ADJUSTED SUBLEVEL SETS, NORMAL OPERATOR AND
QUASICONVEX PROGRAMMING

D. AUSSEL* AND N. HADJISAVVAST

Abstract. A new notion of “adjusted sublevel set” of a function is introduced and studied.
These sets lie between the sublevel and strict sublevel sets of the function. In contrast to the
normal operators to sublevel or strict sublevel sets that were studied in the literature so far, the
normal operator to the adjusted sublevel sets is both quasimonotone and, in the case of quasiconvex
functions, cone-upper semicontinuous. This makes this new notion appropriate for all kinds of
quasiconvex functions and in particular for quasiconvex functions whose graph presents a “flat part”.
Application is given to quasiconvex optimization through the study of an associated variational
inequality problem.
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1. Introduction. Let X be a Banach space and f : X — R U {400} be a
quasiconvex function. The aim of this paper is to propose and study a new concept
of sublevel set and its associated normal operator to sublevel sets of a quasiconvex
function, and then provide an application to quasiconvex optimization. The idea
of using normal cones to the sublevel sets S;,) = {y € X : f(y) < f(x)} or strict
sublevel sets Sf(x) ={ye X : f(y) < f(x)} is due to the fact that, in contrast to
convexity that can be described through the convexity of the epigraph, quasiconvexity
is related to convexity of the sublevel sets. The idea was exploited by Borde and
Crouzeix [5], who mainly established continuity properties, by Aussel and Daniilidis
[3] who characterized some classes of quasiconvex functions, and by Eberhard and
Crouzeix [8] who studied the integration of these operators as a means to obtain the
quasiconvex function.

However, in those papers the most meaningful results were found in the case
where, roughly speaking, f admits no “flat parts”. If Sf(x)\Sf(x) #+ (b for some

z € dom f (i.e., there exists a flat part), then none of the normal operators defined
in the literature is able to satisfy at the same time quasimonotonicity and upper
semicontinuity in a sense appropriate for cone-valued operators, even if the considered
function is lower semicontinuous and quasiconvex (see [5, Example 2.2] and example
2.1 below). This has induced the authors of previous studies on the subject to restrict
their attention to the class of quasiconvex functions such that each local minimum is
a global minimum (or equivalently S§ = Sy, VA > inf f).

In section 2 we propose a concept of “adjusted sublevel set” S?(z) which allows
to deal with all kinds of quasiconvex functions. Based on these adjusted sublevel
sets we then define the normal operator. In section 3 we study the properties of the
normal operator and in particular some nonemptyness properties, quasimonotonicity
and continuity results.

Finally, using this normal operator and our recent study of quasimonotone vari-
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ational inequalities [4] we prove an existence result for the minimization of a quasi-
convex function over a convex set.

2. Definitions and basic properties. Let X be a real Banach space, X* its
topological dual and (-, -) the duality pairing. The topological closure of a set A will

be denoted by A for the norm topology and A" for the w* topology whereas I
means that 7 — z* in the w* topology. As usual, co A will denote the convex hull
of A. We denote by B (z,¢) and B (z,¢) the open ball {y € X : ||y — z|| < €} and the
closed ball {y € X : |ly — z|| <e}. Also, given any nonempty A C X we denote by
B(A,e) and B(A,¢) the sets {zx € X : dist(z,A) < ¢} and {z € X : dist(z, A) <&}
respectively, where dist(z, A) = inf{||e —y|| : y € A} is the distance of & from A.
Given z,y € X, we set [z,y] = {te + (1 —t)y : t € [0,1]}. The domain and the graph
of a multivalued operator 7' : X — 2% will be denoted, respectively, by dom (T') and
gr’l’. We will mainly deal with operators whose values are convex cones; in this case,
since the values are unbounded, we have to consider a modified definition of upper
semicontinuity. We first recall that a convex subset C' of a convex cone L in X* is

called a base if 0 ¢ C" and L = UssotC.

DEFINITION 2.1. An operator T : X — 2%X" whose values are conver cones is
called norm-to-w* cone-usc at « € dom (T) if there exists a neighborhood U of x and
a base C (u) of T (u) for each v € U, such that u — C (u) is norm-to-w* usc at x.

It turns out that we may always suppose that, locally, the base C(u) is the
intersection of T'(u) with a fixed hyperplane. To see this, we first define a conic w*-
neighborhood of a cone L in X* to be a w*-open cone M (i.e., a w*-open set such
that tM C M for all t > 0) such that L C M U{0}.

PROPOSITION 2.2. Let T : X — 2X° be a multivalued operator whose values are
convezr cones different from {0}. Given x € dom(T'), the following are equivalent:

i) T is norm-to-w* cone-usc at x.

it) T'(x) has a base, and for every conic w*-neighborhood M of T'(x) there exists
a neighborhood U of ® such that T(u) C M U{0} for allu e U.

iii) There exists a w*-closed hyperplane A of X* and a neighborhood U of x such
that Vu € U,D(u) = T(u) N A is a base of T (u) and the operator D is
norm-to-w* usc at x.

Proof. If 1) holds and M is a conic w*-neighborhood of T'(z), then M is a w*-
neighborhood of C'(z). Hence there exists a neighborhood U of « such that C(u) C M
for every u € U. Then obviously T(u) C M U {0}.

Suppose that i) holds. Then T'(z) has a base C(z). Since 0 ¢ C(l‘)*, by convex
separation we deduce the existence of some z; € X such that (z* z1) > 0 for all
z* € C(z). The set B = {a* € X* : (2*,21) > 0} is a conic neighborhood of T'(z),
hence there exists a neighborhood U of « such that for every u € U one has T'(u) C
BU{0}. Set A= {z* € X* : (z*,21) = 1}. Since T'(u) # {0} it follows that D(u) :=
T(u)N A is a base of T(u). To show the semicontinuity of D let us consider a w*-open
neighborhood V of D(#). Then VNAis w*-open in A. The function f : B — A defined
by f(z*) = ﬁ is w*-continuous; thus, the set | J,5 (VN A) = FHVNA)isw
open. From D(x) C (VNA) we deduce that | J,5,t(V N A) is a conic w*-neighborhood
of T'(z). Since i) holds, there exists a neighborhood Uy of z, U3 C U, such that
T(u) C U5t (VN A)U{0}. Tt follows immediately that D(u) C V/, i.e., iii) holds.

Finally, #i7) obviously implies 7). O

A definition of upper semicontinuity suitable for cone-valued operators, similar to
property %) in the proposition above, was given in [13] (where continuity was taken
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with respect to the norm topology) and in [5] (where the definition was given in a
finite-dimensional setting), the main difference being that in these papers no reference
to bases was made.

Given a set A C X, the negative polar cone of A will be denoted by A~. Let
f: X = TRU{+oo} be a function. For any A € IR, define Sy ={y € X : f(y) < A},
Sy ={ye X : fly <A}, ST ={yeX:f(y)=A} and, for any z € dom f \
argmin f, p, = dist(x, Sf(x)).

DEFINITION 2.3. Let f : X — IRU{+oo} be any function. To any element
z € dom f we associate the adjusted sublevel set S}”(a}) defined by

Sj(z)=Sy)NB (Sf(x)’Px)
if ¢ argmin f, and S?(:L‘) = Sj(z) otherwise.
Clearly z is always an element of S¢(z). If z € dom f \ argmin f is such that

pr = 0, then 5% () = Spe) N S]f(x); if moreover f is lower semicontinuous on dom f,
then S%(z) = S<(x) .

The convexity of the sublevel sets (resp. strict sublevel sets) characterizes the
quasiconvexity of the function. This still holds true for the adjusted sublevel sets.

ProprosITION 2.4. Let f : X — IR U {+0c0} be any function, with domain dom f.
Then

[ is quasiconver <= S}(x) is conver Yz € dom f.

Proof. Let us suppose that S% (u) is convex for every u € dom f. We will show
that for any z € dom f, Sy(,) is convex. If € argmin f then S,y = S;‘ (2) is convex
by assumption. Assume now that x ¢ argmin f and take y, 2 € S(,).

If both y and z belong to B (Sf(x), px), then y,z € S} (z) thus [y, z] C S§ (z) C

St(e)-
If both y and z do not belong to B (Sf(x),px), then f(z) = f(y) = f(2), ij(z) =

Sf(y) = ij(x) and py, p, are positive. If, say, p, > p, then y,z € B (Sf(y),py) thus

Y,z € S;‘ (y) and [y, 2] C SJ‘? (y) C Sty) = Spx)-

Finally, suppose that only one of y, z, say z, belongs to F(Sf(x),px) while y ¢
?(Sf(x),px). TEen flx) = fly), Sf(y) = Sf(x) and p, > py so we have z €
B (Sf(x),px) CcB <Sf<(y),py) and we deduce as before that [y, z] C St (y) € Spy) =
St(e)-

The other implication is straightforward. O

An operator T is called:

Quasimonotone, if for every (z,2*), (y,y*) € grT the following implication holds:
(@ y—2)>0=(y",y—=) >0;

Cyclically quasimonotone, if for every (z;,2f) € gr T, ¢ =1,2,...n, the following
implication holds:

(2, xip1—2) >0,Vi=1,2,..n— 1 = (2}, Tpnp1 — &) <0
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where z,41 = z1;
Cyclically monotone, if for every (a;,zf) € grT, i =1,2,...n,
n
Z (27, miy1 — x;) <0.
i=1
By analogy to convex functions, it is known that a lower semicontinuous function
is quasiconvex if and only if its Clarke-Rockafellar subdifferential is quasimonotone
[2], [12], or cyclically quasimonotone [6].
Let f: X — IR U {400} be a function. Set

N(@) = {a" € X" (" y— 2) S0, VY € Sy}
N<(z) = {m €X"i(ehy—x) <0, Vye 5f<<x)}

for every z € dom f, while we set N(z) = N<(z) = 0 for z ¢ dom f. Equivalently,
z* € N(z) if and only if the following implication holds:

(z*y—2) > 0= f(y) > f(z);
also, z* € N<(z) if and only if

(" y—2z)> 0= f(y) > f(z).

These “normal operators” were studied in [5] for functions defined on R™. They have
interesting properties: N is always cyclically quasimonotone. Also, it can be shown
that N< is cone-usc at every point  where f is lower semicontinuous, provided that
there exists A < f(z) such that int Sy # 0 (see Proposition 2.2 of [5] for an equivalent
statement). However, these two operators are essentially adapted to the class of
quasiconvex functions such that any local minimum s a global minimum (in particular,
semi-strictly quasiconvex functions). In this case, for each # € dom f \ arg min f, the
sets Sy(p) and Sf(x) have the same closure and N(z) = N<(z). For quasiconvex
functions outside of this class, in general N is not cone-usc (see Example 2.2 in [5])
while N < is not in general quasimonotone.
ExXAMPLE 2.1. Define f:R2 — R by

[ lal 4 bl if o+l <1
”a’b)—{ 1, ifla| o> 1"

Then f is quasiconvezr. Consider x = (10,0), * = (1,2), y = (0,10) and y* = (2,1).
We see that z* € N<(z) and y* € N< (y) (since |a|]+|b| < 1 implies (1,2)-(a — 10,b) <
0 and (2,1) - (a,b—10) < 0) while (z*,y —z) > 0 and (y*,y —z) < 0. Hence N< is
not quasimonotone.

In what follows, we will define an operator that has both these properties (cone-usc
and quasimonotonicity) and, consequently, is suitable for relating the minimization of
a quasiconvex, lsc function f to the variational inequality problem.

DEFINITION 2.5. To any function f : X — IR U {+oco} we associate the set-valued
map N° : dom f — 2X" defined for any & € dom f as the normal cone to the adjusted
sublevel set ij(:v) at z, i.e.,

Ne(z)={2* € X" : (z",y—2)<0,Vye Sf(x)}.

Note that ST . C Sj,’(]:) C Sj(z) implies that N(z) € N®(x) C N<(z) for all

I(=)
x € dom f.
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3. Properties of the normal operator. In this section we investigate prop-
erties of the normal operator N? for quasiconvex functions: equivalent definition,
nonemptyness, quasimonotonicity and cone upper semicontinuity are considered.

We will give for quasiconvex functions an equivalent definition of N which clearly
suggests that this operator corresponds to a refined version of the operator N. Let
us first define for any € dom f the extended normal cone of f at x as follows. For
every z € dom f \ arg min f we set

EN(@z)={2" e X* : (2", y) <(a",z), Yy € S]f(x), Yz € B(z, p:)},

while for z € argmin f we set EN(z) = {0}. Note that EN () is a closed convex cone.
In fact, for 2 € dom f \ arg min f it is the normal cone at z to the set Sf(x) + B(0, py)
or, equivalently, to its closure F(Sf(x),px). In addition, z* is an element of EN(z)
if and only if for all y € Sf(x) and all v € B(0,1) one has (z*,z — y) > —p,(z*,v).
Consequently, for any 2 € dom f \ argmin f, EN(z) admits the following equivalent
definition

" € EN(z) <= (2", 2 — y) > po||2*]|, Vye€ ST

S (3.1)

ProroOsSITION 3.1. Let f be quasiconvex. Then for each x € dom f,
N%z)= N(z)+ EN(z) = co(N(z)U EN(z)). (3.2)

Before proving Proposition 3.1, let us state the following well-known basic lemma.
LEMMA 3.2. Let A, B be convexr subsets of X. If ANint B # ) then ANB =
ANB.
Proof. (of Proposition 3.1) If « € argmin f, the equality is obvious. Assume

that o ¢ argmin f. We consider two cases. If p, = 0 then S}(z) = Sf(x) N Stz)
thus Sf(x) C Si(z) C S]f(x). It follows that N*(z) = N<(z) = EN(z). Since
N(z) C N<(z), we have N (z) + EN (z) = EN (z) = N%(z).

Now assume that p; > 0. Obviously, N%(z) is the normal cone to the set

Sty N B (Sf(x):Px) at . However,

St Nt B (S5uy 0 ) 2 S5iay # 0 (3.3)

hence by Lemma 3.2,

Sf(x) NnB (Sf(x), px) = %ﬁ B (Sf(x),px) .

Therefore, N¢(z) is the normal cone to Sy N B (Sf(x),px) at . From (3.3) and

using [1, Th. 4.1.16] we deduce that N?(z) = N(x)+ EN (z). The second equality is
obvious. O

Let us set $*(0,1) = {&* € X* : ||z*|| = 1}.
ProposITION 3.3. Let f: X — IR U {+oo} be any function. Then
i) EN NS*(0,1) is cyclically monotone on any nonemply subset

ST ={xr€e X : f(z) =a}.
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it) N* is cyclically quasimonotone.

Proof. i) Let us consider z1,#a,...,2, € S;. We assume that z; ¢ argmin f
since otherwise EN (z;) N .S*(0,1) is empty. Set 41 = 21 and take 2} € EN(z;) N
S5*(0,1),i=1,2,...n. According to (3.1), for any y € Sf<(x,)’ (x},2;—y) > pg,. This
yields

lwivr — yll > (27, zipr — @) + (&, @i — y) > po, + (27, 2ip1 — i)
from which, remembering that f(z;) = a, we get
Vi = 1: 2: L Pripr = d(£i+1; Sf<(l‘z)) 2 Pz, + <l‘;, Ti41 — IZ)

Adding the inequalities for all ¢’s we obtain

n

Z <£;:mi+1 - IZ) < Oa

i=1

ie., EN NS*(0,1) is cyclically monotone on S5 .
it) If N® is not cyclically quasimonotone, then there exist z; € dom(f), z} €
N®(xz;),i=1,2,...n such that

(2], mig1 — ;) >0, i=1,2,...,n, (3.4)

where z,41 = 1.

Since N%z;) C N<(z;), (3.4) implies that for all i = 1,2,...,n, f(z;) <
f(xip1). Consequently, f(z1) = f(x2) = ... = f(2,). This means that Sf(xi)
is the same for all i. We denote this set by A. From (3.4) and z} € N%(x;) it also
follows that ;11 & Sp(z)) N B (A, pg,). Since f(z;41) = f(z;), we have ;4 € Stz
Hence, z;11 ¢ B (A, py,) for all i = 1,2,...n. It follows that p,,,, > p,, for all
i=1,2,...n. This easily leads to pg,,, > pz,, a contradiction. O

According to the preceding proposition, the operator N® is always quasimono-
tone. Just as the so-called “quasiconvex subdifferential” [7], N® has the property to
characterize the quasiconvexity of the associated function not by its quasimonotonic-
ity, but by its non-emptyness on a dense subset of dom (f).

ProprosITION 3.4. Let f: X — IR U {+oo} be a lsc function. Suppose that either
[ is radially continuous, or dom (f) is convezr and in#(S,) # 0, Va > infx f. Then

i) If N*(x)\ {0} is nonempty on a dense subset of dom(f) \ argmin f, then f
1S qUASICONVELT.
i) If [ is quasiconvez, then N%(z)\ {0} # 0, V& € dom (f) \ argmin f.
iii) f is quasiconvez if and only if dom (N?\{0}) is dense in dom (f)\arg min f.

Proof. i) Looking closely into the proof of Proposition 11 of [7] one can observe
that 1t has been shown that, under the assumptions of the present proposition, the
function f is quasiconvex provided that the domain of N<\ {0} is dense in dom f \
argmin f. Since N%(z)\ {0} C N<(z)\ {0}, the assertion follows.

i1) For every # € dom(f) \ argmin f one has z ¢ Sf(x). It is known that a
quasiconvex, lsc and radially continuous function is continuous [7, Prop. 9]. Thus,
our assumptions imply that int(SJf(a:)) #+ 0. Hence there exists z* € X* \ {0} such
that

Vye Sf(x),Vz € B(z,ps), (x*,y) < (% 2).
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Therefore z* € EN(z) and from Proposition 3.1 follows that N%(z)\ {0} # 0. Finally
assertion ii7) resumes the previous ones. O

PRrROPOSITION 3.5. Let f be quasiconvezr and such that intS, # 0 for alla > inf f.
If f is lsc at € dom (f) \ arg min f, then N® is norm-to-w* cone-usc at x.

Before proving Proposition 3.5 we establish the following lemma. For any set
U C X, N<(U) denotes as usual the set Uy N<(z).

LEMMA 3.6. Let f be quasiconver and such that intS, # 0 for all a > inf f.
If f is lsc at x € dom f \ argmin f, then there exists a neighborhood U of x and an
element z € X\ {0} such that the set N<(U)N A, with A = {z* € X* : (z*,z) = 1},
is a bounded base for the cone N< (U).

Proof. Choose yo € X and § > 0 such that yo € int ST

Fla)—5" There exists ¢ > 0
such that

VZEB(O,l),f(yo—FEZ)<f(I)—(S

Since f is lsc at x, we can choose €1 > 0 such that for every u € z + ;B (0, 1),
f(u)> f(x)— 6. Thus

Yueax+eB(0,1), yo+eB(0,1) gSf(u). (3.5)

Set e = min{e/2,e1}, U = 2 4+e3B(0,1). For every u € U, from (3.5) we deduce that
JF(yo+ew) < f(u) for all w € B(0,1) and thus, for every z* € N< (u) we obtain:

Ywe B(0,1),(z",yo +ew —u) <0.
It follows that

elle*| = sup (&%, ew) < (z",u— yo)
weB(0,1)

€
= (2" 2 —yo) + (2", u—2) < (27,2 —yo) + |27 5
Thus,
Vu € UVz* € N<(u), (2%, 2 —yo) > (¢/2) ||z*|| - (3.6)

In particular, (z*,2 —yo) > 0 whenever z* € N<(u)\ {0}. Now set A = {z* €
X* : (¢*,z —yo) = 1}. Obviously, for every u € U and z* € N< (u) N A, one has
[[z*|| < 2/e,ie., N<(U)N A is bounded. O

Proof. (of Proposition 3.5) Let U and A be the neighborhood and hyperplane
given by Lemma 3.6. Define C'(u) = N*(u)N A, u € U. Obviously, C(u) is a
convex, w*-compact base of N®(u). We have to show that C' is norm-to-w* usc at
z. Define D (u) = (N(u) U EN(u))N A, u € U. We first show that D is norm-to-w*
usc. According to [10, Prop. 1.2.23] it is sufficient to show that if (z;,z});.; is a net

in gr D such that ; — z in norm and z} = z*, then z* € D (z). Since obviously
z* € A, we have to show that «* € EN(z) U N (z). Since 2} € EN (z;) UN (z;)
we may consider, without loss of generality, that either ] € N (;) for all i € I or
z} € EN (x;) for all i € I.

Suppose first that zf € N (z;). For every y € Sf(x), there exists 7y such that
for all ¢ > iy, f(y) < f(x;). Thus, (z}, 2;—y) > 0. Taking into account that
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z; are bounded as they belong to N< (U)N A, we obtain at the limit (z*,z — y) > 0.
This means that z* € N<(z). If z is not a local minimum, then p, = 0 hence
N<(z) = EN (z) so that z* € EN () U N (z) and we are done. If z is a local
minimum, then for i sufficiently large, f (z;) > f (). Hence, for every y € Sy(,) we
have y € Sy(,,). Consequently, (z7,z; —y) > 0 thus implying (z*, 2 — y) > 0 for all
Y € Spzy- It follows that z* € N (z) C EN(x) U N (z).

Now suppose that 2} € EN (z;). Without loss of generality, we may assume that
for all ’s we have either f(z;) > f(x) or f(x;) < f(2). If f(x;) > f(x) holds, then
Stz) C Sf(xi). Thus,

Yy € Si(e), (2], 2 —y) >0

and at the limit (z*, z — y) > 0 for all Vy € Sy(,) which shows that * € N (z). If on

the contrary f(#;) < f(z) holds, then Sf<(x,) C Sf(x) thus
lim inf p, = lim inf dist (xi,sf(xl)) > Tim dist (a;i,sf(x)) = pp. (3.7)

, <
Now for each y € Sf(x)

<
Thus, y € Sf(a:,) and

there exists ig € I such that for all i > i, f(z;) > f(y).

(27, 2i —y) = po, |27
Using (3.7) and lower semicontinuity of ||-|| at z*, we find
Yy € S5y (e — 1) > e o7

which means that z* € EN(z). Thus, in all cases 2* € EN(z)U N (z). This shows
that D is norm-to-w* usc at z, as desired.

To show that C' is norm-to-w* usc at z, it is again sufficient to show that if
(zi,2f);c; is anet in grC such that #; — x in norm and z} — z*, then z* € C ().
Note that in view of Proposition 3.1,

C(z;)=co((N(z;))NA)U(EN(2;)NA));

hence, each z} can be written in the form z} = A;yf +(1 — ;) 2} where yf € N(2;)NA,
z} € EN(z;) N A and A; € [0,1]. Since yf and zf are bounded (as they belong to
N<(U)nN A), by considering subnets if necessary, we may assume that y; = y*,

*

zf = z* and A\; — A. By the norm-to-w* upper semicontinuity of D, we know that
y*,z* € D (2); hence, 2* € C(z) and C' is norm-to-w* usc at z. O

4. Quasiconvex Programming. In [4] an existence result for quasimonotone
variational inequality has been proved under weak assumptions, in particular without
compactness nor hypothesis on inner points. Taking advantage of the good properties
of the normal operator N¢, our aim in this section is to obtain an existence result for
the minimization of a quasiconvex function over a convex set, through the study of
an associated variational inequality.

Given K C X and an operator 7' : K — 2X" we denote by Sstr (T, K) the set of
strong solutions of the Stampacchia variational inequality

2o € Ssr(TVK) <= 29 € K and Jaj € T(xg) : Yz € K, (5,2 — zo) > 0.
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Given K C X weset K+ = {2* € X* : Vz,y€ K, (z*,z) = (z*,y)}. If we define
aff K as the affine hull of K, i.e.

linK ={} Xa; © Y N=1 €K i=1_.n}
i=1 i=1

and affK the closure of affK, then it is easy to see that K+ = {0} if and only if
affK = X. In optimization problems one can often assume that K+ = {0} with no
harm of generality. It is enough to translate K so that 0 € K and then restrict the
problem to the subspace X1 = affK; Then condition K+ = {0} is fulfilled.

ProprosiTION 4.1. Let f: X — IR U {4oco} be a quasiconvex function, radially
upper semicontinuous on dom (f), and K C dom (f) be a convez set such that K+ =
{0}. Assume that either

i) 2o € Sstr(N<\ {0}, K), or

ii) xg € Sstr(N?\ {0}, K).
Then V€ K, f(zo) < f(x).

Proof. i) By assumption, there exists zj € N<(zg) \ {0} such that Vz € K,
(zh,2 — o) > 0. Since z}, ¢ K1, there exists y € K such that (z,y — o) # 0;
thus (z§,y — o) > 0. Fix such a y and for any # € K and any t €]0,1[ define
zy = (1 —t)x +ty. Then

(zg, 20— wo) = (1 —t){xg, v — @) + t{xf, y — o) > 0.

Since zf € N<(zg), this gives f(z;) > f(xz0) and by radial upper semicontinuity,
f(z) = f(xo).

i1) This is an immediate consequence of (i) since N (z) C N< (z) for all z. O

We will use a very weak kind of continuity for multivalued operators (cf. [9]):
Given a convex subset K C X and an operator 7' : K — 2%\ {0}, T is called upper
sign-continuous on K if for any =,y € K,

vVt elo, 1], inf (z;,y—2z)>0= sup (z",y—az)>0
ry€T(z4) z*€T(z)

where z; = (1 — t)z + ty. If for example the restriction of 7" to every line segment of
K is usc with respect to the w*-topology in X*, then T is upper sign-continuous.
Let us recall the following existence result for the Stampacchia variational in-
equality [4].
PROPOSITION 4.2. Let K be a conver subset of X such that KN B(0,n) is weakly
compact for everyn € IN. Let further T : K — 2X° \ {0} be a quasimonotone operator
such that the following coercivity condition holds

IneN, Vz € K\ B(0,n), Iy € K with ||y|| < ||z||

such that Va* € T(x), (x*, 2 —y) > 0. (4.1)

Suppose moreover that for every x € K there exist a neighbourhood V, of x and an
upper sign-continuous operator Sy : Vo N K — 2% \ {0} with convex, w*-compact
values satisfying Sy(y) CT'(y), Yy € Vo N K. Then Ssir (T, K) £ 0.

Note that condition (4.1) is automatically satisfied if K is bounded. We now
apply the above results to optimization.
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THEOREM 4.3. Let f: X — IRU{+o0} be a lsc quasiconvex function, radially
continuous on dom (f). Assume that for every A > infx f, in#(Sy) # 0. Let K C
dom (f) be conver with K+ = {0}, and such that K N B(0,n) is weakly compact for
every n € IN.

If condition (4.1) holds with T = N, then there ezists xg € K such that

Vee K, f(z)> f(xo).

Proof. If argmin f N K # (, we have nothing to prove. Suppose that arg min f N
K = (. According to Proposition 3.3, N* is quasimonotone. Further, according to
Proposition 3.5, it is norm-to-w* cone-usc on K. Thus, all assumptions of Propo-
sition 4.2 hold for the operator N\ {0}, so S (N*\ {0}, K) # 0. Finally, using
Proposition 4.1 we infer that f has a global minimumon K. O

COROLLARY 4.4. Assumptions on f and K as in Theorem 4.3. Assume that
there exists n € IN such that for all x € X, ||z|| > n, there exists y € X, ||y|| < ||z]|
such that f(y) < f(x). Then there exists xqg € K such that

Vee K, f(z)> f(zo).

Proof. 1If f(y) < f(z) then for every z* € N% &) C N< (), (z*,y—=z) < 0.
Hence, coercivity condition (4.1) with 7" = N® holds. The corollary follows from
Theorem 4.3. 0
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