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HISTORICAL PAPER 

The Maximum Principle, Bellman's Equation, 
and Carath6odory's Work 1,2 

H. J. PESCH 3 AND R. BULIRSCH 4 

Abstract. One of the most important and deep results in optimal 
control theory is the maximum principle attributed to Hestenes (1950) 
and in particular to Boltyanskii, Gamkrelidze, and Pontryagin (1956). 
Another prominent result is known as the Bellman equation, which is 
associated with Isaacs' and Bellman's work (later than 1951). However, 
precursors of  both the maximum principle and the Bellman equation can 
already be found in Carath6odory's book of 1935 (Ref. la), the first even 
in his earlier work of 1926 which is given in Ref. 2. This is not a widely 
acknowledged fact. The present tutorial paper traces Carath6odory's 
approach to the calculus of variations, once called the "royal road in the 
calculus of variations," and shows that famous results in optimal control 
theory, including the maximum principle and the Bellman equation, are 
consequences of Carath6odory's earlier results. 
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I. Introduction 

Constantin Carathrodory, one of the brightest mathematicians of this 
century in Germany, was born of Greek parents in Berlin on the 13th of 
September in 1873. Carath~odory was a scion of an old Greek family that 
brought forth many eminent men for several generations. His great-uncle 
Alexander Carathrodory Pascha, for example, was the prime delegate of 
the great power Turkey at the Congress in Berlin in 1878 and later became 
the Turkish secretary of state. His grandfather Constantin exerted a 
great influence on Sultan Mahmoud II and on his son and successor 
Abd-ul-Medjid as their personal physician. His father Stephanos, too, was 
in the diplomatic service of the Sublime Port. He was an attach6 of the 
Turkish embassy in Berlin when Constantin Carath~odory was born, and 
became sometime later the ambassador of Turkey in Brussels. So, Con- 
stantin Carath~odory grew up in Brussels in a parental home that was 
characterized by frequent contacts with many distinguished and important 
persons of diplomacy, science, music, and art from many different countries 
of wide cultural diversity. This highly intellectual background shaped 
Carath~odory into a multilingual cosmopolitan of an extraordinarily exten- 
sive education. 

Carathrodory graduated from the l~cole militaire de Belgique in 1895 
as engineer officer. He took his first job in his cousin's engineering office and 
helped with the planning of the road network of Samos. From 1898 until 
1900, Carath~odory worked as assistant engineer on the regulation of the 
Nile in Assiout, Egypt. During this time, his love of mathematics predom- 
inated: "I could not, however, resist the obsessive idea, that only the 
unrestrained study of mathematics would give my life its raison d'&re. ''5 

To the astonishment of his family and friends, Constantin Carathrodory 
gave up his secure position to follow a romantic inclination. In 1900, he began 

5Original: "Ich konnte aber der Zwangsvorstellung nicht widerstehen, dab erst die hem- 
mungslose Besch/iftigung mit Mathematik meinem Leben seinen Inhalt geben wiirde." 

6Indeed, the first isoperimetric problem the solution of which has come down to us in written 
form by Theon Alexandreus (see Ref. 4, p. 33) is due to Zenodoros' treatise On lsoperimetric 
Figures, of about the 2nd century B.C.: "Just as well, since those of different figures which 
have the same contour are larger which have more angles, the circle is larger than the (other) 
plane figures and the sphere than the (other) solids. We are going to present the proof for this 
in an extract of the arguments as has been given by Zenodoros in his work On Isoperimetric 
Figures." (Translation from the ancient Greek original, compare Figs. 1 and 2.) 
Figure 1 shows Zenodoros' theorem in a fourteenth century manuscript of the City Library 
of Nuremberg. This codex was possessed by the mathematician and astronomer Johannes 
Miiller known as Regiomontanus, who received it as a gift from his patron Cardinal 
Johannes Bessarion, titular patriarch of Constantinople. The codex serves as the original 
printing copy for the editio princeps of 1538 published in Basel. 
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his extraordinarily successful study of mathematics in Berlin. His decision to 
prefer Berlin to Paris might have been influenced by a steel engraving showing 
Alexander yon Humboldt, the sovereign of scholars. This picture contained 
a personal dedication to Constantin's father and reminded Carathrodory 
of the friendships his father made in Berlin and which were later of great value 
to him. This picture always decorated Carath6odory's office. 

In 1904, Carath6odory received a doctorate in Grttingen with a 
sensational dissertation on discontinuous solutions of  variational problems. 
Only a year later, Carath6odory completed his Habilitationsschrift; he was 
encouraged by Felix Klein and David Hilbert. Then, he accepted professor- 
ships in Bonn, Hannover, Breslau, G6ttingen (as successor of F. Klein), 
Berlin, Smyrna (where he founded the Greek university sponsored by the 
Greek government and where he stayed until the expelling of the entire Greek 
population when Turkey reconquered Izmir), Athens , and finally Munich in 
1924. He also accepted visiting professorships at several American universities 
during this period. 

During World War II, Carath6odory lived a very secluded life in Munich. 
Oskar Perron in his obituary to Constantin Carathrodory: "He looked at 
the Third Reich through the eyes of an historian who is always drawing 
parallels to dictatorships of  bygone times, and also through the eyes of a 
foreigner (Carath6odory possessed both Greek and German nationality) 
whose attention is attracted by many strange cultic customs which he however 
can simply accept without having to be ashamed . . . .  Because of  his 
worldwide relations, he also succeeded in finding opportunities of existence 
through emigration for quite a few of  his Jewish colleagues." 

Constantin Carathrodory died in Munich on the 2nd of  February in 
1950. 

Carath6odory continued the tradition of  the classical Hellenic culture 6'7 

7The engineering conversion of Zenodoros' result was performed by the legendary Phoenician 
princess Dido of Tyros after the story that the Phoenicians, whom the Libyans allowed only so 
much land as the hide of a bull (Greek: flrpaot) would cover, cut the hide into thin strips and thus 
encircled a large area on which they erected the citadel Byrsa of Carthage. This tale was sung by 
Publius Vergilius Maro (70-19 B.C.) in his famous Aeneid (book one, verses 365-368): 

devenere locos, ubi nunc ingentia cernis 
moenia surgentemque novae Karthaginis arcem, 
mercatique solum, facti de nomine Byrsam, 
taurino quantum possent circumdare tergo. 

and in English verses from the translation of the famous English poet John Dryden, a 
contemporary of the Bernoulli brothers: 

At last they landed, where from far your Eyes 
May view the Turrets of new Carthage rise: 
There bought a space of Ground, which Byrsa call'd 
From the Bulls hide, they first inclos'd, and wall'd. 
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Fig. 1. Zeondoros' theorem in a 14th century manuscript of the City Library of Nuremberg 
(Cod. Niir. Cent. V App. 8, p. 580. 

through his high intellect and by his untiring striving for knowledge. 
Among his many fields of research, the calculus of variations was surely the 
one where Carath6odory achieved his most outstanding results. In his book 
(Ref. 1), he depicted the calculus of variations in an entirely new aspect by 
converting the historical modus operandi. Making use of the close relation 
of variational problems to first-order partial differential equations, 
Carath6odory was able to derive all the classical results of the calculus of 
variations from the Hilbert integral up to the Euler equations in a very 
elegant way which was later called the "royal road of the calculus of 
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Fig. 2. 

From Zenodoros' treatise "II~pZ ltTop~rlxov trXllP&rojv ": 

cl~(~r~ff 6' ~3r~ r~v ~rlv rep[#~rpov ~XdVro~v 
aXrT#&rwv &a~6po~v, bretar l~e[r brr~ r& 
~roAvTo~vabrepa, rf~v #~v l:Tr~r~:&ov 6 Ir162 

7lverc~ #e[~wv, r~v ~5~ ~rep~v r a~,a~p~. 
IIo~r/a6pe6a /~r rilv ro6roJv &~rS~et~v /~v br~rop~ 

t;n r(ov Zr/voS&pe, tfe6etTpdvwv ~v r~f ' IIep~ 
~ao~reptp~rpwv aXrlpg~rwv '. 

Again Zenodoros' theorem, now printed. Compare last three lines at the bottom of 
the page of the codex given in Fig. 1. 

variations. ''8 From the beginning, his objective was therefore directed 
toward sufficient conditions for weak minima of variational problems. 

The purpose of the present paper is to show that the most prominent 
results in optimal control theory, the maximum principle and the Bellmann 
equation, are consequences of Carath6odory's results published more than 
a decade before optimal control theory had begun to develop from the 
calculus of variations. 

2. Carath~odory's Royal Road in the Calculus of Variations 

This section of the paper traces Carath6odory's approach to the 
solution of variational problems and follows, with slight modifications of 
the notation, the lines of his book; see Ref. 1, Chapter 12 entitled "Simple 
Variational Problems in the Small." See also Ref. 5. 

2.1. Carath&~dory's Derivation of the Legendre-Clebsch Condi- 
tion. Consider continuously differentiable curves represented as 

x = x ( O  = (xl(0 . . . .  , x,(t)) r, t ' < t < t " ,  (1) 

in an (n+l)-dimensional Euclidian space ~ §  with coordinates 
(t, Xl . . . . .  xn). The line elements (t, x, s of the curves are regarded as 
elements of a (2n + 1)-dimensional Euclidian space, say 6e2n§ 

In addition to the curve x, a second curve 

if = if(t) = (il (t) . . . . .  i ,(t)) r, t '<  t < t", (2) 

SSee Ref. 5: "K6nigsweg der Variationsrechnung." 
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is considered, which will be called a variation of x or a comparison curve 
of  x. Here, it is assumed that s is continuous with a piecewise-continuous 
derivative. Such a comparison curve s is said to be in a close (4, ~/)-neigh- 
borhood of  x, if there holds 

])7(t) - x(t)[ < ~ and ]d)7(t)/dt - :~(t)[ < ~/, for all t with t' < t < t". (3) 

Carath60dory then considered a real-valued C2-function L = L(t, x, s 
defined in a domain A c 6e2n + 1.9 The integrals 

y; I = L(t, x, 2) dt and I =  L(t, )7, d)7/dt) dt (4) 
I I 

are then well defined, if the line elements of  the curves x and )7 lie in A for 
all t with t I < t < t2. 

Now, Carath6odory's definition of  an extremal is as follows. 1~ A curve 
x is called an extremal belonging to the basic function L, if the following 
conditions are satisfied: 

(i) for all toe(t' ,  t") in which the extremal is defined, there exists a 
line element (to, xo, 2o) lying in the domain A where Xo'.=X(to) 
and 2o:= 2(to); 

(ii) for all toe ( f ,  t"), there exists a quadruple of  real numbers tl, t2, 
e > 0, and q > 0 such that there holds 

t ' <  tl < to < t2< t", (5) 

and the integral [ is well defined for all comparison curves )7 
which are in a close (4, r/)-neighborhood of  x in the interval 
(h ,  t2), and moreover satisfy 

)7(tl) = X(t l)  , )7(t2) = x(t2) , (6) 

and finally either I ___ [ or I ___ 

The well-known smoothing lemma now says that a restriction of  the 
class of  comparison curves will not lead to new extremals, even if analytical 

9For Sections 2.1 and 2.2, it is sufficient to postulate the existence and continuity of the 
derivatives Lx, Lx, L,~ only. 

~~ that Carath6odory's definition differs from the usual definition where an extremal is 
any solution of the Euler-Lagrange equation. Carath6odory's extremal is either a so-called 
minimal or a so-called maximal, i.e., the integral 

I =  L(t,x,:~)dt 
I 

has, in the small, at least a weak extremum. 
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Fig. 3. Carth6odory's figure for the proof of the lemma of the smoothing of corners. 

comparison curves are admitted only. Corners can be round-out. Figure 3 
is used for the proof of this lemma in Ref. 1. 

According to Carath~odory, the necessary condition of Legendre- 
Clebsch can now be proven as follows. Consider a continuously differen- 
tiable curve x =x(O in an interval t o - h  < t  < t o + h  and define a 
comparison curve ~ = ~(t) by 

~(t)~=x(t) + ( t - t o  +h)r t o - h  < t  <to, (7a) 

~( t )~=x(O+(h+to- t )~ ,  t o < t < t o + h ,  (7b) 

where ~ e R" is an arbitrary constant vector. This gives rise to the integrals 

I(h) = L(t, x, 2) dt and I(h) = L(t, ~, d~/dO dr. (8) 
dt  o - h  J t  o - h  

An estimation of the difference T(h) - I(h) for values of h converging to 
zero shows that a curve x defined in t '<  t < t" and containing the line 
dement (to, Xo, ~o) cannot be an extremal if the quadratic form 

Q = ~rL~(to, x0, x0)~ (9) 

is indefinite. For details see Ref. la, pp. 193-196, Carath6odory called line 
elements with a positive (negative) definite quadratic form Q positive 
(negative) regular and those with a positive (negative) semidefinite 
quadratic form Q positive (negative) singular. 

Hence, the necessary condition of Legendre-Clebsch can be formu- 
lated as follows. For a minimal (maximal), i.e., an extremal where [ >  I 
( I < I )  always holds, to pass through a line element (to, Xo, go), it is 
necessary that the line element be positive (negative) regular or at least 
positive (negative) singular. 
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It can be shown that the condition is also sufficient, in the sense of a 
weak extremum, if the line element is regular. 

2.2. Carath~odory's Fundamental Equations of  the Calculus of  Varia- 
tions. In the following, only regular line elements are considered. Without 
loss of generality, one can assume that the line element (to, Xo, ~0) to be 
considered is positive regular. Hence, the determinant 

Ll ( t ,  x ,  Yc) ,=det  L ~  > 0 (10) 

in a certain neighborhood A c 6r of (to, Xo, ~?0). Moreover, one can 
assume the set A to be convex with respect to )~. 

At this point, Carath60dory introduced his important definition of 
equivalent variational problems. Let c~(t, x) be an arbitrary C2-function 
that is considered along a continuous curve x(t) ,  t ~1) < t < t (2), which has a 
pieeewise-continuous derivative. Then, the following identity always holds: 

It(2) 
~(2) _ cto) = (~t + ot,~) dt, (11) 

.)tO) 

with ~u),= ~t(tr x( t(o)) ,  i = 1, 2. 
Introducing the function 

L *(t, x ,  Yc) ,= L( t ,  x ,  Yr + (~, + ~xYc), (12) 

the line integrals of L* along two curves c and 7 which have the same 
endpoints are considered and compared with the line integrals of the 
function L along these curves. It can be easily seen that, because of Eq. 
(11), there always holds 

I* - J*  = I - J, (13) 

where ! and J denote the line integrals of L along the two curves c and 7 
and I* and J* denote the corresponding line integrals of L*. Thus, each 
extremal of the variational problem with the basic function L is also an 
extremal of the variational problem with the basic function L*, and 
conversely. The two associated variational problems are said to be equiva- 
lent. Note that, for equivalent variational problems, one has 

L ~  = L*,~, (14) 

and the function L1 likewise has the same value for both problems. It 
should be mentioned here that the existence of the second derivatives of L* 
with respect to x and t cannot be guaranteed. However, this will in no way 
encroach upon the further conclusions; compare Footnote 9. 

The ultimate objective is now to show that exactly one curve which has 
the extremal property can pass through each regular line element of a 
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variational problem. For this purpose, one must show that extremals exist 
at all. Therefore, one considers at first a variational problem with a special 
basic function L* for which the proof  can be easily obtained, This 
variational problem is characterized by the following two properties of  L*: 

(i) there exists a continuously differentiable n-vector function ~k(t, x) 
in a domain B c ~n § 1 with 

L*( t ,  x,  0 )  = 0; (15) 

(ii) there exists a positive real number r/such that, for all (t, x ) e B  
and for all line elements (t, x ,  x ' )  passing through these points 
and satisfying 

0 r Ix' - O(t, x)[ < 2q, (16) 

there always holds 

L * ( t ,  x, x') > O. (17) 

Under these conditions, one can prove that the solutions of the 
differential equations 

,~ = r x) (18) 

are extremals of  the variational problem with the basic function L*. 
Moreover, one can show that, for any comparison curve 7 having the same 
endpoints as the extremal curve e and being in a close neighborhood of  e, 
there always holds J > L if 7 does not coincide with e. Here, I and J denote 
the line integrals of  L* along e and 7, respectively. For details, see again 
Ref. la, pp. 199-200. 

Of  course, if the function L is prescribed, one cannot expect to find, in 
general, a function ~b(t, x) which fulfills the conditions (15) and (17). It is, 
however, sufficient to assume that, among the equivalent variational prob- 
lems, there exists one problem with the basic function 

L *(t, x ,  Ac) = L(t ,  x ,  Jc) - S, - S~s (19) 

so that the conditions (15) and (17) are satisfied. This immediately leads to 
the following central theorem in Carath6odory's approach. 

Theorem 2.1. Carathrodory's Sufficient Condition. If  a continuously 
differentiable function r x) and an at least twice continuously differen- 
tiable function S( t ,  x)  can be determined for which, on the one hand, there 
always holds 

t~(t, x,  q,) - s x r  - s , ,  (20) 
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and on the other hand, 

L(t ,  x,  x ' )  - S~x '  > St,  (21) 

for all x' with Ix' - qJl sufficiently small and Ix' - ~b I # 0, then the solutions 
of the differential equations 

= ~b(t, x) (22) 

are minimals of the variational problem with basic function L. 

Carath6odory states: "According to this last result, we must in partic- 
ular try to determine the functions ~ki(t, x j )  and S(t ,  x j )  so that the 
expression 

L *(t, xj ,  x~ ) = L(t ,  xj ,  x'a. ) - S t - -  Sx i  X~, 

considered as a function of x'i, possesses a minimum for x '  i = ~bi(t, x j ) ,  
i = 1 , . . . ,  n, which also has the value zero. ' 'n In other words, 

St = min{L(t, x,  x ' )  - Sxx ' } .  (23) 

This equation is well known as the Bellman equation. 12 It was, 
however, first published by Carath6odory in 1935; see Ref. la. The results 
of Bellman concerning equations of this type go back to the year 1954 (see 
Refs. 6 and 7 and the 1954 Rand Corporation reports of Bellman cited in 
Ref. 6). Such equations play an important role in the method of dynamic 
programming as developed by Bellman and, in more general form, in the 
theory of differential games as developed by Isaacs at the beginning of the 
50's; see Refs. 8 and 9 and the 1954 Rand Corporation reports of Isaacs 
cited in the last-mentioned reference. Both authors obtained their results 

n See the English translation (Ref. l b, p. 208) of the German original (Ref. 1 a, p. 201): "Nach 
dem letzten Resultat miissen wit insbesondere danach trachten, die Funktionen g,i(t, xj) und 
S( t ,  x~) so zu bestimmen, dab der Ausdruck 

L *( t, x j ,  x )  ) = L( t ,  x j ,  x j  ) - St - Sx, x'i, 

als Funktion der x" aufgefaBt, f'tir x'~ = ~bi(t, x j ) ,  i = 1 . . . . .  n, ein Minimum besitze, das 
iiberdies den Weft Null habe." 

12A different form, for example, 

- g ,  = min{L(t, x, x') + ~xx'}, 

is obtained when replacing the merit function S by the optimal return function ~ defined by 

S( t ,  x ) , =  S (z) - S( t ,  x) ,  where S (2) ..= S(/(2),  x(t(2))).  

Note that 

I 
I12)  

S (2) -- S ( t ,  x)  = L ( z ,  x (z ) ,  ~b('r, x('c))) dz. 
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Fig. 4. 

A . 

Jacob Bernoulli's figure for the proof of the principle of optimality. 

directly from the principle of optimality 13"14 under the same differentiability 
assumptions for the so-called merit function S, which corresponds to the 
value of a pursuit-evasion differential game problem. 

l~Without doubt, the principle of optimality goes back to Jacob Bernoulli. In his reply (Ref. 
10) to the famous brachistoehrone problem by which his brother Johann founded the calculus 
of variations in 1669 (Ref. 1 I), Jacob Bernoulli wrote: "IfACEDB is the required curve, along 
which a heavy particle descends under the action of the downward directing gravity from A 
to B in shortest time, and if C and D are two arbitrarily close points of the curve, the part 
CED of the curve is, among all other parts having endpoints C and D, that part which a 
particle falling from A under the action of gravity traverses in shortest time. Viz., i fa  different 
part CFD of the curve would be traversed in a shorter time, the particle would traverse 
ACFDB in a shorter time as ACEDB, in contrast to the hypothesis." See Fig. 4. 
Original: "Si curva ACEDB talis sit, quae requiritur, h.e. per quam descendendo grave 
brevissimo tempore ex A ad B perveniat, atque in illa assumantur duo puncta quantumlibet 
propinqua C & D: Dico, proportionem Curvae CED omnium aliarum punctis C & D 
terminatarum Curvarum illam esse, quam grave post lapsum ex A brevissimo quoque tempore 
emetiatur. Si dicas enim, breviori tempore emetiri aliam CFD, breviori ergo emetietur 
ACFDB, quam ACEDB, contra hypoth." 

14In Ref. 12, Jacob Bernoulli's result was later formulated by Euler (Carathrodory: "in one of 
the most wonderful books that has ever been written about a mathematical subject") as a 
theorem; see the Propositio H in Ref. 12. Indeed, Jacob Bernoulli's methods were so powerful 
and general that they have inspired all his illustrious successors in the field of the calculus 
of variations, and he himself was conscious of his outstanding results which is testified to in 
one of his most important papers (Carathrodory: "eine Leistung allerersten Ranges") not 
only by the dedication to the four mathematical heroes Marquis de l'H6spital, Leibniz, 
Newton, and Fatio de Duillier, but also by the very unusual and dignified dosing of this paper 
(Ref. 13): "Verily be everlasting praise, honor and glory to eternal God for the grace accorded 
man in granting mortals the goal of introspection, by faint (or vain) lines, into the mysterious 
depths of His boundless knowledge and of discovery of it up to a certain point." 
Original: "Deo autem immortali, qui imperscrutabilem inexhaustae suae sapientiae abyssum 
leviusculis radiis introspicere, & aliquousque rimari concessit mortalibus, pro praestita nobis 
gratia sit laus, honos & gloria in sempiterna secula." 
This prayer contains a nice play upon words: "radius" means "ray" or "line" as well as 
"drawing pencil" or also the slat with which the antique mathematicians have drawn their 
figures into the green powdered glass on the plates of their drawing tables. 
For an excellent review of the early history of the calculus of variations, see Carathrodory's 
paper in Ref. 14. 
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Carath6odory's equation (23) leads immediately to the fundamental 
equations of the calculus of variations, 

Sx = Lx(t, x, 4), (24a) 

St = L(t, x, 4) - L:,(t, x, 4)4.  (24b) 

Carath6odory's equations are the starting point on his royal road from the 
Hilbert integral to the Euler-Lagrange equations, reversing the historical 
modus operandi. 

2.3. The Weierstrass Excess Function and the Hamilton Function. If 4 
is replaced by ~ in the right-hand sides of the fundamental equations (24) 
and if these values of St and S~ are introduced into Eq. (19) with ~ replaced 
by x', one obtains the Weierstrass g-function 

g(t, x, ~, x') -- L(t, x, x') - L(t, x, Yc) - Lx(t,  x, :c)(x' - :c). (25) 

By Taylor expansion, one has 

g(t, x, :~, x') = (1/2)(x' - 2)r/2~(x'  - ~), (26) 

with 

L:,~ = L: ,~ ( t ,  x ,  :~ + 8 ( x '  - :c)) 

and an appropriate 0 e(0, 1). For line elements (t, x, 2) and (t, x, x') in the 
interior of  A, the preceding result yields 

8(t, x, 2, x') > 0, (27) 

because of Eq. (10) and the convexity of A with respect to )~. In addition, 
there holds 

d~ x, )~, x') = 0, if and only if x'  - ;f = 0. 

This is the well-known necessary condition of Weierstrass. 
Using the relation 

L(t, x, x') = St + S~x' + 8(t, x, O, x'), (28) 

there immediately follows that 

f L(t, x(t), x'(t)) > - (29) dt S<2) S(1), 

with S(i)..--S(t (1), x(t(i))), i = 1, 2, for all piecewise-continuous curves y 
which satisfy the condition (16) at all continuity points of  its derivative 7' 
and do not coincide with one of the curves of the field defined by Eq. (22). 



JOTA: VOL. 80, NO. 2, FEBRUARY 1994 211 

For curves e satisfying Eq. (22), there always holds 

f L(t, x(t), x'(t)) = - (30) dt S~2) S~I). 

This is the well-known independent Hilbert integral. Hence, the solutions 
of the differential equation (22) are minimals of the variational problem 
with the basic function L. Equation (30) explains the name "merit func- 
tion" for S. 

The extremals can therefore be determined by the integration of the 
fundamental equations which take a simple form if canonical coordinates 
are introduced. For this prupose, let 

y..= L~(t, x, ~)T. (31) 

Because of Eq. (10), one can solve the preceding equation for ~, 

= q~(t, x, y), (32) 

where q~ is a Cl-function since L is assumed to be a C2-function. Hence, the 
Hamiltonian defined by 

H(t, x, y)'.= -L( t ,  x, cp) + yVtp(t, x, y) (33) 

is at least a Cl-function. Because of the formulas of the Legendre transfor- 
mation, 

H, (t, x, y) = - L,(t, x, tp), 

nx(t ,  x, y) = - L x ( t ,  x, ~o), 

Hry(t, x, y) = qg(t, x, y), 

(34a) 

(34b) 

(34c) 

the Hamiltonian is at least twice continuously differentiable. Moreover, the 
Legendre-Clebsch condition implies 

Hyy >_ O. (35) 

This follows immediately from differentiating the identity 

=- H~(t, x, L~(t, x, :c)) (36) 

with respect to :~. The components of the triple (t, x, y) are then called the 
canonical coordinates of the line elements (t, x, ~). 

The Weierstrass g-function can now be expressed in canonical coordi- 
nates. Denoting the canonical coordinates of the line elements (t, x, :t) and 
(t, x, x') by (t, x, y) and (t, x, y'), respectively, one obtains, from Eqs. (25), 
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(31), and (33) together with the relations 

L(t, x, x ')  = - H ( t ,  x, y ')  + Hy(t, x, y ' )y ' ,  (37a) 

L(t, x, Yc) = - H(t,  x, y) + Hy(t, x, y)y, (37b) 

Le(t,  x, Yc) = yr ,  :c = Hry(t, x, y), x '  ---- Hr( t ,  x, y'), (37c) 

the important representation of the g-function by the Hamiltonian H, 

8 = H(t,  x, y) - H(t,  x, y ' )  - He(t, x, y ' ) ( y  - y'). (38) 

In Section 4, we will see that the Eqs. (38) and (27) provide a precursor of 
the well-known maximum principle. 

However, before turning to this point, Carath6odory's royal road 
should be terminated. 

2.4. The Hamilton-Jacobi Equation and the Euler Equation. As men- 
tioned above, the fundamental equations (24) have a simple form when 
using canonical coordinates. From Eqs. (24a), (31) and (24b), (33), one 
obtains the well-known Hamilton-Jacobi equation which necessarily must 
be satisfied by the merit function S, 

St + H(t,  x, Sx) = O. (39) 

Vice versa, any at least twice continuously differentiable function S satisfy- 
ing the partial differential equation (39) yields via 

Yr = Hry(t, x, Sx) (40) 

a field of extremals of the variational problem if all line elements are 
regular. 15 Moreover, one obtains in this way all regular extremals of the 
variational problem, i.e., extremals having only regular line elements. 

Finally, the characteristic equations of the Hamilton-Jacobi equation 
(39) yield the Euler equations in canonical form, 

Yc = Hry(t, x, y), 3~ = -Hrx( t ,  x, y). (41) 

lSThe Italian mathematician Eugenio Beltrami was the first who found, in 1868, the funda- 
mental relation between variational problems and' first-order partial differential equations: 
"Indeed, if the derivative y'  is eliminated from the two preceding equations, one obtains a 
result of the form 

tI~(x, y, dF/dx, t?F/dy) = O, 

i.e., a nonlinear first-order partial differential equation which must be satisfied by the 
function F and which may therefore serve to determine it." See Ref. 15b, p. 368. 
Original: "Infatti, eliminando dalle due precedenti equazioni . . . .  cio~ un'equazione a 
derivate parziali del primo ordine non lineare, cui deve soddisfare la funzione F e the pu6 
quindi servire a determinada." 
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For that, the Hamiltonian H needs to be a C2-function. Then, y is 
eliminated from Eqs. (34b) and (41) by means of Eq. (31), and one obtains 
the well-known Euler equations, 

(d/dOLe - Lx = O. (42) 

Note that the approach via the canonical coordinates (31) only requires L 
to be twice continuously differentiable when Eq. (31) is solved for ~, 
contrary to the smoothness requirements for the unique solvability of the 
Euler equation; see Ref. 16.16 

Carathrodory then shows that exactly one extremal can pass through 
each regular line element of a variational problem. This extremal must 
necessarily be a solution of the Euler equation. For the details, see Ref. 1 a, 
pp. 208-211, where it is also shown by examples that this theorem is not 
correct when singular line elements occur; see pp. 309-314. 

This completes Carathrodory's royal road in the calculus of variations. 

3. The Problem of Lagrange 

In this section, we consider variational problems belonging to a basic 
function L with side conditions given by differential equations, 

G(t, x, ~) = 0. (43) 

Here, G denotes a p-vector-valued function with p < n. Problems of this 
type are usually called Lagrange problems although the ansatz named after 
Lagrange for variational problems with different types of side conditions 
can be implicitly found also in Euler's work. The material of this section, 
too, has already been developed by Carathrodory; compare both Ref. 2 
of 1926 and his book, Ref. 1, Chapter 18 entitled "The Problem of 
Lagrange". 

The Jacobian of G with respect to :~ is assumed to have full rank, 

rank(t3Gk/3~j)k = l,...,p = P. (44) 
j =  l,...,p 

J6Carathrodory: "The result we have obtained seems to be very remarkable to me . . . .  For the 
general problem one also could restrict our assumptions by applying the methods which Mr. 
L. Tonelli has developed with such great skill." 
Original: "Das Resultat, zu dem wir gelangt sind, scheint mir sehr bemerkenswert zu 
sein . . . .  Auch fiir das allgemeine Problem krnnte man durch Obertragung der Methoden, 
die Herr L. Tonelli mit so grol]er Kunst entwickelt hat, unsere Voraussetzungen ein- 
schr~inken." Carath~odory refers here to Tonelli's fundamental contribution to the calculus 
of variations from 1923; see Ref. 17. 
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Applying the same ideas leading to Theorem 2.1, one can proceed as 
follows. Firstly, a family of curves is considered which is assumed to cover 
simply a certain domain of 5an+l and to be defined by the differential 
equations 

:~ = ~O(t, x). (45) 

The function ~O is assumed to be continuously differentiable, and the curves 
are assumed to satisfy the constraints 

G(t, x, ~k) = O. (46) 

Secondly, it is assumed that an at least twice continuously differentiable 
function S(t, x)  can be determined for which, on the one hand, there always 
holds 

L(t, x, ~b) - Sx~k - St, (47) 

and on the other hand, 

L(t, x, x ')  - Sx x '  > St, (48) 

for all x' which satisfy the constraints 

G(t, x, x') = 0, (49) 

and where [x' - ffl is sufficiently small and Ix' - ~k[ ~ 0 for the associated 
line elements (t, x, x'). 

The solutions of the differential equations are then minimals of the 
variational problem with the basic function L subject to the differential 
equations (43). Hence, Carath6odory's necessary condition (23) reads for 
the Lagrange problem as follows: 

S t = min {L(t, x, x ')  - Sxx'}.  (50) 
x' such that 

G ( t ,  x ,  x ' )  = 0 

Introducing the function 

M(t ,  x, Yr # ) ,=L( t ,  x, Yc) + #rG(t,  x, Yr (51) 

where # denotes a p-vector Lagrange multiplier, the fundamental equations 
(24) take the form 

Sx = Mx(t ,  x, ~b, #), 

St = M(t ,  x, r #) - Mx_(t, x, •, #)~k, 

a ( t ,  x, ~,) = o. 

(52a) 

(52b) 

(52c) 

These equations can already be found in Carath6odory's paper given in 
Ref. 2. 
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The Weierstrass g-function (25) for the constrained variational prob- 
lem is then given by 

g(t ,  x, 2, x ' ,  it) = M ( t ,  x, x ' ,  #) - M ( t ,  x, 2, It) - M ~ ( t ,  x, 2, # ) ( x ' - 2 ) ,  (53) 

where line elements (t, x, 2) and (t, x, x') are considered for which the side 
conditions (43) and (49) are fulfilled. A sufficient condition for 

g(t, x, 2, x', #) > 0 (54) 

in a certain neighborhood of the line element (t, x, 2) is the Legendre- 
Clebsch condition, which here can be formulated as follows: The minimum 
of the quadratic form 

Q = ~XM~(t ,  x, 2, #)~, (55) 

subject to the constraints 

(c3G/~2)~ = 0 (56) 

on the sphere 1 12 = 1, must be positive. This immediately implies that 

M ~  dGT/02 
OG/O2 0 # 0, (57) 

which is the analogue to Eq. (10). For details, see Refs. 1 or 2. As we will 
see, Eq. (57) will play an important role when canonical coordinates are 
introduced. 

Of course, results analogous to Eqs. (29) and (30) also hold for the 
variational problem subject to the side conditions (43). In order to show 
this, an arbitrary solution x = x(t) of the differential equation (49) is 
considered. The endpoints of this curve are denoted by (t (1), x(t(l))) and 
(t ~2), x(t(2))). Because of the relation [,2 

S (2) - S (2) = (dS/dt)(x ,  t) dr, (58) 
d t  I 

the Hilbert integral can be obtained using the fundamental equations 
(52), 

f= S (2) - S ~ = (M(t ,  x, 2, #) + M~(t, x, 2, I~)(x' - 2)) dt. (59) 
1 

Its value depends only on the fixed endpoints (t (1), x( tm) )  and (t (2), x(tC2))) 
of the curve x = x(t). On the other hand, because of Eq. (49), one has the 
relation 

M(t ,  x, x ' ,  #) = L(t ,  x, x') .  (60) 
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Hence, the line integral of L along the curve x = x(t) can be written as 
~ t2 

J M(t ,  x, x ' ,  #) dt. (61) 
I 

By subtracting Eq. (59) from Eq. (61) and using Eq. (53), one has 

J - (S (2) - S (1)) = g(t, x, 2, x' ,  #) dr. (62) 
1 

Therefore, Eq. (54) yields 

J > I ,=  S t2) - S (a~, (63) 

where I denotes the line integral along a minimal e of the constrained 
variational problem with the endpoints (t <~), x(t~ and (t <2), x(t<2))) pre- 
scribed. For any other curve V having the same endpoints as e, there always 
holds that J > I if 7 lies in an appropriate close neighborhood of e and if the 
line elements of ? satisfy the constraints (49). 

As we will see in the following, the representation (38) of the Weierstrass 
g-function in canonical coordinates remains valid for the Lagrange problems, 
too. Similarly as in Section 2.3, new variables are firstly introduced, 

y ,=Mrs(t, x, g, #), (64a) 

z ,= G(t, x, Yc). (64b) 

Because of (57), these equations can be solved for ~ and #, 

= ~(t, x, y, z), (65a) 

# = X(t ,  x, y, z). (65b) 

Since the side conditions can be expressed as z = 0, the so-called complete line 
dements (t, x, xp+l . . . . .  g , , /~ . . . . .  #p) are entirely characterized by its 
canonical coordinates (t, x, y). 

Next, one defines 

~( t ,  x, y, z) ..= - M ( t ,  x, O, X )  +yV~ + zTx ,  (66) 

H(t,  x, y) .'= n(t ,  x, y, 0). (67) 

Note that H is the Legendre transformation of M. Hence, one has 

~ ,  = - -  Mr, Hx = - M x ,  o r y  = .~, /-7~ =/ . t ,  ( 6 8 )  

and 

H t (t, x,  y )  = Ht  (t, x,  y ,  0), 

Hx(t, x, y) = I7ix(t, x, y, 0), 

HAt,  x, y) = ~%(t, x, y, 0). 

(69a) 

(69b) 

(69c) 



JOTA: VOL. 80, NO. 2, FEBRUARY 1994 217 

Equations (68) and (69) imply that 

l i t  = - M r ,  Hx = - M x ,  Hy r = ~, (70) 

for all line elements which satisfy the side conditions (43). The function H 
can also be obtained directly, if the equations 

y ,= M r ( t ,  x,  Yc, I~), (71a) 

0 = G(t, x,  Yc) (71b) 

are solved for ~ and #, 

= tp(t, x, y) = tI)(t, x, y, 0), (72a) 

# = •(t, x,  y) = X(t ,  x, y, 0). (72b) 

In this case, one defines 

H(t,  x, y) = - m ( t ,  x, r Z) +YrtP �9 (73) 

The function H is called the Hamiltonian of the Lagrange problem. 
The Weierstrass g-function in canonical coordinates follows as in 

Section 2.3. Let (t, x, y) and (t, x, y') be the canonical coordinates of two 
complete line elements passing through the same point. Because of Eqs. 
(64), (70), and (73), one obtains the relations 

M(t ,  x, Yc, p) = - H ( t ,  x,  y) + Hy(t, x, y)y, (74a) 

M(t ,  x, x ' ,  #) = - - n ( t ,  x, y ' )  + Hy(t, x,  y ')y ' ,  (74b) 

Me(t ,  x, Yc, #)(x '  - Yc) = (Hy(t, x,  y ')  - Hy(t, x,  y))y. (74c) 

The definition of the g-function (53) finally gives 

g = H(t ,  x,  y) - H(t ,  x,  y ' )  - Hy(t,  x, y ' ) ( y  - y'). (75) 

From this equation with the sign condition (54), Carath6odory's precursor 
of the maximum principle will follow. 

However, before we attend to this, it should be mentioned that all 
solutions of the Euler equations (41) in canonical form with Hamiltonian 
defined by Eq. (73) are extremals of the Lagrange problem, if these 
extremals can be varied in the sense of Section 2.1. For conditions under 
which this is possible, see Ref. 1. 

4. Carath6odory's Precursor of the Maximum Principle 

In this section, we continue presenting evidence that Carath6odory's 
results can be interpreted as a precursor of the well-known maximum 
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principle. In particular, we consider Carathrodory's necessary condition 
given by Eqs. (54) and (75), 

H ( t ,  x ,  y )  - H ( t ,  x ,  y ' )  - H e ( t ,  x ,  y ' ) (y  - y')  > 0, (76) 

with the Hamiltonian as defined by Eq. (73). The only small step required 
to obtain a special case of the maximum principle is to substitute the 
variational form of an optimal control problem into Eq. (76). 

As it is known, the simple optimal control problem for a p-dimen- 
sional state vector z and a k-dimensional control vector u, 

~t t2 [ L ( t ,  z ,  u) d t  = min, (77) 
1 

subject to the side conditions 

= g ( t ,  z ,  u),  (78) 

can be written, as 

t2 L ( t ,  x l ,  . . . , xp ,  2v+ l ,  . . . , 2n)  d t  = rain, (79) 
1 

subject co 

G , ( t , x ,  2 ) , = 2 i - g ~ ( t ,  Xl . . . . .  x v , 2 p + l  . . . . .  2~) ,  i =  1 . . . . .  p .  (80) 

Here, we define 

n , = p + k ,  

( x l ,  . . . ,  x~) ,=  (zl . . . .  zp),  

( S o , , . . . ,  2 , ) , =  (~, . . . . .  # ,  u, . . . . .  uk). 

Using the definition (51), 

M ( t ,  x ,  2 ,  # ) , = L ( t ,  x l  . . . . .  x v ,  2v+ , . . . . .  2 , )  

+ !arG( t ,  x~ ,  . . . , x v ,  2~, . . . , 2~) ,  (81) 

Eqs. (71)and  (72) yield 

[ q~i(t, xl ,  . . . . .  xp, ~op+ 1 . . . .  ~o,) 

~, = ] =g, ( t ,  x ~ , . . . ,  xp, % + ~ , . . . ,  ~0,), 

~q)  i ( t ,  X 1 , . . . .  X p ,  Yl  . . . . .  Y . ) ,  

i = 1 . . . . .  p, 

i = p  + 1 , . . . ,  n, 

i = 1 , . . .  ,p. 

(82a) 

I~, = X , ( t ,  X l ,  . . . , x p ,  Y l  . . . . .  Y ~ )  -=- Y i ,  (82b) 
Equations (82a) for i = p  + 1 . . . . .  n are obtained when solving the k 
equations 

y,  = r~ ,  - (~Tg)~,, i = p  + 1 . . . . .  n, (83)  
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in Eq. (71) for the k variables (~p+ 1 , . - . ,  ~,). This is possible because of 
Eq. (57). A simple calculation then shows that the second of the Euler 
equations (41) implies 

i = p  + 1 . . . .  , n. (84) Y i  ~ O~ 

Because of 

Sgi, i = 1 . . . . .  p, //y, (85) 
I.~01, i = p  + 1 . . . . .  n, 

Eq. (76) finally leads to 
p p 

- -L  + ~ Yig~ + L ' - -  ~ Ytg'~ > O, (86) 
i=1 i=1 

with 
t t L' ,=L(t ,  xl . . . . .  xp, ~Op+ 1 . . . . .  ~o,), 
t t 

g'i ~=gi( l, X1 . . . . .  Xp, ~) p+ 1 . . . . .  ~On),  

t 
q) t  i ". '~'~oi(l  , X 1 . . . .  , X p ,  y t  1 . . . .  , Y n ) ,  

Hence, the maximum principle reads 

.~(t, z, y, u) _> .r z, y, u'), 

with the Hamiltonian ~ of the control problem defined by 
p 

J/F,= - L ( t ,  z, u) + ~ yigi(t, z, u). 
i = 1  

(87a) 

i = 1 , . . .  ,p, (87b) 

i = p  + 1 . . . . .  ,n. (87c) 

(88) 

(89) 

5. Some Historical Remarks on the Maximum Principle 

The above derivation of the maximum principle (and also its equiva- 
lence to the Weierstrass condition) is correct only in the special case in 
which the control functions are assumed to be continuous and to have 
values in an open control domain and all line elements are assumed to be 
regular, which is a severe restriction when practical applications are consid- 
ered. In this sense, optimal control problems with piecewise-continuous 
control functions and bounded control domains, which are of utmost 
importance for many practical applications, are nonclassical variational 
problems or, in other words, generalized Lagrange problems. 

Under the same restrictions as above, Hestenes seems to be the first 
who obtained the relation (88); see his Ref. 18 from 1950.17 His derivation 

17Hestenes: "Thus,  H has a max i mum value with respect to ah along a minimizing curve Co." 
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is very similar to the one based on Carathrodory's results and takes its 
starting point directly from the Weierstrass necessary condition, Eqs. (25) 
and (27). Hestenes showed the equivalence of the control problem (77)- 
(78) with the variational problem for the basic function M as defined by 
Eq. (81). By means of the Euler equation, the necessary condition of 
Weierstrass can then be rewritten in terms of the Hamiltonian of the 
control problem. In addition, Hestenes has also considered control prob- 
lems with control variable equality and inequality constraints and has 
applied his results to the minimum-time flight path control problem for an 
aircraft under a constraint to the angle of attack. 

Decidedly, the achievement of Boltyanskii, Gamkrelidze, and Pon- 
tryagin, who coined the term "maximum principle" in their 1956 paper 
given in Ref. 19, ~8 lies in the fact that they later gave a rigorous proof for 
the general case of an arbitrary (for example, dosed) control domain, and 
for bounded measurable control functions; see the pioneering book of 
Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko from 1961, Ref. 
20. Indeed, the new ideas in this book led to the cutting of the umbilical 
cord between the calculus of variations and optimal control theory. The 
first papers on the maximum principle 19 at an early stage are the papers of 
Gamkrelidze from 1957 and 1958 for linear control systems. The first proof 
was given by Boltyanskii in 1958 and later improved by several other 
authors. All these references are cited in Ref. 20 and, for example, also in 
Ref. 21 where the more recent proofs of the maximum principle, which are 
based on new ideas, can be found, too. 

For the sake of completeness, it should be mentioned that also Isaacs 
can be regarded as one of the more intuitive discoverers of the maximum 
principle. His "tenet of transition" in his 1951 RAND report (Ref. 8) can 
be considered as a generalized form of the maximum principle, which 
becomes a minimax principle in differential game theory. 2~ 

These illustrious researchers and their successors, inspired by the 
diversity of so many attractive fields of application of the calculus of 
variations and their offsprings, optimal control and differential game 
theory, have continued and are still continuing Carathrodory's royal road 

~SBoltyanskii, Gamkrelidze, Pontryagin: "This fact is a special case of the following general 
principle which we call maximum principle." 

19For the maximum principle, Pontryagin was conferred the highest ranking order of the 
USSR, the Lenin order. 

:~ in Ref. 22: "Once I felt that here was the heart of the subject. . .  Later I felt that i t . . .  
was a mere truism. Thus in my book 'Differential Games', it is mentioned only by title. This 
I regret. I had no idea that Pontryagin's principle and Bellman's maximal principle (a special 
case of the tenet . . .  ) would enjoy such widespread citation." 
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Fig. 5. Abort landing under a windshear including an upwind. 

into various branches. Carathrodory in Ref. 23: "One can affirm that the 
charm, exerted all along by the calculus of variations on so many first rate 
greatnesses of mind, is chiefly traceable to the role which particular 
problems have played and are playing even today in the development of 
this theory. ''21 

One of these particular problems Carathrodory had in mind surely is 
the abort landing of a passenger aircraft in the presence of windshear. 
Angelo Miele has made many contributions to this field, which is of utmost 
importance for aviation safety. See, for example, Refs. 24 and 25, to cite 
only two of his many papers. Miele's papers have inspired many re- 
searchers, including the authors (Ref. 26). Therefore, we close the present 
paper with a new result from nonhistorical research: Figure 5 shows a wind 
flow field including an upwind and the associated altitude versus horizontal 
distance. This optimal control problem is of the minimax type--the 
minimum altitude is to be maximized--and includes one control variable 
and two state variable inequality constraints; one is of order one, the other 
is of order three. The optimal trajectory exhibits one boundary arc and two 

21Original: "Et l'on peut affirmer que le eharme exerck de tout temps par le Calcul des 
Variations, sur tant d'esprits de premier ordre, est dfi en grande partie au rrle qu'ont jou6 
et que jouent jusqu'~ ce jour les problrmes particuliers pour le drveloppement de eette 
throfie." 
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touch points due to the third-order state constraint, two boundary arcs due 
to the first-order state constraint, six bang-bang and three singular subarcs. 
This complicated switching structure can only be computed by carefully 
applying new necessary conditions for optimality; details can be found in 
Ref. 27. 

6. Conclusions 

We conclude with a statement of Constantin Carathrodory address- 
ing American mathematicians on August 31, 1936:22 "I will be glad if I 
have succeeded in impressing the idea that it is not only pleasant and 
entertaining to read at times the works of the old mathematical authors, 
but that this may occasionally be of use for the actual advancement of 
science. 

Besides this there is a great lesson we can derive from the facts which 
I have just referred to. We have seen that even under conditions which 
seem most favorable very important results can be discarded for a long 
time and whirled away from the main stream which is carrying the vessel 
science. Sometimes it is of no use even if such results are published in very 
conspicuous places. It may happen that the work of most celebrated men 
may be overlooked. 

If their ideas are too far in advance of their time, and if the general 
public is not prepared to accept them, these ideas may sleep for centuries 
on the shelves of our libraries. Occasionally, as we have tried to do to-day, 
some of them may be awakened to life. But I can imagine that the greater 
part of them is still sleeping and is awaiting the arrival of the prince 
channing who will take them home." 
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