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SUMMARY OF THE REPORT STRUCTURE

Chapter one seeks to introduce reader to the need for network design optimisation.

There is also an overview of the problems that will be investigated in the chapters

following, as well as references on COST 239 European Optical Network which has

been widely used during the experimental part of the project work, in order to test

the efficiency of optimisation techniques applied.

In chapter two, apart from some basic concepts of graph theory, there is presentation

and comparison of the most well known formal optimisation techniques (Heuristics,

Genetic Algorithms, Simulating Annealing and Linear / Integer Programming).

Chapter 3 deals with the first of the network design problems investigated in this

report : “Virtual Topology Design” problem. The formulation of a Linear

Programming (LP) problem corresponding to it is carried step-by-step. The

construction of the cost function used is also described in detail, and the problem’s

complexity is commented. Then, some results are presented and briefly discussed.

The case of including backup paths in network topology is also examined, together

with an effort to improve the optimisation results obtained.

In chapter 4 there is an investigation of the second problem examined taking place :

“Routing & Wavelength Assignment” problem. The formulation of the equivalent

LP problem (objective function and constraints) is again described in detail. Initial

results are presented and a further effort to obtain a solution that unthreads the

limitations of LP is attempted.

In chapter 5 there is a more detailed discussion of the results obtained, correlated to

the limitations of LP. An Integer Programming (IP) approach of all the problems

examined so far is also presented.

Finally, chapter six concludes the work carried out in this project and gives some

directions for future work in the network design field. The remaining sections are

the acknowledgements, the references and appendices to the work.
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CHAPTER 1

INTRODUCTION

1.1. Network Design & Optimisation

Network Design has attracted raising attention during the last years. The increasing

demand for capacity for the future unpredictable services and the resulting demand for

high bandwidth which is driving new technologies into realisation, has contributed in

the growth of interest in network design.

Network design problem includes various concepts and can be divided into the

following sub-problems, many of which are currently widely investigated in the

literature :

• Topological Design [3,7,13,14,19,20,28]

• Routing [13,14,16,17,25,26,29]

• Wavelength Assignment and Allocation (in optical networks) [5,17,22,23,26,27]

It should be noted that network design does not necessarily provide optimal or even

near-optimal networks. However, in case that the objective is an optimal solution,

network design issues have been proved complex enough to cope with manually, so

there has been an effort to develop several formal ways to automate the procedure of

optimisation. Thus, various optimisation problems have been arisen. Many different

approaches have been applied to network optimisation problems, such as shortest path,

link assignment, minimum delay, maximum flow, etc. Combinatorial optimisation is

frequently used to find optimal or near-optimal solutions for similar problems.

Those optimisation problems are very complex. Thus, several methods have been

proposed in order to be solved : Heuristics, Genetic Algorithms, Simulation

Annealing, Linear & Integer Programming, etc. All these methods are discussed in the

second chapter. A comparison of their performance has been also attempted.
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1.2. Project Summary

This project mostly involves investigation of the potentials and the limitations of

Linear Programming (LP) techniques for optical network optimisation purposes. The

main motivation for the project has been to try LP on problems that had previously

been tackled by using Genetic Algorithms [3,5].

Hence, LP has been applied in order to optimise various networks (COST 239

European Optical Network, presented in the following section, was one of them) and

several results have been taken and discussed. The term “network optimisation”

includes, in this project, the concepts of optimised network topology (as a first

approach) and that of optimised wavelength assignment (as a second approach) in

terms of minimum cost.

This means that a cost function, representing the cost of the network is minimised. The

cost function is directly associated with the objective function of the Linear

Programming (LP) problem. This function depends on some variables such as the link

capacities as well as some constants (the link lengths, weighting factors, etc.). In

addition to the cost function, the LP problem should also include some constraints

which will be satisfied by the variables of the LP problem. Those variables may be

included in the objective function, or they may be not.

In the case of the network virtual topology design, the aim is to find the optimum

topology which minimises the cost of the network. In the other case, that of optimal

wavelength assignment, the objective is to minimise, apart from the capacity of links,

the number of channels (wavelengths) that are required to route the traffic load for

each one of the network links. It should be noted that in this case, the network

topology is fixed.

In both cases a LP-problem solving program is used, in order to give the optimal

solution : lp_solve_2.0 (it has been downloaded from an Internet site [44]). This

program is based on the simplex method algorithm (see Appendix A) and has been

developed by Michel Berkelaar. It is written in C programming language and,

according to  author statements, it has solved models with up to 30,000 variables and

50,000 constraints. However, it was proved that complex models caused this code

problems, as the CPU time needed to solve problems was dramatically increased with

complexity (commercial codes are more efficient, but they are quite expensive as
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well). Generally, lp_solve_2.0 is capable of solving generalised LP and Mixed Integer

Programming (MIP) problems [41,42].

1.3. COST Action 239

“As the work of this project has been mostly implemented and tested on COST Action

239, an idea of the framework is deemed necessary. Also, a description of various

design issues addressed in the COST 239 European Optical Network (EON) is made to

give an account of recent developments of the Action” [4].

1.3.1. Framework

“The COST framework (European Cooperation in the field of Scientific and Technical

Research) is run by the European Commission, aiming to promote pre-competitive

R&D cooperation between industry, universities and national research centres.

COST 239, “Ultra-high Capacity Optical Transmission Networks”, has studied the

feasibility of an all-optical1 network, capable of carrying all the international traffic

between the main centres in Europe. At the start of the project, twenty such centres

were identified, each acting as the gateway for all (or half) of the European

international traffic for their country” [3,4,5,6].

Current studies on COST 239 are directed at investigating on the optical infrastructure

[45] :
• the multiplexing techniques (Time Division Multiplexing, Wavelength Division

Multiplexing, Optical Time Division Multiplexing)

• the high-capacity transmission techniques (linear and soliton propagation)

1.3.2. COST 239 European Optical Network

There are several issues under considerations in the development of  an all optical

network linking major centres in Europe. As the proposed network spans a large

eographical area but with a relatively small number of nodes (20) much research work

has now been actively undertaken to cater for it, taking into account not only the high

                                                          
1 A network is characterised as all-optical when no opto-electronic or electro-optical conversion takes
place (both transmission and switching take place in the optical domain).
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capacity transmission and network performance, but also the cost effectiveness of such

technology that is to be implemented.

Several issues have been investigated, including the evaluation of traffic models for

medium and long term demand, estimation of link capacity requirements, design of

topology [3] to meet availability requirements such as reliability and blocking,

evaluation of transmission requirements and limitations and evaluation of the number

of wavelengths.
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CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1. Modelling Networks as Graphs

2.1.1. Basic Graph Terminology

A graph is collection of a vertex set V and an edge set E [35,37,39].These vertices are

more commonly called nodes and they represent locations (e.g. sources of traffic or

sites of communications equipment). The edges are also called links, and they

represent communication facilities. A link is incident on a node if the node is one of its

endpoints. Nodes i and k are adjacent if there exists a link (i,k) between them. Such

nodes are also referred to as neighbours. The degree of a node is the number of links

incident on the node or, equivalently, the number of neighbours it has [33].

“A graph is called network if the links and nodes associated with it have properties

(e.g. length, capacity, type, etc.). A path on the network is a sequence of links which

begins at some node, s, and ends at some node, t. Such a path is also referred to as s,t-

path. It should be noted that the order of links in the path matters. In a communications

network a channel is said to be full duplex if it can be used in both directions at the

same time and half duplex if it can be used in only one direction at a time” [31].

2.1.2. Internal Representation of Networks

The internal representation of the network is aimed at making the network design and

analysis algorithm easy to implement and efficient both in terms of their memory

requirements and running time.

2.1.3. Node and Link Numbers

“Nodes are identified by numbers; conceptually, each node has a number associated

with it. This number may be its position in an alphabetical list of node ID, an index

into an array of node properties, or a pointer to a record describing the node. In all

cases, this number provides immediate access to information about the node. Thus, the

first step in creating the internal representation, is to associate a number with each

node.
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In a similar way, numbers can be associated with the links and information about the

links accessed via these numbers. The endpoints of the links are node numbers. If the

node numbering is changed, the link endpoints must also be converted” [31].

2.1.4. Adjacency and Incidence Relations

“Many algorithms make use of data structures that indicate which nodes are adjacent

to others and which links are incident on each node. There are several common ways

of representing this information. One of the simplest ways is for a network with N

nodes, to create an N by N boolean matrix with 1s, where nodes are adjacent, and 0s

elsewhere. Similarly, for a network with N nodes and M links, it is possible to create

an N by M matrix with 1s in rows i and j of column k, if undirected link k connects

nodes i and j. It should be noticed that the adjacency matrix is always symmetric, in

contrast with the incidence matrix which is not necessarily.

A matrix is said to be sparse if the majority of its entries are 0s, namely if the number

of non-zero entries is very low comparing to the size of the matrix. Finally, the degree

of a node can be computed by adding up the number of 1s in the row of the incidence

or adjacency matrix corresponding to that node” [31].

2.2. Optimisation Techniques

2.2.1. Heuristics

“Heuristics are design principles that are incorporated into algorithms. They are good

ideas embodying design experience. The intuition behind the heuristics is to start with

simple rules to investigate how they perform and use the experience gained to

implement more advanced and complicated rules. As a result, the application of simple

heuristics may guide us to even better ones. Although they do not guarantee an optimal

solution, they can provide an acceptable solution to problems that are hard to compute

within reasonable time and effort” [7].

Some heuristics are specific to particular types of networks. The most useful ones, are

based on principles which can be applied across many types of networks. One of the

most widely used heuristics is the greedy algorithm. Confronted by a series of choices,

the greedy algorithm chooses the best one it can find at each stage.
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“The greedy algorithm is a broadly applicable heuristic based on the simple

observation that inexpensive networks tend to contain inexpensive links. This

principle is true for all types of networks. Therefore this algorithm yields a “good”

network, but not necessarily the optimal solution. It is quite possible that the least

expensive network does not contain some of the least expensive links. It happens that

in the case of this simple unconstrained network, the greedy algorithm does in fact

yield the optimal solution. However, with added constraints, the greedy algorithm no

longer yields the optimal solution” [31].

Heuristics based Network Design in Literature

Banerjee, Mukherjee and Sarkar presented a comprehensive paper on heuristics for

linear multihop lightwave networks [12], in which a greedy and an iterative approach

are applied to two different sets. The first set focuses on minimising the maximum flow

in any link of the network, while the second set minimises the average delay, given the

traffic and the distance matrices. Another heuristic algorithm was presented by

Kershenbaum, Kermani and Grover [13] dealing with the problem of obtaining a

minimum cost topology for a mesh network, given matrices specifying the traffic and

the cost of links between all node pairs.

Gerla and Kleinrock [28] suggest a heuristic topological design procedure as a solution

to the problem of data transmission in a network environment. Various problem

formulations have been considered, including the minimisation of the total line cost,

the communication cost or the source to destination packet delay as objectives.

Numerous heuristics have been applied to the wavelength assignment problem as well.

Wauters and Demeester [21] considered separately the case where an optical path has a

fixed wavelength and is denoted a Wavelength Path (WP), and the case where

wavelength translating cross-connects are used and an optical path can have different

wavelength on each fibre (Virtual Wavelength Path : VWP). They introduced an

heuristic trying both to maximise the wavelength reuse and minimise the network

wavelength requirement.

Finally, Wuttisittikulkij and O’Mahony [27] developed a simple heuristic algorithm

for wavelength assignment in optical networks. The objective is to assign wavelengths

to all connections in such a way that the number of wavelength channels required, M,

is minimal. The main issue that this paper addresses is the problem that arises when
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some additional connections are to be established or the traffic between some node

pairs is to be increased in an already optimised network. In that case, the presented

algorithm would have the great advantage of not requiring any modification of the

existing connections.

Hence, all these heuristics based attempts for network design optimisation converge to

the fact that heuristics can be an effective, non time demanding tool providing

sufficient solutions, although they cannot guarantee optimality.

2.2.2. Genetic Algorithms

The term genetic algorithms (GAs) describes the properties of a class of evolutionary

algorithms (EAs) in the artificial system. EAs use computational models of

evolutionary processes as key elements in the design and implementation of computer-

based problem-solving systems [1].

GAs can be distinguished from EAs in general by two key-features :

• They operate in a search space using genetic operators on fixed-length strings that

encode points in the problem space, rather than in the problem space directly.

• They use a particular recombination operator on these fixed-length strings that is

unique to GAs, called crossover.

GAs are usually used to deal with problems of optimisation as well as learning

problems. Apart from that, GAs have also been used to design application-specific

neural networks. In the communication field, GAs have been used to optimise the

design of communication networks.

GAs based Network Design in Literature

GAs are frequently used in network design problems in order to provide optimal or

near-optimal solutions.

Sinclair [3] has applied GAs in the optimisation of the COST 239 EON topology. The

author has shown that GAs have not only successfully optimised the cost of the

network but also increased its reliability. Tan and Sinclair [5] presented

complementary work for wavelength and routing assignment between the central

nodes of the same network.
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Hewitt, Soper, and McKenzie [9] presented a GA for mesh network design,

considering both capacity and wavelength allocation. Their results were comparable

with existing heuristics, and often better in terms of overall network cost.

Hence, GAs obviously concentrate all the advantages of heuristics providing

satisfactory solutions in a finite  time duration and, sometimes giving better results

comparing to them.

2.2.3. Simulated Annealing

“Simulated Annealing (SA) is a process whereby candidate solutions to a problem are

repeatedly evaluated according to some objective function and incrementally changed

to achieve better solutions. The nature of each individual change is probabilistic in that

there is some probability it worsens the solution. However, the probability is skewed

so that changes which serve to minimise the objective function occur with higher

frequency. In addition, an “annealing schedule” is followed whereby the probability of

allowing a change which worsens the solution is gradually reduced to zero” [22].

Thus, SA is similar to gradient decent algorithms, wherein each change to the

candidate solution is made such that the objective function is always minimised. The

fundamental difference is that SA assumes no initial knowledge of the gradient. The

fact that SA algorithms occasionally  accept deteriorations in cost in a controlled

manner, enables them to escape from local minima while keeping the favourable

features of local search algorithms, i.e., simplicity and general applicability [23].

SA based Network Design in Literature

Ganz, Gong and Wang [22] used a SR2 optimisation algorithm to approach the

wavelength assignment in multihop lightwave networks problem. The aims considered

in their paper, were to increase the user accessible bandwidth, reduce the average delay

and reduce the hardware cost (in terms of the number of transmitters and receivers per

node and numbers of wavelengths in the network).

                                                          
2 Stochastic Ruler : A method similar to SA
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2.2.4. Linear / Integer Programming

Except for the problems with small complexity, it is not possible to enumerate all

possible solutions and then choose the best one. A network with ten nodes, for

example, has 45 potential links3, each of which could be either included or excluded

from the network. Even if it is assumed there is only one possible link, this gives rise

to 245 possible solutions (more than 1013 possibilities). The set of all possible solutions

to a problem is referred to as the solution space or problem space.

“The notion of best is expressed in formal optimisation techniques by the objective

function. The objective function associates a value with the design variables. Thus, for

example, each link i, can be included or excluded from a design. There is a cost

associated with each link and in order to minimise cost, the sum of the costs of the

links chosen should be used as the objective function.

While cost is the most commonly used objective function, it is not the only one. We

might want to maximise reliability. In this case, associate reliability with each possible

node and link in the network, and then compute the reliability of candidate networks

comprised of specific nodes and links. Unlike the case of cost, however, this may be a

complex calculation in its own right. The best value of the objective function is

referred to as the optimum. As it can be seen from the two previous examples, the

optimum can be either a minimum or a maximum.

If the optimum is to be found for problems of realistic size, we must rely on properties

of the problem which allow us to avoid at the most of the possible solutions. One such

situation was mentioned before; the greedy algorithm, which examines only a very

limited number of alternatives and guarantees an optimal solution for a special class of

problems. There are also other situations where a general heuristic produces optimal

solutions.

There are also algorithms which always produce optimal solutions. The problem with

these, however, is that they only apply to a limited class of problems; for problems

outside this class, they do not work at all. One such algorithm is the simplex method.

This algorithm only works for the class of problems called linear programming

problems. Linear programs are problems where both the constraints and the objectives

are weighted sums of the variables; that is, they are of the form :

                                                          
3 In general, a network with N nodes can have a maximum of N * (N-1) / 2 links
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z = a xi i
i

N

=
∑

1

where the xi are the N variables that we are optimising over, and the ai are the

respective coefficients” [31].

In this case, the solution space can be searched in a very orderly way, avoiding most of

the possible solutions and reaching the optimal solution in a reasonable amount of

time. Linear Programming concepts are discussed in more detail in Appendix A,

together with a description of the Simplex Method.

In literature (textbooks), there is a variety of problems which are coped with LP

approach : Primal Cost Improvement [39], Maximal Flow Problem [37, 41],

Transportation Problem [40], Assignment Problem [37, 40], Shortest Path Routing

[33, 37, 39], Capacity Assignment Problem [32, 39], Minimum Cost Flow Problem

[39, 41], Maximal Stiffness of a Structure [14], Optimal Planning of Transmission

Network Investments [15], etc.

Often, a problem can be phrased as a linear program with the additional constraint that

the variables must be integers. These problems (called integer programming

problems) are much more difficult to solve than linear programming problems. In

particular, the simplex method and its variants do not work on integer programming

problems. It should, however, be mentioned that integer programming problems are

much more time consuming, in terms of the CPU time they need to be solved,

compared not only to the equivalent linear programming problems, but all the other

formal methods of optimisation as well.

Integer programming problems arise frequently in network design; that is, when, for

example, the decision is whether or not to include or not a link in the solution. The

choice is to include the link (xi = 1) or not to include (xi = 0); there is no middle

ground. This type of integer programming problem are called zero-one programming

problem [37,38].

LP/IP based Network Design in Literature

LP/IP techniques are widely used in literature to cope with network design

optimisation problems. However, as it will be clear by the paragraphs following, IP as

well as Integer-Linear Programming (ILP) are much more frequently used, comparing
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to LP, as they have been proved more efficient methods to deal with this kind of

problems.

IP has been recently applied to the wavelength assignment problem. It serves as a

comparison with other methods (e.g. heuristics) and it also provides lower and upper

bounds to the problem. Ramaswami and Sivarajan presented a Routing and

Wavelength Assignment (RWA) algorithm [17] which meets an upper bound on the

carried traffic of connections (or, equivalently, a lower bound on the blocking

probability). The RWA problem is formulated as an ILP [37,41,42] problem where the

objective is to maximise the number of connections that are successfully routed. The

outcome of an RWA algorithm can be represented by a path-wavelength assignment

matrix, where each element is 1 if the algorithm assigns a wavelength to a connection

and 0, otherwise. The ILP must maximise the carried traffic, and also satisfy the

constraint that the same wavelength is used at most once on a given link.

Lowe, Shepherd and Walker [16] investigated the performance of two tools for path

routing and wavelength allocation : a heuristic algorithm based on the idea of

maximising reuse of fibres as further path requests are satisfied, and an IP formulation

configured to minimise the total number of fibres used in the network. The two

approaches are complementary, in that the heuristic algorithm runs quickly, whereas

the IP approach yields lower bounds which guarantee optimality.

Wauters and Demeester developed an ILP model to deal with the problem routing and

wavelength assignment in WDM optical networks, with or without wavelength

conversion [25]. Routing cost is introduced in the objective function by using a weight

function which favours the use of shortest paths.

Banerjee and Mukherjee [26] approach the problem of Routing and Wavelength

Assignment (RWA) in large WDM optical networks. They develop an ILP formulation

with the objective function being to minimise the flow in each link (their main aim is

to minimise the number of wavelengths needed to carry a certain number of

connections, assuming a known physical topology). They consider at most one

lightpath from a source to a destination, so the variables denoting the corresponding

traffic (in terms of a lightpath) have only 1 and 0 as valid values.

Dutta [18] has developed an IP model to determine transmission capacity in private

backbone networks. Variables representing the cost of installing lines and decision

variables (set to 1 if a line of specific type is installed, to 0 otherwise) are included in
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the model formulation. A similar approach (usage of decision variables) is proposed in

Chapter 5, where the formulation of an IP problem, that would give an optimal

solution for the two network design problems under investigation (virtual topology and

wavelength assignment), is attempted.

Summarising, it could be stated that the enormous time requirements of LP/IP/ILP

techniques make them usable only in case that providing an optimal (and not a near

optimal) solution is of extreme importance, or in case that the effectiveness of another

optimisation method has to be measured, in other words,  when lower and upper

bounds have to be provided.

2.2.5. Comparison of Optimisation Techniques

As it has been already clear by the brief description of the optimisation techniques

preceded, there is not any method that could be characterised as a perfect one.

Heuristics have the advantage of simplicity and speed (they need a small amount of

time to solve the problem). However, the solution obtained is “near optimal”, namely

they do not always provide the best solution possible.

Genetic Algorithms present the great advantage of their probabilistic nature, that make

them ideal for problems of optimisation as well as learning problems. On the other

hand, when many iterations are needed, they are quite demanding in terms of time

needed in order to give the solution (there is dependence on the problem space), which

is not necessarily the best.

Simulating Annealing algorithms maintain the simplicity, applicability and speed of

local search algorithms and the probabilistic nature of GAs while being capable of

escaping from stacking in local minima. Nevertheless, they have all the disadvantages

associated with the random-search methods which cannot secure the best solution.

Linear Programming presents the advantage of an exhaustive-search method, as it

always provides the best solution possible, provided that the constraints have been

correctly set. However, apart from the disadvantage of solving only problems in

strictly linear form (both the constraints and the objectives are weighted sums of the

variables), LP is depended on the size of the problem space : the number of variables is

dramatically increased with the increase of problem space.



Literature Survey and Background Project Report

14

Integer Programming includes all the advantages of LP, together with the fact that the

linearity requirement no longer exists (it can be required that some variables should

take only integer values). The main disadvantage for IP is, as it is the case for LP, that

it takes an extremely large amount of time (days !) to give a feasible solution.

Thus it can be concluded that the selection of the technique that will be applied in

order to solve an optimisation problem, depends completely on the nature of the

problem : whether the problem space is large or not, whether a really optimal solution

is desired, etc. For example, methods such as GAs, although they cannot guarantee the

best result, may still provide useful results for problems that are too large for LP or IP.

2.3. Cost Models

The basic idea in the case of topological design is to optimise a specific cost function

of the network. The feasibility of the solutions can be controlled by appropriate penalty

functions in case that heuristics or GAs techniques are applied [3,7].

The cost model used plays a crucial role in the network design. However, it is

extremely hard to estimate and model the cost of a network, as it depends in a variety

of factors. For example, the cost of the fibres and all the components required, apart

from the cost of maintenance, must be taken into account. A simple and quite

reasonable way to deal with this problem is to consider the cost as a linear function of

length and capacity. The cost model mainly used in this project is a modification of the

one described in [2] (it is simpler than this).

2.4. WDM / OTDM Optical Networks

Wavelength Division Multiplexing (WDM) is an emerging technology to enhance the

capacity of the existing optical communication systems. In WDM networks, links

consist of fibre mediums, while nodes contain switching elements with lasers (as

transmitters) and photodetectors (as receivers). In these networks, nodes are

interconnected by optical fibre highways carrying wavelength multiplexed optical

channels. At a wavelength dependent cross-connect located at a network node, the

wavelengths are demultiplexed and cross-connected to construct the network topology.

Multi-wavelength transparent optical networks are capable of providing high aggregate

capacities and could provide an infrastructure which could overlay an existing
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transport network to meet future increases in traffic demand as well as to enhance

flexibility and reliability [10].

WDM techniques combined with optical amplifiers [43] has made the concept of large

scale WDM optical networks such as the COST 239 European Optical Network

possible. The WDM technique is used to enhance cable capacity by the simultaneous

transmission of a number of signals on different wavelengths in the same fibre. This

technique allows the vast bandwidth available in an optical fibre to be utilised by

partitioning it into several channels, each at a different optical wavelength. This has

several advantages over existing transmission techniques. Rapid research progress in

WDM technology has enabled such technology to become practical enough to expand

their use over the last decade. However, these fields are beyond the scope of this report

and only necessary background is provided.

WDM networks currently detain a great part of the literature related to optical

networks, world-wide. For example, Chlamtac, Farago and Zhang [29] dealt with the

problem of efficient circuit switching in WANs. Wavelength conversion has been

considered in networks junctions. The authors have applied an interesting cost

structure of using the resources. They assign costs not only for using a wavelength in a

specific link but for wavelength conversion from a wavelength to another at each node.

The wavelength conversion cost is dynamically adjusted, depending in network

conditions (for example, when the traffic going through a node is getting closer to the

node capacity, the wavelength conversion cost at this node is increased and the

connections are routed through other nodes).

In the near future, the construction of large-capacity flexible optical networks, using

both Optical Time-Division Multiplexing (OTDM) [11]  and WDM technologies, will

be of vital importance. A significant part of the research carried out in the area of

optical networks deals with the combination of these two multiplexing techniques.

For example, a low-noise supercontinuum (SC) broadband source with a bandwidth of

more than 200 nm (25 THz) has recently been developed and has applied to 200 Gbps

TDM as well as 100 Gbps x 4 channel OTDM/WDM transmission [30].
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CHAPTER 3

VIRTUAL TOPOLOGY DESIGN PROBLEM

3.1. Introduction

In this approach, the names and the geographical locations of the network switching

nodes are given as input. In addition to these, the traffic matrix (a matrix that contains

the units of traffic for each one of the node pairs), is also given. The final aim is to find

the topology that gives the minimum possible cost. For simplicity reasons, the cost of

network is assumed to be consisted of the nodes plus the links cost.

It should be noted that, initially, a complete meshed network (there are  links

connecting every one of the node pairs) is considered. The objective is to obtain a final

topology that satisfies the requirement of minimum network cost. That means that

some of the variables representing the links capacities have to be assigned a zero

value. In case that a specific link has zero capacity, the traffic between the nodes that

this link would connect, will be routed through another route (that will be a series of

other existing links).

Of course, this depends, to a great extend, on the routing algorithm used. If, for

example, a network with strictly direct-path routing is considered , it is obvious that all

the links of the fully-meshed network are going to be used. This is because the traffic

with source node A and destination node B will have to be routed through the link that

connects nodes A and B, otherwise the direct-path requirement will not be satisfied.

3.2. Formulation of the Problem

3.2.1. Objective Function

In order to formulate the topology optimisation procedure as a LP problem, there

should be a symbolic representation of the constituting elements of the network with

some LP variables. Thus, we define some variables : xi, i = 0,1,2 ... Number of Links,

representing the capacity of links. There will follow the definition of some new

variables representing the valid network paths, according to the routing algorithm

used.
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In that case, the cost of a link will be the product of its capacity multiplied its

corresponding length. Thus, the cost of network links will be equal to the sum of the

individual link costs and will be given by (3.2-1). It should be mentioned that for a

network with N nodes, the maximum possible number of links (the number of links

when the network is fully meshed), is : N * (N - 1) / 2.

CL = x Li i
i

NumOf Links

*
=
∑

0

(3.2-1)

where xi is the capacity and Li the length of the i-link. The dependence of link cost on

its capacity and length is quite reasonable, as in the real world, the more the capacity

and the length of a link, the more it costs to be fabricated. The way that the lengths Li

are calculated will be discussed later.

On the other hand, the cost of a network switching node is considered to be equal to

the sum of capacities of the links attached to it, multiplied with a factor A (the factor is

introduced in order to provide a balance between the links and nodes cost in the

network). As previously, the cost of network nodes will be equal to the sum of the

individual nodes costs and will be given by :

CN = Ni
i

NumOf Nodes

=
∑

0
(3.2-2)

where Ni is the cost of the i-th node, given by :

Ni = A * x j
j

Num Of Attached Links

=
∑

0
(3.2-3)

For simplicity reasons and as this wouldn’t cause any change in the results obtained,

the factor A will be considered equal to unity : A = 1.

The dependence of the node cost on the number of attached links is also realistic, as

the complexity and, thus, the cost of every real switching node is associated with the

number of its input and output ports. Finally, the total cost of the network is the sum of

links and nodes cost :

CNet = CL + CN (3.2-4)

However, the notation giving the total nodes cost can be significantly simplified, by

examining carefully the following example. In the simple 5-nodes network of figure
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3.1, the cost of each one of the 5 nodes can be found by simply summing up the

capacities of the attached links :

N0 = x0 + x1 + x2 + x3

N1 = x0 + x4 + x5 + x6

N2 = x1 + x4 + x7 + x8  (3.2-5)

N3 = x2 + x5 + x7 + x9

N4 = x3 + x6 + x8 + x9

The total nodes cost can be obtained by summing the previous set of equations :

CN = Ni
i=
∑

0

4

= 2*x0 + 2*x1 + 2*x2 +2*x3 +2*x4 + 2*x5 +2*x6 +2*x7 +2*x8 +2*x9 =

= 2
0

9

xi
i=
∑ (3.2-6)

Thus, it is obvious that in any case of a fully meshed network, the total cost of network

nodes would be given by the sum of the links capacities, multiplied with a factor of 2.

Fig. 3.1 : A fully meshed 5-nodes network

The combination of equations (3.2-1), (3.2-4) and (3.2-6) gives the final equation that

describes the cost of the network :

Node 4
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Node 1

Node 0
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CNet = ( ) *2
0

+
=
∑ L xi i
i

NumOf Links

(3.2-7)

The previous equation, apart from calculating the network cost, is also used as the

objective function of the LP problem. The dependence of the network cost on the links

length is supposed to be used in order to force the LP executing program to give a

solution, in which no links with length much greater to the average length will be used

in the final optimum topology.

Concerning the calculation of the lengths Li, it has been previously mentioned that the

names and the locations of the switching nodes are given as input. Hence, as we have

the location (co-ordinates : x, y) each one of the nodes, we can evaluate the Euclidean

Distance between them. If, for example, the location of node A is described by the co-

ordinates (x1 , y1), and the equivalent co-ordinates of node B are (x2 , y2), the distance

between A and B is :

d (A,B) = ( ) ( )x x y y1 2
2

1 2
2− + − (3.2-8)

That way, we evaluate the distance between each node pair.

3.2.2. Link Constraints

Apart from the objective function, the LP problem needs some constraints concerning

the links, in order to define the solution area and, finally, the optimal solution vector

(the value of each one of the variables used) which will minimise the objective

function. There are two kind of links constraints :

♦ Constraint on “cuts around nodes” : The links attached to each node are supposed to

have total capacity larger or equal to the sum of traffic units with source or destination

that node. That means that there will be a number of inequalities of this kind, equal to

the number of nodes [46].

Let’s consider the network of fig. 3.1, and assume that the traffic matrix4 has the form

given by the table following :

                                                          
4 The Traffic Matrix consists of an m x m array, with empty forward diagonal, of the capacity
required (in traffic units) between each node pair
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Nodes 0 1 2 3 4

0 - 2 1 3.5 1.5

1 3 - 4 1 1

2 5 3.2 - 7 2

3 4 1 1.5 - 3

4 2 4 0 2.5 -

Table 3.1 : Traffic Matrix of the 5-nodes network

As it is clear, from the table above, there are : 2 + 1 + 3.5 + 1.5 = 8 traffic units with

source the Node 0, and destination the other nodes and : 3 + 5 + 4  +2 = 14 traffic units

with destination the Node 0 and source the other nodes. Thus, the links attached to

Node 0 should be able to carry the traffic generated or directed to this node, so their

total capacity must be greater or equal to : 8 + 14 = 22 traffic units.

Likewise, there are other 4 inequalities, each of which will set the constraint for the

remaining 4 nodes. These inequalities (including the one corresponding to Node 0)

will be :

Node 0 :   x0 + x1 + x2 + x3 >= 22

:

Node 4 :  x3 + x6 + x8 + x9 >= 16

♦ Constraint on “cuts around links” : An another constraint is added if we remove each

one of the network links that connects a specific node pair, and require the rest of the

links attached to these two nodes to have total capacity greater or equal to the sum of

traffic units with source or destination the two nodes, apart from the traffic units with

source one of the two nodes and destination the other. Namely, there will be a number

of inequalities of this kind, equal to the number of links : N * (N - 1) / 2, where N is

the number of nodes [46].

Thus, for the network of fig.3.1 and for the traffic matrix given by table 3.1, if we

remove the link that connects Node 0 with Node 1, then the rest of the links attached to

these two nodes (x1, x2, x3 and x4, x5, x6 respectively) should be able to carry the traffic
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with source or destination Nodes 0 and 1, apart from the traffic with source Node 0

and destination Node 1, and inversely. This is clearly depicted in fig.3.2.

Fig. 3.2 : Cut around the link that connects nodes 0 and 1

The constraints are set similarly for the other links. Thus, we have the 5 * 4 / 2 = 10

inequalities :

Link 0 : x1 + x2 + x3 + x4 + x5 + x6 >= 31.2

Link 1 : x0 + x2 + x3 + x4 + x7 + x8 >= 33.7

:

Link 9 : x2 + x3 + x5 + x6 + x7 + x8 >= 28.5

3.2.3. Path Constraints

As it happened with the links case, there are two kind of links constraints concerning

the paths variables yi :

♦ Constraint on the sum of paths variables corresponding to a specific node pair : For

each pair of nodes, there is a variable yi assigned to the direct, the 2, 3, ... -hop paths,

depending on the number of hops used by the routing algorithm. Each of the variables

represent the amount of traffic (a fraction of the total traffic between the two nodes)

carried by the corresponding stream. Consequently, there is a requirement for the sum

of traffic units carried by those streams to be equal to the traffic between the two

nodes. This constraint produces a set of equalities, equal to the number of node pairs.

Node 1

Node 0

X5

X4

X6

X3

X2
X1
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Of course, in a fully meshed network, the number of node pairs is identical to the

number of links [46].

If, for example, a 2-hop routing algorithm is implemented in the fig. 3.1 simple

network, we would have the following path variables, corresponding to the Node 0 -

Node 1 node pair :

− Node 0 -  Node 1 : y0

− Node 0 - Node 2 - Node 1 : y1

− Node 0 - Node 3 - Node 1 : y2

− Node 0 - Node 4 - Node 1 : y3

In this example, the sum of these variables should give the traffic between nodes 0

and 1, which according to the traffic matrix will be :

y0 + y1 + y2 + y3 = 2 + 3 = 5

The problem of evaluation of the number of hops (direct, 2-hop, 3-hop, etc.) that arises

is discussed in detail in Appendix B.

♦ Constraint on the sum of paths variables sharing the same link : It is clear that a link

might be shared between many distinctive streams, corresponding to different paths.

Thus, it is required that the sum of those streams must be  equal to the link capacity.

The number of equalities generated as a consequence of this constraint will be equal to

the number of links [46].

In the 5-nodes network, for example, the link x0 (that connects the nodes 0 and 1), can

be used by the paths :

− Node 0 - Node 1 : y0

− Node 0 - Node 1 - Node 2 : y5

− Node 0 - Node 1 - Node 3 : y9

− Node 0 - Node 1 - Node 4 : y13

− Node 1 - Node 0 - Node 2 : y17

− Node 1 - Node 0 - Node 3 : y21

− Node 1 - Node 0 - Node 4 : y25
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Thus, the sum of those variables must not exceed the capacity of the link that connects

the nodes 0 and 1 (x0) :

y0 + y5 + y9 + y13 + y17 + y21 + y25 = x0

3.2.4. Synopsis of the LP problem formulation

As it is apparent, from the discussion above, the form of the LP problem of topology

optimisation, will be the following :

min : CNet = ( ) *2
0

+
=
∑ L xi i
i

NumOf Links

    : Objective Function

x0 +  x1 +  x2 +  x3 >=  22

x0 +  x4 +  x5 +  x6 >=  19.2

:

:



















  :  Num of Nodes inequalities

x1 +  x2 +  x3 +  x4 +  x5 +  x6 >=  31.2

x0 +  x2 +  x3 +  x4 +  x7 +  x8 >=  33.7

:

:



















 :  Num of Links inequalities

y0 +  y1 +  y2 +  y3 =  5

y4 +  y5 +  y6 +  y7 =  6

:

:



















 :  Num of Node Pairs equalities

y0 +  y5 +  y9 +  y13 +  y17 +  y21 +  y25 =  x0

y1 +  y4 +  y10 +  y14 +  y17 +  y29 +  y33 =  x1

:

:



















 : Num of Links equalities
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The aim is to find a solution vector (the values of all xi and yi) that minimises the

objective function while satisfying all the constraints posed.

It can be shown that the cost of paths (the cost of a path is similarly defined as the

capacity of the corresponding stream multiplied with the path total length) is equal to

the cost of links. Thus, the objective function of the LP problem given above, can be

substituted so that it includes the paths cost instead of the links cost. In that case, the

total network cost (nodes cost plus the paths cost) would be :

CNet = 2
0

xi
i

NumOf Links

=
∑ + y Lj j

j

NumOf Paths

=
∑

0
(3.2-9)

where Lj is the length of the j-path, equal to the sum of lengths of the links it is

consisted of. Therefore, in case that 2-hop routing is chosen for a 5-nodes network, the

previous equation (objective function) can be written :

CNet = 2
0

xi
i

NumOf Links

=
∑ + y0 L01 + y1 L021 + y2 L031 + y3 L041 + y4 L02 +....  =

(3.2-10)

= 2
0

xi
i

NumOf Links

=
∑ + y0 L01 + y1 (L02 + L21) + y1 (L03 + L31) y1 + (L04 + L41) + y4 L02 +....

Obviously, the total length of a 2-hop path would be, in any case, greater than the

length of the equivalent direct path. That would have an effect on the cost of network :

according to the equation giving the objective function of the LP problem, the paths

cost would be increased in case that, a 2-hop path would be selected for routing the

traffic of  a specific pair of nodes, instead of the direct path.

However, this logic would not be valid in a real network. In real networks there is

another important factor that should be taken seriously into consideration. That is the

cost of establishment of a link which would be one of the dominants factors of cost.

This cost can be justified not only by the cost of installing a new connection, placing

the cables etc., but by the increased cost of switching nodes as well (obviously, the

larger the number of links attached to a switch, the more complex and expensive the

switch is). Therefore, in some cases, when we deal with a pair of nodes which are

located in distant places, and there are not significant bandwidth requirements for the

traffic between them, then it seems that it doesn’t worth to install a new link that
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connects directly these two nodes, especially if there can be found a path with total

length not significantly greater than the length of the direct link.

3.3. Problem Complexity

It should be stated that there is direct relationship between the number of variables

used and the problem complexity. That relationship is graphically depicted in figures

3.3 and 3.4. The former illustrates the dependence of the number of variables of the LP

problem on the number of network nodes, whereas the later presents the number of

variables as a function of the number of hops used by the routing algorithm.
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Fig. 3.3 : The number of variables of the LP problem against the number of nodes
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Fig. 3.4. : The number of variables of the LP problem against the number of hops used
by the routing algorithm

These two figures prove that the number of variables increases dramatically with the

number of nodes or hops. It should be noted that this is  a key limitation of LP, while

other optimisation methods such as heuristics, GAs etc. can tackle large problems,

giving “reasonable” results. Now, the reason that no more than 20 nodes and 3-hops

have been tested during the experimental part, can be clearly understood.

3.4. Implementation & Results

Let us assume that we are given  the locations of the 5 switching nodes of fig. 3.1

network (x, y co-ordinates) :

Node 0 Node 1 Node 2 Node 3 Node 4

x 18.66 14.40 17.4 13.02 18.31

y 11.54 9.88 7.37 10.65 8.96

Table 3.2 : The locations of the 5-nodes network of  fig 3.1
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Given the locations of the nodes, the distance between each node pair can be

calculated by using the equation (3.2-8) :

Nodes 0 1 2 3 4

0 0 914.4 871.241 1141.96 520.726

1 914.4 0 782.307 316.057 803.355

2 871.241 782.307 0 1094.4 366.399

3 1141.96 316.057 1094.4 0 1110.68

4 520.726 803.355 366.399 1110.68 0

Table 3.3 : The Distance Matrix for the 5-nodes network of  fig 3.1

An implementation the LP problem formed by objective function and the sets of

constraints given in the previous paragraph (the LP problem is constructed by the code

presented in Appendix E), into the 5-nodes network, results in a  list, presented in

Appendix C, which will constitute the input of the lp_solve_2.0 program. It should be

mentioned that 2-hop path routing has been assumed, meaning that the total number of

paths (direct and 2-hop paths) in the network, according to the equations (B.2-1), (B.3-

1) and (B.3-2), will be 40.

It should be emphasised that as the variables of the LP problem has to use the “x”

symbol (in lp_solve_2.0), the indices of the variables representing the paths start from

the value of 10 (as the last of the links variables is equal to 9).

Giving the constraints listed above as input to lp_solve_2.0  we get the following

results (concerning the values of the variables representing the links capacities), which

form the optimal solution for the problem (the values that minimise the objective

function)  :

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

5 6 7.5 3.5 7.2 2 5 8.5 2 5.5

Table 3.4 : The optimal solution for the LP problem constructed for the case of the

5-nodes network of  fig. 3.1

As it is obvious from the table above, apart from the fact that the final network

topology will be a full-mesh network (as all the links capacities have non-zero values),

the capacity of each one of the links is equal to the traffic between the nodes it
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connects. Namely, none of the available 2-hop paths is used. That can be also seen by

examining the values of the 2-hop paths variables (that are not listed here), which are

all set to 0. The cost of the network (the value of the objective function), calculated in

accordance with the equation (3.2-7), is 46,717.

In order to test the LP optimisation process effectiveness, it has been tried to

implement the same set of constraints in a “real world network” : the European

Optical Network (EON). An overview of EON has been presented in the introductory

part of the report.

The traffic matrix of EON, together with the names and the locations of the nodes have

been the input of the program that creates the objective function and the constraints of

the LP problem, which, in turn, have been the input of the lp_solve_2.0. The output of

the later has similar form as for the 5-nodes network. The network cost is equal to

877,226. The traffic matrix and the values of the variables representing the links of

EON are presented in Appendix C.

Fig. 3.5 : The resulting optimised topology of EON
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It can be seen that all the network node pairs are connected with a direct link, apart

from the pairs Athens-Lisbon, Dublin-Prague, Rome-Milan, Luxembourg-Prague and

Lisbon-Prague, as there is not any traffic between them. Thus, according to the LP

optimised solution , the topology of EON, illustrated in figure 3.5, includes 185 links

(the number of node pairs is 190).

3.5. Assessment of LP Virtual Topology Design Results -
Alternative approach of the problem - Further work

Fig. 3.5 gives a clear picture of the LP failure to give a satisfactory solution to the

problem that is currently examined. This is because a fully connected network would

not be what someone would consider as optimum topology. The reason that leads to

this problem is that there is not any way of including into the objective function the

cost of link establishment. The results obtained are discussed in more detail in Chapter

5.

In order to include link establishment cost, an alternative cost model, different from

that of the equation (3.2-7), would have to be implemented. That cost model would

include a constant, representing the establishment cost, added to the link cost, in case

that this link would exist.  However, this approach cannot be formulated as an LP

problem, as it would presuppose the use of some decision variables, corresponding to

each one of the links and would be set equal to 1 in case that the link existed or equal

to 0, otherwise. Still, that would break the linearity of the problem. Hence, it seems

that the formulation of an IP problem would be the ideal solution to the problem. This

IP approach is also presented in Chapter 5.

In case that it would be tried to add the constant value mentioned above, in equation

(3.2-7), and, thus, obtaining a new objective function :

CNet = [( ) * ]2
0

+ +
=
∑ L x Ci i
i

NumOf Links

(3.5-1)

where C is the cost of establishing a link, the results of the optimisation process would

be identical with the previous ones (apart from the final value of the network cost

which would have been increased by the constant C multiplied with the number of

node pairs).

In the way that the problem has been already set, the final result (the fact that

regardless of the number of hops of the routing algorithm, there are not any 2 or 3-hop
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paths used, so every single direct link exists in the final topology) had to be expected.

This can be better explained graphically, by examining the figure 3.6, which compares

two alternative topologies for a 3-nodes network, which is the simplest possible

network.

In fig.3.6 (a), there is a link corresponding to each of the node pairs, whereas in fig.3.6

(b) one of the links has been removed and the traffic corresponding to the node pair A-

C is routed through the 2-hop path A-B-C.

Fig. 3.6 : (a) A 3-nodes network where only the direct links are used to carry the

traffic  (b) The same network where only the 2 out of 3 links exist : Node pairs A-B and

B-C use the direct links, whereas A-C  uses a 2-hop path to carry the traffic  (A-B-C)

Thus, if we assume length difference equal to ∆L, between the A-B-C and A-C paths

(∆L = LA-B-C - LA-C = L0 + L1 - L2), then,  according to equation (3-2.4), the cost of the

two networks will be the sum of costs of the individual links and nodes:

Network 1 : CNet1 = Clink 0 + Clink 1 + Clink 2 + CNode A + CNode B + CNode C

= L0 x0 + L1 x1 + L2 x2 + (x0 + x2) + (x0 + x1) + (x1 + x2) =

= (2 + L0) x0 + (2 + L1) x1 + (2 + L1) x1

Network2 : CNet2 = Clink 0 + Clink 1 + CNode A + CNode B + CNode C

= L0 (x0 + x2) + L1 (x1 + x2) + (x0 + x2) + (x0 + x1 + 2 x2) + (x1 + x2)

= L0 x0 + L1 x1 + (L0 + L1) x2 + (x0 + x2) + (x0 + x1) + (x1 + x2) +  2 x2

= L0 x0 + L1 x1 + L2 x2 + ∆L x2 + (x0 + x2) + (x0 + x1) + (x1 + x2) +  2 x2

= (2 + L0) x0 + (2 + L1) x1 + (2 + L1) x1 + ∆L x2 + 2 x2

X
 C

    B

A

X

X

X  + X
 C

    B

A
X  + X

Network 1

Network 2
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As it is clear from the above general case, the cost of the second network is greater to

the cost of the first (the difference in costs is equal to the underlined factor, appearing

in the second network cost).

Nevertheless, in case that the implementation of the alternative cost model, which has

been referred above, is attempted, the previous conclusion will not be valid any more.

Namely, if we define a link establishment cost equal to C, then the two networks cost

will then be :

Network 1 :   CNet1 = (2 + L0) x0 + (2 + L1) x1 + (2 + L1) x1 + 3 C

Network 2 :    (2 + L0) x0 + (2 + L1) x1 + (2 + L1) x1 + ∆L x2 + 2 x2 + 2 C

If, now, C was a large constant value, then the cost of the first network would be

significantly greater to the cost of the second.

Consequently, there could be an alternative approach to this problem, in order to get by

any LP limitations. Specifically, as the change of the objective function and constraints

formulation is not possible, there could be added some further constraints that would

force the LP solving program to use a smaller number of links, in the final network

topology. These additional constraints could be set on the node degree (number of

attached nodes). Alternatively, it could be tried to cut links which connect nodes with

small traffic capacity between them, links with length much greater to the average

length, or combination of those two. Of course, the resulting network topology, apart

from including smaller number of links, would correspond to an objective function

with a larger value, compared to its previously obtained value (= 877,226).

Nevertheless, if the new objective function (equation (3.5-1)) would have been

applied, and given that the constant C would have a large value, the network cost

would have been significantly reduced, compared to the previous case.

This new approach could be implemented in the following way : Initially apply the

constraints mentioned above, identify the links which should be cut and then run the

LP solving program (lp_solve_2.0), requiring, apart from the other constraints, those

links capacities to be zero.

An attempt of implementing this alternative approach has been made, by cutting, for

each one of the nodes, all the links attached to it, with length over the average length

of the attached links, multiplied with a factor, and traffic less than the average traffic



Virtual Topology Design Problem Project Report

32

of the attached links, multiplied with another factor. Various combinations of those

factors have been tried. For some of these combinations the LP problem was

unfeasible (no solution could be given). If, for example, the  first factor is selected

equal to 1.3 and the second equal to 0.8 (for every node of the network, all the links

with length greater to 1.3 * average length and traffic less than 0.8 * average traffic are

cut), then, according to the traffic and distance matrices there are 29 links which will

be required to have zero capacity in the final network topology.

Therefore, the resulting optimised network will include 146 links (as, apart from the 29

links which have been cut, there are 5 node pairs with no traffic between the nodes

and, thus, don’t need to be connected directly) and its cost (value of the objective

function) is 878,829. The topology of that network will be the one presented in the

figure following :

Fig. 3.7 : The resulting optimised topology of EON, when 29 links have been cut

The cost of this network is slightly greater to the value obtained without adding the

new constraints (877,226). If, however, the new objective function of equation (3.5-1)

is applied, and the link establishment cost is estimated to be C = 100, the new costs

will be :
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185 links Network : C185 = 877,226 + (185 * C) = 895,726

146 links Network : C146 = 878,829 + (146 * C) = 893,429

Obviously, the 146 links network have a considerably lower cost, compared to the

mesh network, if a more realistic cost function is applied. Even better results might be

obtained for different combinations of the two factors mentioned above.

Of course, the traffic corresponding to the pairs of nodes not directly connected will

have to be routed through  2-hop paths. For each of those node pairs there are 18 2-hop

paths that can be used. The selected path will be the one with the minimum cost,

namely the minimum length. Thus, there are 40 2-hop paths arising. Those paths are

presented in Appendix C. It can be seen that for each of the 40 2-hop paths appearing,

the intermediate node is very closed to the line defined by the end nodes (the length of

the 2-hop path is the minimum possible).

3.7. Backup Paths

A further investigation of the network design optimisation process that was

implemented, would be the introduction of backup paths. Those paths would connect,

as in the previous case, a pair of node, traversing a different series of links. Thus, each

node pair in the network would be connected by two separate paths which would not

share any links (none of the intermediate nodes would be in common).

Backup routes are usually established in networks, in case that safety and reliability are

considered as crucial issues. Thus every time that one of the links or the intermediate

nodes of the primary path would fail, the traffic between the end nodes would be

routed through the backup route. Each backup route has, therefore, to be able to carry

the traffic between those nodes.

As far as the LP approach of the problem is concerned, there are some new variables

and some new constraints that have to be added in order to cope with the problem

examined so far. In particular, each of the new variables representing the backup paths:

zi , i = 0,1, ... Num Of Paths, will correspond to the same path that the primary paths

variables yi do. The new constraints will be similar to those set for the primary paths :

♦ Constraint on the sum of backup paths variables corresponding to a specific node

pair:  As previously, for each pair of nodes, there is a variable zi assigned to the direct,
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the 2, 3, ... -hop paths, depending on the number of hops used by the routing algorithm.

Consequently, there is a requirement for the sum of traffic units carried by those

streams to be equal to the traffic between the two nodes. This constraint produces a set

of equalities, equal to the number of node pairs [46].

Thus, if backup paths are introduced in the 5 nodes network, and a 2-hop routing

algorithm is implemented, we would have the following backup paths variables,

corresponding to the Node 0 - Node 1 node pair :

− Node 0 -  Node 1 : z0

− Node 0 - Node 2 - Node 1 : z1

− Node 0 - Node 3 - Node 1 : z2

− Node 0 - Node 4 - Node 1 : z3

In this example, the sum of these variables should give the traffic between nodes 0

and 1, which according to the traffic matrix (Table 3.1) will be :

z0 + z1 + z2 + z3 = 2 + 3 = 5

♦ Constraint on the sum of paths variables sharing the same link : As in the primary

paths case, it is required that the sum of the streams sharing the same link must be

equal to the link capacity. Of course, in this case, apart from the primary, backup paths

are included as well. The number of equalities generated as a consequence of this

constraint will be equal to the number of links [46].

In the 5-nodes network, for example, the link x0 (that connects the nodes 0 and 1), can

be used by the paths :

− Node 0 - Node 1 : y0,  z0

− Node 0 - Node 1 - Node 2 : y5,  z5

− Node 0 - Node 1 - Node 3 : y9,  z9

− Node 0 - Node 1 - Node 4 : y13,  z13

− Node 1 - Node 0 - Node 2 : y17,  z17

− Node 1 - Node 0 - Node 3 : y21,  z21

− Node 1 - Node 0 - Node 4 : y25,  z25
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Thus, the sum of those variables must not exceed the capacity of the link that connects

the nodes 0 and 1 (x0) :

y0 + y5 + y9 + y13 + y17 + y21 + y25 + z0 + z5 + z9 + z13 + z17 + z21 + z25= x0

Nevertheless, the requirement of having disjoint primary and backup paths has not

been met yet, with the constraints set so far. Thus, there is need for an extra constraint:

♦ Constraint that implements the requirement for node-disjoint paths : As there are two

variables ( yi , zi ) representing a primary and a backup connection over the same path,

it is required not to let both of these variables to have non-zero value. Namely, in case

that two end nodes are able of routing the traffic between them through several paths,

the LP solving problem should be forced to use separate paths for the primary and the

backup paths. This can be achieved, if the sum of yi and zi is required to be less or

equal to the traffic between the end nodes to which those variables correspond. The

complexity of the problem increases in case that 3, 4 or more hops routing is applied.

Then, there are different paths that might share the same link (if one of the

intermediate nodes is common), so paths have to be checked link-by-link in order to

decide whether they are node-disjoint or not. As a consequence of this constraint, a

number of inequalities, equal to the number of paths will be produced [46].

In the 5-nodes network example, the implementation of this constraint on the Node 0 -

Node 1 node pair, will give :

y0 + z0 <= 5

y5 + z5 <= 5

:

y25 + z25 <= 5

3.6.1  Further improvement on backup paths problem approach

In addition to the constraints described above, it is essential that the LP problem

solution will include primary routes which use less hops comparing to the

corresponding backup routes. That, of course, will not reduce the network cost, but it

is necessary for two reasons : Firstly, as for every pair of nodes the primary route is the

most commonly used to carry the traffic, it is important (for network reliability
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purposes) to reduce the probability of primary route fail. A fail might occur in case

that one of the paths components (one of the links or the intermediate nodes included)

fails. Hence, the less the hops, the less the number of path components and, thus, the

less the probability of failing. Secondly, the less the hops of a path, the less the delay

observed for the traffic carried (as the number of switching nodes and, thus, the

switching delay is reduced).

The idea expressed above (primary paths with less number of hops than the backup

paths), can be applied by modifying the objective function of the LP problem :  apart

from the network cost (the cost of nodes plus the cost of links) the cost of primary as

well as the backup paths should be also included. What is of great importance, is to

force the LP solution assign the paths with the greater number of hops to the backup

routes. That can be achieved by multiplying with an weighting factor the cost of

primary paths, and, thus, making them more “expensive”. Consequently, since the

primary paths are going to be used anyway, the solution of the LP problem will include

primary paths with the least number of hops, in order to minimise the overall cost. In

case that this idea is not applied, the assignment of a path as a primary or backup route

will be done randomly.

Thus, the implementation of the modified objective function to the EON, for a value of

that factor equal to 2 (the primary paths cost is the double of that of the backup paths),

will give a solution of a 188 links network, with 184 direct and one 2-hop primary

connections (the equivalent numbers for the backup routes are one direct and 184 2-

hop connections). The list of the 2-hop paths selected for the backup connections is

presented in Appendix C. As in the previous case, where no backup paths were under

consideration, it can be observed that in every case the 2-hop path selected, is the one

with the minimum length, among all the available 2-hop paths.

Moreover, the total primary paths capacity is equal to the equivalent of the backup

paths (due to the constraints set), while the total primary paths cost is less than the

total backup paths cost, where the cost is calculated according to its definition in

relation with the paths capacity and length. Naturally, the network cost, given by

equation (3.2-7) (= 1,920,730) is greater to that of the same network without any

backup paths.
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3.6.2. Alternative Approach for Backup Paths Case

The number of links existing in the final “optimum” topology (188 links) is extremely

large. Thus, the same technique discussed in section 3.5 (to cut all the links that don’t

meet the requirements for traffic and length being under a certain level) should be used

in this case as well, in order to limit the number of links in the network.

Alternatively, the formulation of an equivalent IP problem could be attempted. This

approach is presented in Chapter 5.
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CHAPTER 4

ROUTING & WAVELENGTH ASSIGNMENT PROBLEM

4.1. Introduction

The second part  of the experimental work deals with the use of Linear Programming

techniques for routing and wavelength assignment,  in an all optical network.

In contrast to the previous problem examined (virtual topology design), in this case the

objective is not to achieve an optimum topology, as the topology is already fixed. Apart

from the topology, the problem input also consists of  the network Traffic Matrix as well

as the switching nodes names and geographical locations (co-ordinates).

The network is considered to use WDM (Wavelength Division Multiplexing). Namely, a

number of channels, each of which corresponds to a specific wavelength λi, is available

for each of the existing network links. Of course, it is possible to have different number

of channels available in different links. The objective of the optimisation process is to

minimise the number of channels required in the network5. That could be translated into

minimising the total capacity of links, as this is directly affected by the number of

network channels.

From what have been already mentioned so far, it can be concluded that apart from the

existing links capacities, in order to meet an appropriate LP problem formulation, there

should be some additional variables representing the wavelengths used for each of the

links. The construction of the LP problem will take place in the paragraphs following.

4.2. Modelling considerations

The procedure of constructing an LP problem for wavelength assignment, can be

followed and tested with more ease by trying to apply it  onto a “real” network. This

could be a limited version of European Optical Network, which includes only 9 central

nodes : Paris, London, Berlin, Milan, Brussels, Amsterdam, Prague, Zurich and

Luxembourg.

                                                          
5 An alternative could be to reduce the maximum number of wavelengths per fibre. A smaller
number of different wavelengths in a fibre would be desirable from a physical optics viewpoint.
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Only 17 out of the maximum attainable number of links (= 9 * (9-1) / 2 = 36 links) exist

in the given topology. Those links are shown in fig. 4.1.

In order to model the problem in a way that will be much easier to handle, a new

structure, called Adjacency Matrix, is introduced. This is an m x m array, with empty

forward diagonal, which indicates whether a connection between a pair of nodes is

established, or not. Hence, according to the connections listed above, the Adjacency

Matrix for the 9 central nodes of EON will be :

Nodes 0 1 2 3 4 5 6 7 8

0 - 1 1 1 1 Paris

1 1 - 1 1 London

2 - 1 1 1 1 Berlin

3 1 - 1 1 1 Milan

4 1 1 1 - 1 1 Brussels

5 1 1 1 - 1 Amsterdam

6 1 1 - 1 Prague

7 1 1 1 1 - Zurich

8 1 1 1 - Luxembourg

Table 4.1 : The Adjacency Matrix for the 9 central nodes of EON

Thus, the network topology will be the one illustrated in figure  4.1 :

Fig. 4.1 : Topology of the 9 central nodes of EON
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It is assumed that only 2.5 Gbps channels are available. In addition, it should be

mentioned that for each pair of nodes only the 4- shortest paths are considered, so that

the complexity of the problem will be reduced. These 4 shortest paths are found in terms

of distance, not minimum number of hops. Each of the paths in the network uses a single

wavelength to carry information end-to-end. Thus, no wavelength conversion is needed

by the switching nodes.

The algorithm used in order to trace the 4-shortest paths is rather simple : Firstly, for

each of the 36 pairs of nodes, all the existing direct, 2,3 and 4-hop paths are found, then

they are sorted in increasing order of length, and, finally, the 4 paths with the minimum

distance are selected. The whole list of the 4 shortest paths for each of the node pairs on

the network is presented in Appendix D. By limiting the considered number of paths per

node pair, the number of variables of the LP problem as well as the problem size are

dramatically reduced. Apart from that, in any case, the number of wavelengths used in

the network will be increased, if longer paths are used [5].

The traffic matrix is given in the table following :

Nodes 0 1 2 3 4 5 6 7 8

0 - 22.45 23.3 8.6 17.2 6.52 0.42 16.69 1.96 Paris

1 19.06 - 19.06 4.58 5.85 9.74 0.51 6.27 1.05 London

2 26.27 25.42 - 11.61 9.32 19.74 4.74 24.91 2.29 Berlin

3 8.0 3.82 8.81 - 1.7 1.23 0.38 5.76 0.21 Milan

4 17.2 6.44 9.32 1.82 - 14.32 0.17 1.86 2.54 Brussels

5 6.52 11.52 20.17 1.4 14.57 - 0.34 2.46 0.51 Amsterdam

6 0.34 0.34 2.63 0.26 0.17 0.25 - 0.42 0 Prague

7 20.42 6.69 28.72 9.15 2.2 2.97 0.85 - 0.51 Zurich

8 2.71 0.85 2.8 0.34 3.22 0.51 0 0.42 - Luxembourg

Table 4.2 : The Traffic Matrix for the 9 central nodes of EON

Given the locations of the nodes, a Distance Matrix can be also constructed, as it has

been done with the simple, 5-nodes network, in the previous chapter.
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4.3. Formulation of the LP problem

4.3.1. Objective Function

As it has been already discussed, the minimisation of the network channels and the

minimisation of the total links capacity could be considered as equivalent problems.

Thus, for the specific problem of 9 central nodes of EON, the form of the objective

function would be :

min:  x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 +
x15 + x16;

where x0 - x16 represent the capacities of the 17 established links in the network.

4.3.2. Link constraints

As it was the case with the previous problem, that of virtual topology design, there are

some constraints that should be set, concerning the links of the network. The only

difference is that in this case the initial topology is not a fully-meshed topology, and,

thus, only the existing links should be considered. Specifically :

♦ The group of inequalities concerning the constraint on “cuts around nodes” are

presented below. The number of inequalities will be equal to the number of network

nodes (= 9).

Node 0 : x0 + x1 + x2 + x3 >= 192.99;

Node 1 : x0 + x4 + x5 >= 127.94;

:

Node 8 : x12 + x14 + x15 >= 18.99;

♦ Similarly, the number of inequalities concerning the constraint on “cuts around links”

will be equal the number of existing links (= 17) :

Link 0 : x1 + x2 + x3 + x4 + x5 >= 258.29;
Link 1 : x0 + x2 + x3 + x10 + x11 + x12 >= 232.13;
:
Link 16 : x3 + x8 + x9 + x10 + x11 >= 139.58;



Routing & Wavelength Assignment Problem Project Report

42

4.3.3. Path Constraints

Constraints concerning paths are, again, treated in the same way with the virtual topology

design case, except of the fact that there are not any variables representing the paths any

more, but only a number of variables corresponding to all the wavelengths traversing a

single path. Namely, for all the 4 shortest paths connecting a pair of nodes, there is a

fixed a number of variables N, representing the channels (wavelengths) λ0, λ1, ... , λN ,

which are available for transferring the traffic between the two end nodes. In case that

this traffic exceeds the threshold of the 2.5 Gbps (channel capacity), then more than one

channels will be utilised.

Thus, the same constraints which were valid for the variables corresponding to paths,

will, now, be applied on the variables representing wavelengths :

♦ Constraint on the sum of channels variables corresponding to a specific node pair :

The sum of the variables values of corresponding channels between two end nodes,

should be equal to the traffic between those nodes [46]. There will be a number, equal to

the number of node pairs, of equalities posed by this constraint. Thus, in case that 4

distinct wavelengths (λ0 , λ1 , λ2 and λ3) are available in the network, then, there will be

16 variables (4 wavelengths per each of the 4 shortest paths) corresponding to each of the

node pairs. The implementation of this constraint onto the node pair Paris - London will

give :

x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 +
x31 + x32 = 41.51;

The variables x17-x20 are assigned to the path Paris - London, the x21-x24 to the path

Paris - Brussels - London, the x25-x28 to the path Paris - Brussels - Amsterdam - London

and the x29-x32 to the path Paris - Brussels - Luxembourg - Amsterdam - London. These

paths are the 4 shortest available paths for the node pair Paris - London. The whole list of

the 4 shortest paths for each node pair (of the 9 central nodes network version of EON),

their length and the channel variables corresponding to these paths is presented in

Appendix D. It should be mentioned, that, as previously, the indices of the variables

representing the channels start from 17 (as the last link variable has index equal to 16).

♦ Constraint on the sum of channel variables sharing the same link : All the channel

variables which traverse the same link should sum up to the capacity of the link. A
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number of equalities, equal to the number of existing links, will be posed as a

consequence of this constraint [46].

For example the capacity of the link Berlin - Amsterdam (x7) will be affected by the

utilisation of the channels corresponding to the paths Paris - Brussels - Amsterdam -

Berlin (variables x37-x40) , London - Amsterdam - Berlin (x145-x148), London - Brussels -

Amsterdam - Berlin (x153-x156), ......., Prague - Berlin - Amsterdam - Luxembourg (x573-

x576). Hence :

x37 + x38 + x39 + x40 + x145 + x146 + x147 + x148 + x153 + x154 + x155 + x156 +
......... + x573 + x574 + x575 + x576 = x7;

4.3.4. Wavelength Constraints

Apart from the constraints set above, which have many similarities with the virtual

topology design problem, there are some other that should be added, in order to introduce

the limitations relative to the nature of an optical network, into the LP problem. Those

constraints will be :

♦ Constraint on the channel capacity : All the variables representing the channels

capacities should be kept below the limit of the 2.5 Gbps. This is translated into setting a

number of inequalities, equal to the total available number of channels in the network

[46]. Thus, for the 4 distinct wavelengths network case this constraint will give :

x17 <= 2.5;

x18 <= 2.5;

:
x592 <= 2.5;

♦ Constraint which aims to avoid any potential wavelength blocking : Wavelength

blocking occurs when two or more distinct paths, which have a specific link in common,

use the same wavelength (i.e. λ1) in order to forward the traffic of the node pairs they

correspond to. This case is depicted in figure 4.2. In this case, it should be required that

only one of the variables representing a single wavelength over a specific link can have a

non-negative value (and less than 2.5 Gbps). This, in terms of a restrictive LP model, is

translated into keeping the sum of these variables under the limit of 2.5 Gbps. The

number of inequalities posed as a consequence of this constraint is equal to the number
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of the existing links multiplied with the number of wavelengths available in the network

[46].
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Fig. 4.2 : Blocking case : The connections 0-1-2-3-4 and 3-4-5 use the same wavelength

λ1  (overlapping across the link 3-4)

The implementation of this constraint onto the link Berlin - Amsterdam (x7) will give :

λ0 : x37 + x145 + x153 + x209 + x277 + x281 + x285 + x289 + x341 + x345 + x457

+ x497 + x573 <= 2.5;

λ1 : x38 + x146 + x154 + x210 + x278 + x282 + x286 + x290 + x342 + x346 + x458

+ x498 + x574 <= 2.5;

λ2 : x39 + x147 + x155 + x211 + x279 + x283 + x287 + x291 + x343 + x347 + x459

+ x499 + x575 <= 2.5;

λ3 : x40 + x148 + x156 + x212 + x280 + x284 + x288 + x292 + x344 + x348 + x460

+ x500 + x576 <= 2.5;

4.4. Results

The LP problem, the formulation of which has been described in the previous paragraph,

has been constructed by the program presented in Appendix E, and given as input in

lp_solve_2.0. In particular, this program takes as input a number of wavelengths, in order

to formulate the LP problem with the right number of variables. This is the number of

channels available for each one of the links. However, it is not necessary that all of the

channels will be used. Thus, several numbers of wavelengths have been given as input.



Routing & Wavelength Assignment Problem Project Report

45

The smallest number that gave a LP problem with feasible solution was 32 wavelengths.

In that case, a total of 36 * 4 * 32 = 4608 channels were available in the network (the first

term of the product represents the number of node pairs, the second the number of paths

per node pair and the third the number of wavelengths per path).

Nevertheless, the output of lp_solve revealed that the wavelength blocking constraint

(see section 4.3.4) is not really satisfied, as it should have been expected. Namely,

although the sum of the variables representing a single wavelength over a specific link is

kept below the limit of the 2.5 Gbps, there are cases where two or more of these variables

have non-negative values. However, it seems that this cannot be avoided, as the linearity

constraint of LP would not allow to require only one of the variables to have non-

negative value. Hence, the formulation of an equivalent IP problem would give again an

ideal solution. An IP approach for this problem is presented in Chapter 5.

Concerning the lp_solve output, out of these maximum available number of 4608

channels only 348 have been used. Still, there is a number of channels (wavelengths)

used to carry information associated with two or more distinct node pairs. Hence, the

total number of wavelength variables with non-negative value is equal to 383. For

example, there are 40 paths active over the link Paris - Brussels, using only the 32

available wavelengths. The number of paths corresponding to each of the wavelengths is:

λ0:2, λ1:1, λ2:1, λ3:2, λ4:1, λ5:1, λ6:1, λ7:1, λ8:1, λ9:2, λ10:1, λ11:1, λ12:1, λ13:2, λ14:1,

λ15:1, λ16:1, λ17:1, λ18:2, λ19:1, λ20:1, λ21:2, λ22:1, λ23:2, λ24:1, λ25:1, λ26:1, λ27:2, λ28:1,

λ29:1, λ30:1, λ31:1

The way that these channels are distributed to each one of the established links, is

illustrated in fig. 4.3 (a). However, assuming that a combination of WDM/OTDM (details

for the combination of these two multiplexing techniques have been mentioned in section

2.4) is implemented in the network, then it is possible for two or more source-destination

(s-d) pairs to use the same channel (wavelength) in order to transmit data over the same

link (using time division technique). In that case, the limited number of 348 channels can

be used to satisfy the traffic requirements for the 383 s-d pairs. The distribution of

channel corresponding to that case is presented in fig.4.3 (b).
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Fig.4.3 : Distribution of channels in the 9 central nodes of EON (a) Conventional

approach (b) Use of WDM/OTDM

The total number of channels used in the network can be further decreased using a more

sophisticated technique described in Appendix D (section D.2). With this technique, a

more efficient use of the existing channels is achieved, so there is need for only 335

channels. This is a significant progress, since the total number of optical transmitters and

detectors needed in the network will be also reduced (it is known that in WDM networks

there is need for a laser - optical detector pair for each wavelength used in an optical

path). This will have a serious effect in network cost, which will be reduced as well.

4.5. Further Work - Non Wavelength Blocking Solution

As it has been already clear by the preceding discussion, the major problem faced so far

(imposed due to LP limitations) is that of wavelength blocking. Thus, a special technique

had to be found in order to achieve a solution :

Initially, the elements of traffic matrix have been rounded to the nearest multiple of 2.5.

Then, the variables representing the channel (wavelength) capacities have been also

included in the objective function (in addition to the variables representing links

capacities), assigning them different weighting factors (in order to force the LP solver to

fill the variables values up to 2.5).

(a)
(b)
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Specifically, by multiplying each variable of the objective function with different factor,

we force the LP solver to assign larger values to the variables that are multiplied with

smaller factors, in order to obtain the minimum possible final value for the objective

function. Of course, the value of the wavelength capacity variables won’t exceed the

limit of the 2.5 Gbps, as this will be prevented by the wavelength constraint (described in

section 4.3.4).

In case that the factors are not used, then, if for example the traffic between a source-

destination pair corresponds to the capacity of N channels (= N * 2.5 Gbps), this will not

necessarily use only N channels (it might be broken to more than N channels as that

would not have any impact to the value of the objective function).

Finally, lp_solve_2.0 has been run for various numbers of wavelengths, and the smallest

number that gives a solution where no wavelength blocking occurs is 40 (for each one of

the paths, there are 40 wavelengths available). Of course, out of the overall 36 x 4 x 40 =

5760 available channels in the network, only 347 of them are used (each one of 347

nonnegative variables have value equal to 2.5). The distribution of channels to each one

of the existing network links is presented in fig. 4.4 :

Fig.4.4 : Distribution of channels in the 9 central nodes of EON in the case that no

wavelength blocking occurs
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CHAPTER 5

DISCUSSION OF RESULTS, LIMITATIONS OF LP, IP APPROACH

5.1. Discussion of Results

It must be apparent by the preceding discussion (in Chapters 3 & 4) that Linear

Programming cannot be considered as an ideal approach for network design optimisation

problems.

In particular, as far as the first problem examined (“Virtual Topology Design” problem)

is concerned, this can be made clear by examining fig. 3.5, in which a complete mesh

topology is suggested as the “optimum” one for EON. However, this is not what common

sense would consider as optimum. This is because a fully connected network is unlikely

to be economically viable unless the majority of routes are adequately loaded, a condition

that is more difficult to achieve as network size increases [34].

The same would be the case in the second problem (“Routing & Wavelength

Assignment” problem), unless a special technique (using weighting factors) had been

applied. Specifically, LP could not, initially, give a wavelength assignment solution

where no wavelength blocking would occur.

Hence, in both cases, the results cannot be considered as satisfactory.

5.2. Limitations of LP

The key limitation of LP is that the objective function as well as the constraints included

in LP problems have to be in a strictly linear form. This means that there cannot be any

integral restrictions on some or all the variables : every real value that satisfies the

constraints set, is a valid one.

Thus, in the virtual topology design problem, there is no way of including links

esablishment cost in the objective function, as that cost would be assigned only to the

existing links in the final optimum topology. That, in turn, would require some decision

variables to be included in objective function, the final value of which (0 or 1) would

decide whether a specific link would exist or not. However, an approach of this kind

would break the linearity of the problem.
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Other factors that possibly contribute to the fact that no satisfactory solution can be

obtained, are the likely non-linear nature of link and node costs. Namely, nodes cost

probably increase more than linearly with respect to the number of links (or capacity)

incident, as the switching procedure becomes more complex, whereas links cost probably

goes up less than linearly (economy of scale) with capacity [46].

Similarly, in the routing & wavelength assignment case, LP proves to be incapable of

coping efficiently with wavelength blocking problem. This is because wavelengths

capacity variables cannot be required to be either zero or equal to an integral value

(maximum wavelength capacity).

Thus, it seems that Integer Programming would be the method that would provide really

optimum solutions, with a similar problem formulation, although it would need much

greater time period in order to complete the optimisation process. This is why IP is so

widely used in the literature to cope with complex network design optimisation problems

[16, 17, 18, 25, 26].

5.2. IP Approach to Virtual Topology Design Problem

As it has been already apparent, LP cannot give any satisfactory solution to the problem

as it would be impossible to make the LP solving program to cut a large number of links

and, thus, provide a “logical”, in sight, optimum topology. What would ensure a solution

would be some additional decision variables (their number would be equal to the number

of potential links), each of which would take a value equal to 1 only if the corresponding

link would exist and a value equal to 0 elsewhere.

The only optimisation method that could provide a way of applying this idea would be

IP and more specifically, zero-one IP. The formulation of an IP problem is similar to an

equivalent LP problem, apart from the fact that the linearity constraint is removed. The IP

formulation of the problem currently under consideration would have as objective

function the following :

min : CNet = [( ) * ]2
0

+ +
=
∑ L x Ci i
i

NumOf Links

* di (5.2-1)

where di = 0 or 1,    i = 0, ... , Num Of Links, are the decision variables.

It is clear that the IP solving program would take into consideration the cost of link

establishment C, apart from its length and capacity, and that would force it to use the
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minimum possible number of links that would still satisfy the constraints. It should be

noticed that the LP problem constraints remain identical in the IP approach. However, the

major disadvantage of IP is that it is much more time consuming comparing not only

with LP, but with all the other formal methods of optimisation (Heuristics, Genetic

Algorithms, Simulating Annealing, etc.). Thus, apart from the fact that use of IP was not

a part of this project, it would be almost impossible, considering the time limited period

available for the project work to implement IP techniques, in order to have satisfactory

results.

5.3. IP Approach to Backup Paths Problem

IP could have been applied in case that backup paths were considered in virtual topology

design, as well. In that case, yi’s and zi’s would be multiplied with some decision

variables, dyi and dzi respectively, which would have as only valid values 0 or 1 and

requiring :
dyi + dzi = 1, for i = 0,1, ... , Num of Paths

That way, the primary and the backup paths would have been assigned distinct routes.

Then, the cost function given in (5.2-1) would have been applied, forcing the LP solver

to limit the number of network links used.

5.4. IP Approach to the Routing & Wavelength Assignment Problem

It is clear that, as in the virtual topology design case, the LP method is incapable of

coping  with all this problem requirements, as well. The initial results cannot be

considered as satisfactory, as the constraint against wavelength blocking is not really

satisfied, as mentioned in previous sections. A possible constraint that would force the

variables representing the wavelengths capacity to take only values equal to 0 or 2.5

would provide a solution but it would, simultaneously, break the linearity of the

problem. Thus, integer programming would be the only method that would provide a

decent solution.

The first step, in the procedure of formulating a zero-one IP problem, would be to round

all the elements of the traffic matrix to the nearest multiple of 2.5, so that the traffic

between every node pair would correspond to an integer number of 2.5 Gbps channels.

Then, the new traffic matrix contents would be divided by 2.5 in order to obtain a

Channel Matrix.
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The IP problem formulation would be then, identical to that of the equivalent LP

problem, with the only difference that instead of using the traffic matrix contents for

putting upper or lower limits in the various constraints, now the channel matrix would be

used. Likewise, the last two constraints (wavelength constraints) would have an upper

limit equal to 1 (instead of 2.5). Finally, there would be an additional constraint,

requiring the variables representing the channels capacities to be equal to 0 or 1 :
xi = 0 or 1,   i = 17, ... , 592

Of course, when the optimisation procedure would finish, all the values corresponding to

link variables would have to be multiplied with 2.5 in order to obtain the capacity of the

links in the network with the optimal wavelength assignment.

An alternative IP approach that would provide equally satisfactory results, would be to

include the variables representing the channel capacities into the objective function; then

multiply these variables with a decision variable (taking values equal to 0 or 1), divide

the channel variables into groups that correspond to single wavelengths over a common

link, and, finally, require the sum of the decision variables associated with each one of

these groups to be equal to unity. That way only one of those decision variables would be

equal to 1 and the rest would be equal to 0 meaning that only one of the paths sharing the

common link would be allowed to use this specific wavelength, in order to transfer

information.
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CHAPTER 6

CONCLUSIONS - DIRECTIONS FOR FUTURE WORK

A brief survey of network design and optimisation methods applied to it has been

presented in this report. A major part of the literature survey focused on illustrating the

applications of LP/IP in network design.

Concerning the experimental part of the project, LP has been applied in two cases of

network design : Virtual Topology and Wavelength Assignment. The two problems

were modelled for several different cases taking into consideration numerous factors,

parameters and constraints. The capabilities as well as the limitations of the

implementation of LP in network design problems have been investigated in depth.

Results have been taken for both problems.

Although the results obtained are not what someone would consider as "optimum"

(especially for the virtual topology design problem), this is due to the weakness of this

method to cope efficiently with these kind of problems. Nevertheless, some techniques

were applied in order to improve the solution given. Indeed, it has been finally

managed to obtain a feasible optimum solution for the routing & wavelength

assignment problem by a using a certain technique.

These are described in detail in Chapters 3 & 4, where apart from the presentation of

the results, the reasons of LP failure to give an optimum "by sight" solution have been

considered and IP is suggested as more successful and efficient method to deal with

this kind of optimisation problems. There is also a clear indication of how IP can be

used in order to give a satisfactory solution, as the equivalent IP problems have been

formulated.

By what have been stated so far, it is apparent that IP could be an ideal alternative to

LP method approach that would provide, in any case, optimal solutions for network

design problems. However, because of the significant amount of time that IP problems

require to be solved, they are not proposed to be implemented for problems of large

scale (i.e. for large number of nodes or large number of hops used by the routing
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algorithm, in the case examined), especially if the time limitations of an MSc project

are taken into account.

On the other hand, IP method can serve us a comparison with other optimisation

methods, e.g. Heuristics or Genetic Algorithms, which give near optimal solutions in a

relatively short amount of time. Specifically, IP can provide upper and lower bounds to

the problem solution and, thus, be a measure of the other methods efficiency and

reliability.

Apart from IP, it would be interesting to apply some other methods of network design

optimisation, such as Heuristics or Simulating Annealing, to deal with the same two

problems, as this work has been already carried out by using GAs [3,5].

Moreover, some other aspects of network design, such as maximisation of the flow on

the links or minimisation of average time delay could be investigated either with LP or

IP approach.
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APPENDIX A

LINEAR PROGRAMMING / SIMPLEX METHOD

A.1. Basic Concepts of Linear Programming

The subject of linear programming, sometimes called linear optimisation, concerns

itself with the following problem : For N independent variables x1, ... , xN,  maximise

the function :

z = a01x1 + a02x2 + ... + a0NxN (A.1-1)

subject to the primary constraints :

x1 ≥ 0, x2 ≥ 0, ... , xN ≥ 0 (A.1-2)

and simultaneously subject to M = m1 + m2 + m3 additional constraints, m1 of them of

the form :

ai1x1 + ai2x2 + ... + aiNxN ≤ bi  (bi ≥ 0),   i = 1, ... , m1  (A.1-3)

m2 of the form :

aj1x1 + aj2x2 + ... + ajNxN ≥ bj ≥ 0,     j = m1 + 1, ... , m1  + m2  (A.1-4)

and m3 of the form :

ak1x1 + ak2x2 + ... + akNxN = bk ≥ 0,
k = m1 + m2 + 1, ... , m1  + m2 + m3 (A.1-5)

The various aij’s can have either sign, or be zero. The fact that the b’s must all be

nonnegative (as indicated by the final inequality in the above three equations) is a

matter of convention only, since you can multiply any contrary inequality by -1. There

is no particular significance in the number of constraints M being less than, equal to, or

greater than the number of unknowns N.

A set of values x1, ... , xN that satisfies the constraints (A.1-2) - (A.1-5) is called a

feasible vector. That function that is tried to maximised is the objective function. The

feasible vector that maximises the objective function is the optimal feasible vector. An

optimal feasible vector can fail to exist for two distinct reasons : (i) there are no

feasible vectors, i.e., the given constraints are incompatible, or (ii) there is no

maximum, i.e., there is a direction in N space where one or more of the variables can
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be taken to infinity while still satisfying the constraints, giving an unbounded value for

the objective function.

The great importance of linear programming can be supported by the following : (i)

“nonnegativity” is the usual constraint on any variable xi that represents the tangible

amount of some physical commodity, like guns, butter, dollars, units of vitamin E,

food calories, kilowatt hours, mass, etc. Hence, equation (A.1-2). (ii) one is often

interested in additive (linear) limitations or bounds posed by man or nature : minimum

nutritional requirement, maximum affordable cost, maximum or available labor, or

capital, minimum tolerable level of voter approval, etc. Hence, equations (A.1-3) -

(A.1-5).  (iii) the function that wants one to optimise may be linear, or else may at least

be approximated by a linear function - since that is the problem that linear

programming can solve. Hence, equation (A.1-1).

The basic concepts of linear optimisation are depicted in fig. (A.1-1), which presents

the case of only two independent variables, x1 and x2. The linear function z, to be

maximised, is represented by its contour lines. Primary constraint require x1 and x2 to

be positive. Additional constraint may restrict the solution to regions (inequality

constraints) or to surfaces (equality constraints). Feasible vectors satisfy all constraints.

Feasible basic vectors also lie on the boundary of the allowed region.

Here is a specific example of a problem in linear programming, which has N = 4, m1 =

2, m2 = m3 = 1, hence M = 4 :

Maximise : z = x1 + x2 + 3x3 - 
1

2
x4  (A.1-6)

with the x’s nonnegative and also with :

x1 + 2x3 ≤ 740
2x2 - 7x4 ≤ 0

x2 - x3 +2x4 ≥ 1

2
(A.1-7)

x1 + x2 + x3 +x4 = 9

The answer turns out to be (to 2 decimals) x1 = 0, x2 = 3.33, x3 = 4.73, x4 = 0.95 [36,

37, 40].
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Fig. A.1.1 : Basic concepts of linear programming

A.2. Fundamental Theorem of Linear Optimisation

Assuming that we start with a full N-dimensional space of candidate vectors, then we

carve away the regions that are eliminated in turn by each posed constraint. Since the

constraints are linear, every boundary introduced by this process is a plane, or rather

hyperplane. Equality constraints of the form (A.1-5) force the feasible region into

hyperplanes of smaller dimension, while inequalities simply divide the then-feasible

region into allowed and nonallowed pieces.

When all the constraints are posed, either we are left with some feasible region or else

there are no feasible vectors. Since the feasible region is bounded by hyperplanes, it is

geometrically a kind of convex polyhedron or simplex. The question arising is

whether, if there is a feasible region, the optimal feasible vector can be somewhere in

its interior, away from the boundaries. The answer is negative, as the objective

function is linear. This means that it always has a nonzero vector gradient, which, in
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turn, means that we could always increase the objective function by running up the

gradient until we hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.

Therefore, we can now run up the gradient projected into the boundary wall until we

reach an edge of that wall. We can then run up that edge, and so on, down through

whatever number of dimensions, until we finally arrive at a point, a vertex of the

original simplex. Since this point has all N of its co-ordinated defined, it must be the

solution of N simultaneous equalities drawn from the original set of equalities and

inequalities (A.1-2) - (A.1-5).

Points that are feasible vectors and that satisfy N of the original constraints as

equalities, are termed feasible basic vectors. If N > M, then a feasible basic vector has

at least N - M of its components equal to zero, since at least that many of the

constraints (A.1-2) will be needed to make up the total of N. Put the other way, at most

M components of the feasible basic vector are nonzero. In the example (A.1-6) - (A.1-

7), it can be checked that the solution as given satisfies as equalities the last three

constraints of (A.1-7) and the constraint x1 ≥ 0, for the required total of 4.

If the two preceding paragraphs are put together we obtain the Fundamental Theorem

of Linear Optimisation : If an optimal vector exists, then there is a feasible basic vector

that is optimal.

The importance of the fundamental theorem is that it reduces the optimisation problem

to a “combinatorial” problem, that of determining which N constraints (out of the M +

N constraints in A.1-2 - A.1-5) should be satisfied by the optimal feasible vector. We

have only to keep trying different combinations, and computing the objective function

for each trial, until the best is found.

Doing this blindly would take halfway to forever. The simplex method, first published

by Dantzig in 1948, is a way of organising the procedure so that (i) a series of

combinations is tried for which the objective function increases at each step, and (ii)

the optimal feasible vector is reached after a number of iterations that is almost always

no larger than of order M or N, whichever is larger. An interesting mathematical
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sidelight is that this second property, although known empirically ever since the

simplex method was devised, was not proved to be true until the 1982 work of Stephen

Smale [36, 42].

A.3. Simplex Method

A.3.1. Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no constraints in

the form (A.1-3) or (A.1-4), but rather only equality constraints of the form (A.1-5)

and nonnegativity constraints of the form (A.1-2).

For our purposes, it will be useful to consider an even more restricted set of cases, with

this additional property : Each equality constraint of the form (A.1-5) must have at

least one variable that has a positive coefficient and that appears uniquely in that one

constraint only. We can then choose one such variable in each constraint equation, and

solve that constraint equation for it. The variables thus chosen are called left-hand

variables, or basic variables, and there are exactly M (= m3) of them. The remaining N

- M variables are called right-hand variables or nonbasic variables. Obviously, the

restricted normal form can be achieved only in the case M ≤ N, so that is the case we

will consider.

It may be thought that the restricted normal form is so specialised that it is unlikely to

include the linear programming that one wishes to solve. However, this is not true. It

will be shown that any linear programming problem can be transformed into restricted

normal form.

Here is an example of a problem in restricted normal form :

Maximise : z = 2x2 - 4x3  (A.3-1)

with x1, x2, x3 and x4 all nonnegative and also with :

x1 = 2 - 6x2 + x3

(A.3-2)
x4 = 8 + 3x2 - 4x3

This example has N = 4, M = 2; the left-hand variables are x1 and x4; the right-hand

variables are x2 and x3. The objective function (A.1-1) is written so as to depend only
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on right-hand variables; it should be noted, however, that this is not an actual

restriction on objective functions in restricted normal form, since any left-hand

variables appearing in the objective function could be eliminated algebraically by use

of (A.3-2) or its analogs.

For any problem in restricted normal form, we can instantly read off a feasible basic

vector (although not necessarily the optimal feasible basic vector). Simply set all right-

hand variables equal to zero, and equation (A.3-2) then gives the values of the left-

hand variables for which the constraints are satisfied. The idea of the simplex method

is to proceed by a series of exchanges. In each exchange, a right-hand variable and a

left-hand variable change places. At each stage we maintain a problem in restricted

normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations (A.3-1) and

(A.3-2) in a so-called tableaux, as follows :

x2 x3

z 0 2 -4

x1 2 -6 1

x4 8 3 -4

The first step in the simplex method is to examine the top row of the tableaux, which

will be called the “z-row”. The columns labelled by right-hand variables will be called

“right- columns”. In case that each right-hand variable is increased from its present

value of zero, while all the other right-hand variables are left to zero, then the objective

function will be increased or decreased, depending on the sign on the entry in the z-

row. Since we want to increase the objective function, only right columns, having

positive z-row entries, are of interest. In (A.3-3), there is only one such column, whose

z-row entry is 2.

The second step is to examine the column entries below each z-row entry that was

selected by step one. The question is how much can the right-hand variable be

increased, before one of the left-hand variables is driven negative, which is not

allowed. If the tableaux element in the intersection of the right-hand column and the

  (A.3-3)
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left-hand variable row is positive, then it posses no restriction : the corresponding left-

hand variable will just be driven more and more positive. If all the entries in any right-

hand column are positive, then there is no bound on the objective function and we are

done with the problem.

If one or more entries below a positive z-row entry are negative, then we have to figure

out which such entry first limits the increase of that column right-hand variable.

Evidently, the limiting increase is given by dividing the element in the right-hand

column (which is called the pivot element) into the element in the “constant column”

(leftmost column) of the pivot element row. A value that is small in magnitude is not

restrictive. The increase in the objective function for this choice of pivot element is

then that value multiplied by the z-row entry of that column. This procedure is

repeated on all possible right-hand columns to find the pivot element with the largest

such increase. That completes our “choice of a pivot element”.

In the above example, the only positive z-row entry is 2. There is only one negative

entry below it, namely -6, so this is the pivot element. Its constant column entry is 2.

This pivot will therefore allow x2 to be increased by 2 ÷ |6|, which results in an increase

of the objective function by an amount (2 x 2) ÷ |6|.

The third step is to do the increase of the selected right-hand variable, thus making it

left-hand variable; and simultaneously to modify the left-hand variables, reducing the

pivot-row element to zero and thus making it right-hand variable. For our above

example, we would begin by solving the pivot row equation for the new left-hand

variable x2 in favour of the old one x1, namely :

x1 = 2 - 6x2 + x3   →  x2 = 
1

3
- 

1

6
x1 + 

1

6
x3  (A.3-4)

We then substitute this into the old z-row,

z = 2x2 - 4x3 = 2 [
1

3
- 

1

6
x1 + 

1

6
x3] - 4x3 = 

2

3
 - 

1

3
x1 - 

11

3
x3  (A.3-5)

and into all other left-variable rows, in this case only x4 ,

x4 = 8 + 3 [
1

3
- 

1

6
x1 + 

1

6
x3] - 4x3 = 9 - 

1

2
x1 - 

7

2
x3  (A.3-6)

Equations (A.3-4) - (A.3-6) form the new tableaux :
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x1 x3

z 2

3
- 

1

3
- 

11

3

x2 1

3
- 

1

6

1

6

x4 9 - 
1

2
- 

7

2

The fourth step is to go back and repeat the first step, looking for another possible

increase of the objective function. We do this as many times as possible, that is, until

all the right-hand entries in the z-row are negative, signalling that no further is

possible. In the present example, this already occurs in (A.3-7), so the procedure is

finished. The answer can now be read from the constant column of the final tableaux.

In (A.3-7) it can be seen that the objective function is maximised to a value of 
2

3
 for

the solution vector x2 = 
1

3
, x4 = 9, x1 = x3 = 0.

Thus, the procedure that led from (A.3-3) to (A.3-7) could be summarised in the

following :

• Locate the pivot element and save it

• Save the whole pivot column

• Replace each row, except the pivot row, by that linear combination of itself and the

pivot row which makes its pivot-column entry zero.

• Divide the pivot row by the negative of the pivot.

• Replace the pivot element by the reciprocal of its saved value.

• Replace the rest of the pivot column by its saved values divided by the saved pivot

element [36,39].

A.3.2. Writing the General Problem in Restricted Normal Form

Let us consider again the linear programming problem, expressed (A.1-6) - (A.1-7).

The first step is to get rid of the inequalities, for example, the first three constraints in

(A.1-7). This can be done by adding to the problem so-called slack variables which,

  (A.3-7)



Appendix A : Linear Programming / Simplex Method Project Report

68

when their nonnegativity is required, the inequalities are converted to equalities. The

slack variables will be denoted as yi . There will be m1 + m2 of them. Once they are

introduced, they are treated on an equal way with the other variables xi ; then, at the

very end, they are just ignored.

For example, introducing slack variables leaves (A.1-6) unchanged, but turns (A.1.7)

into :

x1 + 2x3 + y1  = 740
2x2 - 7x4  + y2 = 0

x2 - x3 +2x4 - y3  = 
1

2
(A.3-8)

x1 + x2 + x3 +x4 = 9

The sign of the coefficient of the slack variable is determined by which sense of

inequality it is replacing.

The second step is to insure that there is a set of M left-hand vectors, so that we can

setup a starting tableaux in restricted normal form (in other words, a “feasible basic

starting vector” is needed). Thus, some new variables have to be invented. There are M

of these, and they are called artificial variables; they are denoted by zi. There is only

one artificial variable that will be put into each constraint equation on the following

model for the example (A.3-8) :

z1 = 740 - x1 - 2x3 - y1

z2 = -2x2 + 7x4  - y2

z3 = 
1

2
 - x2 + x3 -2x4 + y3 (A.3-9)

z4 = 9 - x1 - x2 - x3 - x4

Now, the example is in restricted normal form.

However, this is not the same problem as (A.3-8) or (A.1-7), unless all the zi’s are

zero. Thus, the problem must be solved in two phases. First phase : the objective

function is replaced by a so-called auxiliary objective function :

z’ ≡ -z1 -z2 -z3 -z4 = -(749
1

2
 -2x1 -4x2 -2x3 + 4x4 - y1 - y2 + y3) (A.4-10)

(where the last equality follows from using (A.3-9). We now perform the simplex

method on the auxiliary objective function (A.4-10) with the constraints (A.3-9).
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Obviously, the auxiliary objective function will be maximised for nonnegativity zi’s if

all the zi’s are zero. We therefore expect the simplex method in this first phase to

produce a set of left-hand variables drawn from the xi’s and yi’s only, with all the zi’s

being right-hand variables. Then, we cross out the zi’s, leaving a problem involving

only xi’s and yi’s in restricted normal form. In other words, the first phase produces an

initial feasible basic vector. Second phase : the problem produced by the first phase is

solved, using the original objective function, not the auxiliary.

In case that the first phase doesn’t produce zero values for all the zi’s, then there is no

initial feasible basic vector, i.e., the constraints given are inconsistent among

themselves.

Here is how to translate into tableaux format the information needed for both the first

and second phases of the overall method. As before, the underlying problem to be

solved is as posed in equations (A.1-6) and (A.1-7).

x1 x2 x3 x4 y1 y2 y3

z 0 1 1 3 - 
1

2
0 0 0

z1 740 -1 0 -2 0 -1 0 0

z2 0 0 -2 0 7 0 -1 0

z3 1

2
0 -1 1 -2 0 0 1

z4 9 -1 -1 -1 -1 0 0 0

z’ -749
1

2
2 4 2 -4 1 1 -1

(A.3-11)

This is as daunting as it may, at first sight, appear. The table entries inside the box of

doubled lines are no more than the coefficients of the original problem (A.1-6) - (A.1-

7) organised into a tabular form. In fact, these entries, along with the values of N, M,

m1, m2 and m3, are the only input that is needed by the simplex method routine. The

columns under the slack variables yi simply record whether each of the M constraints

is of the form  ≤ , ≥ , or =; this is redundant information with the values m1, m2, m3, as

long as we are sure to enter the rows of the tableaux in the correct respective order.
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The coefficients of the auxiliary objective function (bottom row) are just the negatives

of the columns sums of the rows above, so these are easily calculated automatically.

The output from a simplex routine will be : (i) a flag telling whether a finite solution,

no solution, or an unbounded solution was found, and (ii) an updated tableaux. The

output tableaux that derives from (A.3-11) is :

x1 y2 y3 . . . . .

z 17.03 -0.95 -0.5 -1.05 . . . . .

x2 3.33 -0.35 -0.15 0.35 . . . . .

x3 4.73 -0.55 0.05 -0.45 . . . . .

x4 0.95 -0.1 0.1 0.1 . . . . .

y1 730.55 0.1 -0.1 0.9 . . . . .

By counting the xi’s and yi’s it will be seen that there are M + 1 rows (including the z-

row) in both the input and the output tableaux, but only N + 1 - m3 columns of the

output tableau (including the constant column) contain any useful information, the

other columns belonging to now-discarded  artificial variables. In the output, the first

numerical column contains the solution vector, along with the maximum value of the

objective function. Where a slack variable (yi) appears on the left, the corresponding

value is the amount by which its inequality is safely satisfied. Variables that are not

left-hand variables, in the output tableau have zero values. Slack variables with zero

values represent constraints that are satisfied as equalities” [36].

(A.3-12)
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APPENDIX B

k-HOP ROUTING - EVALUATION OF THE NUMBER OF PATHS

B.1. Paths

Paths are an essential element of a network. By the term “path” is meant a series of

links that connect a pair of nodes. A path may be consisted of more than one links. In

case that only one link is used (the pair of nodes is directly connected and the traffic

between them is routed via this link) we have a “direct path” or a “one-hop path”.

Similarly, we may have a two or three-hop path in case that the traffic between this

pair of nodes is routed through one or two, respectively, intermediates nodes.

It is clear that if only direct paths are used, there is a unique route between the source

and the destination node (this is the link that connects them). On the other hand, in

case that a routing algorithm of  two, three or more hops is used, there are more than

one ways between them. Then, it is not necessary that the traffic between the nodes

should follow only one specific route (the traffic may be split between two or more

routes that may be disjoint or may be not).

As in the case of links, there is a need to introduce in the LP problem a new group of

variables that will represent those paths : yi, i = 0,1,2, ... Number of Paths. The

development of a methodology of evaluating the number of paths in the network,

depending on the number of hops used, can be done by a careful examination of the

fig. 3.1 five-nodes network.

B.2.  Direct Paths

It is obvious that if only direct paths are used, the total number of paths in the network

will be equal to the number of links, that is :

Ntot = NDir = 
N N( )− 1

2
,  (B.2-1)

where N is the number of nodes.
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It should be stressed that all the calculations are valid only for complete mesh

networks (full interconnection between nodes).

B.3. 2-Hop Paths

In the 2-hop routing case, for every pair of nodes, apart from the direct link, N - 2

paths can be used, as N - 2 nodes (all the network nodes, apart from the source and the

destination) can be used as intermediates. Therefore, the number of 2-hop paths will be

:

N2-Hop = NDir * (N - 2) = 
N N( )− 1

2
 (N - 2) (B.3-1)

and the total number of available paths in the network :

Ntot = NDir + N2-Hop (B.3-2)

Thus, in the example network of fig. 3.1, the 2-hop paths between Nodes 0 and 1 will

be :

− Node 0 - Node 2 - Node 1

− Node 0 - Node 3 - Node 1

− Node 0 - Node 4 - Node 1

B.4.  3-Hop Paths

Likewise, in the 3-hop routing case, for every 2-hop path between a pair of nodes,   N -

3 paths can be used, as N - 3 nodes (all the network nodes, apart from the source, the

destination and the first intermediate node) can be used as second intermediates.

Therefore, the number of 3-hop paths will be :

N3-Hop = N2-Hop * (N - 3) = 
N N( )− 1

2
 (N - 2) (N - 3) (B.4-1)

and the total number of available paths in the network :

Ntot = NDir + N2-Hop + N3-Hop (B.4-2)

Thus, in the example network of fig. 3.1, the 3-hop paths between Nodes 0 and 1 will

be :
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− Node 0 - Node 2 - Node 3 - Node 1

− Node 0 - Node 2 - Node 4 - Node 1

− Node 0 - Node 3 - Node 2 - Node 1

− Node 0 - Node 3 - Node 4 - Node 1

− Node 0 - Node 4 - Node 2 - Node 1

− Node 0 - Node 4 - Node 3 - Node 1

Now, it is clear, that in the general case of k-hop routing, the number of k-hop paths

will be :

Nk-Hop = N (N - 1) (N - 2) ... (N - k) / 2 (B.4-3)

whereas the total available number of paths in the network :

Ntot = N i Hop
i

k

−
=
∑

1
(B.4-4)
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APPENDIX C

VIRTUAL TOPOLOGY DESIGN : RESULTS

C.1. The Objective Function and the set of Constraints for the 5-nodes Network
of fig.3.1

The list following includes, apart from the objective function, all the (link & path)

constraints set for the formulation of an LP problem corresponding to the 5-nodes

network of fig. 3.1 (section 3.2.1) :

min: 916.4 x0 + 873.241 x1 + 1143.96 x2 + 522.726 x3 + 784.307 x4 + 318.057 x5 +

805.355 x6 + 1096.4 x7 + 368.399 x8 + 1112.68 x9;

x0 + x1 + x2 + x3 >= 22;

x0 + x4 + x5 + x6 >= 19.2;

x1 + x4 + x7 + x8 >= 23.7;

x2 + x5 + x7 + x9 >= 23.5;

x3 + x6 + x8 + x9 >= 16;

x1 + x2 + x3 + x4 + x5 + x6 >= 31.2;

x0 + x2 + x3 + x4 + x7 + x8 >= 33.7;

x0 + x1 + x3 + x5 + x7 + x9 >= 30.5;

x0 + x1 + x2 + x6 + x8 + x9 >= 31;

x0 + x1 + x5 + x6 + x7 + x8 >= 28.5;

x0 + x2 + x4 + x6 + x7 + x9 >= 38.7;

x0 + x3 + x4 + x5 + x8 + x9 >= 25.2;

x1 + x2 + x4 + x5 + x8 + x9 >= 30.2;

x1 + x3 + x4 + x6 + x7 + x9 >= 35.7;

x2 + x3 + x5 + x6 + x7 + x8 >= 28.5;

x10 + x11 + x12 + x13 = 5;

x14 + x15 + x16 + x17 = 6;

x18 + x19 + x20 + x21 = 7.5;

x22 + x23 + x24 + x25 = 3.5;

x26 + x27 + x28 + x29 = 7.2;
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x30 + x31 + x32 + x33 = 2;
x34 + x35 + x36 + x37 = 5;

x38 + x39 + x40 + x41 = 8.5;

x42 + x43 + x44 + x45 = 2;

x46 + x47 + x48 + x49 = 5.5;

x10 + x15 + x19 + x23 + x27 + x31 + x35 = x0;

x11 + x14 + x20 + x24 + x27 + x39 + x43 = x1;

x12 + x16 + x18 + x25 + x31 + x39 + x47 = x2;

x13 + x17 + x21 + x22 + x35 + x43 + x47 = x3;

x11 + x15 + x26 + x32 + x36 + x40 + x44 = x4;

x12 + x19 + x28 + x30 + x37 + x40 + x48 = x5;

x13 + x23 + x29 + x33 + x34 + x44 + x48 = x6;

x16 + x20 + x28 + x32 + x38 + x45 + x49 = x7;

x17 + x24 + x29 + x36 + x41 + x42 + x49 = x8;

x21 + x25 + x33 + x37 + x41 + x45 + x46 = x9;

C.2. Traffic Matrix and the Final Optimum Capacity found for EON

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 0.59 0.25 1.53 23.3 0.34 0.08 1.57 0.08 1.44 0.07 0.08 0.51 0.59 4.32 1.78 1.1 1.61 0.34 1.57 Vienna
1 0.51 0 0.59 17.2 9.32 0.68 0.34 1.82 2.54 14.3 0.34 0.68 1.95 0.93 1.86 6.44 0.29 0.17 0.17 1.82 Brussels
2 0.34 0.68 0 1.93 5.93 0.17 0.17 0.43 0.17 1.27 3.56 0.17 0.68 5.17 0.76 3.73 0.07 0.07 0.07 0.43 Copenhagen
3 1.36 17.2 1.61 0 23.3 1.27 0.93 8.6 1.96 6.52 0.68 2.04 12.3 1.78 16.7 22.5 0.74 0.42 1.37 8.6 Paris
4 26.1 9.32 5.59 26.3 0 7.12 1.1 11.6 2.29 19.7 1.69 2.54 9.79 14.2 24.9 25.4 2.66 4.74 5.63 11.6 Berlin
5 0.42 0.59 0.17 1.27 4.66 0 0.08 0.93 0.08 0.59 0.08 0 0.17 0.34 0.68 2.8 0.32 0.08 0 0.93 Athens
6 0 0.25 0.17 0.76 0 0 0 0.13 0 0.42 0 0 0.93 0.08 0.17 0.76 0.02 0 0 0.13 Dublin
7 1.53 1.7 0.34 8.01 8.81 0.81 0.17 0 0.21 1.23 0.17 0.3 2.04 0.47 5.76 3.82 0.71 0.38 0.26 0 Rome
8 0.17 3.22 0.25 2.71 2.8 0.08 0.08 0.34 0 0.51 0.08 0.85 0.25 0.17 0.42 0.85 0.06 0 0 0.34 Luxembourg
9 1.27 14.6 1.27 6.52 20.1 0.59 0.59 1.4 0.51 0 0.85 0.59 2.2 1.27 2.46 11.5 0.34 0.34 0.25 1.4 Amsterdam

10 0.17 0.34 3.81 0.85 1.95 0.08 0.08 0.21 0.08 0.08 0 0.08 0.51 7.63 0.42 3.39 0.08 0.08 0.08 0.21 Oslo
11 0.08 0.51 0.17 3.13 1.44 0 0.08 0.26 0.17 0.51 0.08 0 1.95 0.25 0.93 1.86 0.08 0 0 0.26 Lisbon
12 0.51 2.12 0.68 9.6 9.79 0.25 0.59 2.16 0.41 2.37 0.42 2.2 0 1.27 2.54 4.54 0.35 0.08 0.65 2.16 Madrid
13 0.68 0.93 6.69 3.06 14.2 0.42 0.08 0.6 0.23 1.02 8.05 0.33 1.27 0 1.27 2.31 0.26 0.34 1.2 0.6 Stockholm
14 5.08 2.2 0.76 20.4 28.8 0.76 0.25 9.15 0.51 2.97 0.42 4.66 4.32 1.27 0 6.69 0.93 0.85 0.34 9.15 Zurich
15 1.19 5.85 3.39 19.1 19.1 2.29 0.76 4.58 1.05 9.74 2.8 1.11 4.54 2.31 6.27 0 0.44 0.51 0.93 4.58 London
16 0.93 0.08 0 0.25 3.22 0 0 0.47 0 0.17 0 0 0 0.17 0.51 0.25 0 0.17 0.08 0.47 Zagreb
17 1.19 0.17 0.08 0.34 2.63 0.08 0 0.26 0 0.25 0 0 0.08 0.17 0.42 0.34 0.07 0 0.42 0.26 Prague
18 0.68 0.93 6.69 1.37 5.63 0.42 0.08 0.6 0.1 1.02 8.05 0.17 0.65 1.2 1.27 0.93 0.17 0.34 0 0.6 Moscow
19 1.53 1.7 0.34 8.01 8.81 0.81 0.17 0 0.21 1.23 0.17 0.3 2.04 0.47 5.76 3.82 0.71 0.38 0.26 0 Milan

Table C.1 : Traffic Matrix of European Optical Network
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Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 - 1.1 0.59 2.89 49.4 0.76 0.08 3.1 0.25 2.71 0.34 0.16 1.02 1.27 9.4 2.97 2.03 2.8 1.02 3.1

1 - - 1.27 34.4 18.64 1.27 0.59 3.52 5.76 28.89 0.68 1.19 4.07 1.86 4.06 12.29 0.37 0.34 1.1 3.52

2 - - - 3.14 11.52 0.34 0.34 0.77 0.42 2.54 7.37 0.34 1.36 11.86 1.52 7.12 0.08 0.16 6.77 0.77

3 - - - - 49.57 2.54 1.69 16.61 4.67 13.04 1.53 5.17 21.89 4.84 37.11 41.51 0.99 0.76 2.74 16.61

4 - - - - - 11.78 1.1 20.42 5.09 39.91 3.64 3.98 18.58 28.44 53.63 44.48 5.88 7.37 11.26 20.42

5 - - - - - - 0.08 1.74 0.16 1.18 0.16 0 0.42 0.76 1.44 5.09 0.32 0.16 0.42 1.74

6 - - - - - - - 0.3 0.08 1.01 0.08 0.08 1.52 0.16 0.42 1.52 0.02 0 0.08 0.3

7 - - - - - - - - 0.55 2.63 0.38 0.56 4.2 1.07 14.91 8.4 1.18 0.64 0.86 0

8 - - - - - - - - - 1.02 0.16 1.02 0.66 0.4 0.93 1.9 0.06 0 0.1 0.55

9 - - - - - - - - - - 0.93 1.1 4.57 2.29 5.43 21.26 0.51 0.59 1.27 2.63

10 - - - - - - - - - - - 0.16 0.93 15.68 0.84 6.19 0.08 0.08 8.13 0.38

11 - - - - - - - - - - - - 4.15 0.58 5.59 2.97 0.08 0 0.17 0.56

12 - - - - - - - - - - - - - 2.54 6.86 9.08 0.35 0.16 1.3 4.2

13 - - - - - - - - - - - - - - 2.54 4.62 0.43 0.51 2.4 1.07

14 - - - - - - - - - - - - - - - 12.96 1.44 1.27 1.61 14.91

15 - - - - - - - - - - - - - - - - 0.69 0.85 1.86 8.4

16 - - - - - - - - - - - - - - - - - 0.24 0.25 1.18

17 - - - - - - - - - - - - - - - - - - 0.76 0.64

18 - - - - - - - - - - - - - - - - - - - 0.86

19 - - - - - - - - - - - - - - - - - - - -

Table C.2 : “Optimal” capacities of links for the EON network

C.3. List of the 2-Hop Paths Arising When Limitations on the Traffic and the
Length of Links are set

The following list includes, apart from the 2-hop paths, the index of the capacity

variable and the traffic caried, corresponding to each path :

x299 : Vienna-London-Dublin - Traffic : 0.08
x398 : Vienna-Milan-Lisbon - Traffic : 0.16
x412 : Vienna-Zurich-Madrid - Traffic : 1.02
x621 : Brussels-Zurich-Athens - Traffic : 1.27
x725 : Brussels-Paris-Lisbon - Traffic : 1.19
x859 : Brussels-Berlin-Moscow - Traffic : 1.1
x946 : Copenhagen-Zagreb-Athens - Traffic : 0.34
x1048 : Copenhagen-Paris-Lisbon - Traffic : 0.34
x1066 : Copenhagen-Brussels-Madrid - Traffic : 1.36
x1253 : Paris-Milan-Athens - Traffic : 2.54
x1390 : Paris-Copenhagen-Stockholm - Traffic : 4.84
x1486 : Paris-Berlin-Moscow - Traffic : 2.74
x1535 : Berlin-Zagreb-Athens - Traffic : 11.78
x1642 : Berlin-Luxembourg-Lisbon - Traffic : 3.98
x1661 : Berlin-Luxembourg-Madrid - Traffic : 19.58
x1818 : Athens-Zurich-Dublin - Traffic : 0.08
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x1856 : Athens-Zurich-Luxembourg - Traffic : 0.16
x1877 : Athens-Zagreb-Amsterdam - Traffic : 1.18
x1896 : Athens-Zagreb-Oslo - Traffic : 0.16
x1990 : Athens-Zurich-London - Traffic : 5.09
x2030 : Athens-Zagreb-Prague - Traffic : 0.16
x2257 : Dublin-London-Zagreb - Traffic : 0.02
x2283 : Dublin-Copenhagen-Moscow - Traffic : 0.08
x2524 : Rome-Zagreb-Moscow - Traffic : 0.86
x2722 : Luxembourg-Berlin-Moscow - Traffic : 0.1
x2778 : Amsterdam-Paris-Lisbon - Traffic : 1.1
x2912 : Amsterdam-Berlin-Moscow - Traffic : 1.27
x2959 : Oslo-London-Lisbon - Traffic : 0.16
x2968 : Oslo-Paris-Madrid - Traffic : 0.93
x3149 : Lisbon-London-Stockholm - Traffic : 0.58
x3166 : Lisbon-Madrid-Zurich - Traffic : 5.59
x3210 : Lisbon-Milan-Zagreb - Traffic : 0.08
x3236 : Lisbon-Athens-Moscow - Traffic : 0.17
x3270 : Madrid-Brussels-Stockholm - Traffic : 2.54
x3358 : Madrid-Zurich-Prague - Traffic : 0.16
x3379 : Madrid-Zagreb-Moscow - Traffic : 1.3
x3513 : Stockholm-Prague-Milan - Traffic : 1.07
x3589 : Zurich-Prague-Moscow - Traffic : 1.61
x3651 : London-Copenhagen-Moscow - Traffic : 1.86
x3782 : Moscow-Vienna-Milan - Traffic : 0.86
----------------------------------------------------
Number of links used in the network : 146
Number of two-hop paths used : 40

Links’ Cost : 876678
Nodes cost : 2151.04
Network cost (Value of objective function) : 878829

C.4. The List of the 2-Hop Paths Selected for the Backup Connections of EON

x3807 : Vienna-Luxembourg-Brussels : 1.1
x3822 : Vienna-Berlin-Copenhagen : 0.59
x3845 : Vienna-Luxembourg-Paris : 2.89
x3873 : Vienna-Prague-Berlin : 49.4
x3891 : Vienna-Zagreb-Athens : 0.76
x3909 : Vienna-London-Dublin : 0.08
x3932 : Vienna-Milan-Rome : 3.1
x3949 : Vienna-Prague-Luxembourg : 0.25
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x3968 : Vienna-Prague-Amsterdam : 2.71
x3975 : Vienna-Berlin-Oslo : 0.34
x4003 : Vienna-Zurich-Lisbon : 0.16
x4022 : Vienna-Zurich-Madrid : 1.02
x4032 : Vienna-Berlin-Stockholm : 1.27
x4063 : Vienna-Prague-Zurich : 9.4
x4082 : Vienna-Prague-London : 2.97
x4101 : Vienna-Prague-Zagreb : 2.03
x4108 : Vienna-Berlin-Prague : 2.8
x4127 : Vienna-Berlin-Moscow : 1.02
x4156 : Vienna-Zurich-Milan : 3.1
x4169 : Brussels-Amsterdam-Copenhagen : 1.27
x4187 : Brussels-Luxembourg-Paris : 34.4
x4206 : Brussels-Luxembourg-Berlin : 18.64
x4225 : Brussels-Luxembourg-Athens : 1.27
x4251 : Brussels-London-Dublin : 0.59
x4274 : Brussels-Milan-Rome : 3.52
x4283 : Brussels-Amsterdam-Luxembourg : 5.76
x4302 : Brussels-Luxembourg-Amsterdam : 28.89
x4322 : Brussels-Amsterdam-Oslo : 0.68
x4335 : Brussels-Paris-Lisbon : 1.19
x4354 : Brussels-Paris-Madrid : 4.07
x4372 : Brussels-Copenhagen-Stockholm : 1.86
x4397 : Brussels-Luxembourg-Zurich : 4.06
x4417 : Brussels-Amsterdam-London : 12.29
x4435 : Brussels-Luxembourg-Zagreb : 0.37
x4454 : Brussels-Luxembourg-Prague : 0.34
x4469 : Brussels-Berlin-Moscow : 1.1
x4492 : Brussels-Luxembourg-Milan : 3.52
x4505 : Copenhagen-Brussels-Paris : 3.14
x4538 : Copenhagen-Prague-Berlin : 11.52
x4556 : Copenhagen-Zagreb-Athens : 0.34
x4574 : Copenhagen-London-Dublin : 0.34
x4595 : Copenhagen-Prague-Rome : 0.77
x4606 : Copenhagen-Amsterdam-Luxembourg : 0.42
x4619 : Copenhagen-Brussels-Amsterdam : 2.54
x4648 : Copenhagen-Stockholm-Oslo : 7.37
x4658 : Copenhagen-Paris-Lisbon : 0.34
x4676 : Copenhagen-Brussels-Madrid : 1.36
x4703 : Copenhagen-Oslo-Stockholm : 11.86
x4728 : Copenhagen-Prague-Zurich : 1.52
x4740 : Copenhagen-Amsterdam-London : 7.12
x4754 : Copenhagen-Berlin-Zagreb : 0.08
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x4773 : Copenhagen-Berlin-Prague : 0.16
x4792 : Copenhagen-Berlin-Moscow : 6.77
x4821 : Copenhagen-Zurich-Milan : 0.77
x4833 : Paris-Luxembourg-Berlin : 49.57
x4863 : Paris-Milan-Athens : 2.54
x4878 : Paris-London-Dublin : 1.69
x4901 : Paris-Milan-Rome : 16.61
x4904 : Paris-Brussels-Luxembourg : 4.67
x4923 : Paris-Brussels-Amsterdam : 13.04
x4949 : Paris-Amsterdam-Oslo : 1.53
x4970 : Paris-Madrid-Lisbon : 5.17
x4980 : Paris-Brussels-Madrid : 21.89
x5000 : Paris-Copenhagen-Stockholm : 4.84
x5024 : Paris-Luxembourg-Zurich : 37.11
x5037 : Paris-Brussels-London : 41.51
x5068 : Paris-Zurich-Zagreb : 0.99
x5081 : Paris-Luxembourg-Prague : 0.76
x5096 : Paris-Berlin-Moscow : 2.74
x5125 : Paris-Zurich-Milan : 16.61
x5145 : Berlin-Zagreb-Athens : 11.78
x5157 : Berlin-Amsterdam-Dublin : 1.1
x5184 : Berlin-Prague-Rome : 20.42
x5203 : Berlin-Prague-Luxembourg : 5.09
x5209 : Berlin-Copenhagen-Amsterdam : 39.91
x5228 : Berlin-Copenhagen-Oslo : 3.64
x5252 : Berlin-Luxembourg-Lisbon : 3.98
x5271 : Berlin-Luxembourg-Madrid : 19.58
x5285 : Berlin-Copenhagen-Stockholm : 28.44
x5317 : Berlin-Prague-Zurich : 53.63
x5320 : Berlin-London : 44.48
x5340 : Berlin-Vienna-Zagreb : 5.88
x5359 : Berlin-Vienna-Prague : 7.37
x5380 : Berlin-Copenhagen-Moscow : 11.26
x5413 : Berlin-Prague-Milan : 20.42
x5428 : Athens-Zurich-Dublin : 0.08
x5449 : Athens-Zagreb-Rome : 1.74
x5466 : Athens-Zurich-Luxembourg : 0.16
x5488 : Athens-Prague-Amsterdam : 1.18
x5496 : Athens-Berlin-Oslo : 0.16
x5536 : Athens-Rome-Madrid : 0.42
x5563 : Athens-Zagreb-Stockholm : 0.76
x5585 : Athens-Milan-Zurich : 1.44
x5588 : Athens-Brussels-London : 5.09
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x5606 : Athens-Vienna-Zagreb : 0.32
x5640 : Athens-Zagreb-Prague : 0.16
x5659 : Athens-Zagreb-Moscow : 0.42
x5669 : Athens-Rome-Milan : 1.74
x5685 : Dublin-Paris-Rome : 0.3
x5702 : Dublin-Brussels-Luxembourg : 0.08
x5733 : Dublin-London-Amsterdam : 1.01
x5752 : Dublin-London-Oslo : 0.08
x5768 : Dublin-Madrid-Lisbon : 0.08
x5780 : Dublin-Paris-Madrid : 1.52
x5805 : Dublin-Oslo-Stockholm : 0.16
x5816 : Dublin-Brussels-Zurich : 0.42
x5837 : Dublin-Paris-London : 1.52
x5867 : Dublin-London-Zagreb : 0.02
x5893 : Dublin-Copenhagen-Moscow : 0.08
x5913 : Dublin-Paris-Milan : 0.3
x5946 : Rome-Milan-Luxembourg : 0.55
x5960 : Rome-Zurich-Amsterdam : 2.63
x5969 : Rome-Copenhagen-Oslo : 0.38
x5996 : Rome-Madrid-Lisbon : 0.56
x6022 : Rome-Milan-Madrid : 4.2
x6028 : Rome-Berlin-Stockholm : 1.07
x6060 : Rome-Milan-Zurich : 14.91
x6079 : Rome-Milan-London : 8.4
x6081 : Rome-Vienna-Zagreb : 1.18
x6117 : Rome-Milan-Prague : 0.64
x6134 : Rome-Zagreb-Moscow : 0.86
x6158 : Luxembourg-Brussels-Amsterdam : 1.02
x6184 : Luxembourg-Amsterdam-Oslo : 0.16
x6198 : Luxembourg-Paris-Lisbon : 1.02
x6217 : Luxembourg-Paris-Madrid : 0.66
x6235 : Luxembourg-Copenhagen-Stockholm : 0.4
x6253 : Luxembourg-Brussels-Zurich : 0.93
x6272 : Luxembourg-Brussels-London : 1.9
x6290 : Luxembourg-Vienna-Zagreb : 0.06
x6332 : Luxembourg-Berlin-Moscow : 0.1
x6360 : Luxembourg-Zurich-Milan : 0.55
x6368 : Amsterdam-Copenhagen-Oslo : 0.93
x6388 : Amsterdam-Paris-Lisbon : 1.1
x6407 : Amsterdam-Paris-Madrid : 4.57
x6425 : Amsterdam-Copenhagen-Stockholm : 2.29
x6450 : Amsterdam-Luxembourg-Zurich : 5.43
x6462 : Amsterdam-Brussels-London : 21.26
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x6495 : Amsterdam-Prague-Zagreb : 0.51
x6507 : Amsterdam-Luxembourg-Prague : 0.59
x6522 : Amsterdam-Berlin-Moscow : 1.27
x6545 : Amsterdam-Luxembourg-Milan : 2.63
x6569 : Oslo-London-Lisbon : 0.16
x6578 : Oslo-Paris-Madrid : 0.93
x6596 : Oslo-Copenhagen-Stockholm : 15.68
x6615 : Oslo-Copenhagen-Zurich : 0.84
x6641 : Oslo-Amsterdam-London : 6.19
x6655 : Oslo-Berlin-Zagreb : 0.08
x6672 : Oslo-Copenhagen-Prague : 0.08
x6701 : Oslo-Stockholm-Moscow : 8.13
x6721 : Oslo-Zurich-Milan : 0.38
x6730 : Lisbon-Paris-Madrid : 4.15
x6755 : Lisbon-Amsterdam-Stockholm : 0.58
x6776 : Lisbon-Madrid-Zurich : 5.59
x6787 : Lisbon-Paris-London : 2.97
x6820 : Lisbon-Milan-Zagreb : 0.08
x6857 : Lisbon-Prague-Moscow : 0.17
x6871 : Lisbon-Madrid-Milan : 0.56
x6881 : Madrid-Copenhagen-Stockholm : 2.54
x6915 : Madrid-Milan-Zurich : 6.86
x6920 : Madrid-Paris-London : 9.08
x6953 : Madrid-Milan-Zagreb : 0.35
x6968 : Madrid-Zurich-Prague : 0.16
x6990 : Madrid-Prague-Moscow : 1.3
x7006 : Madrid-Zurich-Milan : 4.2
x7027 : Stockholm-Prague-Zurich : 2.54
x7033 : Stockholm-Copenhagen-London : 4.62
x7050 : Stockholm-Vienna-Zagreb : 0.43
x7073 : Stockholm-Berlin-Prague : 0.51
x7098 : Stockholm-Oslo-Moscow : 2.4
x7123 : Stockholm-Prague-Milan : 1.07
x7127 : Zurich-Brussels-London : 12.96
x7145 : Zurich-Vienna-Zagreb : 1.44
x7181 : Zurich-Milan-Prague : 1.27
x7199 : Zurich-Prague-Moscow : 1.61
x7210 : Zurich-Luxembourg-Milan : 14.91
x7229 : London-Luxembourg-Zagreb : 0.69
x7249 : London-Amsterdam-Prague : 0.85
x7268 : London-Amsterdam-Moscow : 1.86
x7279 : London-Brussels-Milan : 8.4
x7297 : Zagreb-Vienna-Prague : 0.24
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x7316 : Zagreb-Vienna-Moscow : 0.25
x7349 : Zagreb-Zurich-Milan : 1.18
x7358 : Prague-Berlin-Moscow : 0.76
x7387 : Prague-Zurich-Milan : 0.64
x7392 : Moscow-Vienna-Milan : 0.86

----------------------------------------------------

Number of links used in the network : 188

Number of primary direct paths used : 184
Number of primary two-hop paths used : 1

Number of backup direct paths used : 1
Number of backup two-hop paths used : 184

Links’ Cost : 1.91476e+06
Primary Paths’ Cost : 875234
Backup Paths’ Cost : 1.03952e+06
Nodes cost : 5976.18
Network cost : 1.92073e+06

Total Links’ Capacity : 2988.09
Total Primary Paths’ Capacity : 996.03
Total Backup Paths’ Capacity : 996.03
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APPENDIX D

ROUTING & WAVELENGTH ASSIGNMENT : RESULTS

D.1. List of 4-Shortest Paths (and the Corresponding Length) for all Network
Node Pairs

This list contains the 4 shortest paths for each one of the 36 existing source-

destination pairs the 9-nodes version of EON. The length of the paths and the

wavelength variables corresponding to them (in this case there are 4 wavelengths

per path) are also included :

Paris - London : 1.94258 (x17-20)

Paris - Brussels - London : 3.31444 (x21-24)

Paris - Brussels - Amsterdam - London : 4.45918 (x25-28)

Paris - Brussels - Luxembourg - Amsterdam - London : 5.60286 (x29-32)

Paris - Brussels - Berlin : 5.59706 (x33-36)

Paris - Brussels - Amsterdam - Berlin : 6.25238 (x37-40)

Paris - Zurich - Berlin : 7.03547 (x41-44)

Paris - Zurich - Prague - Berlin : 7.04859 (x45-48)

Paris - Milan : 3.70034 (x49-52)

Paris - Zurich - Milan : 4.1874 (x53-56)

Paris - Brussels - Luxembourg - Milan : 5.12016 (x57-60)

Paris - Brussels - Amsterdam - Luxembourg - Milan : 7.05414 (x61-64)

Paris - Brussels : 1.58028 (x65-68)

Paris - London - Brussels : 3.67673 (x69-72)

Paris - London - Amsterdam - Brussels : 4.82147 (x73-76)

Paris - London - Amsterdam - Luxembourg - Brussels : 5.96515 (x77-80)

Paris - Brussels - Amsterdam : 2.75774 (x81-84)
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Paris - London - Amsterdam : 3.64402 (x85-88)

Paris - Brussels - Luxembourg - Amsterdam : 3.90142 (x89-92)

Paris - London - Brussels - Amsterdam : 4.85419 (x93-96)

Paris - Zurich - Prague : 5.28993 (x97-100)

Paris - Milan - Prague : 6.54445 (x101-104)

Paris - Milan - Zurich - Prague : 6.70381 (x105-108)

Paris - Zurich - Milan - Prague : 7.03152 (x109-112)

Paris - Zurich : 3.23693 (x113-116)

Paris - Milan - Zurich : 4.65081 (x117-120)

Paris - Brussels - Luxembourg - Milan - Zurich : 6.07063 (x121-124)

Paris - Milan - Prague - Zurich : 8.59745 (x125-128)

Paris - Brussels - Luxembourg : 2.36259 (x129-132)

Paris - Brussels - Amsterdam - Luxembourg : 4.29657 (x133-136)

Paris - London - Brussels - Luxembourg : 4.45904 (x137-140)

Paris - London - Amsterdam - Luxembourg : 5.18285 (x141-144)

London - Amsterdam - Berlin : 5.19608 (x145-148)

London - Brussels - Berlin : 5.75093 (x149-152)

London - Brussels - Amsterdam - Berlin : 6.40625 (x153-156)

London - Amsterdam - Brussels - Berlin : 6.89567 (x157-160)

London - Brussels - Luxembourg - Milan : 5.27403 (x161-164)

London - Paris - Milan : 5.64291 (x165-168)

London - Amsterdam - Luxembourg - Milan : 5.99784 (x169-172)

London - Paris - Zurich - Milan : 6.12998 (x173-176)

London - Brussels : 1.73416 (x177-180)

London - Amsterdam - Brussels : 2.8789 (x181-184)

London - Paris - Brussels : 3.52286 (x185-188)

London - Amsterdam - Luxembourg - Brussels : 4.02258 (x189-192)
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London - Amsterdam : 1.70144 (x193-196)

London - Brussels - Amsterdam : 2.91161 (x197-200)

London - Brussels - Luxembourg - Amsterdam : 4.05529 (x201-204)

London - Paris - Brussels - Amsterdam : 4.70031 (x205-208)

London - Amsterdam - Berlin - Prague : 6.95474 (x209-212)

London - Paris - Zurich - Prague : 7.2325 (x213-216)

London - Brussels - Berlin - Prague : 7.5096 (x217-220)

London - Brussels - Luxembourg - Milan - Prague : 8.11815 (x221-224)

London - Paris - Zurich : 5.1795 (x225-228)

London - Brussels - Luxembourg - Milan - Zurich : 6.22451 (x229-232)

London - Brussels - Paris - Zurich : 6.55137 (x233-236)

London - Paris - Milan - Zurich : 6.59339 (x237-240)

London - Brussels - Luxembourg : 2.51646 (x241-244)

London - Amsterdam - Luxembourg : 3.24027 (x245-248)

London - Amsterdam - Brussels - Luxembourg : 3.6612 (x249-252)

London - Paris - Brussels - Luxembourg : 4.30516 (x253-256)

Berlin - Prague - Milan : 4.60278 (x257-260)

Berlin - Zurich - Milan : 4.74901 (x261-264)

Berlin - Prague - Zurich - Milan : 4.76214 (x265-268)

Berlin - Brussels - Luxembourg - Milan : 7.55665 (x269-272)

Berlin - Brussels : 4.01678 (x273-276)

Berlin - Amsterdam - Brussels : 4.67209 (x277-280)

Berlin - Amsterdam - Luxembourg - Brussels : 5.81577 (x281-284)

Berlin - Amsterdam - London - Brussels : 6.93024 (x285-288)

Berlin - Amsterdam : 3.49464 (x289-292)

Berlin - Brussels - Amsterdam : 5.19423 (x293-296)
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Berlin - Brussels - Luxembourg - Amsterdam : 6.33791 (x297-300)

Berlin - Brussels - London - Amsterdam : 7.45237 (x301-304)

Berlin - Prague : 1.75866 (x305-308)

Berlin - Zurich - Prague : 5.85154 (x309-312)

Berlin - Zurich - Milan - Prague : 7.59313 (x313-316)

Berlin - Brussels - Luxembourg - Milan - Prague : 10.4008 (x317-320)

Berlin - Zurich : 3.79854 (x321-324)

Berlin - Prague - Zurich : 3.81166 (x325-328)

Berlin - Prague - Milan - Zurich : 5.55325 (x329-332)

Berlin - Brussels - Luxembourg - Milan - Zurich : 8.50713 (x333-336)

Berlin - Brussels - Luxembourg : 4.79908 (x337-340)

Berlin - Amsterdam - Luxembourg : 5.03347 (x341-344)

Berlin - Amsterdam - Brussels - Luxembourg : 5.4544 (x345-348)

Berlin - Brussels - Amsterdam - Luxembourg : 6.73306 (x349-352)

Milan - Luxembourg - Brussels : 3.53988 (x353-356)

Milan - Paris - Brussels : 5.28062 (x357-360)

Milan - Luxembourg - Amsterdam - Brussels : 5.47386 (x361-364)

Milan - Zurich - Paris - Brussels : 5.76768 (x365-368)

Milan - Luxembourg - Amsterdam : 4.2964 (x369-372)

Milan - Luxembourg - Brussels - Amsterdam : 4.71733 (x373-376)

Milan - Paris - Brussels - Amsterdam : 6.45808 (x377-380)

Milan - Zurich - Paris - Brussels - Amsterdam : 6.94514 (x381-384)

Milan - Prague : 2.84412 (x385-388)

Milan - Zurich - Prague : 3.00347 (x389-392)

Milan - Zurich - Berlin - Prague : 6.50768 (x393-396)

Milan - Paris - Zurich - Prague : 8.99026 (x397-400)
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Milan - Zurich : 0.950473 (x401-404)

Milan - Prague - Zurich : 4.89712 (x405-408)

Milan - Paris - Zurich : 6.93726 (x409-412)

Milan - Luxembourg - Brussels - Paris - Zurich : 8.35709 (x413-416)

Milan - Luxembourg : 2.75757 (x417-420)

Milan - Paris - Brussels - Luxembourg : 6.06293 (x421-424)

Milan - Zurich - Paris - Brussels - Luxembourg : 6.54999 (x425-428)

Milan - Paris - Brussels - Amsterdam - Luxembourg : 7.99691 (x429-432)

Brussels - Amsterdam : 1.17746 (x433-436)

Brussels - Luxembourg - Amsterdam : 2.32114 (x437-440)

Brussels - London - Amsterdam : 3.4356 (x441-444)

Brussels - Paris - London - Amsterdam : 5.2243 (x445-448)

Brussels - Berlin - Prague : 5.77544 (x449-452)

Brussels - Luxembourg - Milan - Prague : 6.38399 (x453-456)

Brussels - Amsterdam - Berlin - Prague : 6.43076 (x457-460)

Brussels - Luxembourg - Milan - Zurich - Prague : 6.54335 (x461-464)

Brussels - Luxembourg - Milan - Zurich : 4.49035 (x465-468)

Brussels - Paris - Zurich : 4.81721 (x469-472)

Brussels - Paris - Milan - Zurich : 6.23109 (x473-476)

Brussels - Amsterdam - Luxembourg - Milan - Zurich : 6.42433 (x477-480)

Brussels - Luxembourg : 0.782305 (x481-484)

Brussels - Amsterdam - Luxembourg : 2.71629 (x485-488)

Brussels - London - Amsterdam - Luxembourg : 4.97443 (x489-492)

Brussels - Paris - London - Amsterdam - Luxembourg : 6.76313 (x493-496)

Amsterdam - Berlin - Prague : 5.2533 (x497-500)

Amsterdam - Brussels - Berlin - Prague : 6.9529 (x501-504)

Amsterdam - Luxembourg - Milan - Prague : 7.14052 (x505-508)
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Amsterdam - Luxembourg - Milan - Zurich - Prague : 7.29987 (x509-512)

Amsterdam - Luxembourg - Milan - Zurich : 5.24688 (x513-516)

Amsterdam - Brussels - Luxembourg - Milan - Zurich : 5.6678 (x517-520)

Amsterdam - Brussels - Paris - Zurich : 5.99467 (x521-524)

Amsterdam - London - Paris - Zurich : 6.88094 (x525-528)

Amsterdam - Luxembourg : 1.53883 (x529-532)

Amsterdam - Brussels - Luxembourg : 1.95976 (x533-536)

Amsterdam - London - Brussels - Luxembourg : 4.2179 (x537-540)

Amsterdam - London - Paris - Brussels - Luxembourg : 6.0066 (x541-544)

Prague - Zurich : 2.053 (x545-548)

Prague - Milan - Zurich : 3.79459 (x549-552)

Prague - Berlin - Zurich : 5.5572 (x553-556)

Prague - Milan - Paris - Zurich : 9.78138 (x557-560)

Prague - Milan - Luxembourg : 5.60169 (x561-564)

Prague - Zurich - Milan - Luxembourg : 5.76104 (x565-568)

Prague - Berlin - Brussels - Luxembourg : 6.55774 (x569-572)

Prague - Berlin - Amsterdam - Luxembourg : 6.79213 (x573-576)

Zurich - Milan - Luxembourg : 3.70804 (x577-580)

Zurich - Paris - Brussels - Luxembourg : 5.59952 (x581-584)

Zurich - Milan - Paris - Brussels - Luxembourg : 7.0134 (x585-588)

Zurich - Paris - Brussels - Amsterdam - Luxembourg : 7.5335 (x589-592)

D.2. More Efficient Use of Network Links

An improvement which reduces the number of network channels further has been

achieved : assuming that WDM/OTDM is applied, it has been tried to make more

efficient use of the channels (fill, if possible, all the available channel   bandwidth) in

order to reduce the overall number of channels. This has been done by adding into the
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objective function of the LP problem the variables representing the wavelengths

capacities, multiplied with some weighting factors. The factors had smaller values for

lower index wavelengths (λ0, λ1, ...)  and larger values for high index wavelengths (...,

λ31, λ32). In particular, the factor assigned to λ0 is equal to 10 and the preceding factors

are increased by 10 for each wavelength. Thus, λ1 will be multiplied by 20, λ2 by 30

and λ31 by 320. In that way, the LP solver will be forced to use the lower index

channels, in order to reduce the overall cost (value of the objective function). Indeed,

the output of lp_solve_2.0 shows, for this alternative LP model, that low index

channels are highly utilised, whereas many of the high index channels have zero

capacity.

For example, while, with conventional approach there were 31 paths active over the

link Paris-London, with 31 channels being utilised, and λ15 not being used, in the

alternative approach (using factors) there is the example of link Milan - Prague, over

which there are 30 paths sharing only 15 channels (some of the channels are shared

between 3 or 4 s-d pairs). The utilisation of wavelengths for these two cases, is

presented in next section.

As an overall, this alternative approach gives as output 496 wavelength variables with

non-zero value, which, however, although more than the 383 non-zero values of the

previous case, make use of only 335 channels (wavelengths). This is significant

progress, compared to the 348 channels, previously used.

The distribution of channels on the 17 established links of the network, for the two

cases, assuming use of WDM/OTDM technology, is depicted in fig. 4.4.
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Fig. D.2.4 : Distribution of channels in the 9 central nodes of EON (a) Conventional

approach, (b) Weighting Factors approach

D.3. Utilisation of Wavelengths for the Conventional and Weighting Factors
Approaches

Conventional Approach :

Paris - London : λ0:1, λ1:1, λ2:1, λ3:1, λ4:1, λ5:1, λ6:1, λ7:1, λ8:1, λ9:1, λ10:1, λ11:1,

λ12:1, λ13:1, λ14:1, λ15:0, λ16:1, λ17:1, λ18:1, λ19:1, λ20:1, λ21:1, λ22:1, λ23:1, λ24:1,

λ25:1, λ26:1, λ27:1, λ28:1, λ29:1, λ30:1, λ31:1

Use of Weighting Factors :

Milan - Prague : λ0:3, λ1:2, λ2:2, λ3:2, λ4:3, λ5:2, λ6:2, λ7:2, λ8:4, λ9:1, λ10:2, λ11:2,

λ12:0, λ13:0, λ14:1, λ15:0, λ16:0, λ17:0, λ18:1, λ19:0, λ20:1, λ21:0, λ22:0, λ23:0, λ24:0,

λ25:0, λ26:0, λ27:0, λ28:0, λ29:0, λ30:0, λ31:0
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APPENDIX E

CODES

E.1. Virtual Topology Design Code

/*******************************************************************************
Program: eon.cc

Author: D. Gavalas, E.S.E., MSc in Telecommunications and Information Systems

Date: 04/04/97

This program creates a file appropriate for input of "lp_solve_2.0" : an objective function, as well as a
number of constraints related to the "network optimisation by minimum cost" problem, are produced and
written into this file : "lp_input.txt". After the creation of that file, we can run the "lp_solve_2.0"
program, as follows :

lp_solve < lp_input.txt
The program takes as input the number of nodes consisting the network and a file containing information
about the names of nodes, their location (coordinates) and the traffic corresponding to each potential
node pair. Thus, the program is called in the following way :

eon <filename>
where <filename> is the name of the program’s input file, described above.

It should be noted that the routing algorithm implemented, allows only direct, two-hop and three-hop
paths to be used.

Apart from the creation of the lp_solve input file, the program prints in the standard output the Nodes’
names, their coordinates, the Traffic Matrix, the table with the links’ labels, as well as all the available
network’s paths and their lengths.

******************************************************************************/

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#define km_per_unit 200   // The unit of distance is 200 km

int num_of_nodes;
void Read_File (ifstream&, char [][11], float [][2], float **);
void Sort (int [], int);

main(int argc, char *argv[])
{

  if (argc != 2) {                      // Wrong usage
    cout << "Usage : eon <filename> \n";
    return 1;
  }

  ifstream in (argv[1], ios::in);

  if (!in) { // Unable to open the file
    cout << "Cannot open " << argv[1] << " for input." << endl;
    exit(1);
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  }

  int i,j,k,l,num_of_hops;

  cout << "Insert the number of Network’s nodes : ";
  cin >> num_of_nodes;

  // Evaluate the number of links in the Network
  int num_of_links = num_of_nodes * (num_of_nodes-1) / 2;

  cout << "Insert the maximum number of hops of the routing algorithm used : ";
  cin >> num_of_hops;

  /* Evaluate the number of direct, two-hops and three hops paths corresponding
     to a specific pair of source-destination node */
  int num_of_paths_per_pair;
  if (num_of_hops == 1)
    num_of_paths_per_pair = 1;
  else if (num_of_hops == 2)
    num_of_paths_per_pair = num_of_nodes - 1;
  else if (num_of_hops == 3)
    num_of_paths_per_pair = (num_of_nodes-1) +
      (num_of_nodes-2) * (num_of_nodes-3);
  else {
    cout << "The program cannot support " << num_of_hops
      << "-hops routing algorithm." << endl;
    return(1);
  }

  // Evaluate the number of direct, two-hop and 3-hop paths in the Network
  int num_of_paths = num_of_links * num_of_paths_per_pair;

  float *traffic_matrix[num_of_nodes];
  for (i = 0; i < num_of_nodes; i++)  /* Memory allocation for the input table

     of coefficients */
    traffic_matrix[i] = new float[num_of_nodes];

  char Nodes[num_of_nodes][11];

  float coordinates[num_of_nodes][2];

  Read_File (in, Nodes, coordinates, traffic_matrix);

  float distance[num_of_nodes][num_of_nodes];
  for (i = 0; i < num_of_nodes; i++)     // Calculate the distance between 2 nodes
    for (j = 0; j < num_of_nodes; j++)
      distance[i][j] = sqrt(pow(coordinates[i][0]-coordinates[j][0],2) +

    pow(coordinates[i][1]-coordinates[j][1],2));

  ofstream out("lp_input.txt");
  if (!out) {
    cout << "Cannot open file.";
    return 1;
  }

  cout << endl << "Traffic Matrix :" << endl;
  for (i = 0; i < num_of_nodes; i++)          // Print traffic matrix
    for (j = 0; j < num_of_nodes; j++) {
      cout << traffic_matrix[i][j] << " ";
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      if (j == num_of_nodes-1)
cout << endl;

    }

  // Create a Links’ Label Matrix
  int labels[num_of_nodes][num_of_nodes];

  int label = 0;
  for (i = 0; i < num_of_nodes-1; i++)
    for (j = i+1; j < num_of_nodes; j++) {
      labels[i][j] = labels[j][i] = label;
      label++;
    }

  for (i=0; i < num_of_nodes; i++)
    labels[i][i] = -1;

  cout << endl << "Network’s Links Labels :" << endl;
  for (i = 0; i < num_of_nodes; i++)          // Print the labels’ matrix
    for (j = 0; j < num_of_nodes; j++) {
      cout << labels[i][j] << " ";
      if (j == num_of_nodes-1)

cout << endl;
    }

  cout << endl << "Number of paths : " << num_of_paths << endl;

  int path_matrix[num_of_paths][num_of_hops + 1];   /* This array includes all the
     available network’s paths,
     as well as their total length */

  float path_length[num_of_paths];    // The total length of each path

  int path_number, count;

  if (num_of_hops == 3) {
    path_number = 0;  // The path’s serial number
    for (i = 0; i < num_of_nodes-1; i++)    // Construct the path matrix
      for (j = i+1; j < num_of_nodes; j++) {

path_matrix[path_number][0] = path_matrix[path_number][1] =
  path_matrix[path_number][2] = i;            // Direct path
path_matrix[path_number][3] = j;
path_length[path_number] =
  distance[path_matrix[path_number][0]][path_matrix[path_number][3]];
path_number++;

k = 0;
while (k < num_of_nodes) {           // Two-hop path
  path_matrix[path_number][0] = i;
  path_matrix[path_number][3] = j;
  while (k == i || k == j)
    k++;
  if (k < num_of_nodes) {
    path_matrix[path_number][1] = path_matrix[path_number][2] = k;
    path_length[path_number] =
      distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +

distance[path_matrix[path_number][1]][path_matrix[path_number][3]];
    path_number++;
    l = 0;
    while (l < num_of_nodes) {        // Two-hop path



Appendix E :Codes Project Report

94

      path_matrix[path_number][0] = i;
      path_matrix[path_number][1] = k;
      path_matrix[path_number][3] = j;
      while (l == i || l == j || l == k)

l++;
      if (l < num_of_nodes) {

path_matrix[path_number][2] = l;
path_length[path_number] =
  distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +
    distance[path_matrix[path_number][1]][path_matrix[path_number][2]] +
      distance[path_matrix[path_number][2]][path_matrix[path_number][3]];
path_number++;

      }
      l++;
    }
    k++;
  }
}

      }
  }
  else if (num_of_hops == 2) {
    path_number = 0;  // The path’s serial number
    for (i = 0; i < num_of_nodes-1; i++)    // Construct the path matrix
      for (j = i+1; j < num_of_nodes; j++) {

path_matrix[path_number][0] = path_matrix[path_number][1] = i;      // Direct path
path_matrix[path_number][2] = j;
path_length[path_number] =
  distance[path_matrix[path_number][0]][path_matrix[path_number][2]];
path_number++;

        k = 0;
while (k < num_of_nodes) {           // Two-hop path
  path_matrix[path_number][0] = i;
  path_matrix[path_number][2] = j;
  while (k == i || k == j)
    k++;
  if (k < num_of_nodes) {
    path_matrix[path_number][1] = k;
    path_length[path_number] =
      distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +

distance[path_matrix[path_number][1]][path_matrix[path_number][2]];
    path_number++;
    k++;
  }
}

      }
  }
  else if (num_of_hops == 1) {
    path_number = 0;  // The path’s serial number
    for (i = 0; i < num_of_nodes-1; i++)    // Construct the path matrix
      for (j = i+1; j < num_of_nodes; j++) {

path_matrix[path_number][0] = i;      // Direct path
path_matrix[path_number][1] = j;
path_length[path_number] = distance[i][j];
path_number++;

      }
  }

  cout << endl;
if (num_of_hops == 3) {
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    for (i = 0; i < num_of_paths; i++) {   /* Print all the networks paths,
          and the corresponding total length */

      cout << "x" << i+num_of_links << " = ";
      if ((path_matrix[i][0] == path_matrix[i][1]) && (path_matrix[i][1] == path_matrix[i][2])) {

cout << Nodes[path_matrix[i][0]] << " - ";
cout <<  Nodes[path_matrix[i][3]] << " - ";
cout << "Traffic::" << traffic_matrix[path_matrix[i][0]][path_matrix[i][3]] +
  traffic_matrix[path_matrix[i][3]][path_matrix[i][0]];
cout << " Length:" << path_length[i];
cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][3]] << ")";

      }
      else if (path_matrix[i][1] == path_matrix[i][2]) {

cout << Nodes[path_matrix[i][0]] << " - ";
cout << Nodes[path_matrix[i][2]] << " - ";
cout << Nodes[path_matrix[i][3]] << " - ";
cout << path_length[i];
cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][3]] << ")";

      }
      else {

for (j = 0; j < 4; j++)
  cout << Nodes[path_matrix[i][j]] << " - ";
cout << path_length[i];
cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][3]] << ")";

      }
      cout << endl;
    }
  }
  else if (num_of_hops == 2) {
    for (i = 0; i < num_of_paths; i++) {   /* Print all the networks paths,

          and the corresponding total length */
      cout << "x" << i+num_of_links << " = ";
      if (i % (num_of_nodes-1) != 0) {

for (j = 0; j < 3; j++)
  cout << Nodes[path_matrix[i][j]] << " - ";
cout << path_length[i];
cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][2]] << ")";

      }
      else {

cout << Nodes[path_matrix[i][0]] << " - ";
cout << Nodes[path_matrix[i][2]] << " - ";
cout << path_length[i];
cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][2]] << ")";

      }
      cout << endl;
    }
  }

// Insert the objective function into the lp_solve input file

  out << "min: ";
  for (i = 0; i < num_of_paths-num_of_paths_per_pair; i+=num_of_paths_per_pair) { /* This
includes the cost of the nodes

(the cost of each node is equal to
the sum of the costs of the links
attached to that node) and the cost

 of links (which is equal to length
of link multiplied with its capacity */
    out << 2 + (km_per_unit * path_length[i]) << " x" << i/num_of_paths_per_pair << " + ";
  }
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    out << 2 + (km_per_unit * path_length[num_of_paths - num_of_paths_per_pair]) << " x" <<
(num_of_paths - 1) / num_of_paths_per_pair << ";" << endl << endl;

/*  for (i = 0; i < num_of_paths-1; i++)    // This includes the cost of paths
    out << km_per_unit * path_length[i] << " x" << i+num_of_links << " + ";

  out << km_per_unit * path_length[num_of_paths-1] << " x" << num_of_paths+num_of_links-1
    << ";" << endl << endl;
*/

  /* Constraint in cuts around nodes (the links attached to each node are
     supposed to have total capacity bigger or equal to the sum of capacities,
     row & column, of the traffic matrix) */

  float sum = 0.0;    // Sum of row & column capacities
  for (i = 0; i < num_of_nodes; i++) {
    for (j = 0; j < num_of_nodes; j++) {
      sum += traffic_matrix[i][j] + traffic_matrix[j][i];
      if (labels[i][j] >= 0)

if (j < num_of_nodes-2)
  out << "x" << labels[i][j] << " + ";
else if (j == num_of_nodes-2 && labels[i][j+1] >= 0)
  out << "x" << labels[i][j] << " + ";
else
  out << "x" << labels[i][j] << " >= " << sum << ";" << endl;

    }
    sum = 0;
  }

  /* An another constraint is added if we remove each one of the links between 2 nodes
     and then require the rest of the links attached to these 2 nodes to have total capacity
     equal to the sum of traffic units with destination the 2 nodes */

  int array_of_labels[num_of_nodes-2];
  int counter;
  out << endl;

  for (i = 0; i < num_of_links; i++) {
    for (j = 0; j < num_of_nodes; j++) { // find the coordinates of the link with label = i
      for (k = 0; k < num_of_nodes; k++)

if (labels[j][k] == i)
  break;

      if (labels[j][k] == i)
break;

    }
    sum = 0.0; /* Sum of traffic units with destination the 2 nodes that the

specific link connects, except the ones carried by that link */

    counter = 0; // Number of links attached to the 2 nodes except the one removed
    for (l = 0; l < num_of_nodes; l++) {
      sum += traffic_matrix[j][l] + traffic_matrix[l][k];
      if (labels[j][l] != -1 && labels[j][l] != i) {

array_of_labels[counter] = labels[j][l];
counter++;

      }
      if (labels[l][k] != -1 && labels[l][k] != i) {

array_of_labels[counter] = labels[l][k];
counter++;
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      }
    }

    sum -= 2 * traffic_matrix[j][k];
    Sort(array_of_labels, counter);

    for (k = 0; k < counter; k++)
      if (k < counter-1)

out << "x" << array_of_labels[k] << " + ";
      else

out << "x" << array_of_labels[k] << " >= " << 2*sum << ";" << endl;
  } // for

  out << endl;

  for (i = 0; i < num_of_links; i++)
    out << " int x" << i << ";" << endl;
  out << endl;

  /* At this point we introduce into the LP problem some extra variables, each
     one of which represents the amount of traffic carried out by a stream
     (corresponding to a specific pair of source-destination nodes). A constraint is
     introduced, if we require the sum of the traffics carried by those streams, to
     be equal to the traffic between the 2 nodes, given by the traffic matrix. */
  if (num_of_hops > 1)
    for (i = 0; i < num_of_links; i++) {
      k = i * num_of_paths_per_pair;
      sum = traffic_matrix[path_matrix[k][0]][path_matrix[k][num_of_hops]] +

traffic_matrix[path_matrix[k][num_of_hops]][path_matrix[k][0]];
      for (j = k; j < (i+1)*num_of_paths_per_pair; j++)

if (j != (i+1)*num_of_paths_per_pair-1)
  out << "x" << j+num_of_links << " + ";
else
  out << "x" << j+num_of_links << " = " << sum << ";" << endl;

    }

  out << endl;

  /* An extra constraint is added by requiring the sum of streams’ traffic, for
     streams that use a specific link, to be equal to the capacity of that link. */

  for (i = 0; i < num_of_links; i++) {
    for (j = 0; j < num_of_nodes; j++) {  // Find the coordinates (j,k) in the label
      for (k = 0; k < num_of_nodes; k++)  // matrix of the link with label = i

if (labels[j][k] == i)
  break;

      if (labels[j][k] == i)
break;

    }

    if (num_of_hops == 3) {
      count = 0;
      for (l = 0; l < num_of_paths; l++)   /* Calculate how many streams use

      the current link */
if ((path_matrix[l][0] == j && path_matrix[l][1] == k) ||
    (path_matrix[l][1] == j && path_matrix[l][2] == k) ||
    (path_matrix[l][2] == j && path_matrix[l][3] == k) ||
    (path_matrix[l][0] == k && path_matrix[l][1] == j) ||
    (path_matrix[l][1] == k && path_matrix[l][2] == j) ||
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    (path_matrix[l][2] == k && path_matrix[l][3] == j))
  count++;

      counter = 0;
      for (l = 0; l < num_of_paths; l++) {

if ((path_matrix[l][0] == j && path_matrix[l][1] == k) ||
    (path_matrix[l][1] == j && path_matrix[l][2] == k) ||
    (path_matrix[l][2] == j && path_matrix[l][3] == k) ||
    (path_matrix[l][0] == k && path_matrix[l][1] == j) ||
    (path_matrix[l][1] == k && path_matrix[l][2] == j) ||
    (path_matrix[l][2] == k && path_matrix[l][3] == j)) {
  if (counter < count-1)
    out << "x" << l+num_of_links << " + ";
  else
    out <<  "x" << l+num_of_links << " = x" << i << ";" << endl;
  counter++;
}

      }
    }
    else if (num_of_hops == 2) {
      count = 0;
      for (l = 0; l < num_of_paths; l++)   /* Calculate how many streams use

      the current link */
if ((path_matrix[l][0] == j && path_matrix[l][1] == k) ||
    (path_matrix[l][1] == j && path_matrix[l][2] == k) ||
    (path_matrix[l][0] == k && path_matrix[l][1] == j) ||
    (path_matrix[l][1] == k && path_matrix[l][2] == j))
  count++;

      counter = 0;
      for (l = 0; l < num_of_paths; l++) {

if ((path_matrix[l][0] == j && path_matrix[l][1] == k) ||
    (path_matrix[l][1] == j && path_matrix[l][2] == k) ||
    (path_matrix[l][0] == k && path_matrix[l][1] == j) ||
    (path_matrix[l][1] == k && path_matrix[l][2] == j)) {
  if (counter < count-1)
    out << "x" << l+num_of_links << " + ";
  else
    out <<  "x" << l+num_of_links << " = x" << i << ";" << endl;
  counter++;
}

      }
    }
  }
  out << endl;

} // Main

/* This function is used for reading the input file containing information about
   the names of nodes, their location (coordinates) and the traffic corresponding
   to each potential node pair */
void Read_File (ifstream& in, char Nodes[][11],

float coordinates[][2], float **traffic_matrix)
{
  int i,j,x,y;
  char ch;
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  for (i = 0; i < num_of_nodes; i++) { /* Create the array of Nodes’ names
  and coordinates */

    in >> Nodes[i];         // Name of node
    in >> coordinates[i][0];   // x cordinate
    in >> coordinates[i][1];   // y coordinate
  }
//  in >> ch;

  cout << endl << "Coordinates :" << endl;
  for (i = 0; i<num_of_nodes; i++)
    cout << Nodes[i] << " : x=" << coordinates[i][0] << ", y=" << coordinates[i][1] << endl;

  for (i = 0; i < num_of_nodes; i++) {   // Reading information about the traffic
    for (j = 0; j < num_of_nodes; j++) {
      in >> x;
      in >> y;
      in >> traffic_matrix[i][j];
    }
  }
  in.close();

}  // Read_File

/* This function sorts an array of "count" numbers in increasing order,
   using the Selection-Sort algorithm */
void Sort (int numbers[], int count)
{
  int i,j,t;

  for (i = 1; i < count; i++) {
    t = numbers[i];
    j = i;
    while (numbers[j-1] > t) {
      numbers[j] = numbers[j-1];
      j--;
    }
    numbers[j] = t;
  }

} // Sort

E.2. Routing & Wavelength Assignment Code

/******************************************************************************
Program: wavelength.cc

Author: D. Gavalas, E.S.E., MSc in Telecommunications and Information Systems

Date: 04/04/97

This program creates a file appropriate for input of "lp_solve_2.0" (an objective function, as well as a
number of constraints related to the "wavelength assignment optimisation by minimum cost" problem
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are produced and written into this file : "wavel.txt"). After the creation of that file, we can run the
"lp_solve_2.0" program, as follows :

lp_solve < wavel.txt
The program takes as input the number of nodes consisting the network and a file containing information
about the names of nodes, their location (coordinates) and the traffic corresponding to each potential
node pair. Thus, the program is called in the following way :

wavelength <filename>
where <filename> is the name of the program’s input file, described above.

Apart from the creation of the lp_solve input file, the program prints in the standard output the Nodes’
names, the existing connections, the Traffic Matrix, the Adjacency Matrix, as well as all the available
network’s paths and their lengths, followed by a list of the 4 shortest paths for each of the node pairs.

******************************************************************************/

#include <iostream.h>
#include <fstream.h>
#include <math.h>

#define km_per_unit 200   // The unit of distance is 200 km
#define NUM_OF_SHORTEST_PATHS 4  /* The program selects the 3 shortests paths for each

          node pair, in order to reduce the number of variables */
#define MAX_NUM_OF_PATHS 30  /* We assume that there is not possibility of having more

         than 30 direct, 2, 3 and 4-hop paths for any node pair */
#define NUM_OF_HOPS 4          // The maximum possible number of hops we consider
#define WAVELENGTH_CAPACITY 2.5   // The capacity that a channel (wavelength) can carry

int num_of_nodes,num_of_wavelengths;
void Read_File (ifstream&, char [][11], float [][2], float **, int **, int&);
void Sort (int [], int);
void Sort_Paths (int *[], float [], int);
void Initialize (int *[], float []);

main(int argc, char *argv[])
{

  if (argc != 2) {                      // Wrong usage of the program
    cout << "Usage : eon <filename> \n";
    return 1;
  }

  ifstream in (argv[1], ios::in);

  if (!in) { // Unable to open the file
    cout << "Cannot open " << argv[1] << " for input." << endl;
    exit(1);
  }
  int i,j,k,l,m,num_of_links;

  cout << "Insert the number of Network’s nodes : ";
  cin >> num_of_nodes;

  cout << endl << "Insert the number of wavelengths in the network : ";
  cin >> num_of_wavelengths;

 /* Evaluate the number of direct, two-hops, three-hops and four-hops paths corresponding
     to a specific pair of source-destination node */
  int num_of_paths_per_pair = 1 + (num_of_nodes-2) + (num_of_nodes-2) * (num_of_nodes-3) +
      (num_of_nodes-2) * (num_of_nodes-3) * (num_of_nodes - 4);
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  float *traffic_matrix[num_of_nodes];
  for (i = 0; i < num_of_nodes; i++)  // Memory allocation for the Traffic Matrix
    traffic_matrix[i] = new float[num_of_nodes];

  char Nodes[num_of_nodes][11];

  float coordinates[num_of_nodes][2];

  int *AdjacencyMatrix[num_of_nodes];
  for (i = 0; i < num_of_nodes; i++)   // Memory allocation for the Adjacency Matrix
    AdjacencyMatrix[i] = new int[num_of_nodes];

  int labels[num_of_nodes][num_of_nodes];  // The matrix that contains the links labels

  for (i = 0; i < num_of_nodes; i++)   // Initialization of tables
    for (j = 0; j < num_of_nodes; j++) {
      traffic_matrix[i][j] = 0.0;
      AdjacencyMatrix[i][j] = 0;
      labels[i][j] = -1;
    }

  Read_File (in, Nodes, coordinates, traffic_matrix, AdjacencyMatrix, num_of_links);

  int NodePairs[num_of_links][2];  /* An array that stores the source and
   destination node of each existing link */

  int NodesConnections [num_of_nodes];  /* The number of connections (number
 of attached links) of each node */

  for (i = 0; i < num_of_nodes; i++)
    NodesConnections[i] = 0;

  k = 0;
  for (i = 0; i < num_of_nodes; i++) {   // Construct the array of Node pairs
    for (j = i+1; j < num_of_nodes; j++)
      if (AdjacencyMatrix[i][j] == 1) {

NodePairs[k][0] = i;
NodePairs[k][1] = j;
NodesConnections[i]++;
NodesConnections[j]++;
labels[i][j] = labels[j][i] = k++;

      }
    cout << endl;
  }

  for (i = 0; i < num_of_links; i++)
    cout << Nodes[NodePairs[i][0]] << " - " << Nodes[NodePairs[i][1]] << endl;

  cout << endl << "NODES CONNECTIONS" << endl;
  for (i = 0; i < num_of_nodes; i++)
    cout << Nodes[i] << " : " << NodesConnections[i] << endl;

  // Evaluate the number of node pairs in the Network
  int num_of_node_pairs = num_of_nodes * (num_of_nodes - 1) / 2;

  /* Evaluate the maximum possible number of direct, two-hop and
     3-hop paths in the Network */
  int num_of_paths = num_of_node_pairs * num_of_paths_per_pair;
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  float distance[num_of_nodes][num_of_nodes];
  for (i = 0; i < num_of_nodes; i++)         // Calculate the distance between 2 nodes
    for (j = 0; j < num_of_nodes; j++)
      distance[i][j] = sqrt(pow(coordinates[i][0]-coordinates[j][0],2) +

    pow(coordinates[i][1]-coordinates[j][1],2));

  ofstream out("factor.txt");
  if (!out) {
    cout << "Cannot open file.";
    return 1;
  }

  cout << endl << "Traffic Matrix :" << endl;
  for (i = 0; i < num_of_nodes; i++)          // Print traffic matrix
    for (j = 0; j < num_of_nodes; j++) {
      cout << traffic_matrix[i][j] << " ";
      if (j == num_of_nodes-1)

cout << endl;
    }

  int int_part;
  float mod;
  for (i = 0; i < num_of_nodes; i++)        /* Round the elements of traffic matrix

           to the nearest multiple of 2.5 */
    for (j = 0; j < num_of_nodes; j++) {
      int_part = int(traffic_matrix[i][j] / 2.5);
      mod = traffic_matrix[i][j] - 2.5 * int_part;
if (traffic_matrix[i][j] != 0)

traffic_matrix[i][j] = 2.5 * (int_part + 1);
}

  cout << endl << "Truncated Traffic Matrix :" << endl;
  for (i = 0; i < num_of_nodes; i++)          // Print traffic matrix
    for (j = 0; j < num_of_nodes; j++) {
      cout << traffic_matrix[i][j] << " ";
      if (j == num_of_nodes-1)

cout << endl;
    }

  cout << endl << "Network’s Links Labels :" << endl;
  for (i = 0; i < num_of_nodes; i++)          // Print the labels’ matrix
    for (j = 0; j < num_of_nodes; j++) {
      if (labels[i][j] >= 0)

cout << labels[i][j] << " ";
      else

cout << " - ";
      if (j == num_of_nodes-1)

cout << endl;
    }

//  cout << endl << "Number of paths : " << num_of_paths << endl;

  int path_matrix[num_of_paths][NUM_OF_HOPS + 1];   /* This array includes all the
              available network’s paths,

            as well as their total length */
  float path_length[num_of_paths];    // The total length of each path
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  int path_number;
  int count = 0;

  path_number = 0;  // The path’s serial number
  for (i = 0; i < num_of_nodes-1; i++)    // Construct the path matrix
    for (j = i+1; j < num_of_nodes; j++) {
      if (AdjacencyMatrix[i][j] == 1) {

path_matrix[path_number][0] = path_matrix[path_number][1] =
    path_matrix[path_number][2] = path_matrix[path_number][3] = i;  // Direct path
path_matrix[path_number][4] = j;
path_length[path_number] =
  distance[path_matrix[path_number][0]][path_matrix[path_number][4]];
count++;
}

      else {
path_matrix[path_number][0] = path_matrix[path_number][1] =
  path_matrix[path_number][2] = path_matrix[path_number][3] =
    path_matrix[path_number][4] = -1;
  path_length[path_number] = 0;

      }
      path_number++;

      k = 0;
      while (k < num_of_nodes) {           // Two-hop path

path_matrix[path_number][0] = i;
  path_matrix[path_number][4] = j;
while (k == i || k == j)
  k++;
if (k < num_of_nodes) {
  if (AdjacencyMatrix[i][k] == 1 && AdjacencyMatrix[k][j] == 1) {
    path_matrix[path_number][1] = path_matrix[path_number][2] =
      path_matrix[path_number][3] = k;
    path_length[path_number] =
      distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +

distance[path_matrix[path_number][1]][path_matrix[path_number][4]];
      count;
  }
  else {
    path_matrix[path_number][0] = path_matrix[path_number][1] =

path_matrix[path_number][2] = path_matrix[path_number][3] =
  path_matrix[path_number][4] = -1;

    path_length[path_number] = 0;
  }
  path_number++;

  l = 0;
  while (l < num_of_nodes) {        // Three-hop path
    path_matrix[path_number][0] = i;
    path_matrix[path_number][1] = k;
    path_matrix[path_number][4] = j;
      while (l == i || l == j || l == k)

l++;
    if (l < num_of_nodes) {
      if (AdjacencyMatrix[i][k] == 1 && AdjacencyMatrix[k][l] == 1 &&

    AdjacencyMatrix[l][j] == 1) {
path_matrix[path_number][2] = path_matrix[path_number][3] = l;
path_length[path_number] =
  distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +
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    distance[path_matrix[path_number][1]][path_matrix[path_number][2]] +
      distance[path_matrix[path_number][2]][path_matrix[path_number][4]];
count++;

      }
      else {

path_matrix[path_number][0] = path_matrix[path_number][1] =
  path_matrix[path_number][2] = path_matrix[path_number][3] =
    path_matrix[path_number][4] = -1;
path_length[path_number] = 0;
}

      path_number++;

      m = 0;
      while (m < num_of_nodes) {           // Four-hop

path_matrix[path_number][0] = i;
path_matrix[path_number][1] = k;
path_matrix[path_number][2] = l;
path_matrix[path_number][4] = j;
while (m == i || m == j || m == k || m == l)
  m++;
if (m < num_of_nodes) {
  if (AdjacencyMatrix[i][k] == 1 && AdjacencyMatrix[k][l] == 1 &&
      AdjacencyMatrix[l][m] == 1 && AdjacencyMatrix[m][j] == 1) {
    path_matrix[path_number][3] = m;
    path_length[path_number] =
      distance[path_matrix[path_number][0]][path_matrix[path_number][1]] +
        distance[path_matrix[path_number][1]][path_matrix[path_number][2]] +

            distance[path_matrix[path_number][2]][path_matrix[path_number][3]] +
            distance[path_matrix[path_number][3]][path_matrix[path_number][4]];
    count++;
  }
  else {
    path_matrix[path_number][0] = path_matrix[path_number][1] =
      path_matrix[path_number][2] = path_matrix[path_number][3] =

path_matrix[path_number][4] = -1;
    path_length[path_number] = 0;
  }
  path_number++;
}
m++;

      }
    }
    l++;
  }
}
k++;

      }
    }

  cout << endl;
  int counter = 0;
  int ShortestPaths[NUM_OF_SHORTEST_PATHS * num_of_node_pairs][NUM_OF_HOPS +
1];                  // These are the 3-shortest paths of every node pair in the network
  float ShortestLengths[NUM_OF_SHORTEST_PATHS * num_of_node_pairs];
  int *PathsArray[MAX_NUM_OF_PATHS];  // The paths of the current node pair
  for (i = 0; i < MAX_NUM_OF_PATHS; i++)   // Memory allocation
    PathsArray[i] = new int[NUM_OF_HOPS + 1];
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  float LengthsArray[MAX_NUM_OF_PATHS];
  Initialize(PathsArray, LengthsArray);

  counter = 0;
  for (i = 0; i < num_of_paths; i++) {   /* Print all the networks paths,

        and the corresponding total length */
    if ((path_matrix[i][0] == path_matrix[i][1]) && (path_matrix[i][1] == path_matrix[i][2]) &&

(path_matrix[i][2] == path_matrix[i][3]) && (path_matrix[i][0] != -1)) {
      cout << "x" << i+num_of_links << " = ";
      cout << Nodes[path_matrix[i][0]] << " - ";
      cout <<  Nodes[path_matrix[i][4]] << " - ";
      cout << "Traffic :" << traffic_matrix[path_matrix[i][0]][path_matrix[i][4]] +

traffic_matrix[path_matrix[i][4]][path_matrix[i][0]];
      cout << "  Length :" << path_length[i];
      cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][4]] << ")" << endl;
      PathsArray[counter] = path_matrix[i];
      LengthsArray[counter] = path_length[i];
      counter++;
    }
    else if (path_matrix[i][1] == path_matrix[i][2] && path_matrix[i][2] == path_matrix[i][3]

     && path_matrix[i][0] != -1) {
      cout << "x" << i+num_of_links << " = ";
      cout << Nodes[path_matrix[i][0]] << " - ";
      cout << Nodes[path_matrix[i][2]] << " - ";
      cout << Nodes[path_matrix[i][4]] << " - ";
      cout << path_length[i];
      cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][4]] << ")" << endl;
      PathsArray[counter] = path_matrix[i];
      LengthsArray[counter] = path_length[i];
      counter++;
    }
    else if (path_matrix[i][2] == path_matrix[i][3] && path_matrix[i][0] != -1) {
      cout << "x" << i+num_of_links << " = ";
      for (j = 0; j < NUM_OF_HOPS + 1; j++)

if (j != NUM_OF_HOPS - 1)
  cout << Nodes[path_matrix[i][j]] << " - ";

      cout << path_length[i];
      cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][NUM_OF_HOPS]] << ")" <<
endl;
      PathsArray[counter] = path_matrix[i];
      LengthsArray[counter] = path_length[i];
      counter++;
    }
    else if (path_matrix[i][0] != -1) {
      cout << "x" << i+num_of_links << " = ";
      for (j = 0; j < NUM_OF_HOPS + 1; j++)

cout << Nodes[path_matrix[i][j]] << " - ";
      cout << path_length[i];
      cout << "  (x" << labels[path_matrix[i][0]][path_matrix[i][NUM_OF_HOPS]] << ")" <<
endl;
      PathsArray[counter] = path_matrix[i];
      LengthsArray[counter] = path_length[i];
      counter++;
    }

    if (counter != 0 && (i+1) % num_of_paths_per_pair == 0) {
      Sort_Paths(PathsArray, LengthsArray, counter);
      cout << "x" << i / num_of_paths_per_pair << " : "

<< counter << " paths" << endl;
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      for (j = i/num_of_paths_per_pair * NUM_OF_SHORTEST_PATHS;
   j < ((i/num_of_paths_per_pair) + 1) * NUM_OF_SHORTEST_PATHS; j++) {
for (k = 0; k < NUM_OF_HOPS+ 1; k++)
  ShortestPaths[j][k] = PathsArray[j - i/num_of_paths_per_pair *

NUM_OF_SHORTEST_PATHS][k];
ShortestLengths[j] = LengthsArray[j - i/num_of_paths_per_pair *

NUM_OF_SHORTEST_PATHS];
      }
      Initialize(PathsArray, LengthsArray);
      counter = 0;
    }
  }

  cout << "SHORTESTS PATHS : " << endl;
  for (i = 0; i < NUM_OF_SHORTEST_PATHS * num_of_node_pairs; i++) {
    if (ShortestPaths[i][0] == ShortestPaths[i][1] && ShortestPaths[i][1] == ShortestPaths[i][2]
&&

ShortestPaths[i][2] == ShortestPaths[i][3])
      cout << Nodes[ShortestPaths[i][0]] << " - " <<  Nodes[ShortestPaths[i][NUM_OF_HOPS]]
<< " : "

<< ShortestLengths[i] << " (x" << i*num_of_wavelengths + num_of_links << "-"
  << i*num_of_wavelengths + num_of_links + num_of_wavelengths - 1 << ")" << endl;

    else if (ShortestPaths[i][1] == ShortestPaths[i][2] && ShortestPaths[i][2] ==
ShortestPaths[i][3])
      cout << Nodes[ShortestPaths[i][0]] << " - " <<  Nodes[ShortestPaths[i][1]] << " - "

<< Nodes[ShortestPaths[i][NUM_OF_HOPS]] << " : " << ShortestLengths[i] << " (x"
  << i*num_of_wavelengths + num_of_links << "-"
    << i*num_of_wavelengths + num_of_links + num_of_wavelengths - 1 << ")" << endl;

    else if (ShortestPaths[i][2] == ShortestPaths[i][3])
      cout << Nodes[ShortestPaths[i][0]] << " - " <<  Nodes[ShortestPaths[i][1]] << " - "

<< Nodes[ShortestPaths[i][2]] << " - " << Nodes[ShortestPaths[i][NUM_OF_HOPS]]
  << " : " << ShortestLengths[i] << " (x" << i*num_of_wavelengths + num_of_links <<
      "-"  << i*num_of_wavelengths + num_of_links + num_of_wavelengths - 1 << ")" <<
         endl;

    else
      cout << Nodes[ShortestPaths[i][0]] << " - " <<  Nodes[ShortestPaths[i][1]] << " - "

<< Nodes[ShortestPaths[i][2]] << " - " <<  Nodes[ShortestPaths[i][3]] << " - "
  << Nodes[ShortestPaths[i][NUM_OF_HOPS]] << " : " << ShortestLengths[i] << " (x"
    << i*num_of_wavelengths + num_of_links << "-"
      << i*num_of_wavelengths + num_of_links + num_of_wavelengths - 1 << ")" <<

endl;
    if ((i+1) % NUM_OF_SHORTEST_PATHS == 0)
      cout << endl;
  }

  // Insert the OBJECTIVE FUNCTION into the lp_solve input file
  out << "min: ";
  for (i = 0; i < num_of_links - 1; i++)
    out << "x" << i << " + ";
  out << "x" << num_of_links - 1 << ";" << endl << endl;

  /* Constraint in cuts around nodes (the links attached to each node are
     supposed to have total capacity bigger or equal to the sum of traffic with
     source and destination this node) */
  float sum = 0.0;    // Sum of row & column capacities
  for (i = 0; i < num_of_nodes; i++) {
    k = 0;
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    for (j = 0; j < num_of_nodes; j++) {
      sum += traffic_matrix[i][j] + traffic_matrix[j][i];
      if (AdjacencyMatrix[i][j] == 1) {

if (k < NodesConnections[i] - 1) {
  out << "x" << labels[i][j] << " + ";
  k++;
}
else
  out << "x" << labels[i][j] << " >= " << sum << ";" << endl;

      }
    }
    sum = 0.0;
  }

  /* An another constraint is added if we remove each one of the links between 2 nodes
     and then require the rest of the links attached to these 2 nodes to have total capacity
     equal to the sum of traffic units with source or destination the 2 nodes */
  int array_of_labels[num_of_nodes-2];
  out << endl;

  for (i = 0; i < num_of_links; i++) {
    j = NodePairs[i][0];    // Find the two nodes to which the current link is attached to
    k = NodePairs[i][1];
    sum = 0.0;    /* Sum of traffic units with source and destination the 2 nodes that the

specific link connects, except the ones carried by that link */

    counter = NodesConnections[j] + NodesConnections[k] -2;   /* Number of links attached
     to the 2 nodes except
     the one removed */

    m = 0;
    for (l = 0; l < num_of_nodes; l++) {
      sum += traffic_matrix[j][l] + traffic_matrix[l][j]

+ traffic_matrix[l][k] + traffic_matrix[k][l];
      if (labels[j][l] != -1 && labels[j][l] != i) {

array_of_labels[m] = labels[j][l];
m++;

      }
      if (labels[l][k] != -1 && labels[l][k] != i) {

array_of_labels[m] = labels[l][k];
m++;

      }
    }
    sum -= (2 * traffic_matrix[j][k]) + (2 * traffic_matrix[k][j]);
    Sort(array_of_labels, counter);

    for (k = 0; k < counter; k++)
      if (k < counter-1)

out << "x" << array_of_labels[k] << " + ";
      else

out << "x" << array_of_labels[k] << " >= " << sum << ";" << endl;
  } // for

  out << endl;

 /* At this point we introduce into the LP problem some extra variables, each
     one of which represents the ammount of traffic carried out by a stream
     (corresponding to one wavelength of an existing node pair). A constraint is



Appendix E :Codes Project Report

108

     introduced, if we require the sum of the traffics carried by those streams, to
     be equal to the traffic between the 2 nodes, given by the traffic matrix. */
int VarsPerNodePair = NUM_OF_SHORTEST_PATHS * num_of_wavelengths;
for (i = 0; i < num_of_node_pairs; i++)
    for (j = 0; j < VarsPerNodePair; j++) {

      counter = 0;       // Find the source and destination node of the current node pair
      for (k = 0; k < num_of_nodes; k++) {

for (l = k+1; l < num_of_nodes; l++)
  if (counter == i)
    break;
  else if (l < num_of_nodes - 1)
    counter++;
if (counter == i)
  break;
else
  counter++;

      }

      sum = traffic_matrix[k][l] + traffic_matrix[l][k];   /* The traffic between the nodes
    that the current link connects */

      for (j = 0; j < VarsPerNodePair - 1; j++)
out << "x" << i * VarsPerNodePair + j + num_of_links << " + ";

      out <<  "x" << (i + 1) * VarsPerNodePair - 1 + num_of_links << " = " << sum << ";" <<
endl;
    }

  out << endl;

  /* An extra constraint is added by requiring the sum of streams, for streams
     that use a specific link, to be equal to the capacity of that link. */

  int ParticipatingStreams[num_of_links][num_of_node_pairs *
NUM_OF_SHORTEST_PATHS];
                                                      /* A list of streams that

 traverse a specific link */
  for (i = 0; i < num_of_links; i++) {
    j = NodePairs[i][0];    // Find the two nodes to which the current link is attached to
    k = NodePairs[i][1];
    counter = 0;
    for (l = 0; l < num_of_node_pairs * NUM_OF_SHORTEST_PATHS; l++)
      if ((ShortestPaths[l][0] == j && ShortestPaths[l][1] == k) ||

  (ShortestPaths[l][1] == j && ShortestPaths[l][2] == k) ||
  (ShortestPaths[l][2] == j && ShortestPaths[l][3] == k) ||
  (ShortestPaths[l][3] == j && ShortestPaths[l][4] == k) ||
  (ShortestPaths[l][0] == k && ShortestPaths[l][1] == j) ||
  (ShortestPaths[l][1] == k && ShortestPaths[l][2] == j) ||
  (ShortestPaths[l][2] == k && ShortestPaths[l][3] == j) ||
  (ShortestPaths[l][3] == k && ShortestPaths[l][4] == j))
ParticipatingStreams[i][counter++] = l * num_of_wavelengths + num_of_links;

    for (m = 0; m < counter - 1; m++)
      for (count = 0; count < num_of_wavelengths; count++)

out << "x" << ParticipatingStreams[i][m] + count << " + ";
    for (count = 0; count < num_of_wavelengths - 1; count++)
      out << "x" << ParticipatingStreams[i][m] + count << " + ";
    out << "x" << ParticipatingStreams[i][counter-1] + num_of_wavelengths - 1
      << " = x" << i << ";" << endl;
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    ParticipatingStreams[i][num_of_node_pairs * NUM_OF_SHORTEST_PATHS - 1] = counter;
  }

  out << endl;

  /* We require capacities representing wavelengths not to exceed the maximum that can be
       carried out */
  for (i = 0; i < num_of_node_pairs * VarsPerNodePair; i++)
    out << "x" << i + num_of_links << " <= " << WAVELENGTH_CAPACITY << ";" << endl;

  out << endl;

  /* We require capacities representing wavelengths to be non-negative */
  for (i = 0; i < num_of_node_pairs * VarsPerNodePair; i++)
    out << "x" << i + num_of_links << " >= " << 0 << ";" << endl;

  out << endl;

  /* We introduce a constraint in order to avoid overlaps for the same wavelengths of different
      streams that traverse the same link */

  for (i = 0; i < num_of_links; i++) {
    counter = ParticipatingStreams[i][num_of_node_pairs * NUM_OF_SHORTEST_PATHS - 1];
    for (j = 0; j < num_of_wavelengths; j++) {
      for (m = 0; m < counter - 1; m++)

out << "x" << ParticipatingStreams[i][m] + j << " + ";
      out << "x" << ParticipatingStreams[i][counter-1] + j << " <= "

<< WAVELENGTH_CAPACITY << ";" << endl;
    }
  }

  out << endl;

} // Main

/* This function is used for reading the input file containing information about
   the names of nodes, their location (coordinates) and the traffic corresponding
   to each potential node pair */
void Read_File (ifstream& in, char Nodes[][11],

float coordinates[][2], float **traffic_matrix,
int **AdjacencyMatrix, int &num_of_links)

{
  int i,j,x,y;
  char ch;

  for (i = 0; i < num_of_nodes; i++) { /* Create the array of Nodes’ names
       and coordinates */

    in >> Nodes[i];         // Name of node
    in >> coordinates[i][0];   // x cordinate
    in >> coordinates[i][1];   // y coordinate
  }

  cout << endl << "Coordinates :" << endl;
  for (i = 0; i<num_of_nodes; i++)
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    cout << Nodes[i] << " : x=" << coordinates[i][0] << ", y=" << coordinates[i][1] << endl;

  for (i = 0; i < num_of_nodes; i++) {   // Reading information about the traffic
    for (j = 0; j < num_of_nodes; j++) {
      in >> x;
      in >> y;
      in >> traffic_matrix[i][j];
    }
  }

  num_of_links = 0;

  while (!in.eof()) {
   in >> x;
   in >> y;
   AdjacencyMatrix[x][y] = AdjacencyMatrix[y][x] = 1;
   num_of_links++;
  }
  num_of_links--;

  in.close();

}  // Read_File

/* This function sorts an array of "count" numbers in increasing order,
     using the "Selection Sort" algorithm */
void Sort (int numbers[], int count)
{
  int i,j,t;

  for (i = 1; i < count; i++) {
    t = numbers[i];
    j = i;
    while (numbers[j-1] > t) {
      numbers[j] = numbers[j-1];
      j--;
    }
    numbers[j] = t;
  }

} // Sort

// Initialization of the array of existing paths between a node pair
void Initialize (int **PathsArray, float LengthsArray[MAX_NUM_OF_PATHS])
{
  int i,j;
  for (i = 0; i < MAX_NUM_OF_PATHS; i++) {
    for (j = 0; j < NUM_OF_HOPS + 1; j++)
      PathsArray[i][j] = -1;
    LengthsArray[i] = 0.0;
  }
}  // Initialize

/* This function sorts the array of the existing direct, 2, 3 and 4-hop paths between
   each node pair in increasing order of length, using the "Selection Sort" algorithm */
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void Sort_Paths (int **PathsArray, float LengthsArray[MAX_NUM_OF_PATHS], int count)
{
  int i,j,k;
  float t,f;
  int row[NUM_OF_HOPS + 1];

  for (i = 1; i < count; i++) {
    t = LengthsArray[i];
    for (k = 0; k < NUM_OF_HOPS + 1; k++)
      row[k] = PathsArray[i][k];
    j = i;
    while (LengthsArray[j-1] > t) {
      LengthsArray[j] = LengthsArray[j-1];
      for (k = 0; k < NUM_OF_HOPS + 1; k++)

PathsArray[j][k] = PathsArray[j-1][k];
      j--;
    }
    LengthsArray[j] = t;
    for (k = 0; k < NUM_OF_HOPS + 1; k++)
      PathsArray[j][k] = row[k];
  }

} // Sort_Paths

E.3. Code Creating xfig Pictures for the 9 Central Nodes of EON

/******************************************************************************

Program: drawnet.cc (1.4) Author: M.C.Sinclair, E.S.E. Date: 94/04/17
(modified by D. Gavalas in order to create an xfig picture for the 9 central nodes of EON)

******************************************************************************/

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <assert.h>

#define NUMNODES      9
#define GENOTYPELEN   ((NUMNODES * (NUMNODES-1))/2)
#define PICTWIDTH    640
#define PICTHEIGHT   640
#define PICTMARGIN    40
#define CIRCLESIZE     5
#define LINETHICK      2

typedef struct node_s Node;

struct node_s {
  char     *name;
  int      xTextOs; /* x text offset (pixels) */
  int      yTextOs; /* y text offset (pixels) */
  double   x;                /* x and y in cm; 200km = 1 cm  */
  double   y;
};
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Node nodes[] = {
  {"Paris",       10, 10, 13.02, 10.65},
  {"London",     -40,  4,  13.12, 8.71},
  {"Berlin",     -37,  5,  18.31, 8.96},
  {"Milan",      -40,  5,  15.95, 12.91},
  {"Brussels",    10,  5, 14.40,  9.88},
  {"Amsterdam",   10,  5, 14.82, 9.2}, /* y changed from 8.78 */
  {"Prague",     -40,  5, 18.0, 10.44},   /* x changed from 17.36 */
  {"Zurich",      15,  5, 15.98, 11.96},
  {"Luxembourg",  10,  5, 15.06, 10.30},
 };

typedef struct scale_s Scale;

struct scale_s {
  double xOffset;
  double yOffset;
  double xScale;
  double yScale;
};

void drawNet(char* genotype, int gtlen);
void drawNode(int nodeId, Scale* sf);
void drawLink(double x1, double y1, double x2, double y2, Scale* sf);

int main(int argc, char** argv) {
  if (argc != 2 || strlen(argv[1]) != GENOTYPELEN) {
    fprintf(stderr, "usage: %s %d_bit_genotype\n", argv[0], GENOTYPELEN);
    exit(1);
  }

  drawNet(argv[1], GENOTYPELEN);
}

void drawNet(char* genotype, int gtlen) {
  int i, j, k;
  double minX, maxX, minY, maxY;
  Scale sf;

  assert(gtlen == GENOTYPELEN);
  assert(sizeof(nodes)/sizeof(Node) == NUMNODES);

  /* Calculate scaling factors (reversing y-axis) */

  assert(NUMNODES >= 2);

  minX = maxX = nodes[0].x;
  minY = maxY = nodes[0].y;
  for (i = 1; i < NUMNODES; i++) {
    if (nodes[i].x < minX)
      minX = nodes[i].x;
    else if (nodes[i].x > maxX)
      maxX = nodes[i].x;
    if (nodes[i].y < minY)
      minY = nodes[i].y;
    else if (nodes[i].y > maxY)
      maxY = nodes[i].y;
  }
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  sf.xScale  = (PICTWIDTH -(2*CIRCLESIZE)-(2*PICTMARGIN))/(maxX-minX);
  sf.yScale  = (PICTHEIGHT-(2*CIRCLESIZE)-(2*PICTMARGIN))/(maxY-minY);
  sf.xOffset = -minX+((CIRCLESIZE+PICTMARGIN)/sf.xScale);
  sf.yOffset = -minY+((CIRCLESIZE+PICTMARGIN)/sf.yScale);

#ifdef DEBUG
  fprintf(stderr, "sf = (%f, %f, %f, %f)\n",

  sf.xOffset, sf.yOffset, sf.xScale, sf.yScale);
#endif

  /* Initial picture instructions */

  printf("#FIG 2.1\n80 2\n");

  /* Draw Nodes */

  for (i = 0; i < NUMNODES; i++)
    drawNode(i, &sf);

  /* Draw Links */

  for (i = 0, k = 0; i < NUMNODES; i++)
    for (j = i+1; j < NUMNODES; j++, k++) {
      if (genotype[k] != ’0’)

/* Link exists between (i,j) */
drawLink(nodes[i].x, nodes[i].y, nodes[j].x, nodes[j].y, &sf);

    }

  assert(k == GENOTYPELEN);
}

void drawNode(int nodeId, Scale* sf) {
  double x = nodes[nodeId].x;
  double y = nodes[nodeId].y;
  char name[4];
  int i;
  x += sf->xOffset;
  x *= sf->xScale;
  y += sf->yOffset;
  y *= sf->yScale;
  printf("1 3 0 1 0 0 0 21 0.0 1 0.0 %.0f %.0f %d %d %.0f %.0f %.0f %.0f\n",
         x, y, CIRCLESIZE, CIRCLESIZE, x, y, x, y+CIRCLESIZE);
  for (i=0; i<3; i++)
    name[i] = toupper(nodes[nodeId].name[i]);
  name[i] = ’\0’;
  printf("4 0 28 12 0 0 0 0.0 4 15 33 %.0f %.0f %s´ \n",

 x+nodes[nodeId].xTextOs, y+nodes[nodeId].yTextOs, name);
}

void drawLink(double x1, double y1, double x2, double y2, Scale* sf) {
  /*
    #FIG 2.1
    80 2
    1 3 0 1 -1 0 0 21 0.00000 1 0.000 214 89 10 10 214 89 214 99
    1 3 0 1 -1 0 0 21 0.00000 1 0.000 374 164 10 10 374 164 374 174
    2 1 0 2 -1 0 0 21 0.000 -1 0 0
    214 89 374 164 9999 9999
    */
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  x1 = (x1 + sf->xOffset) * sf->xScale;
  y1 = (y1 + sf->yOffset) * sf->yScale;
  x2 = (x2 + sf->xOffset) * sf->xScale;
  y2 = (y2 + sf->yOffset) * sf->yScale;
  printf("2 1 0 %d 0 0 0 0 0.0 -1 0 0\n  %.0f %.0f %.0f %.0f 9999 9999\n",

 LINETHICK, x1, y1, x2, y2);


