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Abstract In the recent literature, the connection between maximal monotone op-
erators and the Fitzpatrick function is investigated. Subsequently, this relation has
been extended to maximal monotone bifunctions and their Fitzpatrick transform. In
this paper we generalize some of these results to maximal n-cyclically monotone
and maximal cyclically monotone bifunctions, by introducing and studying the Fitz-
patrick transforms of order n or infinite order for bifunctions.
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1 Introduction

Given a nonempty subset C of a Banach space X , a monotone bifunction, as defined
in [10], is a function F : C×C→ R such that

F(x,y)+F(y,x)≤ 0, ∀x,y ∈C.
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During the last two decades, monotone bifunctions were mainly used in the study
of the equilibrium problem, which consists in finding x0 ∈ C such that F(x0,x) ≥ 0
for all x ∈C. A large variety of problems such as variational inequalities, fixed point
problems, Nash equilibria of cooperative games, saddle point problems, can be seen
as particular instances of equilibrium problems, and this explains the great interest
which led to several hundreds of papers on the subject. On the other hand, in recent
years it became clear that the study of monotone bifunctions is closely linked to the
study of monotone operators and may shed new light to their theory [1,4,12,15,18].

A major advance in the theory of (maximal) monotone operators is the introduc-
tion and use of the Fitzpatrick function (see [11,19] and the references therein). This
approach was also used to the study of n-cyclically monotone operators [5–8,13].
In addition, very recently, Fitzpatrick functions (or “Fitzpatrick transforms”) were
proved to be a valuable tool in the study of monotone bifunctions [3,12,16,17].

In this paper we will introduce and study the notion of n-cyclic monotonicity and
the Fitzpatrick transform of order n for bifunctions, based on some ideas from [2].
We will connect maximal cyclic monotonicity of bifunctions to the maximal cyclic
monotonicity of an underlying operator, and generalize some of the results of [5]
regarding operators to the more general framework of bifunctions. The plan of the
paper is as follows.

The next section contains some notation, and a short review of basic definitions
on monotone operators, Fitzpatrick functions and monotone bifunctions. Section 3
introduces n–cyclically monotone bifunctions, the Fitzpatrick transform of order n or
infinite order, and BO-maximality, and shows the connections between these notions.
Section 4 focuses on the special case of bifunctions of the form GT which are de-
fined starting from an operator T . We will see that notions of maximal monotonicity
for such bifunctions coincide with the corresponding notions of operators. Section
5 contains the main results of the paper. Given a bifunction F , a new bifunction F∞

can be constructed from it; it is shown that F is cyclically monotone if and only
if F∞ is monotone. Using F∞, one can show that if F is cyclically monotone, then
there exists a function f such that F(x,y) ≤ f (y)− f (x); in fact, one has equality
F∞(x,y) = f (y)− f (x) under mild assumptions. The properties of F∞ permit to show
the equivalence of the BO-maximal cyclic monotonicity of F and the maximal cyclic
monotonicity of AF , an operator defined through F and studied in some recent papers
[1,3,12,16,17]. Analogously, for any n = 2,3, . . ., given a bifunction F we define a
bifunction Fn, through which results about maximal n-cyclic monotonicity will be
obtained.

2 Preliminaries

Let X be a Banach space and X∗ its topological dual. In the following we will denote
by R the set R∪{−∞,+∞}, and we will use the convention

(+∞)+(−∞) = (−∞)+(+∞) =−∞. (1)

We will also use the usual zero-sum convention
0
∑

n=1
= 0. Moreover, N= {1,2, · · ·}.
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Given a multivalued operator T : X ⇒ X∗ we recall that its domain and graph are,
respectively, the sets D(T ) = {x ∈ X : T (x) 6= /0} and grT = {(x,x∗) ∈ X ×X∗ : x∗ ∈
T (x)}. In order to give the definition of n–cyclic monotonicity, let us consider a finite
sequence of points x1,x2, ...,xn,xn+1 = x1 in X that will be called cycle of length n.

Definition 1 Let T : X ⇒ X∗ be an operator and n ∈ N. T is called n–cyclically
monotone if for each cycle x1,x2, ...,xn,xn+1 = x1 in X and any x∗i ∈ T (xi), i= 1, . . . ,n,

n
∑

i=1
〈x∗i ,xi+1− xi〉 ≤ 0.

The operator is called cyclically monotone if it is n–cyclically monotone for all
n≥ 2.

The notion of 2–cyclically monotone operator coincides with the usual notion
of monotone operator [21]. Moreover, if T is n-cyclically monotone, then it is also
m-cyclically monotone for each 2≤ m < n.

An n–cyclically monotone operator T is called maximal n–cyclically monotone
is there does not exist a proper n–cyclically monotone extension of T . A maximal 2–
cyclically monotone operator is simply called maximal monotone. Likewise, a cycli-
cally monotone operator is called maximal cyclically monotone if it does not have
any cyclically monotone proper extension.

Given an operator T : X ⇒ X∗, its Fitzpatrick function FT is the function FT :
X×X∗→ R∪{+∞} defined by

FT (x,x∗) = sup
(y,y∗)∈grT

(〈x∗,y〉+ 〈y∗,x〉−〈y∗,y〉) .

The Fitzpatrick function is convex and lower semicontinuous (lsc) with respect
to the pair of variables (x,x∗). In addition, whenever T is maximal monotone, one
has FT (x,x∗) ≥ 〈x∗,x〉 with equality if and only is (x,x∗) ∈ grT . More generally,
a convex, lsc function H on X ×X∗ such that H (x,x∗) ≥ 〈x∗,x〉 on X ×X∗, and
(x,x∗) ∈ grT implies H (x,x∗) = 〈x∗,x〉, is called a representative function of T . It
is known that whenever T is maximal monotone, FT is the smallest representative
function of T .

The Fitzpatrick function has been proven to be a valuable tool in the study of max-
imal monotone operators [11,19]. Recently, the Fitzpatrick function of order n and
the Fitzpatrick function of infinite order were introduced, in connection to the study
of maximal n–cyclically monotone and maximal cyclically monotone operators.

Definition 2 [5] Given an operator T : X ⇒ X∗ and n ∈ {2,3, . . .}, the Fitzpatrick
function of T of order n is defined by

FT,n (x,x∗) = sup
(

n−2
∑

i=1
〈x∗i ,xi+1− xi〉+

〈
x∗n−1,x− xn−1

〉
+ 〈x∗,x1〉

)
(2)

where the supremum is taken over all families (x1,x∗1) ,(x2,x∗2) , ...,
(
xn−1,x∗n−1

)
in

grT . The Fitzpatrick function of infinite order FT,∞ is the supremum of the functions
FT,n, n ∈ {2,3, . . .}.



4 M.H. Alizadeh, M. Bianchi, N. Hadjisavvas, R. Pini

When T is maximal n-cyclically monotone (resp. maximal cyclically monotone),
FT,n (resp., FT,∞) is a representative function of T . More precisely, the following
propositions hold [5].

Proposition 1 Let T : X ⇒ X∗ and n ∈ {2,3, . . .} be given. The following are equiv-
alent:

(i) T is n–cyclically monotone;
(ii) FT,n(x,x∗)≤ 〈x∗,x〉 for all (x,x∗) ∈ grT ;
(iii) FT,n(x,x∗) = 〈x∗,x〉 for all (x,x∗) ∈ grT .
Likewise, the following are equivalent:
(i’) T is cyclically monotone;
(ii’) FT,∞(x,x∗)≤ 〈x∗,x〉 for all (x,x∗) ∈ grT ;
(iii’) FT,∞(x,x∗) = 〈x∗,x〉 for all (x,x∗) ∈ grT .

Proposition 2 (i) Let T : X ⇒ X∗ be maximal n–cyclically monotone and
n ∈ {2,3, . . .}. Then 〈x∗,x〉 ≤FT,n(x,x∗), with equality if and only if (x,x∗) ∈ grT .

(ii) Let T : X ⇒ X∗ be maximal cyclically monotone. Then 〈x∗,x〉 ≤FT,∞(x,x∗),
with equality if and only if (x,x∗) ∈ grT .

In this paper, we use a slightly generalized notion of bifunction, introduced in [3].
By the term bifunction we understand any function F : X×X→R. A bifunction F is
said to be normal if there exists a nonempty set C ⊆ X such that F(x,y) =−∞ if and
only if x /∈C. The set C will be called the domain of F and denoted by D(F).

Given a normal bifunction F , we define the operator AF : X ⇒ X∗ by

AF(x) = {x∗ ∈ X∗ : F(x,y)≥ 〈x∗,y− x〉, ∀y ∈ X}.

Notice that D(AF)⊆ D(F), and

F(x,x)≥ 0 ∀x ∈ D(AF). (3)

On the other hand, given an operator T one can define a normal bifunction GT :
X×X → R with D(GT ) = D(T ) by

GT (x,y) = sup
x∗∈T (x)

〈x∗,y− x〉. (4)

Notice that GT (x,x) = 0 for all x ∈ D(T ), and GT (x, ·) is lsc and convex.

Definition 3 Let F : X × X → R be a normal bifunction, and n ∈ {2,3, . . .}. F is
called n–cyclically monotone if for each cycle x1,x2, ...,xn,xn+1 = x1 in X ,

n
∑

i=1
F(xi,xi+1)≤ 0. (5)

F is called cyclically monotone if it is n–cyclically monotone for all n ∈ {2,3, . . .}.

Note that in (5) it is enough to consider cycles in the domain of F .
A 2–cyclically monotone bifunction is said to be monotone. If F is n–cyclically

monotone, then F(x,x) ≤ 0 for every x ∈ D(F) and, consequently, F(x,x) = 0 for
every x ∈ D(AF).
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Remark 1 Unlike the situation for operators, it is not true in general that if F is n–
cyclically monotone, then it is m–cyclically monotone for all 2≤m< n; this assertion
becomes true if F satisfies F(x,x)≥ 0 for all x ∈ D(F).

It is easy to check that if T is an n–cyclically monotone (resp., cyclically mono-
tone) operator, then GT is an n-cyclically monotone (resp. cyclically monotone) bi-
function. We will also see later (cf. Theorem 2 and Corollary 1) that if F is an n–
cyclically monotone (resp., cyclically monotone) bifunction, then AF is an n-cyclically
monotone (resp. cyclically monotone) operator.

A monotone bifunction F is called maximal monotone if AF is maximal mono-
tone. A broader class of monotone bifunctions is provided via the notion of BO–
maximal monotonicity. Here, BO stands for Blum and Oettli [10], who first intro-
duced this notion for real-valued bifunctions defined on a subset C of X .

Definition 4 A monotone bifunction F is said to be BO–maximal monotone if for all
(x,x∗) ∈ X×X∗,

F(y,x)+ 〈x∗,y− x〉 ≤ 0 ∀y ∈ D(F) =⇒ 〈x∗,y− x〉 ≤ F(x,y) ∀y ∈ X ,

i.e.
F(y,x)+ 〈x∗,y− x〉 ≤ 0 ∀y ∈ D(F) =⇒ x∗ ∈ AF(x).

According to Proposition 1 in [4], every maximal monotone bifunction is also
BO–maximal monotone. The converse is not true, in general, but it holds under some
additional assumptions. To this aim, we recall the following result (see Theorem 3.5
in [3]):

Theorem 1 Let X be reflexive, F be BO–maximal monotone and F(x, ·) be convex
and lsc for all x ∈ D(F). Then F is maximal monotone.

3 Fitzpatrick transform of order n and n–cyclic monotonicity

The next subsections are devoted to the definition of the Fitzpatrick transform of
order n, and to the investigation of its relationship with n–cyclic monotonicity of
bifunctions.

3.1 The Fitzpatrick transform of order n

Assume that F : X×X → R is a normal bifunction.

Definition 5 The Fitzpatrick transform of F of order n ∈ {2,3, . . .} at (x,x∗) ∈ X ×
X∗ is defined by the following recursion formula

ϕF,n (x,x∗) = sup
y∈X
{ϕF,n−1 (y,x∗)+F (y,x)} , (6)

where ϕF,1(x,x∗) = 〈x∗,x〉. The Fitzpatrick transform of infinite order is defined by

ϕF,∞ = sup
n≥2

ϕF,n. (7)
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The above definition gives

ϕF,2 (x,x∗) = sup
y∈X

(〈x∗,y〉+F (y,x)) = ϕF (x,x∗) ,

the original definition of Fitzpatrick transform of a normal bifunction given in [3]
(see also [12]).

It is clear that in (6) the supremum can be taken over y ∈ D(F). It is also easy to
check by induction that for n ∈ {2,3, . . .}, ϕF,n is given by the following formula:

ϕF,n (x,x∗) = sup
x1,...,xn−1∈D(F)

[(
n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+ 〈x∗,x1〉

]
(8)

for all (x,x∗) ∈ X×X∗. It follows that ϕF,∞ is given by

ϕF,∞ (x,x∗) = sup
n≥2

x1,...,xn−1∈D(F)

[(
n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+ 〈x∗,x1〉

]
.

If F (x, ·) is lsc and convex, then for each n ∈ {2,3, . . .}, ϕF,n and ϕF,∞ are also lsc
and convex on X×X∗.

Remark 2 The recursive formula (6) together with (3) imply that the sequence ϕF,n
is pointwisely increasing on D(AF)×X∗, and

ϕF,n(x,x∗)≥ 〈x∗,x〉, ∀(x,x∗) ∈ D(AF)×X∗. (9)

In addition, if we assume that F(x,x) ≥ 0 for every x ∈ D(F), then for every k ∈ N
and (x,x∗) ∈ X×X∗,

ϕF,k+1(x,x∗) = sup
x1,...,xk∈D(F)

[(
k−1
∑

i=1
F (xi,xi+1)

)
+F (xk,x)+ 〈x∗,x1〉

]
≥ sup

x1,...,xk−1∈D(F)

[(
k−2
∑

i=1
F (xi,xi+1)

)
+F(xk−1,xk−1)+F (xk−1,x)+ 〈x∗,x1〉

]
≥ ϕF,k (x,x∗) .

Therefore,
ϕF,n(x,x∗) ↑ ϕF,∞(x,x∗).

The notion of Fitzpatrick transform of order n (respectively, ∞) for normal bi-
functions includes, as special case, the Fitzpatrick function of the same order for
operators. Indeed, given an operator T , we consider the normal bifunction GT de-
fined by (4). If at the right-hand side of (2) we take first the supremum with respect
to x∗i ∈ T (xi), i = 1,2, . . . ,n−1, and then with respect to x1,x2, ...,xn−1, we obtain for
any n ∈ {2,3, . . .},

FT,n (x,x∗) = sup
x1,...,xn−1∈D(T )

[(
n−2
∑

i=1
GT (xi,xi+1)

)
+GT (xn−1,x)+ 〈x∗,x1〉

]
= ϕGT ,n (x,x

∗) .

(10)
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Likewise, FT,∞ = ϕGT ,∞, thereby showing that T →FT and T →GT → ϕGT lead to
the same bifunction.

On the other hand, by comparing (8) and (2), from the definition of AF it is easy
to see that for any normal bifunction F one has

FAF ,n ≤ ϕF,n, FAF ,∞ ≤ ϕF,∞. (11)

Notice that in (11) the inequality can be strict as the following example shows.

Example 1 Let f : X → R ∪ {+∞} be a lsc and convex function with
dom f = {x ∈ X : f (x)< ∞}. Define F : X×X → R by

F (x,y) = f (y)− f (x) .

According to our convention (1), F is cyclically monotone and one can easily check
that for each n ∈ {2,3, ...} and every (x,x∗) in X×X∗,

ϕF,n (x,x∗) = ϕF,∞ (x,x∗) = f (x)+ f ∗ (x∗)

where f ∗(x∗) denotes the conjugate function of f .

Choose f (x) = ‖x‖2
2 and define F : X×X→R by F(x,y) = ‖y‖2−‖x‖2

2 . In this case
we have AF = ∂ f = J where J is the duality mapping of X :

J(x) = {x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗,x〉}.

Then, using that the convex conjugate of ‖x‖
2

2 is ‖x
∗‖2
2 , we find

ϕF,2(x,x∗) =
‖x‖2

2
+
‖x∗‖2

2
.

On the other hand it is known ([14] Proposition 4.1) that

FJ,2(x,x∗)≤
(‖x‖+‖x∗‖)2

4
.

Thus ϕF,2(x,x∗)−FAF ,2(x,x
∗)≥ (‖x‖−‖x∗‖)2

4 > 0 if ‖x‖ 6= ‖x∗‖.

3.2 n–cyclic monotonicity

In this subsection we will extend some results of the literature concerning n-cyclic
monotone operators to n-cyclic monotone bifunctions. The following results and ex-
amples show that Proposition 1 can be generalized to the framework of normal bi-
functions, but in a weaker form.

Theorem 2 Let F be a normal bifunction and n ∈ {2,3, . . .} be fixed. Consider the
following assertions:

(i) F is n-cyclically monotone;
(ii) ϕF,n(x,x∗)≤ 〈x∗,x〉 for all (x,x∗) ∈ grAF ;
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(iii) ϕF,n(x,x∗) = 〈x∗,x〉 for all (x,x∗) ∈ grAF ;
(iv) AF is n-cyclically monotone.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv).

Proof To show (i)⇒ (ii), let (x,x∗) ∈ grAF and assume that F is n-cyclically mono-
tone. Let x1,x2, . . . ,xn−1 ∈ D(F) be arbitrary points, and x ∈ D(AF). By assumption,(

n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+F (x,x1)≤ 0.

On the other hand x∗ ∈ AF (x) thus F (x,x1) ≥ 〈x∗,x1− x〉. From this and the above
inequality we infer that(

n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+ 〈x∗,x1〉 ≤ 〈x∗,x〉 .

By taking the supremum over all x1,x2, . . . ,xn−2 ∈ D(F) we conclude that
ϕF,n (x,x∗)≤ 〈x∗,x〉 on grAF .

Implication (ii)⇒ (iii) is trivial by (9).
To show implication (iii) ⇒ (iv), take (x1,x∗1) ,(x2,x∗2) , . . . ,(xn,x∗n) ∈ grAF and

set xn+1 = x1. Then

n
∑

i=1
〈x∗i ,xi+1− xi〉=

n−2
∑

i=1
〈x∗i ,xi+1− xi〉+

〈
x∗n−1,xn− xn−1

〉
+ 〈x∗n,x1− xn〉

≤
n−2
∑

i=1
F(xi,xi+1)+F(xn−1,xn)+ 〈x∗n,x1〉−〈x∗n,xn〉

≤ ϕF,n(xn,x∗n)−〈x∗n,xn〉= 0.

So AF is n-cyclically monotone.

Corollary 1 Let F be a normal bifunction. Consider the following assertions:

(i) F is cyclically monotone;
(ii) ϕF,∞(x,x∗)≤ 〈x∗,x〉 for all (x,x∗) ∈ grAF ;

(iii) ϕF,∞(x,x∗) = 〈x∗,x〉 for all (x,x∗) ∈ grAF ;
(iv) AF is cyclically monotone.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv).

Proof The proof follows from Theorem 2, taking into account that ϕF,∞ = supn ϕF,n,
and that an operator is cyclically monotone if and only if it is n-cyclically monotone
for all n.

Remark 3 The following examples show that in the case of normal bifunctions, con-
ditions (i)-(iv) are not equivalent.
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1. The n-cyclic monotonicity of AF does not imply the n-cyclic monotonicity of F ,
i.e. condition (iv) does not imply (i).
To show this, let f : R→ R be a differentiable convex function such that f (0) =
0 and f (x) > 0 for all x 6= 0. Obviously, f ′(0) = 0. Define F(x,y) = f (y− x).
Then F(x, ·) is lsc and convex, F(x,x) = 0 but F is not monotone since F(x,y)+
F(y,x) > 0 unless x = y. By definition AF(x) = ∂F(x, ·)(x), hence AF(x) is the
derivative of f (· − x) at the point x, i.e., AF(x) = {0}. Thus AF is n-cyclically
monotone, while F is not even monotone.
Notice that also (iii) does not hold; indeed, every (x,x∗) ∈ grAF is of the form
(x,0). On the other hand, if we take any y0 6= x then

ϕF,n(x,0)≥ ϕF,2(x,0) = sup
y∈X

(〈0,y〉+F(y,x))≥ F(y0,x)> 0 = 〈0,x〉 .

2. Condition (iii) does not imply (i).
Take, for instance, G(x,y) = xy− x2y2. Then G is not monotone since G(x,y)+
G(y,x)> 0 for small positive x,y. Let us find AG. Assume that x∗ ∈ AG(x). For x 6=
0 we should have G(x,y) ≥ x∗(y− x) hence xy− x2y2 ≥ x∗(y− x). This is clearly
impossible for large y, so AG(x)= /0. Now take x= 0. Then 0=G(0,y)≥ x∗y holds
for every y ∈ R if and only if x∗ = 0. Thus grAG = {(0,0)}. By the definition of
ϕG,2, it is clear that ϕG,2(0,0) = 0 = 〈0,0〉 so (iii) holds, while (i) does not hold.

3.3 BO-maximal n-cyclically monotone bifunctions

We are now interested in investigating the role played by maximality. We intend to
introduce a suitable notion of maximality for bifunctions that is related to the maxi-
mality of operators, and implies results similar to Proposition 2.

Let F be n-cyclically monotone for some n ∈ {2,3, . . .}. According to Theorem
2, whenever (x,x∗) ∈ grAF , one has ϕF,n(x,x∗)≤ 〈x∗,x〉. We rewrite the first of these
relations as

〈x∗,y− x〉 ≤ F (x,y) ∀y ∈ X (12)

and the second as(
n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+ 〈x∗,x1− x〉 ≤ 0 ∀x1,x2, ...,xn−1 ∈ D(F). (13)

Then Theorem 2 says that for an n-cyclically monotone bifunction F , (12) implies
(13); we now use the converse implication to introduce a concept that extends the
notion of BO-maximal monotone bifunction.

Definition 6 Let n ∈ {2,3, . . .} be fixed. An n-cyclically monotone bifunction F :
X ×X → R is called BO-maximal n-cyclically monotone if for every (x,x∗) ∈ X ×
X∗ the following implication holds(

n−2
∑

i=1
F (xi,xi+1)

)
+F (xn−1,x)+ 〈x∗,x1− x〉 ≤ 0 ∀x1,x2, ...,xn−1 ∈ D(F)

=⇒ 〈x∗,y− x〉 ≤ F (x,y) ∀y ∈ X ,
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or, equivalently,

ϕF,n(x,x∗)≤ 〈x∗,x〉 ⇒ (x,x∗) ∈ grAF . (14)

Moreover, a cyclically monotone bifunction is called BO-maximal cyclically mono-
tone if for every (x,x∗) ∈ X×X∗,

ϕF,∞(x,x∗)≤ 〈x∗,x〉 ⇒ (x,x∗) ∈ grAF . (15)

It is clear that a bifunction F is BO-maximal 2–cyclically monotone if an only if
it is BO-maximal monotone.

Remark 4 If F is cyclically monotone and BO-maximal n-cyclically monotone for
some n, then it is BO-maximal cyclically monotone. If F is n-cyclically monotone
and BO-maximal m-cyclically monotone for some m < n, and F(x,x) ≥ 0 for all
x ∈ D(F), then it is also BO-maximal n-cyclically monotone.

It is worthwhile noticing that, even if F(x,x) ≥ 0 for x ∈ D(F), one cannot infer
the BO-maximal m-cyclic monotonicity of the bifunction from its BO-maximal n-
cyclic monotonicity, if n > m, as showed by the following

Example 2 Let T be an operator which is maximal 3-cyclically monotone but not
maximal monotone in a reflexive space X (such operators exist by Example 2.16
in [5]). Consider the normal bifunction F = GT . It is not hard to see that F is 3-
cyclically monotone, and that grT ⊆ grAF . Furthermore, by Theorem 2, AF is 3-
cyclically monotone, therefore, by maximality, T = AF . By the subsequent Proposi-
tion 3, F is BO-maximal 3-cyclically monotone. It is not maximal monotone since,
by construction, AF = T is not maximal monotone. In addition, F(x, ·) is convex and
lsc. Hence F is not BO-maximal monotone, since, otherwise, it would be maximal
monotone by Theorem 1.

The following proposition generalizes the relationship existing between BO-
maximal monotonicity and maximal monotonicity.

Proposition 3 (i) Let F be an n-cyclically monotone bifunction for some
n ∈ {2,3, . . .}. If AF is maximal n-cyclically monotone, then F is BO-maximal n-
cyclically monotone.

(ii) Let F be cyclically monotone. If AF is maximal cyclically monotone, then F
is BO-maximal cyclically monotone.

Proof (i) Suppose that ϕF,n(x,x∗) ≤ 〈x∗,x〉 for some (x,x∗) ∈ X ×X∗. From (11),
FAF ,n(x,x

∗) ≤ 〈x∗,x〉. Proposition 2 now implies that (x,x∗) ∈ grAF , thus F is BO-
maximal monotone.

(ii) This is again an immediate consequence of (11) and Proposition 2.

The converse of Proposition 3 is false as the following examples show (see also [4]
for the case n = 2).
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Example 3 Let f : R→ R be the function

f (x) =
{

1− x2, x ∈ (−1,1)
0, x /∈ (−1,1)

and F : R2→ R be the normal bifunction defined by F(x,y) = f (y)− f (x). Then F
is cyclically monotone thus, in particular, n-cyclically monotone. It is trivial to see
that it is BO-maximal monotone. Since F(x,x) = 0, by Remark 4 it is BO-maximal
n-cyclically monotone for every n = 2,3, . . .. An easy calculation shows that

grAF = {(x,0) : x /∈ (−1,1)}.

Thus AF is not maximal n-cyclically monotone for any n = 2,3, . . ..
A similar example with F(x, ·) convex but not lsc, is to take

f (x) =

 0, x ∈ (−1,1)
1, x ∈ {−1,1}
+∞, x /∈ [−1,1]

and define F(x,y) = f (y)− f (x) (with the convention +∞−∞ =−∞). Then again F
is BO-maximal n-cyclically monotone for every n = 2,3, . . ., but AF(x) = ∂ f (x) so
grAF = {(x,0) : x ∈ (−1,1)} and AF is not maximal n-cyclically monotone for any
n = 2,3, . . ..

Notice that, in the examples above, F(x, ·) is not, at the same time, both lsc and
convex. On the analogy of Theorem 1, one could expect that if F is BO-maximal
n-cyclically monotone, F(x, ·) is lsc and convex, then AF is maximal n-cyclically
monotone, for any n ∈ {3, . . .}. Indeed this implication is true for the special bifunc-
tion GT , as we will see in Section 4. We will discuss the general case in Section
5.

The next proposition generalizes Proposition 2 to BO-maximal n-cyclically mono-
tone bifunctions, and also extends Theorem 3.2 proved in [3].

Proposition 4 Let n ∈ {2,3, . . .} be fixed, and assume that F is BO-maximal n-
cyclically monotone. Then

(i) 〈x∗,x〉 ≤ ϕF,n (x,x∗) for all (x,x∗) ∈ X×X∗;
(ii) 〈x∗,x〉= ϕF,n (x,x∗) if and only if x∗ ∈ AF (x).

In addition, if F is BO-maximal cyclically monotone, then

(i’) 〈x∗,x〉 ≤ ϕF,∞ (x,x∗) for all (x,x∗) ∈ X×X∗;
(ii’) 〈x∗,x〉= ϕF,∞ (x,x∗) if and only if x∗ ∈ AF (x).

Proof Assume that (i) does not hold; then ϕF,n (x,x∗)< 〈x∗,x〉 for some (x,x∗)∈ X×
X∗, so by (14) we obtain (x,x∗) ∈ grAF . Then we get a contradiction with Theorem
2.

To show (ii), we remark first that if 〈x∗,x〉 = ϕF,n (x,x∗), then (14) implies x∗ ∈
AF (x). Conversely, if x∗ ∈ AF (x), then Theorem 2 implies immediately 〈x∗,x〉 =
ϕF,n (x,x∗) .

The proof of (i’) and (ii’) follows the same line of (i) and (ii), taking into account
(15) and Corollary 1.
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4 The special case of the bifunction GT

In the previous section we showed that BO-maximal n-cyclic monotonicity of F does
not imply the maximal n-cyclic monotonicity of AF . Now we prove that these two
conditions are equivalent in the special case of the normal bifunction GT associated
to a maximal n-cyclically monotone operator T .

Given an operator T : X ⇒ X∗, let us define the operator coT : X ⇒ X∗ by
coT (x) = co T (x), where the closure of the set is meant with respect to the weak∗

topology.
The operator coT has the following properties:

GcoT = GT , FT,n = FcoT,n, coT = AGT .

The first of these properties is obvious; the second is a consequence of the equal-
ities FT,n = ϕGT ,n = ϕGcoT ,n = FcoT,n. As for the third, we note first that for every
operator T , T ⊆ AGT holds, thus in particular coT ⊆ AGcoT = AGT . On the other hand,
if x∗0 ∈ AGT (x) for some x ∈ X , then for all y ∈ X ,

GT (x,y) = GcoT (x,y) = sup
x∗∈coT (x)

〈x∗,y− x〉 ≥ 〈x∗0,y− x〉 .

It then follows from the separation theorem that x∗0 ∈ coT (x), so AGT ⊆ coT .
We are now in the position to prove the following result that extends Proposition

2.4 in [3].

Theorem 3 Let T : X ⇒ X∗ be an operator and n∈ {2,3, . . .} be fixed. The following
are equivalent:

(i) coT is maximal n-cyclically monotone;
(ii) T is n-cyclically monotone and the following implication holds:

FT,n(x,x∗)≤ 〈x∗,x〉 ⇒ (x,x∗) ∈ grcoT ; (16)

(iii) GT is BO-maximal n-cyclically monotone.

Proof First, it can be easily proved that T is n-cyclically monotone if and only if coT
is n-cyclically monotone (see also Proposition 2.5 and 2.8 in [9]).

To show that (i) implies (ii), let FT,n(x,x∗) = FcoT,n(x,x∗)≤ 〈x∗,x〉. Then, from
Proposition 2 we deduce that (x,x∗) ∈ grcoT

If (ii) holds, then for every cycle x1,x2, . . . ,xn,xn+1 = x1 ∈ D(T ) we have

n

∑
i=1

GT (xi,xi+1) =
n

∑
i=1

sup
x∗i ∈T (xi)

〈x∗i ,xi+1− xi〉 ≤ 0

since T is n-cyclically monotone. Hence, GT is n-cyclically monotone.
Moreover, if ϕGT ,n(x,x

∗) ≤ 〈x∗,x〉, then (10) entails FT,n(x,x∗) ≤ 〈x,x∗〉 and by
assumption (x,x∗) ∈ grcoT = grAGT , thereby showing that GT is BO-maximal n-
cyclically monotone.

Finally, let us show that (iii) implies (i). Since GT is n-cyclically monotone, by
Theorem 2 we have that AGT = coT is n-cyclically monotone. If coT is not maximal,
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there exists an n-cyclically monotone operator B such that grB⊇ grcoT . Let (x,x∗)∈
grB \ grcoT . By Proposition 2.7 in [5] we have that FcoT,n(x,x∗) ≤ 〈x∗,x〉. This
implies that

FcoT,n(x,x∗) = FT,n(x,x∗) = ϕGT ,n(x,x
∗)≤ 〈x∗,x〉

and from the assumption of BO-maximality of GT , we deduce that (x,x∗)∈ grAGT =
coT , a contradiction. Therefore coT is maximal n-cyclically monotone.

We note that whenever T is maximal n-cyclically monotone, then grT ⊆ grcoT
implies coT = T , so (i), (ii) and (iii) in the above proposition hold.

As a particular case of the same proposition, we see that an operator T with
weak∗-closed convex values is maximal n-cyclically monotone if and only if GT is
BO-maximal n-cyclically monotone.

5 BO-maximality vs maximality

One purpose of this section is to extend Theorem 1 to the case of BO-maximal cycli-
cally monotone bifunctions. As we will see, the reflexivity of the space X is no longer
necessary. Furthermore, we also prove a result concerning BO-maximal n-cyclically
monotone bifunctions. To do so, for every normal bifunction F we will define the
normal bifunctions Fn, n = 2,3, . . . and F∞ and obtain some of their properties.

Given a normal bifunction F , let us define the normal bifunctions

Fn(x,y) = sup
n−1

∑
i=1

F(xi,xi+1), n = 2,3, . . .

F∞(x,y) = sup
n=2,3,...

Fn(x,y),

where the first supremum is taken over all families x1, . . . ,xn ∈ X such that x1 = x and
xn = y. Note that F2 = F . Obviously, the families can be taken with x2, . . . ,xn−1 ∈
D(F). Finally, it is clear that D(Fn) = D(F∞) = D(F). It is worth noticing that for
every (x,y) ∈

(
D(AF)×X

)
∪
(
X×D(AF)

)
the sequence {Fn(x,y)}n is pointwisely

increasing in view of relation (3); the same is true for every (x,y) ∈ X ×X if we
assume that F(x,x)≥ 0 whenever x ∈ D(F).
If F(x, ·) is convex and lsc for x ∈ D(F), then the functions Fn(x, ·), n = 2,3, . . ., and
F∞(x, ·) inherit the same properties.

Concerning the Fitzpatrick transform, it is clear from the definitions that

ϕF,n = ϕFn,2 = ϕFn for all n = 2,3, · · · (17)

and also
ϕF,∞ = ϕF∞,2 = ϕF∞

. (18)

In the following propositions we shed some light on the relationships between the
monotonicity of F , Fn and F∞. We first establish a simple property of F∞.
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Lemma 1 For every x,y,z ∈ X,

F∞(x,y)+F∞(y,z)≤ F∞(x,z).

More generally, for every x1, . . . ,xn ∈ X,

n−1

∑
i=1

F∞(xi,xi+1)≤ F∞(x1,xn).

Proof For every n,m ∈ N, x2, . . . ,xn−1 ∈ X and xn+1, . . . ,xn+m−1 ∈ X we set x1 = x,
xn+m = z and xn = y; then

n−1

∑
i=1

F(xi,xi+1)+
n+m−1

∑
i=n

F(xi,xi+1)≤ F∞(x,z).

By taking suprema over x2, . . . ,xn−1 and xn+1, . . . ,xn+m−1 we get the the first part of
the lemma. The second part follows by induction.

Proposition 5 Given a normal bifunction F, the following are equivalent:
(i) F is cyclically monotone;
(ii) F∞ is monotone;
(iii) F∞ is cyclically monotone.

Proof (i)⇒(ii) For every x,y∈D(F) one has F∞(x,y)+F∞(y,x)≤F∞(x,x) by Lemma
1. Thus, it is enough to show that F∞(x,x)≤ 0. For every cycle x= x1,x2, . . . ,xn−1,xn =
x in D(F) we get by cyclic monotonicity

n−1

∑
i=1

F(xi,xi+1)≤ 0.

By taking the supremum over x2, . . . ,xn−1 we obtain F∞(x,x)≤ 0.
(ii)⇒(iii) If F∞ is monotone, then for every cycle of length n, x1, . . . ,xn+1 = x1 ∈

D(F), we get in virtue of Lemma 1:

n

∑
i=1

F∞(xi,xi+1) =
n−1

∑
i=1

F∞(xi,xi+1)+F∞(xn,x1)≤ F∞(x1,xn)+F∞(xn,x1)≤ 0,

that is, F is cyclically monotone.
(iii)⇒(i) If F∞ is cyclically monotone, then clearly F is cyclically monotone since

F ≤ F∞.

Remark 5 The proposition above shows that whenever F is cyclically monotone, then
F∞(x,y) ∈ R for x,y ∈ D(F); this is interesting because it is not a priori evident that
F∞(x,y) 6=+∞ for x,y ∈ D(F).

Proposition 6 Let n≥ 2. Then F is (2n−2)-cyclically monotone if and only if Fn is
monotone.
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Proof If F is (2n − 2)-cyclically monotone, then for every x,y ∈ D(F), every
x2, . . . ,xn−1 ∈D(F) and xn+1, . . . ,x2n−2 ∈D(F), if we set x1 = x, xn = y and x2n−1 = x
we get

n−1

∑
i=1

F(xi,xi+1)+
2n−2

∑
i=n

F(xi,xi+1) =
2n−2

∑
i=1

F(xi,xi+1)≤ 0.

Thus,

sup
x2,...,xn−1∈D(F)

n−1

∑
i=1

F(xi,xi+1)+ sup
xn+1,...,x2n−2∈D(F)

2n−2

∑
i=n

F(xi,xi+1)≤ 0

which implies Fn(x,y)+Fn(y,x)≤ 0, thereby showing that Fn is monotone.
Conversely, if Fn is monotone, then for every cycle of length (2n − 2),

x1, . . . ,x2n−1 = x1 ∈ D(F), we get

2n−2

∑
i=1

F(xi,xi+1) =
n−1

∑
i=1

F(xi,xi+1)+
2n−2

∑
i=n

F(xi,xi+1)≤ Fn(x1,xn)+Fn(xn,x1)≤ 0

that is, F is (2n−2)-cyclically monotone.

Let us now investigate the relationship between BO-maximal monotonicity of F ,
Fn and F∞.

Proposition 7 If F be a BO-maximal cyclically monotone bifunction, then F∞ is BO-
maximal monotone. Moreover, let n ≥ 2. If F is a (2n− 2)-cyclically monotone and
BO-maximal n-cyclically monotone bifunction, then Fn is BO-maximal monotone.

Proof By Proposition 5 we know that the cyclic monotonicity of F implies the mono-
tonicity of F∞. Suppose now that ϕF∞

(x,x∗)≤ 〈x,x∗〉. Since ϕF,∞(x,x∗) = ϕF∞
(x,x∗),

by the assumption on F we get x∗ ∈ AF(x). But F ≤ F∞ implies grAF ⊆ grAF∞ , and
thus x∗ ∈ AF∞(x), i.e. F∞ is BO-maximal monotone.

In order to prove the second part, notice that the bifunction Fn is monotone by
Proposition 6. Suppose that ϕFn(x,x

∗)≤ 〈x,x∗〉. Since ϕFn(x,x
∗) = ϕF,n(x,x∗), by the

assumption of BO-maximal n-cyclic monotonicity we get x∗ ∈AF(x) and in particular
x∈D(AF). Moreover, F(x,y)≤Fn(x,y) for every y∈X , since the sequence {Fn(x,y)}
is pointwisely increasing on (x,y) ∈D(AF)×X . It follows that x∗ ∈ AFn(x), hence Fn
is BO-maximal monotone.

The following proposition gives a simple necessary and sufficient condition for a
normal bifunction to be cyclically monotone.

Proposition 8 Let F : X ×X → R be a normal bifunction. The following assertions
are equivalent:

(a) F is cyclically monotone
(b) there exists a proper function f : X → R with D(F)⊆ dom f such that

F∞(x,y)≤ f (y)− f (x), ∀x,y ∈ X (19)
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(c) there exists a proper function f : X → R with D(F)⊆ dom f such that

F(x,y)≤ f (y)− f (x), ∀x,y ∈ X (20)

Actually, a proper function f satisfies (19) if and only if it satisfies (20). If in
addition F(x, ·) is lsc and convex for all x ∈ D(F) then f in (19) and (20) can be
chosen to be lsc and convex.

Proof (a)⇒(b). Choose x0 ∈D(F) and set f (x) = F∞(x0,x). It is clear that f is proper
and f (x) is real for all x ∈ D(F) since F∞ is monotone, hence D(F) ⊆ dom f . By
Lemma 1, for every x,y ∈ X we have

F∞(x0,x)+F∞(x,y)≤ F∞(x0,y). (21)

If x∈D(F) then F∞(x0,x)∈R; if x /∈D(F) then F∞(x,y) =−∞; hence we deduce
from (21) that in all cases

F∞(x,y)≤ F∞(x0,y)−F∞(x0,x) (22)

which is relation (19).
(b)⇒(c) is an immediate consequence of the inequality F(x,y)≤ F∞(x,y).
(c)⇒(a) is trivial.
Let us show that if (20) holds for some proper function f , then (19) also holds

for the same f . For every x2, . . . ,xn−1 ∈ D(F), if we set x1 = x and xn = y we obtain
F(xi,xi+1)≤ f (xi+1)− f (xi), i = 1, . . . ,n−1. By adding the inequalities we find

n−1
∑

i=1
F(xi,xi+1)≤ f (y)− f (x).

Taking the supremum over all families x2, . . . ,xn−1 ∈ D(F), and n ∈ {2,3, . . .},
we deduce (19).

Finally, if F(x, ·) is lsc and convex for all x∈D(F) then obviously f (·) =F∞(x0, ·)
is also lsc and convex.

The next proposition shows that relation (19) becomes an equality under suitable
assumptions.

Theorem 4 Assume that F : X×X→R is a cyclically monotone bifunction. Let f be
a proper, lsc and convex function such that (19) holds. If F∞ is BO-maximal monotone
(resp., F is BO-maximal cyclically monotone), then ∂ f =AF∞ (resp., ∂ f =AF =AF∞ )
and f satisfying (19) is unique up to a constant. If, in addition, F(x,x)≥ 0 and F(x, ·)
is lsc and convex for all x ∈ D(F), then

F∞(x,y) = f (y)− f (x), ∀x ∈ D(F), y ∈ X . (23)

Proof Let (x,x∗) ∈ gr∂ f . For every y ∈ X , relation (19) implies

F∞(y,x)+ 〈x∗,y− x〉 ≤ f (x)− f (y)+ 〈x∗,y− x〉 ≤ 0.

Since F∞ is BO-maximal monotone, we obtain

〈x∗,y− x〉 ≤ F∞(x,y), ∀y ∈ X .
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Hence, (x,x∗) ∈ grAF∞ . Since ∂ f is maximal monotone and F∞ is monotone, we
deduce that AF∞ = ∂ f . Now assume that g is another proper, convex and lsc function
such that

F∞(x,y)≤ g(y)−g(x), ∀x,y ∈ X .

By the preceding proof we have ∂g = AF∞ , so ∂ f = ∂g. This implies that g differs
from f by a constant [20].

Suppose now that F is BO-maximal cyclically monotone. This implies, in partic-
ular, that F∞ is BO-maximal monotone. Moreover, from Proposition 4 applied to both
F and F∞, one gets that AF = AF∞ .

To show (23), assume that f satisfies (19), F(x,x) ≥ 0, and F(x, ·) is lsc and
convex for all x ∈D(F). For every x′ ∈D(F) set fx′(y) = F∞(x′,y), y ∈ X . Since (22)
holds for any choice of x0, we have

F∞(x,y)≤ fx′(y)− fx′(x).

By the preceding part of the proof, fx′ differs from f by a (real) constant, de-
pending on x′. Thus there exists a function g : D(F)→ R such that for all y ∈ X and
x′ ∈ D(F),

f (y) = fx′(y)+g(x′). (24)

Since F∞ is monotone, F∞(x′,x′) ≤ 0. Also, F∞(x′,x′) ≥ F(x′,x′) ≥ 0 so finally
fx′(x′) = F∞(x′,x′) = 0. Putting y = x′ in (24) we obtain g(x′) = f (x′). It follows that
for all x′ ∈ D(F) and y ∈ X ,

F∞(x′,y) = fx′(y) = f (y)− f (x′).

According to Proposition 3, if F is cyclically monotone and AF is maximal cycli-
cally monotone, then F is BO-maximal cyclically monotone. We are now in position
to prove that the converse also holds whenever F(x, ·) is convex and lsc. In contrast
to Theorem 1, this result does not require the space to be reflexive.

Corollary 2 Assume that F : X ×X → R is a cyclically monotone bifunction, and
F(x, ·) is lsc and convex for every x∈D(F). If F is BO-maximal cyclically monotone,
then AF is maximal cyclically monotone. The same conclusion holds if F is BO-
maximal n-cyclically monotone for some n, provided F(x,x)≥ 0 if x ∈ D(F).

Proof If F is BO-maximal cyclically monotone, then by Theorem 4, AF =∂ f for
some proper, lsc and convex function f . Thus AF is maximal cyclically monotone.
If F is BO-maximal n-cyclically monotone for some n then it is also BO-maximal
cyclically monotone by Remark 4 and the conclusion follows.

Finally we show the next result regarding the maximal n–cyclic monotonicity of
AF .

Theorem 5 Let X be reflexive and F be (2n− 2)-cyclically monotone and BO-
maximal n-cyclically monotone (n ≥ 2). Assume that F(x, ·) is convex and lsc for
every x ∈ D(F). Then AF is maximal n-cyclically monotone.
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Proof By Proposition 7, the function Fn is BO-maximal monotone. This fact has two
consequences: first, since Fn(x, ·) is lsc and convex, by Theorem 1 it follows that
AFn is maximal monotone. Second, by Proposition 4 applied to Fn, we obtain that
ϕFn(x,x

∗) = 〈x∗,x〉 iff (x,x∗) ∈ grAFn . However, the same Proposition applied to F
gives ϕF,n(x,x∗) = 〈x∗,x〉 if and only if (x,x∗) ∈ grAF . Since ϕF,n(x,x∗) = ϕFn(x,x

∗),
we get that AF = AFn is maximal monotone. But AF is n-cyclically monotone by
Theorem 2, hence AF is maximal n-cyclically monotone.

We conclude this section with a result related to Theorem 3.5 in [5], where the subd-
ifferential of a proper, lsc and convex function is involved.

Proposition 9 Let F : X×X→R be a normal bifunction. If there exists a proper, lsc
and convex function f : X → R∪{+∞} such that

F(x,y)≤ f (y)− f (x), ∀(x,y) ∈ X×X , (25)

then

ϕF,n (x,x∗)≤ f (x)+ f ∗ (x∗) ∀(x,x∗) ∈ X×X∗, n ∈ {2,3, . . .},

and
ϕF,∞ (x,x∗)≤ f (x)+ f ∗ (x∗) ∀(x,x∗) ∈ X×X∗. (26)

If further F is BO-maximal cyclically monotone, F(x,x) = 0 and F(x, ·) is lsc and
convex for all x ∈ D(F), and D(F) = dom f , then relation (26) is an equality.

Proof For every family x1, ...,xn−1 in D(F), x ∈ X , x∗ ∈ X∗, n ∈ {2,3, . . .}, we have

n−2
∑

i=1
F (xi,xi+1)+F (xn−1,x)+ 〈x∗,x1〉 ≤ f (x)− f (x1)+ 〈x∗,x1〉 .

By taking the supremum over x1, ...,xn−1, we get

ϕF,n (x,x∗)≤ sup
x1∈X

( f (x)− f (x1)+ 〈x∗,x1〉)

= f (x)+ sup
x1∈X

(〈x∗,x1〉− f (x1)) = f (x)+ f ∗ (x∗) .

By taking the supremum over n ∈ {2,3, . . .}, from (7) we obtain

ϕF,∞ (x,x∗)≤ f (x)+ f ∗ (x∗) .

Now assume that F is BO-maximal cyclically monotone, F(x,x) = 0 and F(x, ·)
is lsc and convex for all x ∈ D(F), and D(F) = dom f . By Theorem 4, (23) holds. It
follows that

ϕF,∞ (x,x∗) = ϕF∞
(x,x∗) = sup

y∈D(F)

{〈x∗,y〉+F∞(y,x)}

= sup
y∈dom f

{〈x∗,y〉− f (y)+ f (x)}= f (x)+ f ∗(x∗).

If we set F = G∂ f then all assumptions of Proposition 9 hold, and we recover the
first part of Proposition 3.5 in [5].
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