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Abstract Quasiconvex functions present some difficulties in global optimiza-

tion, because their graph contains “flat parts”, thus a local minimum is not

necessarily the global minimum. In this paper, we show that any lower semicon-

tinuous quasiconvex function may be written as a composition of two functions,

one of which is nondecreasing, and the other is quasiconvex with the property

that every local minimum is global minimum. Thus, finding the global mini-

mum of any lower semicontinuous quasiconvex function is equivalent to finding

the minimum of a quasiconvex function, which has no local minima other than

its global minimum.

The construction of the decomposition is based on the notion of “adjusted

sublevel set”. In particular, we study the structure of the class of sublevel sets,

and the continuity properties of the sublevel set operator and its corresponding

normal operator.

Keywords Quasiconvex Function · Generalized Convexity · Adjusted

Sublevel Sets · Normal Operator

Mathematics Subject Classification (2000) 90C26 · 90C30 · 26A51 ·

26B25

1 Introduction

Quasiconvexity is one of the most important generalizations of convexity. It

was used since the first half of the last century in minimax theorems and in

economics, and later on, in optimization [1].
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One of the main features of quasiconvex functions is that, in contrast with

convex functions, a local minimum might be not global. Because of this, in

many cases quasiconvex functions are more difficult to handle, and quite of-

ten, additional assumptions are imposed; for example, that the function is

semistrictly quasiconvex [2], or pseudoconvex etc.

By definition, a real-valued function is quasiconvex if its lower level sets

are convex. It is then natural that several studies of quasiconvex functions

are based on properties related to the sublevel sets. For example, Borde and

Crouzeix [3] have studied the continuity properties of the normal cone opera-

tor to the strict sublevel sets (i.e., the operator whose value at each point is

the normal cone to the strict sublevel set defined by the point). Aussel and

Daniilidis [4] characterized some classes of quasiconvex functions (quasicon-

vex, strictly quasiconvex and semistrictly quasiconvex) by the monotonicity

properties of the normal cone operator.

It can be shown that the normal cone operator to the sublevel sets of a

quasiconvex function is quasimonotone, while the normal cone operator to the

strict sublevel sets of a lower semicontinuous function is cone upper semicon-

tinuous [3]. However, neither of the two normal operators has both properties.

To remedy this, one may assume for example that the function is semistrictly

quasiconvex. A more general approach is to use the so-called adjusted sublevel

sets: the normal cone operator to the adjusted sublevel sets is both quasimono-

tone and cone upper semicontinuous [5], and so it is convenient for studying the

optimization of quasiconvex functions which are not necessarily semistrictly
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quasiconvex. In addition, Aussel and Pistek [6] showed that the sublevel set

operator is lower semicontinuous and this is related to the cone upper semi-

continuity of the corresponding normal cone operator.

In this paper, our primary aim is to show that every quasiconvex lower

semicontinuous function f can be written as a composition h ◦ g where h

is a nondecreasing function, and g is a neatly quasiconvex function, i.e., a

quasiconvex function with the additional property that every point of local

minimum is a point of global minimum. The functions f and g have exactly

the same points of global minimum, but g has no additional local minima. The

construction makes use of the adjusted sublevel sets. Initially we will show that

the adjusted sublevel set operator is lower semicontinuous and, as a result, we

will recover the cone upper semicontinuity of the corresponding normal cone

operator. Then we will study the properties of the class of all adjusted sublevel

sets. We will show that this class is totally ordered by inclusion, and we will use

it to construct the function g. We expect that this decomposition will permit

to study the optimization of general quasiconvex functions starting from the

easier case of neatly quasiconvex functions.

2 Preliminaries

For any x, y ∈ Rn, we set ]x, y[= {tx + (1 − t)y : 0 < t < 1}, and [x, y] =

{tx+ (1− t)y : 0 ≤ t ≤ 1}. Also, if ε > 0, we denote by B(x, ε) the open ball

{y ∈ Rn : ‖y − x‖ < ε}, and we denote by B(x, ε) the closed ball {y ∈ Rn :

‖y − x‖ ≤ ε}.
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Given a nonempty set A ⊆ Rn, the closure, the boundary, and the com-

plement of A will be denoted by Ā, ∂A, and Ac, respectively. The convex

hull and the conic hull generated by the set A are denoted by conv(A) and

cone(A), respectively; dim(A) denotes the dimension of conv(A). Also, we set

B(A, ε) = {y ∈ Rn : dist(y,A) < ε}, and B(A, ε) = {y ∈ Rn : dist(y,A) ≤ ε},

where dist(x,A) = inf{‖x− a‖ : a ∈ A} for any x ∈ Rn. The relative interior

of A will be denoted by ri(A).

Let f : Rn −→ R ∪ {+∞}. The domain of f is the set dom(f)= {x ∈

Rn : f(x) < +∞}. We define for any λ ∈ R ∪ {+∞} the sublevel set and the

strict sublevel set by, respectively, Sfλ = {y ∈ Rn : f(y) ≤ λ} and Sf,<λ =

{y ∈ Rn : f(y) < λ}. Given x ∈ Rn we set for simplicity Sf (x) = Sff(x) and

S<f (x) = Sf,<f(x). Also we set ρfx = dist(x, S<f (x)).

The function f : Rn −→ R ∪ {+∞} is called

– Quasiconvex, if for all λ ∈ R, Sfλ is convex. Or equivalently, if for all

x, y ∈ domf ,

f(z) ≤ max{f(x), f(y)} for all z ∈ [x, y] .

– Semistrictly quasiconvex, if for all x, y ∈ domf ,

f(x) < f(y) implies f(z) < f(y) for all z ∈ ]x, y[ .

Next we will recall the notion of adjusted sublevel set of a function f at a

point x ∈ Rn [5].
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Definition 2.1 Let f : Rn −→ R∪{+∞}, and x ∈ Rn. The adjusted sublevel

set Saf (x) is the set

Saf (x) = Sf (x) ∩B
(
S<f (x), ρfx

)
if x /∈ arg min(f), and Saf (x) = Sf (x) otherwise.

Note that, for all x ∈ Rn we have

S<f (x) ⊆ Saf (x) ⊆ Sf (x).

In [5], the adjusted sublevel sets have proved to be useful to the study of

quasiconvex programs. A part of the usefulness comes from their nice conti-

nuity properties, as we will see below.

We recall that, a function f : Rn −→ R ∪ {+∞} is l.s.c. if and only if Sλ

is closed for all λ ∈ R. This implies that Sf (x) is closed for all x ∈ Rn. The

converse for this implication is not always true, as we can see in the following

example.

Example 2.1 Take f to be the function defined on Rn by

f(x) =


‖ x ‖, ‖ x ‖< 1,

5, ‖ x ‖≥ 1.

, for every x ∈ Rn.

Then Sf (x) is closed for all x ∈ Rn, while f is not l.s.c. at ∂B(0, 1).

The assumption that Sf (x) is closed for all x ∈ Rn is usually enough for

our purpose, so we will use it instead of lower semicontinuity.

The following property of the adjusted sublevel set is an easy consequence

of its definition.
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Proposition 2.1 Let f : Rn −→ R ∪ {+∞} be a quasiconvex function such

that for each x ∈ Rn, Sf (x) is closed. Then Saf (x) is closed and convex.

Now we recall the definition of upper semicontinuity and lower semiconti-

nuity for multivalued maps.

Definition 2.2 A multivalued map T : Rn ⇒ Rn is said to be upper semicon-

tinuous (u.s.c.) at x ∈ Rn, if for every open set V ⊆ Rn such that T (x) ⊆ V ,

there exists an open set U ⊆ Rn, such that x ∈ U and T (u) ⊆ V , for all u ∈ U.

We say that T is lower semicontinuous (l.s.c.) at x ∈ Rn, if for every open set

V ⊆ Rn with T (x)∩V 6= φ, there exists an open set U ⊆ Rn, such that x ∈ U

and T (u) ∩ V 6= φ, for all u ∈ U .

3 Continuity Properties of the Sublevel Set Operators

Our first main result establishes the lower semicontinuity of the operator Saf (·).

Theorem 3.1 Let f : Rn −→ R ∪ {+∞} be quasiconvex. If Sf (x) is closed

for all x ∈ Rn, then the map x⇒ Saf (x) is l.s.c. on Rn.

Proof Fix any x ∈ Rn and let V ⊆ Rn be an open set such that V ∩Saf (x) 6= φ.

We want to find ε > 0, such that for all y ∈ B(x, ε), V ∩ Saf (y) 6= φ.

We consider three cases:

Case (1) x ∈ arg min f . Then for every y ∈ Rn, Saf (x) = arg min f ⊆ Saf (y)

so we have trivially V ∩ Saf (y) 6= φ.

Case (2) x /∈ arg min f and ρfx = 0, i.e., x ∈ S<f (x). Suppose for contradic-

tion that for every k ∈ N, there exists yk ∈ B(x, 1k ), such that V ∩Saf (yk) = φ.



8 Suliman Al-Homidan et al.

Then V ∩ S<f (yk) = φ, so for all v ∈ V, f(v) ≥ f(yk). Obviously yk −→ x.

But {yk} ⊆ Sf (v) which is closed, so x ∈ Sf (v). Hence f(v) ≥ f(x) for all

v ∈ V , which implies V ∩ S<f (x) = φ. This is impossible since the nonempty

set V ∩ Saf (x) is included in V ∩B(S<f (x), ρfx) = V ∩ S<f (x).

Case (3) x /∈ arg min f and ρfx > 0. Take any u ∈ V ∩ Saf (x). Now take

any w ∈ S<f (x) and fix a point v in the open segment joining u and w, close

enough to u so that v ∈ V . Since the function dist(·, S<f (x)) is convex and

dist(u, S<f (x)) ≤ ρfx while dist(w, S<f (x)) = 0, we infer that dist(v, S<f (x)) <

ρfx = dist(x, S<f (x)). Since dist(·, S<f (x)) is also continuous, there exists ε > 0

such that for all y ∈ B(x, ε), dist(v, S<f (x)) < dist(y, S<f (x)). We want to

show that v ∈ Saf (y), for all y ∈ B(x, ε). Since v ∈ V , this will show that

V ∩ Saf (y) 6= ∅ for all y ∈ B(x, ε) and will prove the theorem.

By quasiconvexity of f we have that f(v) ≤ max{f(w), f(u)} ≤ f(x).

Now take any y ∈ B(x, ε). Then dist(y, S<f (x)) > dist(v, S<f (x)) ≥ 0

so y /∈ S<f (x). This means that f(x) ≤ f(y), so v ∈ Sf (y). If f(x) <

f(y), then v ∈ S<f (y) so v ∈ Saf (y). If f(x) = f(y), then S<f (y) = S<f (x).

Since dist(v, S<f (x)) < dist(y, S<f (x)) we get dist(v, S<f (y)) < ρfy so v ∈

B(S<f (y), ρfy). So v ∈ Saf (y) in all cases. ut

A similar result holds for the operator x⇒ S<f (x).

Proposition 3.1 Let f : Rn −→ R ∪ {+∞} be a function. If Sf (x) is closed

for all x ∈ Rn, then the map x⇒ S<f (x) is l.s.c. on Rn.

The proof follows the same steps as case (2) above, so we omit it. See also

[6, Lemma 1] for a result very close to Proposition 3.1.
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The map x⇒ Saf (x) is not u.s.c. in general, as seen in the following exam-

ple.

Example 3.1 Take the function f to be the same as ([3], Example 2.2); f :

R2 −→ R given by

f(x, y) =



max{x, y}, x < 0 and y < 0,

0, x ≥ 0 and y < 0,

y, elsewhere.

So Saf (0, 0) = {(p, q), p, q ≤ 0}, and Saf (x, y) = {(t, r) : r ≤ y, t ∈ R} for

every y > 0. Now take V = {(x, y) : x, y < 1} which is an open neighborhood

of Saf (0, 0). For all U open with (0, 0) ∈ U there exist (x, y) ∈ U such that

y > 0 and so Saf (x, y) * V . This implies that Saf is not u.s.c..

Upper semicontinuity does not fit well with cone-valued maps [3,7]. Before

we state the definition of cone upper semicontinuity, we recall the definition

of conic neighborhood of a cone L ⊆ Rn.

Definition 3.1 A conic neighborhood of a cone L ⊆ Rn is an open cone

M ⊆ Rn, such that L ⊆M ∪ {0}.

Definition 3.2 A cone-valued map T : Rn ⇒ Rn is said to be cone upper

semicontinuous at x ∈ Rn, if for every conic neighborhood M of T (x) there

exists an open neighborhood U ⊆ Rn, such that x ∈ U and M is a conic

neighborhood of T (u) for any u ∈ U .

It is not always easy to prove the cone upper semicontinuity of a map by

definition. In the next theorem we will show an equivalent continuity condition
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on the map that is produced from the intersection of the cone-valued map and

the unit sphere.

Given a multivalued map T : Rn ⇒ Rn, we recall that the domain of T is

the set D(T )= {x ∈ Rn : T (x) 6= φ}. We set

S∗(0, 1) = {x ∈ Rn : ‖x‖ = 1} .

Theorem 3.2 Let T : Rn ⇒ Rn be a cone-valued map with closed values.

Then T is cone u.s.c. at x ∈ D(T ) if and only if the map F (·) = T (·)∩S∗(0, 1)

is u.s.c. at x.

Proof Assume that T is cone u.s.c.. Since S∗(0, 1) is compact, in order to show

that F is u.s.c., it is enough to show that it has closed graph [8, Proposition

2.23]. So let (xk, yk) ∈ GraphF , k ∈ N, be such that (xk, yk)→ (x, y). Assume

that y /∈ F (x); then y /∈ T (x). Since T (x) is closed, there exists δ ∈ ]0, 1[ such

that B(y, δ) ∩ T (x) = ∅. Let K = cone(B(y, δ)). Then K ∩ T (x) = {0}. The

set Kc is an open cone, and T (x) ⊆ Kc∪{0}. Consequently, there exists ε > 0

such that for all x′ ∈ B(x, ε), T (x′) ⊆ Kc ∪ {0}.

For k sufficiently large, one has xk ∈ B(x, ε). Thus, yk ∈ T (xk) ⊆ Kc∪{0}.

It follows that yk /∈ B(y, δ). This contradicts yk → y, and proves that GraphF

is closed.

Conversely, let F be u.s.c. at x, and M be a conic neighborhood of T (x)

(i.e., T (x) ⊆ M ∪ {0}). Then M is a neighborhood of F (x), so there exists a

neighborhood of x (say, U) such that

F (u) ⊆M , for all u ∈ U.
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Hence

T (u) ∩ S∗(0, 1) ⊆M.

But M and T (u) are cones, so

T (u) ⊆M ∪ {0}, for all u ∈ U.

Thus, T is cone u.s.c. at x. ut

The equivalence of the cone upper semicontinuity of T with the upper

semicontinuity of F , established in Theorem 3.2, was also stated without proof

in [3].

The lower semicontinuity of a set-valued map implies the cone upper semi-

continuity of its “normal cone operator”, as we now show.

Corollary 3.1 Let A : Rn ⇒ Rn be a l.s.c. map. Let further M : Rn ⇒ Rn

be a cone-valued map defined by

M(x) = {y ∈ Rn : 〈y, z − x〉 ≤ 0 for all z ∈ A(x)} , x ∈ Rn.

Then M is cone u.s.c. on Rn.

Proof By Corollary 1 in [6], the map M has a closed graph. It follows easily

that the map F (·) = M(·) ∩ S∗(0, 1) also has a closed graph. Using again [8,

Proposition 2.23], we deduce that F is u.s.c.. Thus, M is cone u.s.c., in view

of Theorem 3.2. ut

Let f : Rn −→ R ∪ {+∞} be any function. Then for any x ∈ Rn, the

normal cone to the adjusted sublevel set Saf (x) at x, is by definition the set

Na
f (x) = {y ∈ Rn : 〈y, z − x〉 ≤ 0 for all z ∈ Saf (x)}.
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The normal cone to the strict sublevel set S<f (x) at x, is the set

N<
f (x) = {y ∈ Rn : 〈y, z − x〉 ≤ 0 for all z ∈ S<f (x)}.

Combining Corollary 3.1 with Theorem 3.1 and Proposition 3.1 we obtain

the following immediate corollary.

Corollary 3.2 Let f : Rn −→ R∪{+∞} be a quasiconvex function, such that

Sf (x) is closed for all x ∈ Rn. Then

(i) The map x⇒ Na
f (x) is cone u.s.c. on Rn.

(ii) The map x⇒ N<
f (x) is cone u.s.c. on Rn.

Part (ii) of the corollary is a generalization of Proposition 2.2 of [3]. Part

(i) recovers Proposition 3.5 of [5] in the finite dimensional case, without using

any assumption on intSaf (x).

Just as with the usual upper semicontinuity, cone upper semicontinuity of

a map T with closed values, implies that T is closed.

Proposition 3.2 Let T : Rn ⇒ Rn be a cone-valued map with closed values.

If T is cone u.s.c., then T is closed.

Proof Since T is cone u.s.c., by Theorem 3.2 the map F (.) = T (.)∩S∗(0, 1) is

u.s.c. with closed values. Thus it is closed [8, p. 41].

Let {(xk, yk)} be a sequence in Graph(T ), such that (xk, yk) −→ (x, y).

If y = 0, then trivially y ∈ T (x) because T (x) is a closed cone, so it contains

0.
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If y 6= 0, then {(xk, yk
‖yk‖ )} ⊆ Graph(F ) for large k, and (xk,

yk
‖yk‖ ) −→

(x, y
‖y‖ ). Hence y

‖y‖ ∈ F (x). So y
‖y‖ ∈ T (x), and since T (x) is a cone, y ∈ T (x).

Thus y ∈ T (x) in both cases, which implies that T is closed. ut

As a consequence of Proposition 3.2 and Corollary 3.2 we obtain the fol-

lowing corollary.

Corollary 3.3 Let f : Rn −→ R∪{+∞} be a quasiconvex function, such that

Sf (x) is closed for all x ∈ Rn. Then

(i) The map x⇒ Na
f (x) is closed.

(ii) The map x⇒ N<
f (x) is closed.

For l.s.c. functions, a similar result to part (ii) of the corollary was proved

in ([3], Proposition 2.1). See also [6, Cor. 1].

4 Decomposition of Quasiconvex Functions

Our objective in this section is to write any l.s.c. quasiconvex function f

: Rn −→ R ∪ {+∞} as a composition f = h ◦ g, where g : Rn −→ R is

a quasiconvex function which does not have any local minimum except the

global minimum, and h : Im(g) −→ R is nondecreasing. Semistrictly quasi-

convex functions are known to have the property that every local minimum is

global. However, the following example shows that, in general g might not be

semistrictly quasiconvex.

Example 4.1 Take f to be a function defined on the positive orthant R2
+ in

polar coordinates by f(r, θ) = θ for r > 0, while f = 0 at the origin. f is
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set to be equal to +∞ outside the positive orthant. This function is qua-

siconvex and l.s.c.. Assume that f = h ◦ g where g is semistrictly quasi-

convex and h is nondecreasing. Choose 0 < r1 < r2. For each θ ∈
]
0, π2

[
one has f(0, θ) < f(r2, θ) so g(0, θ) < g(r2, θ). By semistrict quasiconvexity,

g(r1, θ) < g(r2, θ). Note also that for θ 6= θ′ the intervals [g(r1, θ), g(r2, θ)] and

[g(r1, θ
′), g(r2, θ

′)] are disjoint since if, say, θ < θ′ then f(r2, θ) < f (r1, θ
′) so

g(r2, θ) < g(r1, θ
′). Thus we have an uncountable set of disjoint nondegenerate

intervals [g(r1, θ), g(r2, θ)], θ ∈
]
0, π2

[
, which is impossible.

We have to replace semistrict quasiconvexity by a weaker notion. As the

example shows, we cannot avoid g having on a segment a constant value greater

than arg min g. But we can avoid having an n-dimensional “flat” part on its

graph, thus escaping the main inconvenience of quasiconvexity. This will be

done through a generalization of the notion of g-pseudoconvexity of Crouzeix

et al.

On the other hand, we may replace lower semicontinuity by the weaker

assumption that for each x ∈ Rn, Sf (x) is closed.

According to [9], a function f : Rn → [−∞,+∞] is called g-pseudoconvex

(g stands for geometrically) if it is quasiconvex and for every x ∈ Rn with

f(x) > inf f , intSf (x) 6= ∅ holds, and the sets Sf (x) and S<f (x) have the same

interior and the same closure. See also [10].

In search of a more general definition, take f to be quasiconvex. Note the

following:
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If two convex subsets A and B have the same closure, then they have the

same relative interior. Indeed, since they are convex, riA = riA = riB = riB.

Likewise, if the sets have the same relative interior, then they have the same

closure since A = riA = riB = B. Thus we adopt the definition:

Definition 4.1 A function f : Rn → R∪{+∞} is called neatly quasiconvex if

it is quasiconvex and for every x with f(x) > inf f , the sets Sf (x) and S<f (x)

have the same closure (or equivalently, the same relative interior).

Proposition 4.1 Let f : Rn −→ R be a quasiconvex function. Then the fol-

lowing are equivalent:

(a) f is neatly quasiconvex

(b) For each x /∈ arg min f , ρfx = 0

(c) Each local minimum of f is a global minimum.

Proof (a)⇒(b): If f is neatly quasiconvex, then for each x /∈ arg min f , x ∈

Sf (x) = S<f (x) so ρfx = 0.

(b)⇒(c): Assume that x̄ /∈ arg min(f). By assumption ρfx = 0, so x̄ ∈

S<f (x̄). Hence, every ball B(x̄, ε) intersects S<f (x̄), which implies that x̄ is not

a local minimum.

(c)⇒(a): If f is quasiconvex, but not neatly quasiconvex, then there exists

x with f(x) > inf f such that Sf (x) \S<f (x) 6= φ. Then there exists x̄ ∈

Sf (x) \S<f (x) (otherwise, Sf (x) ⊆ S<f (x), this implies Sf (x) ⊆ S<f (x)). Then

x̄ is a local minimum, not global, which is a contradiction to the assumption

(c). ut
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Let f : Rn −→ R ∪ {+∞} be a quasiconvex function such that Sf (x) is

closed ∀x ∈ Rn, y ∈ Rn, and let C be the class of all adjusted level sets of f .

Then C has the following properties:

1. C is totally ordered by inclusion. That is, for every A,B ∈ C, A ⊆ B or

B ⊆ A holds. In fact, if A = Saf (x) and B = Saf (y), then A  B iff either

f(x) < f(y), or f(x) = f(y) and ρfx < ρfy ; A = B iff f(x) = f(y) and

ρfx = ρfy .

Indeed, assume that A = Saf (x) and B = Saf (y). If f(x) < f(y), then

Saf (x) ⊆ Sf (x) ⊆ S<f (y) ⊆ Saf (y). Since y ∈ Saf (y) but y /∈ Sf (x) ⊇ Saf (x),

we obtain Saf (x)  Saf (y). Similarly, f(x) < f(y) implies Saf (x)  Saf (y).

If f(x) = f(y) then Sf (x) = Sf (y) and S<f (x) = S<f (y). If ρfx = ρfy ,

then obviously Saf (x) = Saf (y). If, say, ρfx < ρfy , then B(S<f (x), ρfx) ⊆

B(S<f (y), ρfy) so Saf (x) ⊆ Saf (y). Since y ∈ Saf (y) but y /∈ B(S<f (x), ρfx) ⊇

Saf (x), we get Saf (x)  Saf (y). The assertion is proved.

2. x ∈ Saf (y) iff Saf (x) ⊆ Saf (y). Indeed, x ∈ Saf (y) implies x ∈ Sf (y); if f(x) <

f(y) then Saf (x)  Saf (y); if f(x) = f(y) then x ∈ Saf (y) ⊆ B(S<f (y), ρfy) =

B(S<f (x), ρfy) so ρfx ≤ ρfy and Saf (x) ⊆ Saf (y). The converse is obvious since

x ∈ Saf (x) ⊆ Saf (y).

3. For every x ∈ Rn\ arg min f , x ∈ ∂Saf (x). Indeed, in this caseB(S<f (x), ρfx) 6=

∅. Since x /∈ S<f (x), either ρfx = 0 and x belongs to the boundary of S<f (x),

or ρfx > 0 and then again x belongs to the boundary of B(S<f (x), ρfx). In

both cases, the property follows.
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4. If A,B ∈ C, A  B and intB 6= ∅, then (intB)\A 6= ∅. More generally, if

A  B, then also (riB)\A 6= ∅.

Indeed, let A = Saf (x) and B = Saf (y). For any z ∈ riB, ]y, z[ ⊆ riB. Since

A is closed and y /∈ A (if y ∈ Saf (x) then Saf (y) ⊆ Saf (x) by Property 2

above), we can take w ∈ ]y, z[ sufficiently close to y so that w /∈ A. This

proves that riB\A 6= ∅.

We now use the above-mentioned properties of the class of the adjusted

sublevel sets, to construct the decomposition of quasiconvex functions with

closed sublevel sets.

Theorem 4.1 For every quasiconvex function f : Rn → R ∪ {+∞} such

that Sf (x) is closed for all x ∈ Rn, there exists a neatly quasiconvex function

g : Rn → R such that Sg(x) = Saf (x) for all x ∈ Rn, and a nondecreasing

function h : Img → R ∪ {+∞} such that f = h ◦ g.

Proof The proof is divided into four steps as follows:

– Step(1): We show that there exists an increasing function k : C → R,

i.e., such that if A,B ∈ C, A  B then k(A) < k(B). Assume first that

all elements of C have nonempty interior. Let α be a continuous, positive

function on Rn with
∫
Rn α(x)dµ = 1 (µ the Lebesgue measure). For each

A ∈ C, set

k(A) =

∫
A

α(x)dµ+ n− 1.

By Property 4 above, k is increasing, i.e., if A,B ∈ C, A  B then n− 1 <

k(A) < k(B) ≤ n.
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In the general case, we write Cm = {A ∈ C : dimA = m}, 0 ≤ m ≤ n.

Then by Property 1, all elements of Cm generate the same affine subspace

Vm of dimension m, and have a nonempty interior with respect to Vm. We

define an increasing function km on Cm, 1 ≤ m ≤ n exactly as before (we

only need properties 1 and 4) and set k0(A) = 0 for the unique element of

C0 (if it exists). Finally we define k on C by k(A) = km(A) if A ∈ Cm. It is

clear that k is increasing.

– Step(2): We define a function g : Rn → R such that its lower level sets are

the elements of C as follows. Set for each x ∈ Rn

g(x) = k(Saf (x)). (1)

Let us show that Sg(x) = Saf (x). Indeed, y ∈ Sg(x) iff g(y) ≤ g(x) or

k(Saf (y)) ≤ k(Saf (x)). Since C is totally ordered and k is increasing, we

obtain that Saf (y) ⊆ Saf (x). By Property 2, this happens exactly when

y ∈ Saf (x).

It follows that g is quasiconvex and such that Sg(x) are closed for all

x ∈ Rn.

– Step(3): We show that the function g defined by (1) is neatly quasiconvex.

Indeed, according to Proposition 4.1, to check that g is neatly quasiconvex,

it is enough to show that for every x, ρgx = 0. To see this, assume first that

ρfx > 0. Let y be the projection of x onto S<f (x). For each z ∈ ]x, y[

we have z ∈ Sf (x)\S<f (x) so f(z) = f(x). Thus S<f (x) = S<f (z) and we

deduce that ρfx = d(x, S<f (x)) > d(z, S<f (z)) = ρfz . Hence, x /∈ Saf (z). Thus
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Saf (z)  Saf (x) so g(z) < g(x) by (1) since k is strictly increasing. Hence

]x, y[ ⊆ S<g (x) so x ∈ S<g (x), i.e., ρgx = 0.

Now assume that ρfx = 0. Then x ∈ S<f (x) so there exists a sequence

(xn) such that f(xn) < f(x) and xn → x. Since x /∈ Sf (xn) we also have

x /∈ Saf (xn). This implies g(x) > g(xn). Thus, xn ∈ S<g (x) so x ∈ S<g (x)

and ρgx = 0 also in this case.

– Step(4): We construct the function h. First we note that for each t ∈ Im g,

there exists x ∈ Rn such that g(x) = t. Define the function h : Im g →

R ∪ {+∞} by h(t) = f(x). Let us show that the function h is well-defined

and nondecreasing; to see this, let x1, x2 be such that g(x1) ≤ g(x2). Then

x1 ∈ Sg(x2), so x1 ∈ Saf (x2) ⊆ Sf (x2). Hence, f(x1) ≤ f(x2). This shows

that whenever g(x1) = g(x2) = t then f(x1) = f(x2) so h is well-defined.

It also shows that h is nondecreasing.

In addition, it is clear that for every x, h(g(x)) = f(x) i.e., f = h ◦ g.

ut

In the previous theorem we assumed that for each x ∈ Rn, the set Sf (x) is

closed. Since Sg(x) = Saf (x), it follows from Proposition 2.1 that the function

g constructed in the theorem still has this property. The question whether g

can be chosen semicontinuous when f is lower semicontinuous, is still open,

and possibly requires a different or modified approach.

We give below an example to show the construction of the function g, as

in the theorem.
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Example 4.2 Let f : R→ R be the function given by

f(x) =


−1 +

√
−x, x ≤ 0

n, n < x ≤ n+ 1, n = 0, 1, 2, . . .

We choose α(x) = 1
π(1+x2) . The following table gives Saf (x) and g(x) for

all possible values of x. Here, n = 0, 1, 2, . . ..

x Saf (x) g(x) =
∫
Sa
f (x)

α(x)dx

− (n+ 1)
2 ≤ x < −n2 [x, n] 1

π (arctann− arctanx)

x = 0 {0} 0

n < x ≤ n+ 1 [− (n+ 1)
2
, x] 1

π

(
arctanx+ arctan (n+ 1)

2
)

One can see that f has discontinuities in the positive real axis, whereas

g has discontinuities in the positive and in the negative axis. This is not due

to the particular construction used in Theorem 4.1; it would be present in

any decomposition f = h ◦ g with h nondecreasing and g neatly quasiconvex.

To see this, note that f(0) < f(1) < f(−9). Since h : Im g → R ∪ {+∞} is

nondecreasing, one must have g(0) < g(1) < g(−9). Given that g is neatly

quasiconvex, we deduce g(0) < g( 1
2 ) < g(1) < g(−9). Now assume that g

is continuous on ]−9, 0]. Then there exist a 6= b in [−9, 0] such that g(a) =

g(1) and g(b) = g( 1
2 ). This would mean that f(a) = h(g(a)) = h(g(1)) =

f(1) = 0 and f(b) = f( 1
2 ) = 0 which is not possible, since f is decreasing

on ]−∞, 0]. Thus, necessarily g is discontinuous on ]−∞, 0[. An even more

extreme behavior can be seen in Example 4.3 below, where g is necessarily

discontinuous, even if f is continuous.
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A continuous quasiconvex function g such that every local minimum is

global minimum, is necessarily semistrictly quasiconvex. This has been proved

in [11, Th. 3.37] based on another result and on the separation theorem. We

present here a short, direct proof of this fact:

Proposition 4.2 Let f : Rn → R∪{+∞} be neatly quasiconvex and contin-

uous. Then f is semistrictly quasiconvex.

Proof Assume that f is neatly quasiconvex and continuous. Let x, y ∈ dom f

be such that f(x) < f(y). The set S<f (y) is open and convex. Since y cannot

be a local minimum, we have y ∈ S<f (y). As x ∈ S<f (y), we deduce that

[x, y[ ⊆ S<f (y), i.e., f(z) < f(y) for all z ∈ [x, y[. Thus, f is semistrictly

quasiconvex. ut

Note that the quasiconvex function f of Example 4.1 that cannot be de-

composed as h ◦ g with h nondecreasing and g semistrictly quasiconvex, is not

continuous. A natural question arises: If f is quasiconvex and continuous, is

there a decomposition f = h ◦ g such that h is nondecreasing, and g neatly

quasiconvex and continuous, thus semistrictly quasiconvex? The answer is no,

as shown by the following.

Example 4.3 Consider the function f from Example 3.1. It is quasiconvex and

continuous. Assume that we can write f = h◦g where h is nondecreasing and g

is neatly quasiconvex and continuous. Then by Proposition 4.2, g is semistrictly

quasiconvex. Let us show that g is constant on the set A = ({0} × R−) ∪

(R− × {0}). For any two points x, y ∈ A, set xn = x − 1
n (1, 1), yn = y −
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1
n (1, 1). Since at least one of the coordinates of the points x, y is 0, we have

f(xn) = f(yn) = − 1
n . Then f(xn) < f(yn+1) < f(xn+2) from which we

deduce g(xn) < g(yn+1) < g(xn+2). By continuity, g(x) = g(y).

Consider the points a = (−1,−1), b = (1, 0) and c =
(
0,− 1

2

)
. From f(a) <

f(b) we obtain g(a) < g(b); by semistrict quasiconvexity, g(c) < g(b). Now for

every t > 0, f(0, t) = t > 0 = f(b) so g(0, t) > g(b). Taking the limit as t→ 0

we find g(0, 0) ≥ g(b) > g(c) = g(0, 0), a contradiction.

5 Conclusions

We have shown that every quasiconvex function with closed sublevel sets, may

be written as a composition of an increasing function, and a “neatly quasicon-

vex” function. Neatly quasiconvex functions are the functions for which every

local minimum point is a global minimum point, so they are more convenient

in optimization. As a tool to achieve this aim, we studied the structure of the

class of all adjusted sublevel sets of quasiconvex functions.

A parallel goal to this one is the study of the continuity properties of

the adjusted sublevel set operator, that is, the operator which at each point

associates the adjusted sublevel set corresponding to this point. We have shown

that this operator is lower semicontinuous. The same conclusion holds for

the strict lower level set operator. As a consequence, we have recovered the

cone-upper semicontinuity of the normal cone operator that was established

previously, without any assumption on the nonemptiness of the interior of the

sublevel sets.
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