for instance, Refs. 2, 12.

Proposition 2.1 (i) If T is pseudomonotone, then S (K) C Sy (K) =
S (K).
(ii) If T is upper sign-continuous with nonempty w*-compact values, then

Scm (K) C S (K).



(iii) If T has w*-compact and convex values, then S (K) = Sy, (K).

The following proposition from Ref. 12 will be of use:

Proposition 2.2 Let K be a nonempty, convex, weakly compact subset of

X. Let further T: K = X* be a quasimonotone map. Then Sy, (K) # 0.

Combining with Proposition 2.1(ii), we get immediately the following

existence result that is a simplified version of Proposition 2.2 of Ref. 12.

Proposition 2.3 Let K be a nonempty, convex, weakly compact subset of

X. Let further T : K = X* be an upper sign-continuous quasimonotone

map. If the values of T are nonempty and w*-compact, then S (K) # (.

We will make use of Sion’s minimax theorem (Ref. 14), in the version

given in Ref. 15:

Theorem 2.1 Let M be a convex subset of a linear topological space, N be

a convex compact subset of a linear topological space, and f: M x N — R

be upper semicontinuous on M and lower semicontinuous on N. Suppose



that f is quasiconcave on M and quasiconvex on N. Then
minsup f = sup min f.
N wm M N

Given a nonempty subset K of X, an element x* € X* is called per-
pendicular to K if (z*,y —2) = 0 for all y,z € K. If we fix y € K, then
equivalently z* € X* is perpendicular to K if (x*,y — z) =0 for all z € K.

If K is closed and convex and T : K = X* is a multivalued map, set
Z ={x € K:3z" €T () such that z* is perpendicular to K} .

We will call the elements of Z nodes. Note that Z C S, (K). The
elements of the set S (K)\Z are usually called nontrivial solutions of VIP
(Ref. 10). One of the main difficulties in dealing with quasimonotone maps
stems from the nodes. In fact, if 7" is any quasimonotone map and x, any

element in K, then the map 7" defined by

(

T (o) U{0}, if z =x
T' (@) = |

T (x), if x # 1




is quasimonotone and has zy as a solution of VIP. Note that if T satisfies
one of the coercivity conditions to be studied below, then so does T”. Thus
the structure of the solution set S (K) can be modified by adjoining some
nodes to it, without harm to the properties of the map. That is why in
many theorems, where we deduce properties of a quasimonotone map from

properties of solutions, we will have to exclude nodes.

3 Coercivity Conditions for Nonempty (Pos-

sibly Unbounded) Solution Sets

As noted earlier, for pseudomonotone maps, necessary and sufficient coer-
civity conditions for the set of solutions of VIP and MVIP to be nonempty
and bounded have been found in Refs. 1,2. We now establish an analogous
result on coercivity conditions that does not entail boundedness of the set of

solutions.
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We consider the following conditions:

(C) dneN:Vze K\K,,3y € K, such that Vz* € T (z),{(z", 2 —y) > 0

() dneN:Vre K\K,,Jy € K, |y|| <|z],

such that Vz* € T (x), (2", 2 — y) > 0.

Condition (C’) is equivalent to the following condition (H2), considered

by Luc (Corollary 4.5 in Ref. 11) for single-valued maps: for every se-

quence (z,) € K with lim||z,|| = 400, there exist np € N and y € K

with ||y|| < ||#n, || such that (T (x,,) , xn, — y) > 0. Luc shows that this con-

dition, under suitable assumptions for the map 7" and the set K, is sufficient

for the VIP to have a solution. Condition (C’) was also considered by Isac

(Definition 4 in Ref. 4) for single-valued maps. In Ref. 4 it is shown that in

case of a complementarity problem, (C’) implies that 7" has no exceptional

family of elements and thus under some rather restrictive assumptions (7

has to be defined on the whole space, be continuous and a k-set field) the
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complementarity problem has a solution.

Condition (C) is the one considered in Ref. 10, modified so as to apply
for multivalued maps. Obviously, (C) entails (C’). Less obviously, as we will
see in the next theorem, the two conditions are actually equivalent under
suitable generalized monotonicity and continuity assumptions. In fact, each

of them is necessary and sufficient for VIP to have a solution.

Lemma 3.1 Let K be a convex subset of a normed space X, and T : K =
X* be a map with nonempty values. Let » > 0 be given.

(i) If x. € S(K,), T has w*-compact values and there exists y € K such
that Vz* € T (z,), (z*, 2, — y) > 0, then z, € S (K).

(ii) If ¥ € T (x,) is such that

(zy, 2 —2,) >0 (1)

r

holds for every = € K,, and there exists y € K, such that (x},z, —y) > 0,

then (1) holds for every z € K, i.e., z, € Sg, (K).

Proof. (i) Define the function g : K — R by g (7) = sup,.cr,,) (2%, 7 — ;).
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Note that g is convex and z, is a global minimum of g on K,. By our as-
sumption on y, g (y) < g (z,) = 0. It follows that g (y) = ¢ (z,) and y is also
a global minimum of g on K,. But ||y|| < r, hence y is also a local minimum
of g on K. Since g is convex, y is a global minimum of g on K. Using
again ¢ (y) = g (z,), we infer that x, is a global minimum of g in K. Hence
MaX,+ () (T, T — Tp) = SUD,eer(y,) (T°, 7 — 2,) > 0 holds for all z € K.
This means that x, € S (K) as asserted.

(ii) The proof is the same as in part (i) with g (z) = (2%, 2 — z,). O

)

In the above lemma, note that whenever ||z,|| < r, we may take y = z,.
Hence in this case, if x, € S(K,) (respectively, x, € Sy, (K,)), then z, €
S (K) (respectively, z, € Sy (K)).

Now we deduce the following existence theorem for quasimonotone maps.

Theorem 3.1 Let X be reflexive, K C X be nonempty, closed and convex,
T : K = X* be quasimonotone, upper sign-continuous with nonempty, w*-

compact values. If condition (C’) holds, then S (K) # ().
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Proof. Suppose that (C’) holds. For all r > n where n is given by

condition (C’), K, is w*-compact and convex, nonempty for r sufficiently

large. Hence by Proposition 2.3, S(K,) # (. Choose z, € S(K,). By

condition (C’), there exists y € K, ||y|| < r such that (z*,z, —y) > 0 for

all 2* € T (z,). Indeed, if ||z,|| = r, this is exactly what condition (C’)

says, while in case ||z.]| < r we may take y = z,. Hence by Lemma 3.1,

z, € S (K). O

Comparing with the corresponding result in Ref. 11 (Corollary 4.5), we

see that there the map was assumed to be densely pseudomonotone, which

is stronger than quasimonotone.

As an immediate corollary, we obtain the following theorem, which shows

the equivalence of conditions (C) and (C’) and also the fact that each is

necessary and sufficient for VIP to have a nonempty (possibly unbounded)

set, of solutions.

Theorem 3.2 Let X be reflexive, K C X be nonempty, closed and convex,

14



T : K = X* be pseudomonotone, upper sign-continuous with nonempty, w*-
compact values. Then the following are equivalent:

(a) condition (C) holds,

(b) condition (C’) holds,

(c) S (K) #0.

Proof. Obviously, (a) implies (b) and (b) implies (c¢) by the preceding
theorem. Finally, if (c) holds, choose any z, € S and n > ||zg||. Since
T is pseudomonotone, o € Sy. Hence it is obvious that (C) holds with
Yy = Zo. U

We should note that in the above theorem implications (a) = (b) = (c)
need only quasimonotonicity of the map, rather than pseudomonotonicity.
Unfortunately, (¢) = (a) or (¢) = (b) do not hold for quasimonotone maps,

even if there are no nodes.
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Example 3.1 Let X =R?*, K =R x [0, +00) and T be defined by

(

(0,1) b1

((t,1),te[0,1]} b=1

\

Then T is quasimonotone, upper semicontinuous with compact, convex

values. Also, Z =0, S (K) =R x {0} # 0, but coercivity conditions (C) and

(C”) do not hold.

However for single-valued quasimonotone maps we do have the implica-

tion (c)=-(a) provided that we exclude the nodes. This result follows easily

from the lemma below. Let us recall first that a map 7" : K — X* is said to

be hemicontinuous if its restriction to every line segment of K is continuous

with respect to the weak topology on X*.

Lemma 3.2 (See Ref. 10.) Let T': K — X* be a quasimonotone hemicon-

tinuous map. If zg, z € K are such that (T (z9),z — o) > 0 holds, then at

least one of the following holds:

(T (x),x —x0) >0 or  Vze K, (T(x),z—z9) <0.

16



Proposition 3.1 Let X be a normed space, K C X be closed and convex,
and T : K — X* be quasimonotone and hemicontinuous. If S (K)\Z # 0,

then condition (C) holds.

Proof. Choose any zo € S (K)\Z and n € N such that ||zo|| < n. Then
(T (x9) ,& — zo) > 0 holds for every x € X. Also, there exists at least some
z € K such that (T (z¢),2 —xp) > 0 because otherwise one would have
r9 € Z, a contradiction. Thus the previous lemma implies that for every
x € K, (T (z),xr — x9) > 0 holds. In particular, coercivity condition (C) is

satisfied with y = xy. O

4 Coercivity Conditions for Nonempty Bounded

Solution Sets

Consider the following coercivity condition for 7" on K:

(Cl) IneN:Vz e K\K,,3y € K, such that Vz* € T (z), (z*,x — y) > 0.

17



It is known that, in case X is reflexive, K C X is nonempty, closed and

convex, and T is pseudomonotone, upper sign-continuous with nonempty,

convex, w*-compact values, condition (C1) is necessary and sufficient for

S (K) to be nonempty and bounded (Ref. 2). Actually, in Ref. 2 T was

assumed to be upper hemicontinuous, but the same proof is valid for upper

sign-continuous maps. For quasimonotone operators, sufficiency of (C1) un-

der these assumptions is an obvious consequence of Theorem 3.1, because

condition (C1) is obviously stronger than condition (C) which implies (C’).

Furthermore (C1) implies that S (K) C K,,, hence S (K) is bounded.

If we exclude nodes, we can show that condition (C1) is also necessary,

in the following sense.

Theorem 4.1 Let X be reflexive, K C X be nonempty, closed and con-

vex, and 7" be a quasimonotone, upper sign-continuous map with nonempty,

convex, w*-compact values. If S (K) is bounded and S (K)\Z is nonempty,

then (C1) holds.

18



Proof. Since S (K) is bounded, we can find ng such that S (K) C K,,,_;.

By reflexivity of X, K, is w*-compact. If (C1) does not hold, then for each

n > ng we may find z, in K\ K, such that

Vo € Ky, 3z, € T (z,), (x), 0 —x,) > 0.

n?

By Sion’s minimax theorem (Theorem 2.1), we may suppose that z¥ does

not depend on z, i.e.,

dx; € T (x,) Vo € Ky, (2,2 —xp) > 0. (2)

Let us show that

Ve e K, ,(x},x —x,) > 0. (3)

From (2) we know that (x},z — x,) > 0. Suppose that (z%,z — xz,) = 0.

Since x,, ¢ S (K), there exists y € K such that (z},y — x,) < 0. It follows

that for all ¢ € (0, 1), (z¥,ty + (1 — t) x — ,) < 0. However for ¢ sufficiently

small ty + (1 — t) x € K,,, and this contradicts (2).

Note that our assumptions imply that S (K) = S, (K). Choose z( €
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Ssir (K)\Z and xf € T (z) such that

Vo € K, (x5, —x9) > 0. (4)

Then choose z, = Azg + (1 — A)z, with A € (0,1) and n — 1 < ||z,|| < n.

This is possible because ||zg|| < n —1 while ||z,|| > n. Note that z, ¢ S (K)

since S (K) C Ky,-1.

Let us first note that (3) and quasimonotonicity of 7" imply that

Ve e K, ,Va* € T (x), (z",x — x,) > 0. (5)

Set A to be the open halfspace {x € X : (zf,r — x9) > 0}. Since zy ¢ Z,

KNA=#(. Forevery x € K N A, we can find 2’ = tx + (1 — t) 29, t € (0,1]

such that 2’ € K. One can immediately verify that 2’ € A, thus K, N A is

a nonempty convex set.

For each z € K, N A we have (z},x — z) > 0. By quasimonotonicity,

Va* € T (x), (z*, 2 —x9) > 0. (6)
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Combining relations (5) and (6) with the definition of 2, we infer that

Ve e K, NAVz" €T (z),{z",x — 2,) > 0. (7)

Using upper sign-continuity we infer that

Vee K, NA, 3z, € T (z,), (2,2 — z,) > 0.

In virtue of Sion’s minimax theorem, we can find 2z} € T (z,) such that

Vee K, NA,(z:,x— z,) > 0. (8)

Ifx € K-

n?’

choose any z; € K, N A. Using (4) and the definition of A,

we see that (z,z1] C K, N A. Thus by continuity (8) implies that

Vo e K, ,{(z,x — z,) > 0. (9)

Finally, for any # € K\K, we may choose =’ € (z,,z) N K, . Since
(2, 2" — 2,) > 0 in virtue of (9), it is obvious that (2}, x — z,) > 0. But this

n’

means that z, € S (K), a contradiction. O

Remark 4.1 Note that (C1) may not hold if S (K)\Z is empty. Consider

for instance in R the map 7' : [0,4+00) — R defined by T () = —x. Then T
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is a continuous quasimonotone map. The set S (K) = {0} is bounded, but

(C1) does not hold.

5 Exceptional Families of Elements

In this section we are going to relate the so-called “exceptional families of
elements” for complementarity problems (CP) (Refs. 4-7) to “partial solu-
tions” of CP and consequently obtain substantially stronger versions of the
corresponding results.

Let K C H be a closed, convex cone in a Hilbert space H and T : K = H

be a multivalued map. We consider the complementarity problem:

(CP)  find xy € K such that 3z € T (29) : 5 € K* and (xj, x9) =0

where K* is the dual cone of K.
It is known that CP is equivalent to finding a strong solution for the as-

sociated VIP. We now recall the concept of an exceptional family of elements

(Refs. 3-6).
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Definition 5.1 A family {z,},., C K is an exceptional family of elements

for T with respect to K, if for every r > 0 there exist a real number p, > 0

and an element z € T (x,) such that the following conditions are satisfied:

(i) up = pp, + x5 € K*,

(ii) (u,,x,.) =0,

(i) ||x,|| — oo as r — +oo.

The following theorem characterizes exceptional families of elements as

partial solutions of VIP.

Theorem 5.1 Let K be a closed convex cone in a Hilbert space H and

T : K = H be a map. Suppose that for every r > 0 there exists z, € K,

and 2 € T (z,) such that (z},x — z,) > 0 holds for all z € K,, but not for

all z € K. Then (z,) is an exceptional family of elements for 7.

Conversely, if there exists an exceptional family of elements (z,), and z*

are the corresponding elements of 7' (z,.), then for every =, # 0, (z¥, x — z,) >

0 holds for all z € K)|;,||, but not for all z € K. If in particular T is single-
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valued, then z, is a solution of VIP in K, |, but not in K.

Proof. Suppose that for every r > 0 there exist z, € K, and z} € T (z,)
with the asserted properties. We will show that (z,) is an exceptional family
of elements with u, = p,z, + =) where

_ <x:7x7‘>
7»-2

o =

If we assume that ||z.|| < r, then by taking y = z, in Lemma 3.1(ii)

we would infer that (2, z —x,) > 0 for all x € K, a contradiction. Hence

||x-|| = r, from which follows easily that lim,_, . ||z,|| = +00 and (u,,x,) =

0. Finally, g, > 0 since otherwise we would have (z¥,z, —0) > 0 and by

taking y = 0 in Lemma 3.1(ii) we would infer that (z}, z — x,) > 0 holds for
all x € K, a contradiction.

It remains to show that u, € K*. Using the definition of u,, we have to

verify that

vxeK,<x;,x_w>zo.

72

For a fixed r set y :x—w and z; =y +tx,, t > (&) Then z, € K

r2
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and 2-r € K,. Hence

[[2¢]

At
<xr,—r—xr> > 0=
Izl
<x:,y+ (t — @) xr> > 0. (10)

Note that (y,z,) = 0 implying ||z|| = /[|y||> + t2r2. By taking the limit
as t — +oo in (10) we deduce that (z%,y) > 0 as desired.

To show the converse, suppose that (x,) is an exceptional family of el-
ements and take any x, # 0 and the corresponding z;. Then there exists

pr > 0 such that u, € K* and (u,, z,) = 0 where u, = u,x, + z3. Note that
(22, — xp) = (Up — P, Ty = —piy (T, ) < 0.

This means that (z},z —z,) > 0 does not hold for x = 2z, € K. If

x € K|,), then

*

<l'r,.fU - xr> = <ur — My, T — xr> =

(ur, @) + pir (27, @0) = @, ) 2 o ([l2o]” = llae | flll) > 0.

Hence (z, — x,) > 0 holds for all z € K|, O
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The above theorem shows: if the assumptions on 7" imply that VIP has a

strong solution in every K,, then we have an alternative of the type “either

the CP has a solution or there exists an exceptional family of elements”. For

instance we have:

Corollary 5.1 Let K be a closed convex cone in a Hilbert space H and

T : K = H be a map. Suppose that 7" has nonempty, w*-compact and

convex values. If T' is quasimonotone and upper sign-continuous, then either

the CP has a solution or there exists an exceptional family of elements for

T.

Proof. Our assumptions on 7" imply that VIP has a strong solution in

every K,; see Proposition 2.1(iii) and Proposition 2.3. Thus, if the CP has

no solution, i.e., if the VIP has no strong solution in K, then by Theorem

5.1 there exists an exceptional family of elements. 0

The corollary considerably generalizes some of the results on exceptional

families of elements (Refs. 4-6):
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(a) The map T is assumed to be only quasimonotone instead of pseu-

domonotone,

(b) T" does not have to be defined on the whole space H but only on K,

(c¢) T does not have to be a completely continuous or completely upper

semicontinuous field. The latter is a very restrictive assumption. For instance

constant maps T () = ¢ are not completely continuous fields in an infinite-

dimensional space, since h(x) = z — T (x) does not map bounded sets to

relatively compact subsets.

The only restriction with respect to Corollary 5.1 of Ref. 5 is that we

assume T (z) to be convex. Note that there it is assumed to be contractible.

We finish this section with a remark. Corollary 5.1 does not entail that

the existence of an exceptional family of elements implies Sy, (K) = 0. If

T is pseudomonotone, then this implication is true; see Ref. 5, Theorem

5.1. However if T' is only quasimonotone, then Sy (K) # () is possible. For

instance, set H = R, K = [0,400) and T (z) = —z. Then Sy, (K) = {0}
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while (0, 400) is an exceptional family of elements. In fact, the existence of

an exceptional family of elements implies only that Sy, (K) = 0.

Proposition 5.1 Let K be a closed convex cone and T : K = X* be a
multivalued map. If there exists an exceptional family of elements for T" with

respect to K, then Sy (K) = 0.

Proof. Let {z,} ., be an exceptional family of elements and z be the

r>0
corresponding elements in T (x,). Suppose that Sy (K) # 0 and choose
o € Sy (K). Then consider any z, in the exceptional family of elements
such that ||z,|| > ||zo||. By Theorem 5.1, (z¥,z —x,) > 0 holds for all
t € Kjg,, but not for all z € K. Also, we have (z*,z, —x0) > 0 for all
x* € T (x,) because xy € Sy (K). By Lemma 3.1(ii) (¥, z — z,) > 0 holds

T

for every x € K, a contradiction. O
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