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Abstract. The purpose of the present paper is to show that the most promi-
nent results in optimal control theory, the distinction between state and control
variables, the maximum principle, and the principle of optimality, resp. Bell-
man’s equation are immediate consequences of Carathéodory’s achievements
published about two decades before optimal control theory saw the light of
day.

1. Introduction. The Theory of Optimal Control began with the discovery of
the maximum principle.1 By means of this novel necessary condition, possibilities
were disclosed by which, for the first time, optimal solutions for a certain class of
control problems could be computed that were of utmost importance for their time.
At least, these problems could have been computed if numerical methods for the
solution of two-point boundary value problems and adequate computers had been
available at that time.

For several reasons, the discovery of the maximum principle has a very interesting
history. First, its genesis lies in the commencement of the Cold War. Therefore, it
is not astonishing that the analysis of aircombat scenarios was the activator of this
research and that the very first publications at RAND Corporation2 appeared as
classified reports. Secondly, two groups of leading mathematicians of the superpow-
ers US and USSR competed against each other, without knowing about each other
initially. The protagonists were Magnus R. Hestenes, Rufus P. Isaacs, and Richard
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1Its first formulation by Magnus R. Hestenes [15] in 1950: Thus, H has a maximum value with

repect to ah along a minimizing curve C0. Its first general form and proof by Lev S. Pontrya-
gin, Vladimir G. Boltyanski, and Revaz V. Gamkrelidze [4] in 1956: Зtot fakt �vl�ets�
qastnym sluqaem sledu�wego obwego prin
ipa, kotoryi my nazyvaem
prin
ipom maksimuma. (This fact is a special case of the following general principle which
we call maximum principle.)

2The RAND Corporation (Research ANd Development) — its headquarter is located in Santa
Monica, California — is a US non-profit organisation and think tank founded after World War II
to give advice to the US Armed Forces.
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E. Bellman in the “blue corner” and Lev Semyonovich Pontryagin, Vladimir Grig-
orevich Boltyanski, and Revaz Valerianovich Gamkrelidze in the “red corner”. All
members of the blue corner later complained about their missed opportunities.3, 4, 5

In contrast, the names of all members of the red corner will for ever be connected
with the maximum principle. Thirdly and finally, the proof of the maximum prin-
ciple designated the birth of a new field in applied mathematics which has, and
continues to have, a great impact on optimization theory and exciting applications
in almost all fields of sciences. Optimal Control Theory is still an extremely active
and highly current research area until today.

In short, here is the outcome of the competition; see the comprehensive mono-
graph of Plail [23] and also the extract in Pesch, Plail [22], which has been enriched
by some more recent findings: Magnus R. Hestenes was the first who formulated
the maximum principle in his famous RAND memorandum RM-100 in 1950. He
was the first who also distiguished clearly between state and control variables us-
ing different letters for their notation and brought the problem into a formulation
convenient for the purpose of control problems later on. However, standing in the
tradition of the Chicago School of the Calculus of Variations, he was captured by
the close vicinity of the new type of problems to the field of the classical calculus
of variations. Therefore he did not see the novelty behind his achievements; his
assumptions were too strong.

Also Isaacs (1951), the father of differential game theory [16],6 and Bellman
(1954), the inventor of dynamic programming [1], did not see that the maximum
principle was hidden in their new theories, resp. mathematical methods. “Missed
opportunities?”7

On the other side, a group around the famous topologist Lev S. Pontryagin
including Vladimir G. Boltyanski and Revaz V. Gamkrelidze was disappointed that
they had lost a race in the field of topology against certain French mathematicians;
see Plail [23], p. 174. Therefore, they realigned their research activities radically
toward applied mathematics, additionally encouraged by tasks posed to them by
the military; see [23], p. 175, and [22]. Moreover, they were not captured by too

3Hestenes in a letter to Saunders MacLane: It turns out that I had formulated what is now
known as the general optimal control problem. I wrote it up as a RAND report and it was widely
circulated among engineers. I had intended to rewrite the results for publication elsewhere and
did so about 15 years later. See MacLane [20].

4Bellman in his autobiography: I should have seen the application of dynamic programming to
control theory several years before. I should have, but I didn’t. See Bellman [2], p. 182.

5Isaacs [17], p. 20: Once I felt that here was the heart of the subject [. . .] Later I felt that it [. . .]
was a mere truism. Thus in [my book] “Differential Games” it is mentioned only by title. This
I regret. I had no idea, that Pontryagin’s principle and Bellman’s maximal principle (a special
case of the tenet [of transition], appearing little later in the RAND seminars) would enjoy such
widespread citation.

6For some information on the history of Differential Games (today’s preferred name: Dynamic
Games), see Breitner [5]. This paper also contains a lot of background information on the early
days at RAND Corporation, in particular on the work climate in the RAND seminars.

7In the historical session of the Banach Center Conference on 50 Years of Optimal Control
in Bedlewo, Poland, on September 15, 2008, much was said in the discussions about “missed
opportunities”. Revaz Valerianovich Gamkrelidze, for example, said: My life was a series of
missed opportunities, but one opportunity, I have not missed, to have met Pontryagin. In respect
hereof, the term “missed opportunity” has to be understood as reminiscence to that discussion.
The author does not intend to use this term as if he would like to criticize that certain things should
have be seen earlier. With respect to Carathéodory’s Royal Road of the Calculus of Variations we
will use the more adapted term “missed exits”.
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deep a knowledge of the calculus of variations which allowed them to formulate the
maximum principle in a very general form. They proved it completely before 1958,
see [23], p. 182, and [22], and opened therewith the possibility for solving a whole
bunch of new and interesting control problems.

The intention of the present paper is to go further back to the antiquity of the
maximum principle, the time before World War II, in particular to Caratheodory’s
famous royal road of the calculus of variations. This ingenious approach to the cal-
culus of variations gives evidence of an exit, from the royal road that is surprisingly
close to the maximum principle. A very early missed opportunity? However, we
have to admit that the resulting proof of the maximum principle, obtained directly
from Carathéodory’s results, is, like Hestenes’ proof, also not liberated from the too
restrictive assumptions of the calculus of variations and will thus not lead to the
general maximum principle of Pontryagin, Boltyanski, and Gamkrelidze. Notwith-
standing our approach may be of interest because of historical and educational
reasons; compare also Pesch, Bulirsch [21]. We now set to work on . . .

2. Carathéodory’s Royal Road of the Calculus of Variations. and follow,
with slight modifications of the notation,8 Carathéodory’s book of 1935 [7], Chap-
ter 12 “Simple Variational Problems in the Small” and Chapter 18 “The Problem
of Lagrange”. The book was later translated into English in two parts [9]. The
German edition was last reprinted in 1994; see [10].

Figure 1. Constantin Carathéodory — Kωνσταντ ίνoς
Kα̺αθεoδω̺η̃ (1938) (Born: 13 Sept. 1873 in Berlin, Died:
2 Feb. 1950 in Munich, Germany) and Constantin Carathéodory
and Thales from Milet on a Greek postage stamp

2.1. First section of road: heading for a new sufficient condition. We begin
with the description of Carathéodory’s Royal Road of the Calculus of Variations9

8We generally use the same symbols as Carathéodory, but use vector notation instead of his
component notation.

9Hermann Boerner [3] coined the term “Königsweg der Variationsrechnung” in 1953. He ha-
bilitated 1934 under Carathéodory.
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directly for Lagrange problems. All of these results had essentially been investigated
by Carathéodory [6] already in 1926.

Let us first introduce a C1-curve x = x(t) = (x1(t), . . . , xn(t))
⊤

, t′ ≤ t ≤ t′′, in
an (n+1)-dimensional Euclidian space Rn+1. The line elements (t, x, ẋ) of the curve
are regarded as elements of a (2n+ 1)-dimensional Euclidian space, say S2n+1.

Already Carathéodory considered Lagrangian variational problems, that can be
regarded as precursors of optimal control problems: Minimize

I(x) =

∫ t2

t1

L(t, x, ẋ) dt (1)

subject to, for the sake of simplicity, fixed terminal conditions x(t1) = a and x(t2) =
b, t′ < t1 < t2 < t′′, and subject to the implicit ordinary differential equation

G(t, x, ẋ) = 0 (2)

with a real-valued C2-function L = L(t, x, ẋ)10 and a p-vector-valued C2-function
G = G(t, x, ẋ) with p < n, both defined on an open domain A ⊂ S2n+1. It is
assumed that the Jacobian of G has full rank,

rank

(

∂Gk

∂ẋj

)

k=1,...,p
j=1,...,n

= p . (3)

Carathéodory’s intention was to head first for sufficient conditions, and not till then
to derive most of the major necessary conditions ultimately terminating with the
Euler-Lagrange equations, almost in a reversed historical succession. Here, we pro-
ceed only partly on his road, in particular we are aiming to Carathéodory’s form of
Weierstrass’ necessary condition in terms of the Hamilton function. For the com-
plete road, see Carathéodory’s original works already cited. A short compendium
can also be found in Pesch, Bulirsch [21].
1st Stage: Definition of extremals. Carathéodory firstly coins the term extremal in
a different way than today. According to him, an extremal is a weak extremum of
the problem (1), (2).11 Hence, it might be either a so-called minimal or maximal .
2nd Stage: Legendre-Clebsch condition. Carathéodory then shows the Legendre-
Clebsch necessary condition

Lẋ ẋ(t, x, ẋ) must not be indefinite.

Herewith, positive (negative) regular, resp. singular line elements (t, x0, ẋ0) ∈ A can
be characterized by Lẋ ẋ(t, x0, ẋ0) being positive (negative) definite, resp. positive
(negative) semi-definite. Below we assume that all line elements are positive regular.
In today’s terminology: for fixed (t, x) the map v 7→ L(t, x, v) has a positive definite
Hessian Lvv(t, x, v).

10The twice continuous differentiability of L w. r. t. all variables will not be necessary right
from the start.

11In Carathéodory’s terminology, any two competing curves x(t) and x̄(t) must lie in a close
neighborhood, i. e., |x̄(t) − x(t)| < ǫ and | ˙̄x(t) − ẋ(t)| < η for positive constants ǫ and η. The
comparison curve x̄(t) is allowed to be continuous with only a piecewise continuous derivative;
in today’s terminology x̄ ∈ PC1([t1, t2],Rn). All results can then be extended to analytical
comparison curves, if necessary, by the well-known Lemma of Smoothing Corners.



MISSED EXITS TO THE MAXIMUM PRINCIPLE 5

3rd Stage: Existence of extremals and Carathéodory’s sufficient condition. We con-
sider a family of curves which is assumed to cover simply a certain open domain of
R ⊂ Rn+1 and to be defined, because of (3), by the differential equation ẋ = ψ(t, x)
with a C1-function ψ so that the constraint (2) is satisfied. Carathéodory’s sufficient
condition then reads as follows.

Theorem 2.1 (Sufficient condition). If a C1-function ψ and a C2-function S(t, x)
can be determined such that

L(t, x, ψ) − Sx(t, x)ψ(t, x) ≡ St(t, x) , (4)

L(t, x, x′) − Sx(t, x)x′ > St(t, x) (5)

for all x′, which satisfy the boundary conditions x′(t1) = a and x′(t2) = b and
the differential constraint G(t, x, x′) = 0, where |x′ − ψ(t, x)| is sufficiently small
with |x′ − ψ(t, x)| 6= 0 for the associated line elements (t, x, x′), t ∈ (t1, t2), then
the solutions of the boundary value problem ẋ = ψ(t, x), x(t1) = a, x(t2) = b are
minimals of the variational problem (1), (2).

2.2. Carathéodory’s Exit to Bellman’s Equation. Carathéodory stated ver-
batim (translated by the author from the German edition of 1935, [7], p. 201) [for
the unconstrained variational problem (1)]: According to this last result, we must, in
particular, try to determine the functions ψ(t, x) and S(t, x) so that the expression

L∗(t, x, x′) := L(t, x, x′) − St(t, x) − Sx(t, x)x′ , (6)

considered as a function of x′, possesses a minimum for x′ = ψ(t, x), which, more-
over, has the value zero. In today’s terminology:

St = min
x′

{L(t, x, x′) − Sx x
′} ; (7)

see also the English edition of 1965 ([9], Part 2) or the reprint of 1994 ([10], p. 201).
This equation became later known as Bellman’s equation and laid the foundation
of his Dynamic Programming Principle; see the 1954 paper of Bellman [1].12

For the Lagrange problem (1), (2), Eq. (7) reads as

St = min
x′ such that
G(t,x,x′)=0

{L(t, x, x′) − Sx x
′} ; (8)

compare Carathéodory’s book [7] of 1935, p. 349. Carathéodory considered only
unprescribed boundary conditions there.

Proof. Carathéodory’s elegant proof of Theorem 1 is based on so-called equivalent
variational problems where, for all C2-functions S(t.x), the variational problems
with the integrands L, resp. L∗(t, x, ẋ) := L(t, x, ẋ) + St + Sx ẋ have the same

12In Breitner [5], p. 540, there is an interesting comment by W. H. Flemming: Concerning
the matter of priority between Isaacs’ tenet of transition and Bellman’s principle of optimality,
my guess is that these were discovered independently, even though Isaacs and Bellman were both
at RAND at the same time . . . In the context of calculus of variations, both dynamic program-
ming and a principle of optimality are implicit in Carathéodory’s earlier work, which Bellman
overlooked. There was some level of contention between Isaacs and Bellman, as the following
personal remembrance indicates. One day in the early 1950s, Bellman was giving a seminar at
RAND in which he solved some optimization problems by dynamic programming. At the end of
Bellman’s seminar lecture. Isaccs correctly stated that this problem could also be solved by his
own methods. Bellman disagreed. After each of the two reiterated his opinion a few times, Isaacs
said: “If the Belman says it three times, it must be true.” This quote refers to a line from Lewis
Carroll’s nonsense tail in verse “The Hunting of the Snark”. One of the main (and other absurd)
characters in this tale is called the Bellman.
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extremals and there also holds Lẋ ẋ = L∗

ẋ ẋ. In today’s terminology, we have added
a null Lagrangian, that is the total derivative of a function S that depends on time
and space.

Firstly, one immediately sees that

I(x) − I∗(x) =

∫ t2

t1

L(t, x(t), ẋ(t)) dt−

∫ t2

t1

L∗(t, x(t), ẋ(t)) dt

= −

∫ t2

t1

d

dt
S(t, x(t)) dt = S(t1, a) − S(t2, b)

differs only by a constant depending on S and the end conditions. Hence the
minimizers of the original problem (1) coincide with the ones of the equivalent
problem associated with L∗.

In order to find a method to determine the function S, Carathéodory sought for a
function S with the property that L∗(t, x, v) ≥ 0 for all line elements in (t, x, v) ∈ A

and for which one could find a continuous function ψ(t, x), so that L∗(t, x, ψ(t, x)) =
0, i. e., L∗(t, x, v) takes, for each (t, x) ∈ R, its minimum value zero at v = ẋ =
ψ(t, x).

Then

I(x′) − I(x) =

∫ t2

t1

L(t, x′(t), ẋ′(t)) dt−

∫ t2

t1

L(t, x(t), ẋ(t)) dt

=

∫ t2

t1

L∗(t, x′(t), ẋ′(t)) dt−

∫ t2

t1

L∗(t, x(t), ẋ(t)) dt

+S(t1, x
′(t1)) − S(t2, x

′(t2)) − S(t1, x(t1)) + S(t2, x(t2))

=

∫ t2

t1

L∗(t, x′(t), ẋ′(t)) dt−

∫ t2

t1

L∗(t, x(t), ẋ(t)) dt ≥ 0 .

4th Stage: Fundamental equations of the calculus of variations. This immediately
leads to Carathéodory’s fundamental equations of the calculus of variations, here
directly written for Lagrangian problems: Introducing the Lagrange function

M(t, x, ẋ, µ) := L(t, x, ẋ) + µ⊤G(t, x, ẋ)

with the p-dimensional Lagrange multiplier µ, the fundamental equations are

Sx = Mẋ(t, x, ψ, µ) , (9)

St = M(t, x, ψ, µ) −Mẋ(t, x, ψ, µ)ψ , (10)

G(t, x, ψ) = 0 . (11)

These equations can already be found in Carathéodory’s paper [6] of 1926, almost
30 years prior to Bellman’s version of these equations. They constitute necessary
conditions for an extremal of (1), (2).

Remark 1. In his short note of 1967 [18], seized again in 2001 [19], Leitmann
describes a similar, though different, approach using a coordinate transformation
to construct an equivalent variational problem, too, in which the minimizers are in
one-to-one correspondence to the minimizers of the original problem. Carlson [11]
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and Carlson and Leitmann [12], [13] then showed that the equivalent problem takes
a particularly simple form if the coordinate transformation is performed by means
of a field F := {x ∈ PC1([t1, t2],R

n) | x(t1) = a, x(t2) = b} of extremals —
here to be understood as solutions of the Euler-Lagrange equations —, so that
the equivalent problem may be solved by inspection. Their most recent paper also
considers differential constraints [14].

Wagener [25] finally showed the equivalence of the equivalences, i. e. Cara-
théodory’s equivalence turns out to be a special case of Leitmann’s equivalence.
Leitmann’s coordinate transformation is based on a diffeomorphism Ξ defined
by Ξ(t, x) = (t, ξ(t, x)) which gives rise to an bijective operator X : F → F ∗,
x 7→ y, with F ∗ := {y ∈ PC1([t1, t2],R

n) | y(t1) = a∗, y(t2) = b∗ with a∗ =
ξ(t1, a) , b

∗ = ξ(t2, b)}. Here the choice Ξ = id in Leitmann’s equivalence ap-
proach yields Carathéodory’s approach. If Ξ can now be constructed in such a
way that a regular field of extremals of the original problem is rectified to a field
of extremals of the equivalent problem, Leitmann’s equivalence of Carathéodory’s
fundamental equations (9)–(11) can be solved for certain classes of problems very
easily. Hence the inverse Ξ−1 must yield the rectification in this connection, i. e.
ξ must embed the minimizer x̄ of the original problem in the form x̄(t) = ξ(t, ȳ)
with a constant minimizer ȳ of the Leitmann equivalent problem. Note that solv-
ing the Hamilton-Jacobi equation (10), Carathéodory has to integrate Ṡ(t, x(t)) =
L(t, x(t), ẋ(t)) along extremals whereas, in Leitmann’s approach, this equation re-

duces to S∗

t (t, y) = L̂(t, y, 0) with L̂(t, y, ẏ) = L(t, ξ(t, y), ξt(t, y) + ξy(t, y) ẏ).

2.3. Second section of road: heading for Weierstrass’ necessary condition.

5th Stage: Necessary condition of Weierstrass. Replacing ψ by ẋ in the right hand
sides of (9)–(11), Weierstrass’ Excess Function for the Lagrange problem (1), (2) is
obtained as

E (t, x, ẋ, x′, µ) = M(t, x, x′, µ) −M(t, x, ẋ, µ) −Mẋ(t, x, ẋ, µ) (x′ − ẋ) (12)

with line elements (t, x, ẋ) and (t, x, x′) both satisfying the constraint (2). By a
Taylor expansion, it can be easily seen that the validity of the Legendre-Clebsch
condition in a certain neighborhood of the line element (t, x, ẋ) is a sufficient con-
dition for the necessary condition of Weierstrass,

E (t, x, ẋ, x′, µ) ≥ 0 . (13)

The Legendre-Clebsch condition can then be formulated as follows: The minimum
of the quadratic form

Q = ξ⊤Mẋ ẋ(t, x, ẋ, µ) ξ ,

subject to the constraint

∂G

∂ẋ
ξ = 0

on the sphere ‖ξ‖2 = 1, must be positive. This immediately implies

(

Mẋ ẋ G⊤

ẋ

Gẋ 0

)

must be positive semi-definite . (14)

This result will play an important role when canonical coordinates are now intro-
duced.
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6th Stage: Canonical coordinates and Hamilton function. New variables are intro-
duced by means of

y := M⊤

ẋ (t, x, ẋ, µ) , (15)

z := G(t, x, ẋ) = M⊤

µ (t, x, ẋ, µ) . (16)

Because of (14), these equations can be solved for ẋ and µ in a neighborhood of a
“minimal element” (t, x, ẋ, µ),13

ẋ = Φ(t, x, y, z) , (17)

µ = X(t, x, y, z) . (18)

Defining the Hamiltonian in canonical coordinates (t, x, y, z) by

H(t, x, y, z) = −M(t, x,Φ, X) + y⊤ Φ + z⊤X , (19)

the function H is at least twice continuously differentiable and there holds

Ht = −Mt , Hx = −Mx , Hy = Φ⊤ , Hz = X⊤ . (20)

Letting H (t, x, y) = H(t, x, y, 0), the first three equations of (20) remain valid
for H instead of H . Alternatively, H can be obtained directly from y =
M⊤

ẋ (t, x, ẋ, µ) and 0 = G(t, x, ẋ) because of (14) via the relations ẋ = φ(t, x, y)
and µ = χ(t, x, y),

H (t, x, y) = −L(t, x, φ(t, x, y)) + y⊤ φ(t, x, y) . (21)

Note that φ is at least of class C1 because L ∈ C2, hence H is at least C1, too.
The first derivatives of H are, by means of the identities y = L⊤

ẋ (t, x, ẋ)⊤,

Ht(t, x, y) = −Lt(x, y, φ) , Hx(t, x, y) = −Lx(t, x, φ) ,

Hy(t, x, y) = φ(t, x, y)⊤ .

Therefore, H is even at least of class C2. This Hamilton function can also serve to
characterize the variational problem completely.

2.4. Carathéodory’s Missed Exit to Optimal Control.

7th Stage: Carathéodory’s closest approach to optimal control. In Carathéodory’s
book [7] of 1935, p. 352, results are presented that can be interpreted as introducing
the distinction between state and control variables in the implicit system of differen-
tial equations (2). Using an appropriate numeration and partition x = (x(1), x(2)),
x(1) := (x1, . . . , xp), x

(2) := (xp+1, . . . , xn), Eq. (2) can be rewritten due to the rank
condition (3):14

G(t, x, ẋ) = ẋ(1) − Ψ(t, x, ẋ(2)) = 0 .

By the above equation, the Hamiltonian (21) can be easily rewritten as

H (t, x, y) = −L̄(t, x, φ(2)) + y(1)⊤ φ(1) + y(2)⊤ φ(2) (22)

with L̄(t, x, φ(2)) := L(t, x,Ψ, φ(2))

13Carathéodory has used only the term extremal element (t, x, ẋ, µ) depending whether the ma-
trix (14) is positive or negative semi-definite. For, there exists a p-parametric family of extremals
that touches oneself at a line element (t, x, ẋ). However, there is only one extremal through a
regular line element (t, x, ẋ).

14The original version is Γk′ (t, xj , ẋj) = ẋk′ − Ψk′(t, xj , ẋj′′ ) = 0, where k′ = 1, . . . , p, j =

1, . . . , n, j′′ = p +1, . . . , n. Note that Carathéodory used Γ in his book of 1935 instead of G which
he used in his paper of 1926 and which we have inherit here.
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Figure 2. Constantin Carathéodory in Göttingen (1904, the year
of receiving his doctorate), his office in his home in Munich, and
in Munich (1932, until which most of the material presented here
was already developed)15

and ẋ(1) = Ψ(t, x, φ(2)) = φ(1)(t, x, y) and ẋ(2) = φ(2)(t, x, y). This is exactly the
type of Hamiltonian known from optimal control theory. The canonical variable y
stands for the costate and ẋ(2) for the remaining freedom of the optimization prob-
lem (1), (2) later denoted by the control.

Nevertheless, the first formulation of a problem of the calculus of variations as
an optimal control problem, which can be designated justifiably so, can be found in
Hestenes’ RAND Memorandum [15] of 1950.
8th Stage: Weierstrass’ necessary condition in terms of the Hamiltonian. From
Eqs. (13), (15), (16), (19), and (20) there follows Carathéodory’s formulation of
Weierstrass’ necessary condition which can be interpreted as a precursor of the
maximum principle

E = H (t, x, y) − H (t, x, y′) − Hy(t, x, y′) (y − y′) ≥ 0 , (23)

where (t, x, y) and (t, x, y′) are the canonical coordinates of two line elements passing
through the same point. This formula can already be found in Carathéodory’s
paper [6] of 1926.

3. Side road to a maximum principle of Optimal Control Theory. In Pesch,
Bulirsch (1994), a proof for the maximum principle was given for an optimal control
problem of type

∫ t2

t1

L(t, z, u) dt
!
= min subject to ż = g(t, z, u)

starting with Carathéodory’s representation of Weierstrass’ necessary condi-
tions (23) in terms of a Hamiltonian.

In the following we pursue a different way leading to the maximum principle
more directly, still under the too strong assumptions of the calculus of variations.
Herewith, we continue the tongue-in-cheek story on 300 years of Optimal Control
by Sussmann and Willems (1997) by adding a little new aspect.

15All pictures by courtesy of Mrs. Despina Carathéodory-Rodopoulou, daughter of
Carathéodory. See: ∆. Kα̺αθεoδω̺ή-Poδoπoύλoυ, ∆. Bλαχoστǫργίoυ-Bασβατǫ́κη:
Kωνσταντ ίνoς Kα̺αθεoδω̺ή: O σoϕóς ֓Eλλην τoυ Moνάχoυ, Eκδóσǫις Kάκτoς, Athens, 2001.
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Picking up the fact that ẋ = v(t, x) minimizes v 7→ L∗
v(t, x, v), we are led by (6)

to the costate p = L⊤

v (t, x, ẋ) [as in (15), now using the traditional notation] and
the Hamiltonian H ,

H(t, x, p) = min
ẋ

{L(t, x, ẋ) + p⊤ ẋ} .

Then Carathéodory’s fundamental equations read as follows

p = −S⊤

x (t, x) , St = H(t, x, S⊤

x ) ;

compare Wagener [25]. This is the standard form of the Hamiltonian in the context
of the calculus of variations leading to the Hamilton-Jacobi equation.

Following however Sussmann and Willems (1997) we are led to the now maxi-
mizing Hamiltonian (since we are aiming to a maximum principle), also denoted
by H ,

H(t, x, u, p) = −L(t, x, u) + p⊤ u

with p = L⊤
u (t, x, u) defined accordingly and the traditional notation for the degree

of freedom, the control ẋ = u, when we restrict ourselves, for the sake of simplicity,
to the most simplest case of differential constraints.

It is then obvious that H⊤
p = u as long as the curve x satisfies

ẋ(t) = H⊤

p (t, x(t), ẋ(t), p(t)) . (24)

By means of the Euler-Lagrange equation

d

dt
Lu(t, x, ẋ) − Lx(t, x, ẋ) = 0

and because of Hx = −Lx, we obtain

ṗ(t) = −H⊤

x (t, x, ẋ, p(t)) . (25)

Furthermore, we seeH⊤
u = −L⊤

u +p = 0. Since the HamiltonianH(t, x, u, p) is equal
to −L(t, x, u) plus a linear function in u, the strong Legendre-Clebsch condition for
now maximizing the functional (1) is equivalent to Huu < 0. Hence H must have
a maximum with respect to u along a curve (t, x(t), p(t)) defined by the above
canonical equations (24), (25).

If L depends linearly on u, the maximization of H makes sense only in the case
of a constraint on the control u in form of a closed convex set Uad of admissible
controls, which would immediately yield the variational inequality

Hu(t, x, ū, p) (u− ū) ≤ 0 ∀u ∈ Uad (26)

along a candidate optimal trajectory x(t), p(t) satisfying the canonical equa-
tions (24), (25) with ū denoting the maximizer. That is the maximum principle
in its known modern form.

A missed exit from the royal road of the calculus of variations to the maximum
principle of optimal control? Not at all! However, it could have been at least a first
indication of a new field of mathematics looming on the horizon.

4. Conclusions. With Carathéodory’s own words: I will be glad if I have succeeded
in impressing the idea that it is not only pleasant and entertaining to read at times
the works of the old mathematical authors, but that this may occasionally be of use
for the actual advancement of science. [. . .] We have seen that even under conditions
which seem most favorable very important results can be discarded for a long time
and whirled away from the main stream which is carrying the vessel science. [. . .]
It may happen that the work of most celebrated men may be overlooked. If their
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Figure 3. Professor Dr. Dr.h.c.mult. George Leitmann together
with Dr. Heinz Fischer, The Federal President of the Republic
of Austria, in the Vienna Hofburg, May 2010, on the occasion of
George Leitmann’s 85th birthday16

ideas are too far in advance of their time, and if the general public is not prepared
to accept them, these ideas may sleep for centuries on the shelves of our libraries.
[. . .] But I can imagine that the greater part of them is still sleeping and is awaiting
the arrival of the prince charming who will take them home.16
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16on Aug. 31, 1936, at the meeting of the Mathematical Association of America in Cambridge,
Mass., during the tercentenary celebration of Harvard University; see Carathéodory [8]

16Picture by courtesy of Professor Vladimir Veliov, Institute of Mathematical Methods in
Economics, Vienna University of Technology
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