Mobile Software Agents for Network

Monitoring and Performance Management

Damianos Gavalas

A thesis submitted for the degree of Doctor of Philosophy

Department of Electronic Systems Engineering

University of Essex

June 2001

ABSTRACT

The rapid developments in the area of communication and data networks require high-
performance and reliable Network and Systems Management (NSM). Due to the deficiencies
of the traditional manager-agent paradigm and the resulting scalability and flexibility
limitations of centralisation, it is now commonly agreed that a transition to distributed
management 1is required. There are many new trends in NSM that try to address this
requirement. In general, these trends make use of well-established techniques from other
computing fields, e.g. distributed objects, Java and Web technologies, adapted to NSM
problems. In addition, management distribution aspects have also been incorporated in both the
Internet and OSI-SM management architectures. However, it has been shown that distribution
alone is not enough. Due to the high frequency of changes in networking environments, it is
imperative that management systems are flexible, i.e. they can dynamically adapt to those
changes and allow on-the-fly customisation of management services. In that context,
Management by Delegation (MbD) paradigm has been identified as the first promising

approach towards management distribution and flexibility.

Mobile Agents (MA) represent a relatively new computing paradigm used in several
domains as a means for structuring distributed applications. The term MA refers to a software
entity identified by its code, persistent and execution state, with the ability to autonomously
move from host to host, acting on behalf of a user or an application. The MA paradigm is part
of the generic family of mobile code paradigms, which provide a mechanism to extend the
capabilities of services through dynamically moving the components of a distributed
application among the nodes of a network. In the context of NSM, MAs represent a relatively
new trend that builds on the groundwork of MbD and involves the use of mobile objects as a
tool to realise scalable and flexible distributed management systems. MA-based management
has been a subject of intense research in the past few years, reflected on the proliferation of
MA platforms (MAP) expressly oriented to distributed NSM. However, the applicability of
MAs in management applications is still subject of ongoing debates, due to concerns related to
the security, performance and scalability aspects of this technology. Namely, it is still unclear
which problems of distributed management can be addressed by MAs and whether their use

can offer performance benefits compared to alternative solutions.

A first objective of the research work described in this thesis has, therefore, been to assess
the values and weaknesses of MA technology from the management viewpoint and identify
ways for the effective use of this technology in distributed management applications. Based on
this assessment, we have identified a set of requirements that MAPs tailored to management
applications should meet. Following that, we have implemented an NSM-oriented MA
framework, satisfying these requirements. Our framework addresses the scalability, flexibility
and adaptability requirements related to the management of large-scale and dynamic networks.
The performance of our prototype has been quantitatively and experimentally evaluated,
demonstrating its competence against centralised management and distributed objects-based

approaches.

In addition, three novel applications that exploit the ability of MAs for performing
decentralised operations have been developed on the top of the introduced MA-based
management framework. The application areas include the fields of network monitoring and
performance management. In particular, the proposed applications include semantic
compression of management data, efficient retrieval of bulk monitoring data and filtering of

SNMP tables according to pre-defined, arbitrarily complex filtering criteria.

il

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude towards my academic supervisor, Prof.
Mohammed Ghanbari, for his guidance and support throughout the course of this work. I also
feel indebted to my second supervisor, Prof. Mike O’Mahony, for giving me the opportunity to
start my PhD, his inspiring suggestions and useful advice. I am grateful to Dr. Dominic
Greenwood, my ‘industrial supervisor’, for introducing me to the fields of mobile agents and
network management, keeping me on the rails (especially in the first stages of my research)
and treating me more like a friend rather than a colleague. Fujitsu Telecommunications Europe

Ltd. is acknowledged for funding this work.

Also, the members of the UCD-SNMP, Aglets and mobility mailing lists have provided an
invaluable service as a community of peers amongst which to discuss my research. Many of
the ideas expressed in this thesis have been shaped and refined in those forums. Many thanks
to Wes Hardaker, Todd Papaioannou and especially Kristen Pol that helped me to solve a Java
programming problem which troubled me for over two months. Paolo Bellavista and Prof.
Antonio Corradi are also acknowledged for their valuable tips and insightful ideas during the

implementation of the Resources Usage Monitoring Tool described in Chapter 6.

I would also like to thank all my current and past colleagues at the research laboratory who
have created an enjoyable atmosphere: Tom Cambel, Jason Neale, Noel Parnis, Alicia
Calonico-Soto, Fyllon Papadopoulos, Costas Dimopoulos, Bernard Lee, Jenny He, Candies
Lam, Antonio Pinheiro and Moises Ribeiro. It has been a genuine pleasure to work with them.
Special thanks to Moises who has been the best officemate I could ever ask for; I have very

much enjoyed our long, non-technical conversations.

I would like to acknowledge the help of all my friends: for keeping me ‘mentally’ healthy
and most importantly for reminding me that there are more important things in life than a PhD.
Many thanks to Kostas Drakos, George Spiliotopoulos, Alkistis Deligianni, Tasos Fotiou,
Maria Ziouvelou, Panos Hanjiprokopiou, Antonis Blahos, Deni Alexandropoulou, Thomas

Verakis, Zambia Tzouganaki, Nikos Apostolopoulos, Baggelis Katsaras, Giorgos Parargiris.

il

Special thanks to my dearest friends Dimitris Alexandropoulos, Tanya Politi and Ottavia
Jedrkiewicz; they have all been very caring and supportive and have greatly contributed to

making the last and most stressful year of my studies an adventure worthwhile to live.

Most importantly I would like to thank Katerina Proestaki, whose unswerving support and
companionship have allowed me to concentrate my efforts on achieving my goals and made
this long and difficult trip look like a pleasant journey. Katerina has also reviewed and
provided valuable feedback on several of my research papers published over the last three

years and also on Chapters 1 and 2 of this thesis.

Finally, I would like to thank my family, Giorgos, Maria, Nikos and Dimitris Gavalas for
caring, supporting and always being there for me throughout my many years of study. They
have probably contributed much more than me to this thesis. I hope my completion will repay

to some extend their trust, support and expectations.

v

2THV OLKOYEVELD,

Ko 700G PIAOVG OV

“No. vTOPEPELS OEIVA. TTOD OKOUO. KoL 1] EATTLOO. TaL Bewpel aTéEPLOvo.

No. aynpag v eCovoio. oo Ho16el TavToodvoun

Na ayomos kot va DTOUEVELS

Na eAmiels, ew¢ 0tov n EATIOO. HETO OTTO THY 1010, TV KOTAGTPOPH] THG, VO. TPOYUATDGCEL TO
OKOTO THG

No. unv aAlaleis, odte va 010T0LEIS, UNTE VO UETOVIDVELS

e0a eivou n 0oéa oov Titavo.: kaloovvy, ueyaleio, evtoyio, opopeLa kot elsvbepio..,,

“ITpounBéag Avdpevog”
A. ZéMhev

vi

CONTENTS

CHAPTER 1: INTRODUCTION ... e e et e e e e e e e e e 1

1.1. NETWORK AND SYSTEMS MANAGEMENT: THE PATHWAY ToO DISTRIBUTED

IMANAGEMENT ..ot ettt e ee et e e e e e et et e e et e e e e e et e et e e e e e e reee e nenns 1
1.2. MOBILE AGENTS FOR NETWORK MANAGEMENT: PROSPECTS & HURDLEScc.cvvvnvneenn. 3
1.3 THESIS WORK ... et ettt et ettt et et o e et et e et o e et e e e et tee e e e s et eee aee s 5
1.4. OVERVIEW AND STYLE OF THE THESIS ettt etttetin it aeeeeeaae it et eee aae e enneee aeeas 6

CHAPTER 2: NETWORK & SYSTEMS MANAGEMENT: STANDARDS, EMERGING
TECHNOLOGIES AND THE SHIFT FROM CENTRALISED TO DISTRIBUTED PARADIGM 9

22 I Vi T 10 T 1 9
2.2. MANAGEMENT FUNCTIONAL AREAS ...ttt it it et et et te et et eae e ereee e e e e ae et eneenenns 11
2.3. THE OSI SYSTEMS MANAGEMENT ...t vttt ittt et eteene e ettenetaeae et e eneeneenaennenaen e 12
2.4, INTERNET IMANAGEMENT ... ittt ittt et e tte e et es et et se et eae eae e et en et aeaa et eneaneeneens 13
2.4.1. SNMP ProtoCOl Data UNITSccvviiiiiiriir i e et e 15
2.4.2. SNMP VErsioning NiSTOTYvuuitis it oo et et e e e et e e reeaaaes
2.4.3. Strengths/Limitations of SNMP
2.5. DISTRIBUTED OBJECTS-BASED MANAGEMENT ... tuttit it it vt et et e etetenaeeaeaeeneeeeneanes 21
2.5, 0 CORBA .t e e e et e e e e 21
2.5.2.JAVA RMI Looiiiiiii i 22
2.5.3. LIMIEALIONS ©.cei ittt e et et et e 22
2.6. DIRECTORY ENABLED NETWORKS ...ttt tt it ce et ettt tee e et een e e e n e e e e 23
2.7. JAVA-BASED IMANAGEMENTet ittt ittt ee et e set e e e ret et e e e e e e e e se e e e e ens 23
2.7.1. OVEIVIEW OF JAVA ...ttt et e e ettt e et et e 24
2.7.1.1. Generic Benefits & Deficiencies 0f JAVAvvuiviiiiiis 24
2.7.2. Java Technologies for Network & Systems Managementcouuuiorieriiriiieee et e ee e eee e 26
2.7.3. Research approaches to Java-based Managementcoooiiiiuiiiiiee e et e 27
2.8. WEB-BASED IMANAGEMENT ..\t tittet vttt et e e et et et aeaee et eae e e et e nen aeaae et eneenenns 27
2.9. THE NEED FOR DISTRIBUTED MANAGEMENT ... vttt ittt ieet et een et eneete veeeeaeeenennenaanees 28
2.10. DECENTRALISATION INITIATIVES WITHIN THE INTERNET COMMUNITY ...viiiiiiiieeieieaaenn, 30
2.10.1. Management Distribution within the SNMP Frameworksccoooiiiiiiiiiii e 30
2.10.2. REMOLE IMONITOTING ettt e et oottt e e e et et e ettt e e e e e et et e e e ee e e e eeene s 31
2.10.3. SCIIPEIMIB ... et e e e et e e et e e e e e e e e e e e 32
2.11. RESEARCH APPROACHES ON MANAGEMENT DISTRIBUTION ...t venii e vie e enenenenveneees 34

Vil

Contents

2.11.1. Management By Delgationue o iiiuie oot et e e e e e 34
2.11.2. FIEXIDIE AGBNTS.t e e et e e e e e et e e 34
2.11.3. The Spreadsheet QPPIOACKci.iiuie it e e et e et et e e s e e eee e 35
2.11.4. Hierarchical ManagemENT it et ettt et e e et e e ettt e et e e e e e ereabe e eaeas 35
2.12. SYNTHESIS & EVALUATION OF EXISTING APPROACHES ON MANAGEMENT DISTRIBUTION 36
2.03. SUMMARY L.ttt ittt et e et e e et e e e e e e e e e e e e e e e e n e e e aa e 39

R 0 U Vi T 10 T 1T 40
3.2. CODE MOBILITY PARADIGMS ...ttt ittt et et et et seaen eae ate e eeeeeen e aen et eaeeneeneaeneennns 42
3.2.1. REMOLE EVAIUALIONvieii oot e ettt ettt e ettt e 42
3.2.2. COUE ON DEMANG ...ttt ettt ettt et e e et e e e e 43
3.2.3. IMODIIE AGBNTS ...ttt et e e e e e e e aas 43
3.3. MOBILE CODE — ADVANTAGES ... et tittetitt it et e tte e e tea et aeaeaen eaeete e aeareaenaenaenens 43
3.4, MASVS. REV AND COD ...ttt et e e e e e e e e e e e ee e eaes 44
3.5, AGENT IMOBILITY .ttt it eet ettt ettt ettt e e et e e e e e e e n et ettt e e e e ea e e e neas 48
3.5.1. Elements of a Mobile Agent PIatformoviiiiiiiii e e 48
3.5.2. MODIile AGENT LANGUAGES ...vvvivteeeiit i eee it et ettt e et e et et e e e et e e e e et e e e e et e eebae e eaaas 49
3.5.3. Security in MODIle AGENT SYSLEIMSit et ettt et et e et et e et e e e e e eeene s 51
3.5.4. Standardisation APPIOACHEScc.ie et et et et et et e s 52
3.5.5. Taxonomies of MODility PAtternsoiiiiiiiiiit ittt e et e e e aas 52
3.5.5.1. WeaK VS. Strong MODITILY ... e e e 53
3.5.5.2. Single-hop vs. Multi-Hop Mobile AGENTS ... e e 53
3.5.5.3. THNEAry CONTIOl ... vttt e s e e e e e e e e e e e e e e e e 54
3.5.6. Commercial Mobile Agent PIatfOrmsoooiiiii e e e 55
3.5.7. Applications Of MODIIE AQENTS e e e e et e e 57
3.5.8. Performance Evaluation of Mobile AQENLSciiiiiit it e e e e e 57
3.5.9. DISCUSSION ..ttt et e e ettt et e e ettt et e e e s 58
3.6. MOBILE AGENT-BASED NETWORK MANAGEMENTtittiitiiteiies it eeee e seine e nenaeaneas 58
3.6.1. Mobile Agent Frameworks for Network Managementooiioiiiiiiiiieiiiii e e e 59
BB L L IM A L e e e e e 59
N N |V [O I TP 60
38,03 IN G A e e e e e e e e e e 60

BB, LA M A GEN T A e e e e e e e 61
30,00, AME T AS ot et e e e e e e e e e e 61
38,06, SOM A e e e e e e e e e ae s 61
BB, L. 7. JAMES ..o e e 62
38,08, VLA P e e e e e e e e e e a e et aeaaas 62
3.6.1.9. CodEShEIL ... et e e e e e 62
3.8.1.10. DISCUSSION ... vttt e 63
3.6.2. Mobhile Agent Applications in Network Managementcoeeiviiuinioiiiiii e e ere e 64
3.6.2.1. Single-hop Agents in Network Managementi it eenene 64
3.6.2.2. Multi-hop Agents in Network Managementooouiieoitiie ittt ee e 65
3.6.3. Performance of Mobile Agents in Network Managementcccoovviuiroeririiis oo eee e s eeevre i eeeveains 68

Contents

3.6.4. ACHIVE INEBEWOIKS ...ttt oo et e ettt e e e e 70
3.6.5. Synthesis and Discussion on Mobile Agents-Based Management Applicationsccccoeeevvennnnn. 71
3.6.5.1. Organisation MOGEISoiiuiii it e e e e e e e e 71
3.6.5.2. MODIlIty SChEMESt e e et et e e e e e e s 72
3.7 SUMMARY Lottt e et e et et e e e e e e e e e e e e e e e 74
CHAPTER 4: THE MOBILE AGENT FRAMEWORK ... e 75
4.1 INTRODUCTION ..ttt ettt et et e ee o ea e e et e eae e ea e eae e atee ee aea e eae e nee ee e eae e re e eneeeeen 75
4.2. MAIN GOALS OF THE MOBILE AGENT FRAMEWORK DESIGNvviiii i i e e, 76
4.3. OVERVIEW OF THE INTRODUCED MOBILE AGENT PLATFORM ...uiuiiiiii i iie e e e veaeaenaens 78
4.3.1. IMPIementation LANGUAGE ceueruue e eetiet e aee it et eee ettt e e ettt e e ee et s e e ee et et e e e aee et e aeeeeaaneaneas 78
4.3.2. FrameWOrK’S OVEIVIEWciiiiir ittt sttt ettt et ettt et et bt eee e 79
4.4, INFRASTRUCTURE OVERVIEW - IMPLEMENTATION DETAILS ...cvi it v e e e 80
4.4.1. The infrastructure’s main building BIOCKScooiiiiiiii e 80
4.4.1.1. Manager appliCatiON et e e e e e e 81
4.4.1.2. Mobile Agent ImpIementationcoiiriiitiiee e e e e e e 84
4.4.1.3. The Mobile Agent Server: Interface to Managed RESOUICESocvvviveiiriiineriiiieeceieeeenann, 87
4.4.1.3.1. Mobile Agent LIiSteNer (MAL)cioiiit e e et et e e e e e 88
4.4.1.3.2. Security COmMPONENE (SC) 1ivvriitiee it oot et e et e e e e 89
4.4.1.3.3. Mobile Agent REGISEEr (IMAR) ittt et e et e e e e e e e e e 92
4.4.1.3.4. Service FaClItator (SF)oo oo et e e e e et e 93
4.4.1.3.5. Migration Facility Component (MFC)oo i e e e e 93
4.4.1.3.6. Mobile Agent SErver RMI SEIVELuut it oo e et et e e e 96
4.4.1.3.7. Resource Inspection Application (RIA) ... e 96
4.4.1.3.8. Network Discovery Daemon (NDD)ccouiuutaiiiiiit et et e e et e e eee e 96
4.4.1.3.9. Class Loader Daemon (CLD)ccovviiitiiiiii et et e e e e e e 97
4.4.1.4. Mobile Agent Generator (MAG) ettt e e e e e e e e e 97
o S Y N R (o] o] o L=T - 11 o] o OO 97
4.4.1.4.2. Advantages of using the MAG 001oeiiiiiiiiiii e e e 99
4.4.2. Fault Tolerance: Tolerating Node Failuresco.oouiniiiiiiii e e e 100
4.4.3. Class Loading MEChaniSIM i e et e et e et e eee e 102
4.5. QUANTITATIVE EVALUATION & ASSESSMENT ..\ vuit ettt et enienven st aaetneaveaentennnnnennenaenns 104
4.5.1. Response Time EVAIUALIONiiiiiiit i e et et e et e e e e e e areaan s 105
4.5.2. Network Overhead EVAIUALIONccoooioriiiiie i e et e e 106
4.6. EXPERIMENTAL WORK ... ittt tit ettt it e e ettt tet et e sttt e et e e e e e ee et nee s 109
4.6.1. ReSpoNSe TimMe EXPEIIMENTSu.iiiiiiit i tee it e ettt e et e e e et e e e et e e ettt e e s ae e e e eeeannen 110
4.6.1.1. MAS VS, RIMI oo e e e e e e e e e e e e e 110
4.6.1.2. MUILI-NOP IMIAS .. e e et et e e e e e e e et e e e et e e e 112
4.6.2. Network Overhead MEaSUFEMENTScoiirei oo ittt it cee e et sttt e e 114
4.7. SUMMARY - CONCLUDING REMARKS ..\ 1ttt ittt e it it et et et eeeeas eae e e e eneneaeneenees 118

CHAPTER 5: TWO COMPLEMENTARY POLLING SCHEMES FOR IMPROVING
MANAGEMENT SCALABILITY e e e e 121

L0 I N2 6o 1] 121

Contents

5.2. POLLING SCHEMES : DESIGN & IMPLEMENTATION ... uvutt et et et vetesienaeaen eneeneaneeneannnannns 123
5.2.1. Get ’n” GO POIING SCREIMEttt et e et et et et e e e e 123
5.2.1.1. Implementation of GNG Polling SCheme ...t 126
5.2.1.2. Optimal MAS Itinerary Planningccooeiie ittt e e e e et e aaa e 127
5.2.2. GO N’ Stay POIING SCREME ...t e e et e e e eee e 129
5.2.2.1. Implementation of GnS Polling Scheme ... e 130

5.3, PERFORMANCE ANALY SIS .1t tut ettt tetttien tae et ete e ere e ee et aen eae eteete ne e e aeeeneenaeeenns

5.4, EXPERIMENT AL RESULTS ..ttt it ittt et et et et e vee e e e vae et e eae et e eae e nee ee e eaeeae e

5.4.1. ReSpoNSe TimMe MEASUFEIMENTSuut ittt ee e ee it oo ee et e e e ettt e e e ee e s e e aetee et e eeaernnneaeeeerneann

5.4.2. Network Overhead Measurements

LT TR I3 1 15701 015] N
5.5.1. GNG POIIING SChEME ..ottt it e aae 140
5.5.2. GNS POIIING SChBME ...t e e e et et e e ae e e e eee e 141

5.6, SUMMARY L.ttt ittt et e et e e e et e e e e e e e e e e 142

CHAPTER 6: ADAPTIVE HIERARCHICAL MANAGEMENT ..., 144

6.1, INTRODUCTION ...ttt ettt et et et veee eae tae eae e ee et e e et e eee eas eaeete ee ene e e et e e aeseeeeee s 144

6.2. HIERARCHICAL, MOBILE AGENT-BASED NETWORK MANAGEMENT ...vvvitiiriiiieveeeneeneeneanns 147

6.3, IMPLEMENTATION DETALLS 1.ttt ittt e it e ete e et et vt e et e e e re s eae e te e e aea e e ennenes 149
6.3.1. Topology Tree and Topology Map Of ACtIVE DEVICEScuiiiiriie it it e e 149
6.3.2. MDIMS IMPIEMENTALIONutiit et e e e e e et e e e e e e e e e r e e e e e aeaas 151
6.3.3. MDMS DeplOYMENE POIICIESiiiiieii et it et e e e e e aae s 153
6.3.4. MDMs Deployment IMplementationcoooiuiriiioin i e e et e e 155
6.3.5. MA Code DisStribution SChEMEuviiiiiiiiiiiiii e e 157
6.3.6. Processing Load BalanCiNgcouuriiieiiiie i e et et et e e e 158
6.3.7. Resources Monitoring Tool IMPIementationcooiueiiiii i e e e e 160
6.3.8. Manager-MDMS COMMUNICALION ittt et e e e e e e e e e e eaen e 164
6.3.9. FAUIT TOIBIANCEoiviiiiii et e et e 166

6.4, QUANTITATIVE EVALUATION ... vttt it e tee et et et e eee et e e e e sea e tee e e e san e seneneneeees 166

6.5, EXPERIMENTAL RESULTS ...ttt ettt e et e ettt et e et ettt e et e s se e r e nee e ensneens 169

6.6, SUMMARY ... ittt ittt e et et e e et e et e e et e e e e e e e e e e e e 172

CHAPTER 7: NETWORK MONITORING AND PERFORMANCE MANAGEMENT

AN I 2NN 0 1Y T PN 174
4% T [N 3 o] 0] ¥ o 1 [0 N PPV 174
7.2. BULK MANAGEMENT DATA RETRIEVAL .. vt ittt et et et et et et e et e v e et e e ee e aaeaen e 176
7.3. HEALTH FUNCTIONS EVALUATION ...ttt ittt it et et e e e et et e et et e et et e e e aaeeens 179
T4, SNIMP TABLE POLLINGttt ittt et et st et et e e e et et e et et e e e eaer e re e n e e eaene 182
7.5. SNMP TABLE INTELLIGENT FILTERING ...ttt etaintieeit it vee ettt e e eet e see et tee een e aenen e 186
FR T R U= O] o1 - 1 (0] & PP 187
7.5.2. AFItNMELIC OPEIALOIS ...ttt ettt et et e ettt e e e et e e e e e et e e e e e re it e e e eaeat e aeaaeas 189
7.5.3. Domain or Global Level FIlteringoooiiuieii i e et e e e 192
7.5.4. Boolean Filtering OPErationSuuiieuitiiteee it oo eee et e e e et e e e e e e te e aeaa s eas 194

Contents

PR R R G LAY T 0L A o] o T 196
7.6, EXPERIMENT AL RESULTS 1.ttt ittt it et ittt et eae ettt eee e es e e ettt et e sas sbeaes eeaaeeensbeeans 197
7.6, 1. RESPONSE TIME 11ttt tet it e ettt oot et et e e et e et e e e s e e e et e et b ettt e e e e e e bae e e e e e e e e 197
7.6.1.1. Health FUNCHIONS EVAIUALIONvuut ittt s it e et e e e e et e et ee e e e eans 197
7.6.1.2. SNMP Table POIIING ... ee et e e e e e e e e et e e e e e 203
7.6.1.3. SNMP Table filteringe oot e e e e e e e e e e e e 205

7.6.2. NETWOTK OVEINEAGviii ittt et ee e et e e e et e e e e e e e s ter e e e teetat e s aateeearseeebrans 206
7.6.2.1. LAN EnVironmMent Case STUAYcuuueenie et et aee e ie e e et et e ee een e een e aanenenas 207
7.6.2.2. LAN-WAN ENnvironment Case STUAYoee ettt e e et e e e e e e e 209

A8 A 7] Lo 10 1S3 1 213
CHAPTER 8: SUMMARY, CONCLUSIONS & DIRECTIONS FOR FUTUREWORKcccvvee. 216
8.1. SUMMARY OF MAIN CONTRIBUTIONS ...ttt it tit ettt ttt et e eaaas aes eeaeetenste e eanateaenaens 216
8.2. APPLICABILITY OF AGENT MOBILITY IN MONITORING APPLICATIONS ...t iiitiitcneecneieeenn 220
8.3. DIRECTIONS FOR FUTURE WORK ...ttt ittt it it it et e et ete ettt et et eae e et et e e aas rbe e 222
B B L IO G R A P H Y oottt e e e 227
APPENDIX A: LISTOF PUBLICATIONS .ot e et e e e e e e e e 246
APPENDIX B: PLATFORM DESIGN OPTIMISATIONS ... e e e 248
=70 I 1210 o U Lo T 248
B.2. MINIMISING MOBILE AGENT STATE SIZE .o\ttt iitiet ettt et e e et te e e ate e eae e aans 248
B.3. MINIMISING THE LATENCY OF MOBILE AGENT TRANSFERS ... ettt it tieen e ereeneeenaenanes 252
APPENDIX C: MOBILE AGENT MIGRATIONS TIMING EXPERIMENTS ...t 254
y N 1V =T 5 T o 1 T 254
A.2. MOBILE AGENT MIGRATION TIMING MEASUREMENTS ...ttt it ittt iis cieteenssteeencneeeens 254

Xi

LIST OF FIGURES

Figure 2.1. Basic OSI-SM architecture [SLOA]iniie it e e e e e e e e e e 12
Figure 2.2. The SNMP layering [SLOOA]e ittt e e e e e e e e e e e e 14
Figure 2.3: SNMP PDU formats: (a) Get request, Get-Next request, Set request, Trap, Inform,

(b) Response, (c) GetBulk request, (d) varbind listo 15
Figure 2.4. Management centralisation or distribution metrics (adapted from [MEY95])ccvunis 30
Figure 2.5. (a) Centralised management, (b) Hierarchical managementccoovivieiiieninevennnnn, 31
Figure 2.6. The RMON @pPrOacChiueis it s s e e e e e e e e e et e e v et e ee e a e nees 32
Figure 2.7. The Script MIB @PPrOACHevit s e e e e e e e e e e et e e e e e e e een e 33
Figure 3.1. CS vs. Mobile Code-based approachescceuiuieiieviiie e e cee e e e e e e e 40
Figure 3.2. Classification of code mobility and agent mobility paradigmsc.ccceiiiiiiiviiie e ven, 53
Figure 4.1. The Mobile Agents-based INfrastruCtureo e e 81
Figure 4.2. Break-down of the components that compose the manager application 82
Figure 4.3. The manager application Graphical User Interfacecooeiiiiii i 83
Figure 4.4. Polling of a MIB variable ... e e e 84
Figure 4.5. On-line acquisition of a MIB object desCriptioncc.ouiiiiiie i e 84
Figure 4.6. Manual setting of a Mobile Agent’s ItINEraryc.oooviie i e e, 85
Figure 4.7. The methods of the MA SUPEI-CIASSc.ueir it et e e e v e e e e e e e 86
Figure 4.8. The MODIle AGENt SEIVET ...t et e et e e e e e e e et e e e e e een e 87
Figure 4.9. TcpListener’s run() and receive() Mmethodsoovevve e i e e e, 89
Figure 4.10. The method definitions of the Security Classcovvviiiiiie i e e, 90
Figure 4.11. On-line visual profiling of Mobile Agent objects executing on a network device 92
Figure 4.12. The method definitions of the MigrationFacilityComponent classccooeviiiiinnn 94
Figure 4.13: Flow diagram of a Mobile Agent’s life cycle ... 95
Figure 4.14. The methods of the MAS’S RMI SEIVer Classocoi it e e 96
Figure 4.15: Mobile Agents Generator functional diagramcooieiii i e e 98
Figure 4.16. Specifying the devices to be monitored.o 99
Figure 4.17. MA reaction to the detection of a failed MAL thread ..., 101
Figure 4.18. The specific case of MAL thread failure on the manager hostcocoovvvii i iene 101
Figure 4.19. Class Loading mechanism block diagramccooiuieiii i i e e e e e 103
Figure 4.20: Centralised (SNMP-based) vs. MA-based pollingc.cooviiriir i e 105

Xii

List of Figures

Figure 4.21. Management cost of MA-based polling as a function of the network size for various

SEIECHIVITY VAIUBS ... e et e e e e s e e e e e e e e e 108
Figure 4.22. Management cost of MA-based polling as a function of the selectivity for various network

SIZ e ettt e e e e e e e e e e et e e e e e e e ans 109
Figure 4.23. Strategies for obtaining information from remote devices: (a) ‘ping-pong’ MA, (b) MA

cloning (“Master-Slave’ scheme), and (¢) RMI call ..o, 111
Figure 4.24.Graphical representation of the MAs vs. RMI-based approaches comparison in terms of

FESPONSE TIMIE .t ittt et e et et e et e e et e e et e e e e e et e e e aaaas 112
Figure 4.25. Response time for multi-hop MAs as a function of (a) amount of encapsulated information

and (b) network size (TCP protocol used for MA transfers)cccoooveviiiiii i, 114
Figure 4.26. Response time for multi-hop MAs as a function of (a) amount of encapsulated information

and (b) network size (UDP protocol used for MA transfers)ocoeeviviiiie i e, 114
Figure 4.27. Graphical representation of Mobile Agents vs. RMI comparison in terms of network

01V T3 To PP UPEPRPN 117
Figure 5.1. “Flat” MA-based POIIINGoou i e e e e e e e e e 122
Figure 5.2. The GNG polling SChEME e e e e e e e e 123
Figure 5.3. GnG polling: Selecting the partitioning Criterionccoii i e 124
Figure 5.4. Non-optimised partitioning SCENAIOScouuie it e e e e e e e e e 127
Figure 5.5. Applying an OIP heuristic to propose (a) two, or (b) three near-optimal itineraries 128
Figure 5.6. Graphical representation of statistics returned by MAs employing GnS polling 130
Figure 5.7. Approaches in GnS polling: data delivery through (a) the multicasted MA objects,

(b) clones of the multicasted MAS, (C) RMIcallsoooviiiiiiiiii e e, 131
Figure 5.8. Configuring the properties of GnS polling SChemMeooviiii i e 132

Figure 5.9. Management cost for GnG polling scheme, as a function of the network size and the number
of management domains (i.e. number of MAs used per Pl), for selectivity equal to (a) 0.1,

OF (1) 0.0 o e e e e e e e e 134
Figure 5.10.Polling response time of GnG polling in the case that 50 bytes are collected from each host,

as a function of (a) the network size, (b) the number MAs launched per Pl 137
Figure 5.11.Polling response time of GnG polling in the case that 2000 bytes are collected from each

host, as a function of (a) the network size, (b) the number MAs launched per PI 137
Figure 5.12. Network traffic incurred by GnG, GnS and RMI approaches as a function of the polling

intervals for data samples equal to (a) 50 bytes, and (b) 2000 bytescccovvveiieinnnns. 139
Figure 5.13. Number of MA transfers over the interconnecting link required for the management of a

remote subnet including (a) 5, 0r (b) 50 dEVICESvvie it e e e 141
Figure 6.1. Approaches to hierarchical MA-based managementcccovveviiiieiisiiee e e eee 145
Figure 6.2. Hierarchical MA-based Managementoo.uvr i iieie s vet e et e e e e e e e e veneeens 147
Figure 6.3. The topology tre€ SIIUCTUIEttt it ee s vet e e ve e e e e ve e e ve e e e e eaaee s 150
Figure 6.4. Topology Map GUI ... e e e e e e e e e e e e e e e e 151
Figure 6.5. GUI for customising the hierarchical NMS policiescoooe i 154
Figure 6.6. MDMs deployment algorithm (an MDM is deployed to each subnet including at least N

ACTIVE IMIAS SEBIVEIS) .. e iittit ettt et et e et e e et e et ettt et e et rea e e e e nenne 155
Figure 6.7. Adjusting PTS delivery frEQUENCYo. et i et e e e e e e e e e 156
Figure 6.8. MA bytecode through “tree muUItiCasting™ccovuir e e e e e e 158
Figure 6.9. Obtaining host load profiles by a Resources Inspector MA objectccoevviiiiii e, 159
Figure 6.10. lllustration of an MDM location change on the manager’s topology mapccoevvvnnes 160

List of Figures

Figure 6.11. RMT and RIA OPEIatiONuiu et ittt iee e v ve e v et ve e e e e e e e e e e e e veneeea e 161
Figure 6.12. The WIindows NT Task ManagEIvuvieirietie et cre eeee e eenee e vet e e aenneen e 163
Figure 6.13. Obtaining on-line resource usage reports from remote devicesocoveiiiiiiiiinnnnnn. 164
Figure 6.14. The methods of the RMI.MdMRMISErver Classocovieiii i e, 165
Figure 6.15. The experimental teSthedooi i e e 169

Figure 6.16. Network overhead measurements for data samples of 50 bytes: (a) Overall management
traffic, (b) Network traffic through the WAN link, Overall management cost in the case
that the cost coefficient for the WAN link is (c) 10, or (d) 200 times higher than for the
T] ==L I T A 170

Figure 6.17. Network overhead measurements for data samples of 2000 bytes: (a) Overall
management traffic, (b) Network traffic through the WAN link, Overall management
cost in the case that the cost coefficient for the WAN link is (c) 10, or (d) 200 times
higher than for the high-speed LAN ... e e e e e 171

Figure 7.1. Setting the properties of two HF evaluators through the MAG GUIccooiiiiiii i, 181

Figure 7.2. Acquiring an SNMP table snapshot through: (a) successive get-next requests, (b) multiple
get-bulk requests, (c) a single get-bulk request, (d) MA migration and locally issued

OBE-NEXE TEQUESES .. e ce et e et et et e e et e e et e e e et et e et e e e e e aa e 183
Figure 7.3. Configuring SNMP table polling operations through the MAG GUI ..o, 184
Figure 7.4. Graphical display of SNMP table CONtENtSoeii it e 185
Figure 7.5. Arithmetic and textual filtering operators method definitions included into the MCode.TF

0 187
Figure 7.6. Displaying information returned by a TF agent applying the (a) Match, or (b) Exclude

0] 0T > (o 188
Figure 7.7. Configuring SNMP table filtering operations through the MAG GUI for (a) Textual and

() I A 12T 111U o] o T=] = Lo £ 189
Figure 7.8. Results of ifTable filtering e e 190
Figure 7.9. Customising the SNMP table filtering operation parametersc.ccoviii i iin e eann 191
Figure 7.10. Global filtering applied on the network interfaces of a set of routersc.coeeeienn. 192
Figure 7.11. Results returned by an MA performing global filtering operations over a set of managed

0L ot PR 193

Figure 7.12. SNMP table filtering operation flow diagram ..., 195
Figure 7.13. Runtime configuration of MA-based management applicationsccocoovviviieinns 196

Figure 7.14. Response time as a function of the network size and the collected MIB objects per host
for synchronous (a, b) and asynchronous (¢, d) SNMP polling operations 198

Figure 7.15. Multi-hop MAs response time measurements as a function of the network size and
collected MIB objects per host, when the transport protocol is TCP (a, b) or UDP (c, d) 200

Figure 7.16. Response time measurements for various GnG scheme configurations, as a function of
(a) the network size, and (b) the number of launched MAs (management domains) 202

Figure 7.17. SNMP vs. MA-based table polling time measurementsoovveeiiiieiiieiie e eene 204

Figure 7.18. Response time performance comparison of SNMP vs. MA-based approach for table
filtering apPliCAtIONS ... e e e 205

Figure 7.19. Bandwidth consumption of SNMP-based polling against the proposed MA-based
applications: (a) HF computation, (b) SNMP table polling, and (c) SNMP table filtering ... 208

Figure 7.20. LAN-WAN environment test NetWOrKcooiriie it e e 210
Figure 7.21. Management cost of hierarchical framework against SNMP and flat MA-based polling 211

Xiv

List of Figures

Figure 7.22.

Figure 7.23.

Figure 7.24.

Figure B.1.

Figure B.2.

Figure C.1.

Figure C.2.

Figure C.3.

Comparison of the management costs for hierarchical, SNMP-based, GnG and GnS

00 | 1o 211

Comparison of the management costs when the cost coefficients are proportional to the

inverse of link bandwidtho 211

Bandwidth usage of the WAN link imposed by hierarchical, SNMP-based and flat

MA-Dased MANAGEMENT ...ttt et e e et e e e e 211
The content of a MobileAgentPackage.MobileAgentExample class instance (object’s state)
as shown when printed on the standard oUtPULooiiiii i e 250
Example source code of an MA with (a) ‘non-optimised’ vs. (b) ‘optimised’ state size 251

Comparison of the delays experienced within the individual migration phases of an MA
with (a) moderate or (b) large state size, depending on the transport protocol and on
whether the serialised state is compressed prior to its transfercoovveie i, 256

Distribution (percentage of the overall response time) of the delays incurred within the
individual migration phases for MAs with either (a) moderate or (b) fairly large state size
(the serialised state iS COMPIESSEA) enne it et e et et e et e et e eeeeeae s 257

Comparison of the individual migration phases delays for MAs with moderate vs. large
state size (the serialised state is compressed prior to its transmission)c.ccoeieenne. 258

XV

LIST OF TABLES

Table 3.1.

Table 4.1.
Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 5.1.

Table 5.2.

Table 5.3.

Table 6.1.

Table 7.1.
Table 7.2.
Table 7.3.
Table 7.4.
Table 7.5.
Table 7.6.
Table 7.7.
Table 7.8.
Table 7.9.

Design paradigms for mobility (the boldfaced typesetting indicates where interaction takes

0] T =) P 42
Structuring of the prototype in Packagescoeirir i 80
Comparison of MAs vs. RMI-based approaches in terms of response time as a function of the
ErANSTEITEA GATAee et et e e e e e e 111
Average response time and standard deviation for multi-hop MAs for various network sizes

and volumes of collected data (TCP protocol used for MA transfers)cccocoevvve e, 113
Average response time and standard deviation for multi-hop MAs for various network sizes

and volumes of collected data (UDP protocol used for MA transfers)cccovvevennnnen. 113
Comparison of MAs vs. RMI-based approaches in terms of network overhead: The total

number of captured frames and the volume of the transferred data on the transport and
O =] PP 115

Average polling time and standard deviation for GnG polling, for multi-hop MAs for

various network sizes and numbers of management domains (50 bytes are collected from

BACKN NOSE) et e e e 138
Average polling time and standard deviation for GnG polling, for multi-hop MAs for

various network sizes and numbers of management domains (2000 bytes are collected

FrOM €ACH NOSE) .. et 138
Comparison of GnG, GnS and RMI-based approaches in terms of network overhead: The

volume of the transferred data onthe MAC layerooiiit i e e e 139
Comparison of network traffic generated by GnG and GnS polling schemes against

hierarchical management apProaChesooou et e e e e e e 172
Synchronous SNMP time MeasUrEMENTSo iin ittt ee e e eeean 199
Asynchronous SNIMP time MEASUIEMENTS iu ittt et e e e e e e e e e 199
Response time measurements for multi-hop MAs, when using TCP for MA transfers 201
Response time measurements for multi-hop MAs, when using UDP for MA transfers 201
Response time measurements for several GnG polling scheme configurations 202
Latency gain of MA-based against SNMP table pollingcccoooiiiii i, 204
MAS vs. SNMP table filtering timesoo v v 206
Attributes of the MA classes corresponding to the three proposed applications 207

Network overhead estimation for SNMP-based polling, against the proposed MA-based
applications: (a) HF computation, (b) SNMP table polling, and (c) SNMP table filtering 209

Table 7.10. (a) Management cost of SNMP against MA-based flat management, GnG, GnS and

hierarchical MA-based management for fixed link cost coefficients, (b) Management cost
comparison when cost coefficients are equal to the inverse of link bandwidth, (c) Network
traffic over the WAN link for SNMP, flat and hierarchical MA-based management 213

XVi

List of Tables

Table B.1. The effect of applying various source code modifications on the MA’s state size

Table C.1: Time measurements (in msec) depicting the distribution of delays for a “ping-pong” MA
with a ‘small’ state size (476 bytes compressed / 678 bytes uncompressed) during its
lifetime (each table value represents 100 individual time measurements)

Table C.2: Time measurements (in msec) depicting the distribution of delays for a “ping-pong” MA
with a ‘large’ state size (1152 bytes compressed / 3970 bytes uncompressed) during its
lifetime (each table value represents 100 individual time measurements)

XVii

ACRONYMS

ACL
ADK
AN
API
ASN.1
ATM
ATP
BDK
BER
CCITT
CL
CLD
CIM
CMIP
CMIS
CMST
COD
CORBA
CPU
CS
DES
DLL
DISMAN
DMI
DMTF
DNS
DOT
DSA

Agent Communication Language
AgentBean Development Kit

Active Network

Application Programming Interface
Abstract Syntax Notation 1

Asynchronous Transfer Mode

Agent Transfer Protocol

Bean Development Kit

Basic Encoding Rules

Comittee Consultif International Telegraphique et Telephonique
Class Loader

Class Loader Daemon

Common Information Model

Common Management Information Protocol
Common Management Information Service
Constrained Minimum Spanning Tree

Code On Demand

Common Object Request Broker Architecture
Central Processing Unit

Client/Server

Data Encryption Standard

Dynamic Link Library

DiStributed MANagement

Desktop Management Interface

Distributed Management Task Force
Domain Name Service

Distributed Objects Technology

Digital Signature Algorithm

Xviii

Acronyms

E-W Esau-Williams

FIPA Foundation for Intelligent Physical Agents
FTP File Transfer Protocol

GIOP General Inter-ORB Protocol

GnG Get ’'n’ Go

GnS Go ’n’ Stay

GUI Graphical User Interface

HF Health Function

HTML HyperText Meta-Language

HTTP HyperText Transfer Protocol

ID Identification

IDL Interface Definition Language

IETF Internet Engineering Task Force
IHOP Internet Inter-ORB Protocol

I/0 Input/Output

ISO International Standards Organization
ITU-T International Telecommunication Union—Telecommunications standardisation
JAR Java Archive

JCA Java Cryptography Architecture
JDBC Java DataBase Connectivity

JDK Java Development Kit

JDMK Java Dynamic Management Kit

JT Just-In-Time

JMAPI Java Management API

JMX Java Management eXtensions

JNI Java Native Interface

JRMP Java Remote Method Protocol

JVM Java Virtual Machine

LAN Local Area Network

ICMP Internet Control Message Protocol
IDL Interface Definition Language

IETF Internet Engineering Task Force

ILP Integer Linear Programming

IP Internet Protocol

LDAP Lightweight Directory Access Protocol
M2M Manager-to-Manager

XiX

Acronyms

MA
MAC
MACL
MAG
MAL
MAP
MAR
MAS
MbD
MCR
MD5
MDM
MFC
MIB
MLM
MO
MST
NDD
NE
NMS
NSM
o]
OMG
ORB
OsSl
PC
PDU
Pl
PID
PT
PTC
QoS
RDP
REV
RFC
RI

Mobile Agent

Medium Access Control
Mobile Agent Class Loader
Mobile Agent Generator
Mobile Agent Listener

Mobile Agent Platform
Mobile Agent Register

Mobile Agent Server
Management by Delagation
Mobile Code Repository
Message Digest

Mobile Distributed Manager
Migration Facility Component
Management Information Base
Mid-Level Manager

Managed Object

Minimum Spanning Tree
Network Discovery Daemon
Network Element

Network Management System

Network & Systems Management

Optimal Itineraries Planning
Object Management Group
Object Request Broker

Open Systems Interconnection
Personal Computer

Protocol Data Unit

Polling Interval

Process Identifier

Polling Thread

Polling Thread Configuration
Quality of Service

Remote Delegation Protocol
REmote Evaluation

Request For Comments

Resources Inspector

Acronyms

RIA
RMI
RMON
RMT
RPC
RSA
sC
SD
SFC
SHA-1
SLA
SM
SMF
SNMP
SQL
TCP
TF
TINA
TMN
TP
UDP
URL
VDL
WAN

Resource Inspection Application
Remote Method Invocation
Remote MONitoring
Resources Monitoring Tool
Remote Procedure Call
Rivest-Shamir-Adleman
Security Component
Standard Deviation

Service Facility Component
Secure Hash Algorithm
Service Level Agreement
Security Manager

System Management Functions

Simple Network Management Protocol

Standard Query Language
Transmission Control Protocol
Table Filterer

Telecommunications Intelligent Network Architecture

Telecommunications Management Network

Table Poller

User Datagram Protocol
Universal Resource Locator
View Definition Language
Wide Area Network

XXi

CHAPTER 1

INTRODUCTION

1.1. NETWORK AND SYSTEMS MANAGEMENT: THE PATHWAY TO DISTRIBUTED
MANAGEMENT

The need for data communications has evolved rapidly since the earliest days of computing.
Industrial enterprises are increasingly dependent upon networked systems serving as their
information backbones. This dependency increases in turn the requirement for reliable
operation of the underlying communication and data infrastructure used within a business
environment. Faults and performance inefficiencies in these systems give raise to considerable
business losses. Therefore, the management of network infrastructures, including
communication elements, systems and applications becomes imperative. According to the
definition given in [HEG94], the term Network and Systems Management (NSM) refers to the
“sum of all procedures and products for planning, configuring, controlling, monitoring and
managing computer networks and distributed systems and removing errors in these. This
should provide user friendly and economic support for users working with the network and its
components. Thus, it covers all the precautions and activities needed to ensure the effective

and efficient use of the resources to be managed.”

The current globalisation of networks and services imposes an inevitable need for
decentralisation of computing processes. The transition from centralised mainframe systems to
distributed systems is another contributing factor. Despite the benefits of the distributed
approach, new problems arise in the management of such systems. The constantly increasing
heterogeneity of network components, communications protocols, end systems and

applications also increases the complexity of the management system.

NSM should effectively address these problems. It is commonly accepted that the
management of large-scale networking environments cannot be adequately addressed through

centralised approaches that characterise contemporary management systems [GOL91].

Concentration of functionality, intelligence and responsibilities at a central site represents a
rigid management solution that suffers from the well-known problems of centralised systems.
Existing management servers (agents) transfer unfiltered and unprocessed management
information to the central management station [GOL98]. This process incurs high network
traffic for NSM purposes and leads to network management systems (NMS) with poor
scalability. As a consequence, decentralised, distributed solutions are required to address the
limitations of centralised archetypes. This requirement has been recognised by researchers
since the early 90s, with distributed management becoming a subject of intense research
[KAH97, MAR99a]. However, the Simple Network Management Protocol (SNMP) [CAS90],

which is the dominant protocol in the Internet management, defines a centralised architecture.

Management distribution requirements are partially addressed by hierarchical NMSs, which
enable data pre-processing and delivery of higher-level information to the manager station
[KOO95, SIE96, MLM]. In such models, parts of the management functionality is permanently
assigned to statically defined managing entities (mid-level managers or proxies) running on
specific nodes within the distributed environment. Such functionality should be assigned at the
managing entities design phase and cannot be easily modified [MOU98a]. Hence, it cannot
cope well with the high dynamics of modern networks, referring to frequent changes that need
to be incorporated in the NMSs as well. Those changes may vary from the introduction of new
devices and software to the provision of new types of services. The frequency of such changes
reflects in the amount of Requests for Comments (RFC) produced every year in the Internet

management domain [RFCs].

Management distribution aspects are also addressed in the OSI Systems Management (OSI-
SM) architecture, allowing to delegate monitoring activities to network elements (NE),
reporting only important events or summarised reports to higher-level managers [1SO92,
ISO93]. Similar facilities have been later incorporated in SNMP environments [WAD95],
whilst recent approaches proposed the provision of such facilities through distributed object
technologies [MAZ96, PAV00], exemplified by the Common Object Request Broker
Architecture (CORBA) [CORBA]. Yet, these approaches fail to meet management flexibility
and reconfigurability requirements due to the rigid and static distribution of functionality that
can be only modified through a complex and time-consuming research, standardisation,

implementation and deployment cycle [BOHOOb].

The requirement for flexibility combined with that for decentralisation has been addressed
by the pioneering work of Goldszmidt et al. who introduced the concept of Management by
Delegation (MbD) [GOL91]. Delegation of management functionality refers to moving part of
the intelligence traditionally residing on a central management station to distributed

management entities running on selected managed systems. This allows the dynamic change of

2

responsibilities and tasks allocation and leads to flexible systems with dynamically augmented
capabilities. A main objective of MbD is to perform decentralised tasks in proximity to system
resources to prevent unnecessary data transfers, while easing the introduction of new tasks at
runtime. The ideas behind MbD have inspired many proposals [KAL97, MOU98a], while
subsequent research demonstrated its applicability both in the context of OSI-SM [VAS97] and
SNMP [LEV99].

MbD can be considered a precursor of the ideas discussed in this thesis. Nevertheless,
approaches based on the code mobility paradigm cover broader aspects of management
delegation and can include MbD as a special case. Code mobility refers to the capability of
dynamically moving the components of a distributed application among the nodes of a network
[CAR97]. This idea can be applied in the generic field of distributed systems, however
distributed management represents a very promising application domain, as it can benefit form
the efficient use of bandwidth resources and the high degree of flexibility and reconfigurability
offered by mobile code [BAL97].

A sub-class of the code mobility paradigms, termed the Mobile Agent (MA) paradigm, has
emerged in the mid-90’s. Briefly, MAs can be defined as computational components identified
by their code, persistent and execution state, with the ability to autonomously move from host
to host, acting on behalf of a user or an application [PHA98]. In the distributed management
domain, MAs add a new dimension by exploiting their ability to autonomously migrate to
different network devices and perform complex management tasks without the manager’s
intervention [PIC98]. The migration and autonomy features of MAs attracted the attention of
many researchers and, as result, MA-based distributed management has become a hot research
topic in the past few years [BIE98b, CHE98, MAR99a].

1.2. MOBILE AGENTS FOR NETWORK MANAGEMENT: PROSPECTS & HURDLES

Since its inception, MA technology soon became very popular in distributed computing
field. Several research activities investigated its applicability in numerous application domains,
including information retrieval [ISM99, PAP99], e-commerce [DAS99], mobile computing
[CHE95, MIL99] and parallel computation [SIL99b, GHA99]. Yet, MA technology has not yet
gained large acceptance by the developers of real applications, despite the large number of
interesting experiences already available. This is mainly due to several technical and non-
technical hurdles that must be addressed by MA community to make possible the wide spread
of this technology: the lack of killer applications [MIL99, KOT99], security [NWA96] and
performance [PICO1].

The advent of MA technology has caused a serious impact on distributed management
research. Especially at the time this ‘exotic’ technology was still at its infancy, it was
considered by many as a particularly promising vehicle that could lead management research
towards the ultimate goal of fully distributed and automated management [MAG96, BIE97].
As a result, numerous research projects have been established aiming at investigating the
potential of MA technology in the management domain. Some of them represent academic
initiatives [AMETAS, MAP, SOMA], others comprise collaborative activities among academic
and commercial partners [JAMES], whilst many have been funded by the Commission of the
European Union [MIAMI].

As a result of the intense research on MA technology, we have observed the proliferation of
available mobile agent platforms (MAP) over the last few years, currently reaching the
impressive number of more than seventy known platforms [MAL], a lot more than available
RPC or CORBA implementations [MARO1]. Many of these platforms are expressly oriented to
management applications (e.g. [SAH97, SUS98, NIC98, SIL99a, PULO0Oa]), aiming at
optimising flexibility and performance aspects not sufficiently addressed by general-purpose
platforms [Voyager, Grasshopper]. These MAPs have been used as the basis for covering a
wide spectrum of management applications, including network routing [APP94], network
monitoring [KU97, ZAP99, PIN99], fault [ELD99], configuration [PAG98], performance
[BOHOO0a], security [LAZ97] and service management [KNI99] areas. These applications
demonstrated the applicability of MAs on several management scenarios, exploiting their
migration and autonomy features to dynamically customise the management capabilities of
network devices, perform semantic compression of data, or detect changes related to

performance, faults or configuration of managed systems.

Although these approaches are in the right direction, there are several limitations related to
their practical use on distributed management. These limitations relate to both the design of
MAPs tailored to management applications and on the applications themselves. In particular,
existing MAPs use heavyweight protocols to enable agent mobility, where in most of the cases
both the agent’s code and state are transferred on every MA transfer. That scheme introduces
unnecessary network overhead as the code transfer can be omitted in cases that the MA has
visited a network device in the past. In addition, management MAPs lack mechanisms to
automate the effortless introduction of MA-based management tasks and also to dynamically
modify the functionality of distributed management services, i.e. to update MAs code. Finally,
these MAPs define simplistic, two-level MA organisation models, which are not suitable for
the management of large-scale, geographically dispersed enterprise networks [L1001] and does
not allow the dynamic adaptation of the management framework to the changing topology and

traffic characteristics of such networks. These issues are addressed in the design of a

lightweight, flexible, scalable and adaptive MA-based management infrastructure described in
Chapters 4-6.

Referring to MA-based management applications, most of the approaches concentrate on
the mobility aspect of the paradigm, enforcing the use of ‘multi-hop” MAs (e.g. [KU97,
SAH98, PULO00b]). Although this mobility scheme can be useful in some cases, it is not always
the most appropriate management delegation technique [PIC01]. In fact, when the mobility
feature is not exploited to enable semantic compression and correlation of management data,
this approach can prove less scalable than traditional centralised solutions [BAL98, LOPQO].
On the other hand, there is a range of applications that can be more efficiently implemented
using ‘single-hop” agents [BOHO00c, MARO01]. We argue that the selection of the most suitable
mobility scheme should be application-dependent. This issue is investigated throughout this

thesis and applications that can benefit either by single-hop or multi-hop agents are identified.

1.3. THESIS WORK

At the time our research commenced (October 1997), the field of MA-based management
was still unexplored. Research papers describing the implementation experiences gained from
the first prototypes were published in that period [SAH97, KU97, BIE97]. Hence, the assets
and limitations related to the practical use of MAs in the management domain were still

unclear.

A first objective of the research work described in this thesis has, therefore, been to assess
the values and weaknesses of MA technology from the management viewpoint. Based on this
assessment, we have identified a set of requirements that MAPs tailored to management
applications should meet. Following that, we have implemented an NSM-oriented MA
framework, satisfying these requirements. The design and implementation details of this MAP
are given in Chapters 4-6. In particular, Chapter 4 details the implementation of a lightweight
MAP with core functionality that enables the effortless development of management
applications. Chapter 5 describes extensions on that core framework, addressing the scalability
problems raised when used for the management of large sets of NEs, whilst Chapter 6
introduces further optimisations, improving the framework’s performance and flexibility when
considering the management of hierarchical, large-scale enterprise networks. It is emphasised
that throughout these chapters, we derive mathematical formulations that model the
performance of our framework and confirm its competence against alternative approaches. The
conclusions deduced from these quantitative evaluations are also empirically verified through

experimental results.

The management application domains that we have chosen as case studies include two
strongly related areas: network monitoring and performance management. The former refers to
monitoring network devices health to ensure that they stay within acceptable parameters
[JIA0Q], whilst the later supports the gathering of statistical data, upon which it applies various
analysis routines to measure systems performance [SLO94]. Modern NMSs carry out
monitoring and performance management tasks following a data-intensive centralised
approach whose limitations have been discussed in Section 1.1. Hence, the flexibility and
scalability aspects of these two complementary fields can benefit from MA-based approaches.
In Chapter 7, we introduce three novel applications that exploit the ability of MAs for
performing decentralised operations to apply semantic compression of management data,
efficiently retrieve bulk monitoring data and filter the contents of SNMP tables according to

pre-defined, arbitrarily complex filtering criteria.

The emphasis of this work is given on both theoretical and practical aspects of MA-based
management. It is evident that the employment of a new computing paradigm in a particular
application domain needs first to be theoretically approached and also qualitatively and
quantitatively evaluated so as to identify ways to be effectively utilised. However, a theoretical
study has no value if not supplemented by prototypical implementations, which provide hands-
on experience and allow revealing problems related to the use of this paradigm on real-world

applications.

Summarising, the purpose of this thesis is to investigate the use of MAs on management
applications. Although distributed management represents a particularly promising domain for
the use of MA technology, it is now clear that MAs are not always the ideal solution for
structuring management applications. In this thesis, we examine the merits and limitations of
MA-based management through following an unbiased approach, that aims at identifying
scenarios where agent mobility can really benefit to build more flexible, scalable and robust

management systems.

1.4. OVERVIEW AND STYLE OF THE THESIS

This thesis is organised in the following fashion. This chapter was the introduction to the
thesis. Chapters 2 and 3 present state-of-the-art work (literature review) on NSM and MA-
based management respectively. Chapters 4, 5, 6 and 7 constitute the core material of the
thesis, each addressing a set of related topics. Finally, Chapter 8 summarises the thesis,

presents the conclusions and gives directions for future work.

Chapter 2 comprises two main parts. The first part introduces the reader to the main

architectural aspects of OSI-SM and Internet management, pointing out their similarities and

6

differences. The architecture, evolution and limitations of SNMP are discussed in detail and
emerging technologies in Internet management are reviewed. The second part focuses on
distributed management, and presents a state-of-the-art report on standardisation and research

initiatives on that field.

Chapter 3 also comprises two main parts. The first part provides an introduction to code
mobility paradigms, with particular emphasis on MA technology, and explains their relevance
to NSM. Aspects related to agent mobility and MAPs design, along with the performance
issues related to their practical use, are also discussed. The focus of the second part is on the
application of MA technology on network management. A state-of-the-art of research activity
on the field is presented and ways to effectively utilise MAs in management applications are
identified.

Chapter 4 provides a detailed analysis of our MA framework design and implementation
issues. The main goals of the framework’s design are identified, the functionality of its main
building components is described in detail and mathematical formulations are derived to
evaluate its performance. The performance of the proposed framework is also assessed through
a series of experiments, measuring the latency and network overhead incurred when used for

management operations.

Chapter 5 describes extensions to the core framework presented in Chapter 4, aiming at
maximising its performance and addressing scalability problems raised when the management
of large sets of network devices is considered. In particular, it introduces two complementary
polling schemes where the first is tailored to obtaining real-time management data and aims at
minimising latency, while the second is intended for the collection of data to be analysed off-
line and aims at minimising network overhead. The performance gain of the two proposed
schemes over standard MA-based polling is verified by a quantitative evaluation and

experimental results.

Chapter 6 describes further optimisations to our framework that improves its performance
and flexibility aspects when considering the management of hierarchical, geographically
dispersed networks. In particular, it introduces a highly scalable and flexible MA-based
hierarchical management model with the ability to dynamically adapt to the evolving
topological and traffic characteristics of large-scale enterprise networks. The scalability of the

proposed framework is, again, verified by a quantitative evaluation and empirical results.

Chapter 7 describes three novel applications on network monitoring and performance
management, which address the deficiencies of SNMP when considering bulk management
data retrievals. Special focus is given on efficiently retrieving and filtering SNMP tables. The

applications have been developed on the top of the MA framework introduced in the previous

three chapters. The results of a number of experiments evaluating the performance of the

proposed applications are also presented.

Chapter 8 brings together the various strands of the thesis and summarises the main
findings. It explains the significance of this thesis and also identifies areas in which the work
presented herein could be developed further. Bibliographical references follow at the end,

together with a number of appendices.

Considering the style of this thesis, a number of Java object class specifications and code
extracts are presented in Chapters 4, 6 and 7 in order to demonstrate the various features of the
proposed software infrastructure. These are fundamental as they present the relevant properties
and the functionality of the framework’s main building blocks, so they could have not been
moved to appendices. In addition, the presentation of empirical/experimental results includes
in several cases ‘redundant’ information, as the results are communicated in both graphical and
tabular form. We have again chosen not to put the tables to appendices as they are strongly
correlated with their corresponding graphical representations, highlight the differences between
curves that cannot be observed with bare eyes and finally provide complementary information,
i.e. additional measurements, standard deviations, etc. Finally, as the reader may have already
noticed, “we” or “our” is used when describing research work by the author throughout this

thesis.

CHAPTER 2

NETWORK & SYSTEMS MANAGEMENT: STANDARDS,
EMERGING TECHNOLOGIES AND THE SHIFT FROM
CENTRALISED TO DISTRIBUTED PARADIGM

2.1. INTRODUCTION

In recent years, the use of information resources has dramatically increased, with
organisations becoming more and more dependent upon reliable access to this information in
order to remain competitive. The explosion in the size and complexity of today’s local and
wide area networks, combined with the increasing demands placed upon them for their
resources resulted in establishing Network & Systems Management (NSM) as a factor of vital
importance. To further complicate matters, the concept of single-vendor networks has vanished
long time ago. Modern enterprise networks exhibit remarkable diversity of network and
systems equipment necessitating the transition to integrated management. The primary
objective of NSM is to maintain network and systems availability and health, aid in
configuring the network and systems, guarantee Quality of Service (QoS), enhance
performance, provide security, minimise operational overhead (execution of repetitive tasks)

and decrease the cost of running the information technology infrastructure [HEG94].

As a consequence of sharing and interconnecting resources, NSM needs to meet the
challenges of distribution, heterogeneity and transparency. A number of approaches and
architectures that aim at standardising the management process and addressing the
heterogeneity problem have, therefore, emerged. These approaches specify management
architectures, which supply frameworks for standards of relevance to NSM. Two of the most
widely used architectures are the Internet management architecture [HAR99] and the Open
Systems Interconnection Systems Management (OSI-SM) architecture [ISO91a]. Other
architectures, mainly applied on the telecommunication networks area include the

Telecommunications Management Network (TMN) [CCITT92] and the Telecommunications

Intelligent Network Architecture (TINA) [TINA93]. More recent efforts focus on the definition
of emerging management architectures, such as Web-Based Enterprise Management (WBEM)
[WBEM], Java-based management [JBM] and Directory Enabled Networks (DEN) [STR99].
Distributed objects technologies, exemplified by the Common Object Request Broker
Architecture (CORBA) [CORBA], represent another interesting approach which gains

increasing attention in the management world.

The Internet management architecture has been criticised for exhibiting low degree of
scalability?, flexibility and reconfigurability, mainly attributed to its centralised architecture.
The latter two weaknesses also characterise the OSI-SM framework. The emerging
management technologies have only partially addressed these problems. The need for
distribution of NSM functionality has been early recognised by researchers and developers
active in this area and several initiatives have been undertaken in this direction; in fact some of
them have already led to the specification of standards. However, there is still a long way to go

before NSM distribution-related problems are satisfactorily addressed.

The remainder of this chapter starts with a description of the management functional areas
identified by the ISO, in Section 2.2. An overview of OSI-SM and Internet management
follows in Sections 2.3 and 2.4 respectively, highlighting the similarities and the differences of
the two approaches. Special focus is then given to Internet management, describing the
architecture, versioning history and limitations of its de-facto standard, the Simple Network
Management Protocol (SNMP). Following that, several emerging technologies in the NSM
field are described, including distributed object technologies (Section 2.5), Directory Enabled
Networks (Section 2.6), Java-based management (Section 2.7) and WBEM (Section 2.8). The
problems of centralised management are detailed in Section 2.9, while Sections 2.10 and 2.11
overview the most well-known approaches in distributed management, which however, address
only certain aspects of the entire problem area; standardisation and research approaches are
separately investigated. Section 2.12 comprises a synthesis and qualitative analysis of
distribution approaches, classifies them in static and dynamic (depending on the degree of
flexibility they offer) and identifies their strong and weak points, pointing out aspects of
distributed management that could benefit by Mobile Agent (MA)-based approaches. Finally,

Section 2.13 summarises the chapter.

It is emphasised that that the reader is assumed to be reasonably familiar with NSM
concepts, SNMP, the way SNMP-based management platforms work in the IP world, how they

1 Scalability is defined as the ability to increase the size of the problem domain with a small or negligible increase
in the solution’s time and space complexity [RES97]. In the NSM context, scalability is specifically defined as the
ability to increase the number of monitored entities or the polling frequency, with a small or negligible decrease
in performance.

10

are typically structured, and the management tasks they perform (for an introduction, see Rose
[ROS96] and Stallings [STA99]). We therefore do not redefine here well-established concepts,

but only those whose definition is not consensual and those that are relevant to this work.

2.2. MANAGEMENT FUNCTIONAL AREAS

Types of management activity have been categorised by ISO into five generic functional

areas, collectively known as FCAPS from their initials [ISO91a]:

Fault Management: the process of collecting information referring to network elements
(NE) health. Integrated fault management systems receive reports about malfunctions
(alarms), perform alarm correlation and diagnostic tests, identify faults and display various
network alarms. This process can be optimised to perform root-cause analysis and

suggest/take corrective measures.

Configuration Management: controls the configuration state of a system/network and the
relationships between components. It also initialises, configures and shuts down network

equipment.

Accounting Management: defines how network usage, charges and costs are to be identified
in the networking environment. It is associated with tariffing schemes that generate

charging/billing information.

Performance Management: supports the gathering of statistical data, upon which it applies
various analysis routines to measure the system performance. That way, it provides an
accurate picture of network components and services. This process is capable of proactively
pinpointing and forecasting potential problems before they actually occur, based on
gathered information. It can predict congestion/bottlenecks and, hence, be used for network
future expansions and capacity planning. Performance management represents a central

application area for this thesis.

Security Management: controls access to network, system, service and management
components. It can offer authentication, confidentiality, integrity, access control and also

handle cryptographic key distribution.

In the telecoms world, management platforms generally support most (if not all) of the OSI

functional areas. This is not the case in the IP world, where most platforms support only a

fraction of FCAPS. Indeed, management platforms are often simpler in the IP world than their

counterparts in the telecom world.

11

2.3. THE OSI SYSTEMS MANAGEMENT

The OSI-SM [ISO91a] defines a management architecture with well-defined
organisational, informational, communication and functional models. The organisational
model assigns special roles to the management entities: the manager and the agent. A manager
is an entity that controls the management process and makes decisions based on collected
information, whereas the agents make available the management information to managers.
Abstractions of system/network resources which need to be managed are represented by
managed objects (MO). MOs encapsulate the underlying real resources and enable their
manipulation through well-defined operations. An agent administers the MOs on its local
device and provides mechanisms for performing management operations upon them, offering
an interface to system resources. In essence, the agent acts as name server for the objects
(resolves their names to internal handles), object factory since it creates and maintains objects
and event server since it disseminates events (notifications are evaluated and forwarded as
events to managers according to criteria preset by them) [PAVO01]. The communication
between the manager and the agents takes place via standardised management protocols. In
general, the manager-agent paradigm can be thought of as client/server (CS) relationship,

where the manager plays the role of the client and the agent the role of the server.

OSI-SM is based on a complex, object-oriented information model. MO classes are
specified by templates and consist of attributes, operations that can be applied to the
corresponding objects, behaviours exhibited by the objects in response to operations, and
notifications that can be emitted by the objects. The functionality of a MO is defined at design
time, i.e., it cannot change at runtime. MOs are logically grouped in Management Information
Bases (MIB). MIBs are virtual, hierarchical, object-oriented databases including interrelated

MOs in a managed environment. The basic architecture of OS-SM is depicted in Figure 2.1.

Operations .
S G R L Operations
Manager Notifications o
role] ===o Notifications
Osl
Management
0Sl g) | » OSl Managed
stack protoco stack objects ’
Open System Open System

Figure 2.1. Basic OSI-SM architecture [SLO94]

The exchange of management information between managers and agents is defined by a

service, the Common Management Information Service (CMIS), and its protocol, the Common

12

Management Information Protocol (CMIP) [ISO91b]. The CMIS provides management
operation primitives that include M-GET to retrieve data, M-SET to modify data, M-ACTION
to request the execution of an action, M-CREATE (M-DELETE) to request the creation
(deletion) of an instance of a managed object, and M-CANCEL-GET to cancel an outstanding
M-GET request. Agents may report events about managed objects using M-EVENT-REPORT.
In addition, CMIS provides multiple-object access through scoping and filtering operations.
Scoping allows management operations to be carried out on a selection of one or more
managed objects. Filtering consists of boolean expressions with assertions on values of
attributes in an object [1SO91b].

OSI-SM also addresses some aspects of management decentralisation through the
standardised Systems Management Functions (SMF), which define a rich set of functionality
specified in terms of generic object classes. Examples include Metric Objects, which measure
resource performance, monitor thresholds and generate notifications [ISO93] and the
Summarization function [1S092], which provides a framework for the definition, generation,
and scheduling of system information summary reports. These functions move intelligence in
proximity to the managed resources, reducing the amount of management traffic and providing
support for a sophisticated event-driven operation paradigm. Pavlou et al. proposed additional
functionality that combines the capabilities of metric monitoring and summarization objects in
a powerful fashion [PAV96].

The widespread interest in formal standards has generated considerable interest in CMIP,
even though it has not been widely used. One factor contributing to the lack of CMIP’s

popularity is the slow evolutionary process of these standards.

2.4. INTERNET MANAGEMENT

Simplicity and small implementation overhead has always been the main objective of
Internet management since the early days of its conception [CAS90, MCG91]. This seems to
be the main reason that justifies its popularity and wide use. In this context, Internet
management is characterised by a simple information model that lacks the object-orientation
(MOs are nothing more than simple variables) and sophistication of its OSI-SM counterpart,
but enables easier and faster writing and instrumentation of MIBs. The architecture depicted in
Figure 2.1 is applied in the Internet management model as well; the difference is that the

functionality of the corresponding modules is very much simplified.

The Internet management communication model relies on the Simple Network
Management Protocol (SNMP) [CAS90] as the communication protocol, which defines

connectionless services and primitives for getting and setting variable values and sending

13

notifications. SNMP has been developed with an orientation to TCP/IP networks. As it is the
case with most protocols of this kind, its development and implementation occurred with
considerable speed. A quick, easy and simple implementation was the first priority of its

designers. Hence, the following guidelines have been adhered to:
= make it work over very uncomplicated protocols;
= keep the number of protocol message types small;

= stick to a unit of information that is a single value, such as an integer or string.

Management Application Managed resources

(SNMP managed objects)

SNMP Manager SNMP Agent

UbP

IP IP

Network-dependant
protocols

Network-dependant
protocols

Figure 2.2. The SNMP layering [SLO9%4]

The User Datagram Protocol (UDP) was chosen as the SNMP transport protocol (see Figure
2.2). That decision was made mainly due to the scalability reasons. Namely, being centralised,
SNMP would impose a huge demand on the manager platform system resources to be able to
accommodate many open TCP connections to the managed devices. UDP also has small
footprint on network resources compared to TCP, while being well suited for short request/

response type of operations, which is consistent with the connectionless nature of SNMP.

In general, the SNMP framework provides much poorer functionality and expressiveness
than CMIP. However, because of the overall complexity and size of CMIP, many claim that
this is a case of the cure’s being worse than the disease. These problems and most importantly
the domination of Internet over OSI have prevented CMIP from reaching the dominant market
position that was originally anticipated. On the other hand, the inherent simplicity of SNMP

has been the driving force for its wide acceptance and popularity.

14

2.4.1. SNMP Protocol Data Units

SNMP uses relatively simple operations and a limited number of Packet Data Units (PDU)
to perform its functions. Figure 2.3 shows the types of messages exchanged between the
manager and the agent. Five PDUs have been defined in the first version of the standard
(SNMPv1) [CAS90]:

= Get Request: it is used to access the agent and obtain managed objects values. It includes

identifiers to distinguish it from multiple requests.

= Get-Next Request: it is similar to the Get Request and permits the retrieval of the next

logical identifier in a MIB tree.
= Set Request: it is used to change the value of a MIB object.

= Response: it responds to the Get, Get-Next and Set Request PDUSs. It contains an identifier
that associates it with the PDU it responds to. It also contains identifiers to provide
information about the status of the response (error codes, error status and a list of

additional information).

= Trap: it allows SNMP agents to report events at their local NE or to change the status of
the NE.

PDU Type request-1D 0 0 varbind list
(a)

PDU Type request-1D error-status error-index varbind list
(b)

PDU Type request-1D non-repeaters | max-repetitions varbind list
(©)

name; value; name; valuer | [Losi i rah name; value;
(d)

Figure 2.3: SNMP PDU formats: (a) Get request, Get-Next request, Set request, Trap, Inform, (b)
Response, (c) GetBulk request, (d) varbind list

Management data are returned in a list structured as a sequence of <object ID: value> pairs,
termed the varbind list. As shown in Figure 2.3, SNMP request and response messages have
for simplicity reasons the same packet format. Later protocol versions (SNMPv2, SNMPv3),

define two additional operations [STA99]:

= GetBulk Request: it has been devised to minimise the number of protocol exchanges
required to retrieve large volumes of management data, although there is a maximum
PDU size limitation. It includes a field the specifies the number of variables in the varbind

list for which a single lexicographic successor is to be returned (non- r epeat er s) and

15

another field denoting the number of lexicographic successors to be returned for the

remaining variables (max- r epeti ti ons).

= Inform Request: this PDU is used for manager-to-manager communication, i.e. it is sent
by an entity acting in a manager role on behalf of an application, to another entity acting

in a manager role, to provide information to an application using the latter entity.

2.4.2. SNMP versioning history

Two of the reasons for the initial success of SNMPv1 have been its lightweight design
compared to OSI management and also the fact that it avoided the four-year standardisation
cycles of the ITU-T [MAROQ]. Yet, experience has shown that SNMP evolves at an even
slower pace. The phenomenal success of the SNMPv1 architecture has also been the cause of
its decline. It proved to be good for managing relatively small networks, but could not scale to
large networks (e.g. geographically dispersed enterprises), and could not cope with large
volumes of management data [MAR99b]. The telecommunications world had already shown
how to solve this problem: by distributing the load across a hierarchy of managers. But
strangely enough, management distribution was not a priority at the Internet Engineering Task
Force (IETF) until the late 90s. Since SNMPv1 (standardised in 1990), four management
architectures have been released: SNMPv2p, SNMPv2u, SNMPv2c, and SNMPv3 [STA99].

The first three only support centralised management. SNMPv2p has been rendered obsolete
by the IETF in 1996 [PER97, STA99]. SNMPv2u had little success and “saw no significant
commercial offerings” [PER97]; it is thus no longer used. SNMPv2c is often used to manage
busy backbone routers, because it supports 64-bit counters and offers better error handling than
SNMPv1; but it brings nothing new as far as distribution is concerned. As for SNMPv3, its
main focus is on security [STA98], not scalability. In effect, it took eight years before the IETF
delivered a substantial new release, SNMPv3, and another two years before major vendors
began supporting it2. Its use is thus expected to remain marginal in production environments in
the foreseeable future. Note that the MIBs adding support for one kind of delegation in
SNMPv3 were issued only in 1999 [LEV99], so it will take even more time before they are
implemented and deployed. In short, vendors of SNMP management platforms are currently

forced to resort to proprietary extensions to support hierarchies of managers [MAR99a].

2.4.3. Strengths/Limitations of SNMP

According to the main characteristics of SNMP described in the previous section, the main

strengths and contributions of SNMP-based management are the following:

16

* interoperability;
= simplicity;
= wide support by IP-equipment vendors;
= small footprint on agents;
On the other hand, SNMP also exhibits several weaknesses:
(1) Scalability
Scalability issues can be classified into the following categories:

Network overhead: In the context of NSM, network overhead is the proportion of a link
capacity used to transfer management data, and thus unavailable for user data. The purpose of
a network is to transfer user data, not management data, so an important goal of NSM is to
keep network overhead low. SNMP is characterised by high network overhead, which is
mainly due to the polling-based nature of monitoring and data collection process (pull model)
[GOL91]. The manager repeatedly requests and retrieves specific MIB object values at each
poll cycle from remote agents. In many monitoring applications, a considerable portion of
network bandwidth is typically wasted to learn nothing other than that the network is operating

within acceptable parametrical boundary conditions.

Latency: For polling, latency is the time elapsed between the moment the manager requests the
value of a MIB variable and the time it receives it from the agent. It is important to keep
latency reasonably low, so as to quickly detect and correct operational problems. End-to-end
latency depends on networking conditions (the capacity and error rates of links, the speed of
the IP routers traversed between the agent and the manager, etc), the amount of retrieved data
and the number of protocol exchanges. When large sets of NEs need to be managed through
SNMP, latency can very be high, especially when the ‘control loop’, i.e. the network distance,

between the managing and the managed entities is large.

Manager’s processing capacity: The manager’s hardware resources (CPU, memory, etc.)
dedicated to management applications cannot be continuously increased, due to cost and
hardware constraints, setting a limit on manager processing capability [MAR98]. The
centralised structure of SNMP architecture and the lack of data filtering capability
characterising SNMP agents result in transferring vast amounts of NSM data, subsequently
processed at the manager platform. This forces manager’s processing capacity to its limits and

intensifies the need to relieve the manager from performing routine data processing tasks.

2 For instance, Cisco supports it as part of 10S 12.1.5, officially released in December 2000 [Cisco00].

17

Capacity of the manager’s local segment: The management data sent by all the agents
converge toward a single point, the network segment where the manager is connected to,

inevitably creating a bottleneck [BAL97].

Inefficient bulk management transfers: As the amount of data to transfer grows, it makes sense
to reduce the overhead by sending the data in bulk, that is, to send unlimited number of MIB
variables at a time, while keeping the number of network interactions low. However, SNMP
has not been designed for transfers of bulk management data (typically stored in SNMP
tables?). In SNMPv1, tables are retrieved through successive get - next operations. If the
table includes many rows, the manager must perform at least one get - next per row
[SPR99]. For tables with hundreds or thousands of rows, an equal number of
requests/responses will be transferred through the network increasing the network overhead
and latency. The situation improves with the get - bul k operator offered by SNMPv2c and
SNMPv3 frameworks [STA99], which allows transferring more data per SNMP message.
However, the manager should guess the length of the table to be retrieved and accordingly
choose a value for the max-r epetiti ons parameter. Using a low value will cause more
PDU exchanges than necessary. Using a high value, however, can result in an overshoot effect
[SPR99]: the agent can return data of no interest for the manager. The problems associated
with bulk management data retrieval are elaborated in Chapter 7, which proposes MA-based

applications to address all these problems.

SNMP message maximum size: The large number of protocol exchanges required to complete
bulk management data transfers is mainly due to the maximum size limit of SNMP messages.
All SNMP agents must accept SNMP messages that are up to 484 bytes in length, but may
legally refuse longer messages [CAS96]. Yet, many open-source implementations of SNMP
have used the maximum size limit of 1472 bytes (in LAN environments), proposed in
[ROS96]. Clearly, when transferring data in the order of Mb, a large humber of PDUs will be
exchanged; the exact number will depend on the maximum size limit used in the particular

SNMP implementation.

Poor efficiency of BER encoding: The SNMP protocol uses the Basic Encoding Rules (BER)
[ITU94] to encode management data prior to sending it over the network. BER encoding can
be implemented with very compact code (small footprint on agents) and causes a reasonable
overhead on the agent and manager for encoding/decoding. Yet, the amount of administrative

data (identifier and length) is large compared to the payload (content). This makes the network

3 Simple, two-dimensional tables are the only form of structuring data in the SNMP architecture [STA99].

18

overhead unnecessarily large. It also increases the end-host latency, because more data take

more time to transmit [MI1T94].

OID naming scheme: This relates to the information model of SNMP-based management, i.e.
the naming conventions for MIB variables. The Object Identifiers* (OID) transferred in SNMP
messages exhibit a high degree of redundancy. For instance, all objects stored in MIB-II° are
prefixed with 1.3.6.1.2.1. If this prefix could be omitted, a significant proportion of the space
dedicated to the OID name would be saved. Furthermore, the prefixes of the table object OIDs
are all identical up to the column number. In this case, more than 90% of the OID name is

redundant [SPR99]. All these observations indicate a highly inefficient OID naming scheme.

No compression of management data: The first two versions of SNMP (v1 & v2c) did not
allow the transparent compression of management data in transit. This unnecessarily increases
network overhead and also network latency due to transferring larger volumes of data. As of
SNMPv3, it is possible to compress management data by adding encryption envelopes to
SNMP messages [SPR99]. Although this feature was initially intended for encrypting data, it
also allows for data compression. When large chunks of data are compressed, the overall
latency is also reduced, as the compression time is typically negligible with respect to the time

saved to transmit the uncompressed data.
I1) Unreliable transport protocol

Another problem of SNMP-based management is the transport protocol used for
transferring SNMP messages, UDP. UDP operates in a connectionless fashion, which saves the
three-way-handshake overhead of TCP [TAN96], and is ideal for exchanging short messages.
However, due to the lack of acknowledgements, it is not suitable for communicating critical
notifications to the manager. By using an unreliable transport protocol, the management system
runs the risk of losing important notifications for trivial reasons such as buffer overflows in IP
routers [MAR99b].

I11) Security

SNMPv1 and v2c adopt a weak security scheme. Passwords for configuring routers, hubs
and servers are passed across the network as clear text, in unprotected packets. Identification,
which is based on community strings, is so simplistic that cannot be considered as secure. The

main advancement brought by SNMPv3 is security. SNMPv3 supports identification,

4 An OID (Object IDentifier) uniquely identifies a MIB object.

5 MIB-II [McC91] is the standard MIB in the IP world, supported by virtually all SNMP-compliant network
devices and systems.

19

authentication, encryption, integrity, access control, etc [STA98]. However, the support of

SNMPv3 by major vendors takes place at a slow pace.
IV) Information model: low level of semantics

As far as semantic richness is concerned, the main shortcomings in SNMP are the absence
of high-level MIBs, the limited set of SNMP protocol primitives, and the data-oriented nature
of the SNMP information model. Due to these limitations, developing high-level management
applications is a difficult task, which partly explains why NSM applications are often limited
to little more than monitoring in the IP world [MARQO]. In particular, due to the way the
SNMP market evolved over time, SNMP MIBs offer only low-level Application Programming
Interfaces (API), often called instrumentation MIBs. SNMP frameworks provide no support for
management applications to dynamically define external data models as part of the MIBs.
Although it is possible for applications to retrieve raw MIB data and compute the appropriate
data model at the platform host, this is highly inefficient [GOL95]. In addition, SNMP
protocols support limited protocol primitives vocabulary, which allows getting/setting atomic
variable values and notifying about important events. This is extremely restrictive and is
typical of a data-oriented information model, unlike object-oriented models, which are widely
used in industry today. The absence of an object-oriented information model in SNMP is
generally regarded as one of the main limitations of SNMP [GOL96]. When the Distributed
Management Task Force (DMTF) endeavoured to define a new management architecture in the
late 90s, it came as no surprise that its first delivery was a new object-oriented information
model: the Common Information Model (CIM)s [BUMOOQ].

The scalability problems of SNMP are mainly attributed to its centralised model and can be
efficiently addressed through MA-based approaches. The latter enable the dynamic delegation
of NSM functionality to managed elements, where MA objects may filter/correlate
management data, adopt an event-driven (instead of polling-based) approach to notify
managers about important events and apply data compression, thereby reducing network
overhead. Chapter 7 describes MA-based monitoring applications that address these issues. In
addition, as described in Section 4.4.1.2, the administrator is given the option to use either TCP
or UDP for MA migrations, depending on the application reliability requirements. Our model
also addresses the authentication, authorisation and encryption security aspects (see Section

4.4.1.3.2). Finally, semantically rich management operations can be built using low-level

6 CIM is defined as a conceptual information model for describing management that is not bound to a particular
implementation. This allows for the interchange of management information between management systems and
applications. This can be either ‘agent to manager’ and ‘manager to manager’ communications which provides for
Distributed System Management.

20

protocol primitives as a basis and dynamically deployed to managed systems. This issue is

discussed in Chapter 7.

2.5. DISTRIBUTED OBJECTS-BASED MANAGEMENT

A new programming paradigm has emerged in the *90s, Distributed Objects Technologies
(DOT). DOTs define an object-oriented paradigm, where objects can interact even if they do
not reside on the same system. Since OSI-SM is object-oriented and SNMP managed objects
can be mapped onto objects, it took little time for NSM researchers to start working on the
integration of DOTSs with existing management architectures. Thus, DOTSs enabled a paradigm
shift from the protocol-based approaches of the early 90°s, exemplified by the SNMP and OSI-
SM, to distributed object-based approaches in the mid to late 90’s. In this section, we briefly
describe two representative DOTs, the Common Object Request Broker Architecture
(CORBA) and Java Remote Method Invocation (RMI), discussing their relevance to NSM.

2.5.1. CORBA

CORBA [CORBA] is the product of a consortium of over eight hundred companies, known
as the Object Management Group (OMG). The OMG has approached the problem of handling
the interaction of distributed components by creating interface specifications, and not code.
Distributed components of the system are able to describe their interfaces using the Interface
Definition Language (IDL) and subsequently inter-operate through the underlying Object
Request Broker (ORB). Namely, the ORB provides the communication backbone through
which distributed components are able to interact. To perform requests or return replies,
objects use a generic RPC-like request/response protocol, the General Inter-ORB Protocol
(GIOP) or its TCP/IP mapping, the Internet Inter-ORB Protocol (1IOP). Distributed
components communicating via an ORB do not need to be aware of the mechanisms used in
that communication and are able to discover each other at run time. A number of CORBA
services provide basic functions, e.g. the Naming service that allows clients to locate objects
based on their names, the Trading service that enables objects location based on their

properties and the Event service which allows asynchronous messaging between objects.

The applicability of distributed objects on NSM has been a subject of intense research in the
past few years [MAZ96]. Along this line, Pavlou pointed out the suitability of DOTSs in large
scale distributed environments and proposed the use of CORBA in TMN open interoperable
interfaces, replacing OSI-SM [PAV00]. However, a main direction of the research efforts has
been on the seamless integration of legacy systems into emerging distributed object

environments. In that context, Mazumdar proposed the use of a gateway, which achieves the

21

inter-operation of management applications in CORBA domain and agents in SNMP domain
[MAZ96]. The main function of the CORBA/SNMP gateway is to dynamically convert
method invocations on object references in CORBA domain to SNMP messages for MIB
entries at remote agents. Likewise, a CORBA/CMIP gateway has been proposed in [CHA97],

which hides the complexity of OSI management from developers.

2.5.2. Java RMI

Java RMI [RMI] of Sun Microsystems is an API defined for remote communication by the
Java development team. It allows method invocations between objects residing in different
address spaces in a seamless and location-transparent way. This facility requires that the
remote objects implement a specified interface and that their hosting devices run a dedicated

service (rmiregistry).

However, Java RMI technology provides a low-level communication infrastructure. The
syntax and the content of the messages are not defined (or remain in a very poor form).
Another major drawback of RMI is that unlike CORBA, it is not language-independent, but
exclusively intended for distributed Java-to-Java applications communication [MOR97]. RMI
uses the object serialisation (described in Section 3.5.2) facility of Java to marshal and
unmarshal parameters. Methods invoked at remote objects are reachable through the RMI’s
transport protocol, the Java Remote Method Protocol (JRMP), which has its own lookup
service. In the context of NSM, Java RMI has been used in the JIMAPI and JMX initiatives of

Sun Microsystems (see Section 2.7.2).

A third emerging DOT is Microsoft’s proprietary solution, the Distributed Component
Object Model (DCOM) [DCOM], which has not yet found wide acceptance in NSM
applications development. This is due to its limited platform support (Microsoft platforms) and
the fact that DCOM is still an immature technology, in comparison with CORBA.

2.5.3. Limitations

Despite the undeniable suitability of DOTs for building distributed management
applications, a number of disadvantages have been identified in the literature. The first three

are specific to CORBA and RMI, while the last generally applies to all existing DOTSs:

= Even though a main aim of distribution is scalability, CORBA retains a reliance on
centralised information stores for such things as the name service, the trading service and
implementation repositories. Although that has the benefit of simplicity, the centralisation
of data represents a potential performance bottleneck and a single point of failure
[McKO00Q].

22

= The communication protocol of CORBA has been criticised for its efficiency, as it gives
rise to a high message overhead on certain operations [GOK98] and is slower than
traditional Remote Procedure Calls (RPC) [LIPOO].

= Distributed applications relying entirely on Java RMI have been criticised for low
scalability due to the limitations of JRMP (low protocol speed, and out-of-control socket
creation). However, the situation improves in the latest releases of RMI that support the
IIOP transport protocol, which offers improved scalability, while allowing the inter-
operation of RMI and CORBA-enabled applications [MOR97].

= In DOT-based approaches, the functionality of the distributed objects is static and cannot
be altered, in a similar way to OSI-SM and SNMP support object facilities [BOHOOb]. The
required degree of flexibility and reconfigurability can be achieved through the mobile
code paradigms described in Chapter 3, which allow the dynamic deployment of

management services at runtime.

2.6. DIRECTORY ENABLED NETWORKS

The emerging Directory Enabled Networks (DEN) [STR99] framework signifies a shifting
from DOT-based approaches back to protocol-based approaches (exemplified by the SNMP
and OSI-SM architectures). Like OSI-SM, DEN uses OSI directory technology to store
information about networks. Changes in network configuration are handled within directories,
which store information hierarchically, with each entry (object) containing a set of attributes.
DEN directories distribute management information across multiple machines through a
process known as directory replication. DEN directories are typically accessed via the
Lightweight Directory Access Protocol (LDAP), which supports three types of protocol
operations: query, update, and authentication. The purpose of DEN framework is to facilitate
the management of large and complex configurations of heterogeneous systems and deal with
dynamic networks with frequent changes in their configuration. Therefore, DEN tackles the

dynamism and scalability challenges in network management.

2.7. JAVA-BASED MANAGEMENT

Another approach that emerged in the 90’s has been based on Java [JAVA], which in the
NSM world is considered as a technology rather than as a programming language. This section
starts with an overview of Java, highlighting its generic advantages and deficiencies (especially
those with relevance to NSM applications). This overview is necessary, as it justifies the

selection of Java as the implementation platform for our MA-based management framework. A

23

state-of-the-art report on Java-enabled management technologies follows, along with an
overview of research initiatives undertaken in Java-based NSM. For further information on
research activities and commercial products related to Java-based management, the interested

reader is referred to the links given on [JBM].

2.7.1. Overview of Java

Since its first release in 1995 by Sun Microsystems, Java has become one of the most
popular development platforms within the Internet community, mainly due to its strong
connection with Web-based applications, inherent portability, simplicity and support for
Internet-oriented programming. Java is described as “a simple, object-oriented, network-savvy,
interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded,

dynamic language” [JAVA].

2.7.1.1. Generic Benefits & Deficiencies of Java

Architecture-neutral and portable: Java offers the advantages of architecture neutrality and
portability to networking application developers, which led to the Sun’s marketing phrase
“write once, run anywhere”. That allows developing applications that address the problem of
increased heterogeneity characterising modern networks, in terms of operating systems and
hardware architectures. To achieve platform-independence, the Java compiler does not
generate “machine code”, i.e. native hardware instructions, but bytecode: high-level,
interpreted, portable code. The format of this binary code is architecture-neutral. Given that the
run-time platform, i.e. the Java Virtual Machine (JVM), is available for a platform, any Java

application can execute there.

Obiject-orientation: Object-oriented design is a very powerful programming paradigm as it
facilitates the clean definition of interfaces and maximises software re-usability. Although
there are several object-oriented languages, Java is the only one that enforces it, i.e. the

programmer has no choice but to encapsulate all data in objects.

Multithreading: In most languages, writing programs that deal with many processes (threads)
simultaneously can be a very difficult task. Built-in multithreading support is one of the most
powerful features of Java, as it allows lightweight process concurrency. The Java Development
Kit (JDK) library provides a rich collection of methods to start, stop, suspend, resume or check
the status of a thread.

Strong networking support: Java is particularly suitable for network programming. It offers an
extensive library of classes and routines, which include TCP and UDP socket communication,

support for broadcast and unicast messaging, invocation of remote methods through RMI, etc.

24

Native methods: When developing an application, situations might arise that necessitate the
integration of code written in other languages (native code) within the Java application. The

use of native code might be required for one of the following reasons:

(i) Code re-usability: Most of existing software is not written in Java. In some occasions, it is
time consuming to translate it to Java, so the direct integration of non-Java with Java

front-end programs might be preferable.

(if) Performance: Being an interpreted language, Java exhibits worse performance compared
to other languages that involve compiled code. Hence, native code could be more suitable

for time-sensitive applications, in order to maximise the execution speed.

(iii) Tasks that cannot be implemented in Java: In certain cases, the implementation of certain
tasks in Java might not be feasible (e.g. when low-level, platform-dependent functions

have to be used), making the need for co-operation with native code imperative.

The integration of Java programs with native code is achieved through the Java Native
Interface (JNI) [JNI]. An important feature of JNI is that it allows ‘bi-directional’
communication between Java applications and native code, i.e. Java methods may invoke

native functions and vice-versa.

Security: Java is intended for use in networked/distributed environments. Along this line,
particular emphasis has been placed on security. A built-in security mechanism is provided
with the core JDK API: the j ava. | ang. Securi t yManager class that developers may
extend to customise the access rights of individual applications on system resources [AUSO00].
In addition, the Java Security API [JSAPI] is a framework for developers to easily include
security features in their applets” and applications. The Security API includes support for

digital signatures, encryption and authentication.

Despite all its advantages, Java has been often criticised for performance-related issues. The
fact that Java is an interpreted language makes its performance substantially poorer than
compiled languages, such as C++. However, with the advent of Just-In-Time (JIT) compilers
[JIT], Java programs may be executed much faster. JITs basically compile the bytecode into
platform-dependent native code, which is subsequently executed (it is faster to read the

bytecode, compile it and run the resulting executable, than it is to interpret it).

7 Applets are Java programs that can be included in an HTML page and subsequently uploaded and executed by
Java-enabled Web browsers JVMs.

25

2.7.2. Java Technologies for Network & Systems Management

The self-evident suitability of Java for developing management applications has been
recognised since its early days, with the first commercial implementations of the SNMP stack
in Java released in 1996 [AdventNet]. Since then, AdventNet, a company that specialises in
Java-based management products, has gone much further providing a complete suite of
Internet management tools. These include a visual builder tool used to build SNMP
management Java applets and applications, an Agent Toolkit that automates the process of

creating SNMP MIBs and instrumenting agents for these MIBs, etc.

The following section summarises the technologies recently emerged in the field of Java-
based management. All these technologies represent initiatives undertaken by Sun
Microsystems and comprise toolkits (JMAPI and JMDK) or standards (JMX) expressly

oriented to building management frameworks.
JMAPI - IDMK - JMX

In 1996, shortly after the release of the JDK 1.1 that added support for RMI, Sun
Microsystems made the Java Management API (JMAPI) [JMAPI] publicly available. This API
is a set of tools and guidelines to build management applets supporting RMI. It supports the
most common SNMP MIB, MIB-II [McC91], by mapping its managed objects onto Java
objects. It also provides a rich graphics library to ease the development of sophisticated GUIs,

allowing the visual representation of management information.

Soon after, Sun released the Java Dynamic Management Kit (JDMK) [JDMK], a
component-oriented management toolkit written in Java. Like JMAPI, JDMK is publicly
available. It is based on Java Beans (JB)® and comes with a library of core management
services. It also contains adapters to enable communication via RMI, HTTP and SNMP. Unlike
JMAPI that deals only with MIB-11, JIDMK includes an SNMP-to-Java MIB compiler, which
translates the managed objects defined in any SNMP MIB into JB components (called
management beans, or MBeans). The toolkit supports push and pull from agents and offers a

powerful framework for developing management applications.

In 1999, JIMAPI was superseded by the Java Management eXtensions (IMX) [JMX]. IMX
is a management framework intended for object-oriented Web-based management. It is far
more comprehensive than JMAPI and builds on the experience acquired by Sun with the
JDMK. The specification does not only focus on the agent part of the management system (as
it is the case with JDMK) but also specifies the manager part. In other words, JDMK can be

considered as an integral part of JMX. It should be noted though that being relatively new

8 A JavaBean [JB] is a reusable component that can be visually manipulated by means of a builder tool.

26

technologies, JDMK/IMX need extensive evaluations and performance studies to test their

performance and scalability.

2.7.3. Research approaches to Java-based management

In addition to commercial activities, the power of Java in building management applications
has been also signified by the profound interest of the research community. Early approaches
focused on developing centralised frameworks entirely built in Java [LUD97, PAR98]. Both
these works introduced a multi-threaded Java Agent engine, and proposed the replacement of
BER encoding by a heavyweight bytecode-based mechanism. In particular, a simple get
request involves the creation, compilation and transfer of a Java class that encloses the
requested OID string, with the receiving Agent loading the class and retrieving the OID string
before returning the requested value using the same mechanism. This method also imposes
heavy network traffic (unnecessary transfers of classes) and exhibits the drawback of delay
imposed by the time-intensive processes of compilation and class loading. These problems
were addressed by a paper describing preliminary work of the author, which introduced a

lightweight socket-based communication mechanism [GAV99].

More recent approaches to Java-based management concentrate on encompassing the Sun's
standards, described in the preceding sections, in distributed NSM frameworks. For instance,
[KEL99] described a case study for dynamic management of Internet telephony servers based
on JBs and JDMK. Lee described the design and implementation of a management platform
based on the TMN and discussed how Java technologies can support a variety of management
interfaces as service components in a distributed computing environment [LEEOQ]. Anerousis
introduced Marvel, a sophisticated Java-based management framework that enables the
development of scalable NSM services [ANE99]. Scalability in Marvel is achieved by
supporting computed views of low-level management information that convey high-level
network operational status statistics and distribute the view computation task to a hierarchy of
processors (servers). Information stored in Marvel objects is accessible through a Web

interface.

2.8. WEB-BASED MANAGEMENT

Java owns its popularity mainly to its strong connection with the Web through applets.
Since the Web is now ubiquitous, several proposals (see references in [Web]) have been made
to use the Web technology in NSM. Wellens and Auerbach introduced the concept of
embedded management application, where an applet is stored in the managed device and

loaded by the administrator into a Web browser; communication between the applet and its

27

origin agent later relies on HTTP instead of SNMP [WEL96]. Since the time of this proposal,
new technologies, such as Java servlets® and RMI have appeared and been used in Web-based
management, for instance to open persistent sockets between applets and servlets, etc. Recent
approaches realised a step towards decentralisation through the transition from pull to push
management [MAR99b, ADAOQ]. In the push model, management data transfers are always
initiated by the agent, similarly to SNMP notifications, thereby reducing the network overhead,

and moving part of the CPU burden from managers to agents [MAR99Db].

In the standardisation arena, an industrial consortium led by Microsoft launched a new
initiative in 1996: the Web-Based Enterprise Management (WBEM) [WBEM]. WBEM took a
revolutionary approach by replacing all existing protocols and object models with new ones.
The main motivation was the integration of the Desktop Management Interface (DMI), used to
manage cheap desktops, with SNMP, used to manage network equipment and expensive
workstations. In this context, a new object model, CIM, has been devised. Today, SNMP/CIM,
DMI/CMI and CMIP/CIM gateways are under development. WBEM is backed by most
vendors in the NSM industry and is likely to emerge as one of the main management
architectures of the decade [MAROQ].

2.9. THE NEeD FOR DISTRIBUTED MANAGEMENT

Management world today is dominated by protocol-based approaches, exemplified by the
SNMP and OSI-SM. Both the IETF and the OSI approaches are characterised by the inflexible
manager-agent paradigm. Centralisation has a serious impact on management scalability since
it imposes almost all the computational burden on the manager platform [BAL97, CHE98].
The operations available for accessing MIBs are very low-level. In SNMP, for instance, the
manager can only get and set atomic values in a MIB. This fine grained CS interaction is often
called micro-management [GOL91], and leads to the generation of intense traffic and

processing bottlenecks.

The OSI-SM supports the delegation of monitoring activities to the NEs, reporting only
QoS alarms or summarised reports to higher-level managers [OSI192, OSI93]. Nevertheless,
such generic functionality needs to be first researched, standardised, implemented and
eventually deployed to NEs; this process typically takes a long time. Furthermore, the same

research-standardisation-implementation-deployment cycle needs to be repeated whenever any

9 Servlets are server-side Java components; while applets provide a way of dynamically extending the functionality
of client-side browsers, servlets allow the application developer to dynamically extend the functionality of
network servers.

28

modification, e.g. for providing more sophisticated features that were not thought out in
advance, is to be introduced [MOU98b, BOHOO0b].

The scalability problem of centralised architectures becomes more profound as the
dimension of the managed network grows. The managers need to communicate with a larger
number of devices, as well as store and process an ever-increasing amount of data. This leads
to the need for high cost hardware dedicated to the manager platforms [MAR98] and poor
performance. In addition, the network area around the manager stations is saturated due to the
combination of messages sent by the management platforms with those sent by the devices.
The worst shortcomings of the centralised approach show up during periods of heavy
congestion, when management intervention is particularly important [P1C98, KIM98]. During
these periods: (i) the manager increases its interactions with the devices and possibly
downloads configuration changes, thereby increasing congestion, (ii) access to devices in the
congested area becomes difficult and slow (sometimes even impossible), and (iii) congestion,
as an abnormal status, is likely to trigger notifications to the manager, generating even more
traffic. In order to answer the problems related to centralisation, NSM functionality must be
distributed, i.e. complex diagnosing and information gathering activities must be moved from

the managers to the managed devices.

The advantages of distributed management can be found in many research papers (e.g.
[GOL91, BAL97, KAH97, CHE98, MAR99a]). In particular, management distribution:

= allows applications to efficiently exploit the increased availability of hardware resources of

modern managed systems;

» improves the autonomy and survivability of NMSs. That is, when the communication with

the managing process is lost, distributed management entities can continue to execute;
= reduces the need for intensive polling;

= reduces the computational load on manager platforms through pre-processing management

data, filtering unimportant alarms and delivering only high-level information;

= |eads to significant reduction of management traffic, as most management interactions are

locally executed.

It should be emphasised though that not all management applications should be necessarily
decentralised. In fact, centralisation is the appropriate model for applications that have little
inherent need for distributed control. Such applications (a) do not require frequent polling or
high frequency computation of MIB deltas, i.e. aggregation functions, (b) have high-bandwidth

network connections between the manager and the managed devices, (c) exchange relatively

29

small amounts of data, and (d) do not need frequent, semantically rich conversations between

manager stations and managed nodes [MEY95] (see Figure 2.4).

CENTRALISED PARADIGM

DISTRIBUTED PARADIGM

<

>

Low need for distributed processing, e.g. a
small network that can be managed by a
centralised control system.

High need for distributed processing, e.g.
localised information processing required
either due to data size or for robustness.

Low frequency for required polling, e.g. the
NMS does not require constant polling or
the network has high bandwidth availability.

High frequency for required polling, e.g.
need for constant monitoring of a large
number of managed objects.

High ratio of throughput to the amount of
management information.

Low ratio of throughput to the amount of
management information.

Low need for semantically rich/frequent
communication, e.g. networks that support
simple services.

High need for semantically rich/frequent
communication, e.g. large networks that
support complex services.

Figure 2.4. Management centralisation or distribution metrics (adapted from [MEY95])

2.10. DECENTRALISATION INITIATIVES WITHIN THE INTERNET COMMUNITY

The disadvantages of centralised management, as outlined in the preceding section, have
first been admitted by the same organisations that introduced it. The following sections review
the decentralisation initiatives undertaken by the IETF, with focus on IP networks
management. The reader interested in extended surveys on the various approaches on
management distribution may refer to [KAH97, MAR99a].

2.10.1. Management Distribution within the SNMP Frameworks

A primitive form of decentralisation (provided in SNMPv1) is the asynchronous
notification mechanism. Namely, SNMP agents can send traps [CAS90] to the manager
platform not as a result of a request, but when an important event occurs. Still, no management

action can be performed locally as decisions are made centrally by the manager application.

The SNMPV2 introduces the concept of proxy agent [McC96], which realises a transition
from centralised to hierarchical management models (see Figure 2.5). A proxy agent can be
responsible for a set of devices; the manager sends requests to the proxy instead of interacting
directly with these devices. Traditionally, SNMP has used proxy agents in a pass-through role,
wherein a proxy passes the manager requests and agent responses through, in an essentially

transparent mode. The fact that a proxy can be used as an intermediate manager for

30

hierarchical management is recognised by SNMPv2, however, the framework provides no
means for managers to delegate tasks to intermediate managers or to communicate with them
during the execution of these tasks [KAL97]. SNMPv2 has also attempted to promote
management distribution through introducing the concepts of the inform PDU primitive (see
Section 2.4.1) and the Manager-to-Manager (M2M) MIB [CAS93], which however proved

unworkable in practice and have now become obsolete [MAROO].

Figure 2.5. (a) Centralised management, (b) Hierarchical management

2.10.2. Remote Monitoring

The IETF has proposed another approach, known as Remote MONitoring (RMON)
[WADQ95], that introduces a higher degree of decentralisation. RMON assumes the existence of
network monitoring systems called monitors or probes, which can either be standalone devices
dedicated to link monitoring or embedded into network devices (Figure 2.6). By monitoring
packet traffic and analysing the headers, probes provide information about links, connections
among stations, traffic patterns, and status of network nodes. SNMP is used for communication
between the manager and the agents running on probes. RMON allows the delegation of
monitoring functions from the managers to the probes through the definition of suitable filters.
A probe can detect failures, misbehaviours, and identify complex relevant events even when
not in contact with the management station. In addition, the agent on the probe can perform
semantic compression of data by pre-processing the information collected, before sending it to

the management station.
However, RMON also exhibits several deficiencies:

= Typically, a stand-alone RMON compliant device (probe) is required to monitor the traffic
activity of a single network segment, leading to considerable increase of cost when the

management of multiple segments is required.

31

= The control operations of a RMON probe may be set/modified only at configuration time,

i.e. runtime modifications are not supported [MOU98a].

= RMON is adequate for providing only traffic-oriented statistics since the status of the
network is determined by direct inspection of the packets flowing in it, rather than
inspection of the devices status, like in the mainstream (centralised) approaches that offer
device-oriented statistics. Hence, RMON is not adequate when management operations

should be applied in both system and network level.

Figure 2.6. The RMON approach

2.10.3. Script MIB

Management distribution support to SNMPv3 framework has been added in 1999. In
particular, the DISMAN (DIStributed MANagement) Working Group of the IETF was
chartered to define an architecture where a main manager can delegate control to several
distributed management stations. Among others, the DISMAN framework provides
mechanisms for distributing scripts, which perform arbitrary management tasks to remote
devices. This is achieved through the Script MIB [LEV99], which defines a standard MIB for
the delegation and invocation of management functions (scripts), based on the Internet
management framework (see Figure 2.7). According to the specification, the term script is very
broad, referring to some type of executable code which can be executed by any device that

implements the MIB.

In particular, Script MIB provides the following capabilities [SCHO0]:
= Transfer of management scripts to a distributed manager;
» Initiating, suspending, resuming and terminating management scripts;

= Transfer of arguments for management scripts;

32

= Monitoring and control on executing management scripts;

= Transfer of the results produced by running management scripts.

Manager

Management
scripts

Management

| _somes_]S US| [Management| [~Agent

Agent Agent scripts

Management

Figure 2.7. The Script MIB approach

The Script MIB is limited to the operations performed on the six tables that constitute the
MIB. Before the administrator decides to delegate a script, he/she should first check the
languages supported by the Script MIB implementation and select an appropriate script from a
repository. Scripts are uploaded to the devices through client pull or server push models. The
Script MIB enables scripts to be initiated, controlled and terminated through the SNMP
management framework. For instance, the execution of a script starts with a single SNMP set
request. The manager can also obtain intermediate or final results generated and maintained at

the agent.

Although providing a powerful management distribution mechanism, the Script MIB also

exhibits a number of limitations:
= The current specification makes it difficult to update existing scripts [McM99];

= Currently, the number of Script MIB implementations (such as the Jasmin project
implementation [Jasmin]) is still limited, namely this technology has not been widely

tested/evaluated yet;

= The Script MIB approach is specific to the Internet management frameworks, similarly to
all standardisation approaches undertaken by the IETF or in the context of OSI-SM
[BOHOOc]. In contrast, MAs can provide a more generic and framework-independent

mechanism for the delegation of management functionality.

It should be noted that parallel work to the script MIB has been also reported in the in the
context of OSI-SM [VAS97].

33

2.11. RESEARCH APPROACHES ON MANAGEMENT DISTRIBUTION

The advantages of distributed/hierarchical management over centralised approaches have

motivated several research works on that field, described in the following sections.

2.11.1. Management by Delegation

The full potential of large-scale distribution over managed devices was first demonstrated
by Goldszmidt et al. through the Management by Delegation (MbD) framework [GOL91],
which set a milestone in NSM research. MbD realises a distributed management architecture
that enables the execution of management tasks at the end nodes by dynamically delegating
management functions to stationary agents (“elastic” processes). The elastic processes allow
new control functionality to be uploaded in the form of scripts, using a proprietary delegation
protocol, the Remote Delegation Protocol (RDP). Scripts execution is usually initiated by
other processes that require the corresponding functional services. This is quite similar in
concept with the Script MIB approach (see Section 2.10.3); in fact, the latter follows the MbD
paradigm, while the same applies to most recent standardisation and research NSM distribution
initiatives.

Epitomising, the MbD paradigm represents a powerful management distribution approach,
which has promoted for the first time network devices from ‘dumb’ data collectors to the rank
of full-fledged managing entities. MbD can be considered a precursor of the ideas introduced
in this thesis. The fundamental difference lies on the fact that in MA-based NSM, delegation of
management functionality is achieved through the MA objects and not downloadable scripts;
the execution of MAs is not necessarily restricted on a single device, as they can autonomously

migrate from host to host.

2.11.2. Flexible Agents

The work presented in [MOU98a] builds upon the groundwork of the MbD paradigm,
introducing an intelligent agent module, termed the “flexible agent”. Unlike MbD agents,
flexible agents do not operate at the managed device level; instead, they are responsible for a
number of standard SNMP agents located within their management domain and exploit their
ability to communicate and co-operate with their peers to correlate/filter collected data. The
applicability of the flexible agents approach has been demonstrated in fault management
scenarios [MOU99].

34

2.11.3. The Spreadsheet approach

A spreadsheet scripting environment for SNMP is proposed in [KAL97]. The spreadsheet
scripting language allows a manager to prescribe computations that can be carried out by the
agent and supports arithmetic, logical and relational operators. Each cell in the spreadsheet
defines an expression that computes a value from other given data such as values in the MIB.
Expressions can be inserted, updated or deleted according to the manager needs, through
SNMP operations. Apart from computed attributes, the spreadsheet is also capable of

generating event reports by evaluating predicates containing relational expressions.

2.11.4. Hierarchical Management

A hierarchical NSM system that uses the concept of the SubManager has been presented in
[SIE96]®. A SubManager is responsible for few agents; it collects primitive data from them,
performs some calculations and produces more meaningful values that can be used by a
superior manager. This method significantly reduces the volume of NSM traffic since only
high-level information is sent to the manager. A similar approach is adopted in [KOQ095] that
proposes the use of Area Agents, each performing local management to a specific network
section. Area Agents can be configured to collect and pre-process all data that was formerly

dealt with by the manager station.

The Mid-Level Manager (MLM) [MLM] of SNMP research has been another step towards
management distribution. An MLM is a dual-role entity, i.e. it acts both as an agent and a
manager. When managers request information from the MLM, it plays the role of the agent,
while acting as a manager for the agents located within its domain. When the MLM is placed
across a WAN link, remotely from the enterprise manager, it obviates to a certain degree the
necessity of performing “normal” SNMP polling. This reduces the polling traffic over the
WAN link, thereby achieving significant cost savings. Furthermore, should the WAN link “go
down”, the MLM continues to perform management tasks at the remote site despite its
separation from the central manager. Finally, MLMs can provide a prompt first-line response
to problems while leaving the manager in the position of final authority. After the first-line
response, the manager can evaluate the situation more thoroughly and decide whether further

action is required or not.

101t should be noted that the concept of hierarchical management has been first proposed in the TMN
recommendation [CCITT92].

35

2.12. SYNTHESIS & EVALUATION OF EXISTING APPROACHES ON MANAGEMENT
DISTRIBUTION
The approaches investigated in Sections 2.10 and 2.11 certainly offer useful mechanisms

for realising management distribution. In general, they can be classified in:

(a) Static approaches (proxy agents, RMON, flexible agents and the hierarchical management

models described in Section 2.11.4), which offer distribution but very limited flexibility;

(b) Dynamic approaches (MbD, Script MIB, spreadsheet approach), which offer distribution

and increased degree of flexibility).

With the exception of RMON, static approaches achieve management distribution through
building management hierarchies, where a mid-level delegation entity is responsible for
managing a group of managed devices. That model is consistent with the hierarchical structure
of modern large-scale enterprise networks, obviates the need for remote communication
between the manager and managed elements and results in localisation of management traffic

within the individual management domains.

There are two parts on building management hierarchies: (i) assigning roles (“proxy

agents”, “flexible agents”, “area agents” “SubManager”, “Mid-Level Manager”) to the
members of the hierarchy, and (ii) assigning members to specific physical locations where they
will function under the supervision of higher-level members. This is feasible if the network is
moderately small and/or not very dynamic, and if a single manager is the only user and
specifier of the management policies. However, it is not in step with the dynamically evolving
topological and traffic characteristics of large-scale enterprise networks [LIO01]. In addition,
the distribution of aggregation and filtering computations in these approaches is manual and
static. The manager of such a system is required to know the managed network well enough to
build a hierarchy of distributed servers that will accommodate, to the best extend possible, all
desirable computations that could be performed on NSM data. In general, the concept of
management domain is not clearly defined in static approaches, nor are the criteria according
to which the boundaries of such domains are determined. Also, the MLMs, SubManagers, etc,
may suffer from overloads while executing their tasks [LOPO0O0], either due to limited capacity

or insufficient computing power of the hosting processors.

The problem of architecture inflexibility also applies to RMON where the filters configured
by the manager are statically predefined and cannot be easily changed at runtime [KAL97,
MOU98a].

The inflexible definition of static approaches can be addressed by MAs that dynamically
migrate to remote management domains when certain conditions are satisfied and acting as

mid-level management entities. In Chapter 6, we will introduce a hierarchical MA-based

36

management framework that addresses the issue of dynamic deployment and placement of

agents, operating at an intermediary level between the manager and the managed devices.

Dynamic approaches offer increased flexibility in comparison with their static counterparts,
as they allow on-the-fly customisation of delegated functionality. However, they exhibit a
number of limitations. First, they rely on scripts as a means for distributing management
intelligence to end nodes. Such scripts are typically coded using script languages, such as Perl,
Javascript and Tcl/Tk. Script languages allow rapid coding and are ideal for implementing
programs with limited capability. On the other hand, MAs are typically programmed in high-
level programming languages (e.g. Java), which are suitable for developing more complex and

demanding decentralised management tasks [PULOOa].

In addition, the Script MIB and the spreadsheet approach both rely on SNMP for script

transfers. As a result, they suffer from disadvantages related to SNMP, that is:

a) not guaranteed delivery: SNMP relies on UDP for message transfers, which makes use of

an unreliable packet transport mechanism;

b) SNMP packet length limitation: scripts are typically downloaded line-by-line [McM99] to
minimise the risk of exceeding the packet length limit, resulting in additional traffic and

increased unreliability and latency, especially when downloading large scripts.

On the other hand, the MbD approach uses a proprietary protocol for uploading scripts
(RDP) and has been criticised because its delegation primitives have not been integrated with
the SNMP framework [KAL97]. We believe that the wide spread of SNMP should certainly be
taken into account, when designing distributed management architectures. The desired
compliance with SNMP framework does not, however, compel the use of SNMP as a
delegation protocol, neither necessarily entails suffering from the generic limitations of SNMP
frameworks highlighted in Section 2.4.3. Our MA-based management infrastructure, presented
in Chapter 4, is fully integrated with SNMP frameworks, however it relies on more efficient
and reliable protocols than SNMP for MA migrations.

A common idea shared among all dynamic approaches is to upload code down to the
managed device level, thereby performing semantic compression of management data and
reducing network overhead. This idea is also behind MA-based management approaches.
However, existing dynamic approaches focus is on the entities that enable delegation, i.e. the
delegation agents. This represents a conceptual difference with the MA paradigm, which
focuses on the mobile entities themselves and not on the entities that create, dispatch and
receive the MAs [CHEOOb]. That is, the MAs can be viewed as mobile managing entities that
migrate to specific managed devices on demand, to perform arbitrarily complex management

tasks, with an increased degree of autonomy.

37

Through exploiting their mobility feature, individual MAs can also perform, if required,
decentralised NSM operations over a group of managed elements. In that sense, MAs can be
regarded as a ‘superset’ of delegation agents, as they can provide all the functionality offered
by the latter, having the additional benefit of mobility. Mobility is used only when necessary or
whenever it is more efficient in terms of management cost; should a static delegation agent is
sufficient for performing a management function, an MA can be sent to managed device and
remain there until no longer needed. In Chapters 5 and 7, we identify application scenarios
where mobility is necessary and suggest ways to minimise the impact of MA transfers on

network resources.

Another limitation of existing dynamic approaches is that they imply a device-level view of
managed resources, since delegated code executes on a single-device [LOP0O0]. This problem is
addressed by static hierarchical models, where mid-level entities can correlate data collected
from their management area, providing a domain-level views, which can be useful to identify
problems related to large groups of devices or aid in capacity planning. We believe that the
“best of the two worlds” can be achieved through MAs that visit a set of devices and correlate
the data collected from them to provide domain-level views of managed elements. This
approach simplifies the data correlation process, as it obviates the need for a complex co-
operation mechanism between delegation agents, as proposed in [MOU98a]. In Chapter 7, we

describe an application that addresses this issue.

Furthermore, dynamic approaches only consider a one-to-one relationship between two
entities, where one (the delegator) delegates some task to the other (the “delegee”); this task is
executed under the control of the delegator. No aspects of cascaded delegation are supported,
limiting the degree of distribution granularity* as the delegator-delegee scheme comprises a
two-level hierarchy. This argument is also applicable to DOT-based distributed management
approaches. Quite felicitously, [MOU98b] characterises this approach as remote management
rather than distributed management. Static hierarchical management approaches address this
issue, as management functionality is distributed among a number of mid-level entities and is
not concentrated on a single manager platform. Yet, static approaches imply a rigid

configuration, which leaves a lot to be desired in terms of management flexibility.

A final point relates to the delegation trigger mode supported by both static and dynamic
distributed management. In particular, existing approaches address this issue only for the user-
driven case. That is, there is no support for delegation as a result of events. In Chapter 6, we

investigate how MAS can be used to delegate NSM functionality on an event-driven basis.

1 In the management context, granularity can be defined as the relative scale, detail, level of hierarchy or depth of
penetration that characterises management distribution.

38

2.13. SUMMARY

Existing management distribution approaches offer a number of mechanisms for delegating
NSM functionality to selected entities that perform management tasks as close to the managed
systems as possible. As discussed in the preceding section, although the mechanisms have been
defined, problems related to the delegation aspects have not been fully addressed yet.
Mechanisms only represent a piece in the puzzle of distributed management. There are still
open questions on what to delegate, where to delegate and under which circumstances and

conditions to delegate.

The ideas behind MbD will however comprise the basis and enabling mechanism for
distribution. These ideas will be driven much further by exploiting the power of the MA
paradigm that promises to enhance the flexibility of the management process, whilst
maintaining the required degree of distribution and scalability. As elucidated in the previous
section, MAs can be used to accomplish a synthesis of the strengths identified in static
hierarchical models and dynamic management approaches, serving both as a means of
functionality delegation and dynamically deployed mid-level management entities. The

following chapter discusses the issues related to the application of MA technology on NSM.

39

CHAPTER 3

MOBILE AGENTS AND THEIR APPLICATIONS ON
NETWORK MANAGEMENT

3.1. INTRODUCTION

Code mobility is not a new concept. In the recent past, several mechanisms have been
designed and implemented in order to move code among the nodes of a network (e.g. remote
batch job submission [BOG73]). A more structured approach has been followed in distributed
operating systems research. New approaches to application design have been developed
embodying the notion of code mobility, i.e., the capability of dynamically moving the
components of a distributed application among the nodes of a computer network [CAR97].
The key idea behind code mobility is to provide an alternative to the traditional Client/Server
(CS) structure of distributed applications, thus enabling a better use of bandwidth resources
and a higher degree of flexibility and reconfigurability. In particular, mobile code-based
approaches give rise to significant network load savings through replacing remote CS network

communication by local interactions (see Figure 3.1).

(_____________________________________
- D S | B A .
Application | W]| Service
€~~~

CS-based approach

Host A Host B

<--
T P | B <-- .
Appllcatlon """""""" <-- Service
<--

Mobile Code-based
approach

Figure 3.1. CS vs. Mobile Code-based approaches

40

Chapter 3: Mobile Agents and Their Application on Network Management

Furthermore, embedding migration capabilities into the mobile code provides an extra level
of autonomy and brings forth the concept of the Mobile Agent (MA). In general, a software
agent can be defined as a computational entity, which acts on behalf of others, is autonomous,
proactive and reactive, and exhibits capabilities to learn and co-operate [NWAO96]. Software
agents can be classified as stationary (static) or mobile. An MA is a software agent with the

ability of autonomously moving form host to host.

Given the definition of mobile code, it is clear that this paradigm can provide the
technology needed to achieve management distribution. Mobile code can be linked
dynamically on network devices either proactively by the manager or reactively by the network
device [FUG98]. This way, the management primitives embedded within mobile code become
available on the device only when requested by management operations, thus consuming
device resources only when this is really needed. Furthermore, MAs add a new dimension in
distributed management due to their ability to autonomously migrate to different network

devices and perform complex management tasks without the manager’s intervention [P1C98].

As a result, mobile code and MAs in particular represent a hot trend in distributed
management arena, reflected to numerous research activities [CHE98, BIE98b]. Similarly to
other application domains, a lot of hype surrounds MAs in network management and has given
rise to high expectations. Yet, until present, there has been very limited interest from industry
to support MA-based management, and there are no clear signs of a near-term take-off of this
technology. This is mainly due to several open issues still not sufficiently addressed by the
agent community (e.g. security concerns), while it is still unclear whether the use of MAs in
management applications may actually offer performance gain. This chapter first introduces
the reader to mobile code and MA technologies, surveys research initiatives in MA-based
management and attempts to identify suitable models that enable the effective use of this

technology in the management domain.

The remainder of this chapter is organised as follows: Section 3.2 provides an overview of
code mobility paradigms, with Section 3.3 listing their advantages when used in distributed
applications. Section 3.4 highlights the differences between MAs and the other mobile code
paradigms, suggesting application scenarios where the former can offer performance or
flexibility benefits over he latter. Section 3.5 focuses on agent mobility describing aspects that
affect the design of MA platforms. It also reviews mobile agent languages and standardisation
approaches, classifies mobility schemes, briefly describes commercial Mobile Agent Platforms
(MAP), lists application fields utilising MAs and discusses performance issues related to their
practical use. Section 3.6 concentrates on MA-based management: it describes several MAPs
tailored to Network & Systems Management (NSM), provides a survey of research activity on

the field, discusses performance aspects related to these applications, and suggests ways to

41

Chapter 3: Mobile Agents and Their Application on Network Management

effectively utilise MAs in terms of organisation and mobility models to optimise the

performance of management applications. Finally, Section 3.7 summarises the chapter.

3.2. CODE MOBILITY PARADIGMS

Mobile code paradigms encompass different technologies, all sharing a single idea: to
enhance flexibility by dynamically transferring programs to distributed devices and have these
programs executed by the devices. The program transfer and execution can be triggered by the
device itself, or by an external entity. Fuggetta et al. [FUG98] made a detailed review of
mobile code, where they clearly define the boundaries between technologies, paradigms and
applications. In particular, they identified three different types of mobile code paradigms: (a)

Remote Evaluation, (b) Code on Demand, and (c) Mobile Agents (see Table 3.1).

Initiator (A) Co-operator (B)
Code
Client-Server - Data
Processor
Remote Evaluation Code Data
Processor
Code on Demand Data Code
Processor
Mobile Agent Code Data
Processor

Table 3.1. Design paradigms for mobility (the boldfaced typesetting indicates where the
interaction takes place).

3.2.1. Remote Evaluation

In the Remote EValuation (REV) paradigm [STA90], a client (initiator) has the know-how
necessary to perform a service but it lacks the required resources, which are located at a remote
server (co-operator). Consequently, the client sends the service know-how to the remote site
that executes the code using the resources available there. This is a form of push. The
information transferred includes the agent code plus a set of parameters (arguments). After
executing the operation, the remote site returns the results back to the initiator of the remote
evaluation [ROT97].

Given the above definition of REV, it is clear that several standardisation and research
approaches on distributed management, exemplified by the Management by Delegation
paradigm (e.g. Script MIB, MbD, flexible agents, spreadsheet approach, etc), can be
considered as direct application of REV on the NSM area, as they all share the idea of moving

NSM functionality from the managers (initiators) to the management agents (co-operators).

42

Chapter 3: Mobile Agents and Their Application on Network Management

3.2.2. Code On Demand

In the Code On Demand (COD) paradigm, the initiator A is already able to access the
resources it needs, which are co-located within the same device. However, it lacks the
information on how to process such resources. Thus, A interacts with its co-operator B,
requesting the service know-how. A second interaction takes place when B delivers the know-

how to A, which can subsequently execute it. This is a form of pull [FUG98].

A widely used technology based on COD are the Java applets: applets are programs written
in the Java programming language; when a Java-enabled browser is used to view a web page
that contains an applet, the applet’s code is transferred to the end system and executed by the
browser’s Java Virtual Machine (JVM).

3.2.3. Mobile Agents

In the MA paradigm, the service know-how is owned by the client, but some of the required
resources and data are located at a remote server. Hence, component A migrates to the server
carrying the know-how and possibly some intermediate results. After its arrival, A completes
the service using the resources available there [FUG98]. The MA paradigm differs from other
mobile code paradigms on that the associated interactions involve the mobility of a
computational component. In other words, while in REV and COD the focus is on the transfer
of code between components, in the MA paradigm a whole computational component is moved
to a remote site, along with its state, the code it needs, and some data required to perform the
task. In that sense, MAs can be regarded as a ‘superset’ of REV/COD paradigms, as they can
offer all the functionality provided by the latter, with the additional ability of autonomous

migration.

3.3. MoBILE CODE - ADVANTAGES

Mobile code technologies represent a powerful programming paradigm, which is useful
when designing distributed applications. The commonly agreed benefits of mobile code have
been discussed in many research papers [HAR95, GRE97, BAL97, PIC98] and summarised in
the following:

= Enhanced Flexibility. Clients typically access the resources hosted by a server through a
set of services, whose interface is typically predefined and commonly agreed among the
client and the server. Mobile code can be used to extend and update dynamically

capabilities of applications, thereby enhancing systems flexibility.

43

Chapter 3: Mobile Agents and Their Application on Network Management

Exploitation of increased resources availability: Managed devices resources are
characterised by continuously increasing availability in terms of processing power, disk
and memory capacity. Mobile code takes advantage of that feature to achieve processing
load distribution. In NSM field, this advantage can be exploited to perform collection and
filtering of management data locally, in a distributed fashion. That way, expensive
platforms (managers) dedicated to issuing management requests, collecting, analysing

and presenting data are not any longer necessary.

Reduction of network traffic: The transfer of mobile code to the source of data creates less
traffic than transferring the data, as mobile code can perform semantic compression of

data, delivering pre-processed, high-level information.

Asynchronous interaction: Once downloaded, mobile code can perform distributed tasks,

even if the delegating entity does not remain active.

Interaction with real-time systems: Installing mobile code close to a real-time system may
prevent delays caused by network congestion. In NSM, this problem arises when a
number of successive interrelated Management Information Base (MIB) values need to
be retrieved to present a shapshot of the system's state, e.g. on Simple Network
Management Protocol (SNMP) table retrievals [PICO1].

Support for heterogeneous environments: Mobile code is separated from the hosts by an
environment able to receive and instantiate the received code. If the framework is in
place, mobile code can target any system, especially when the framework is implemented
by a platform-independent language, e.g. Java. The cost of running a JVM on a device is
decreasing. Java chips will probably dominate in the future, but the underlying

technology is also evolving in the direction of ever-smaller footprints (e.g., picoJavat).

3.4. MAsvs. REV AND COD

Since all the mobile code design paradigms allow the dynamic relocation of the components

of a distributed application, a legitimate question to ask is whether one should choose the

purest MA paradigm or just an approach exploiting COD or REV. Several researchers have

tackled the problem of finding out what are the potential assets of MAs (see for instance
[HAR95, FUG98, LAN99]). According to [MIL99], the application domains in which MAs

have potential deployment are: (a) data-intensive applications where the data are remotely

1 The picoJava [picoJava] core is a small, flexible microprocessor core that directly executes Java bytecode

instructions; picoJava can be used to run applications in small electronic appliances such as organisers, pagers,
and cell phones.

44

Chapter 3: Mobile Agents and Their Application on Network Management

located; (b) extensible servers; (c) applications in which agents are launched by an appliance
(e.g. a cellular phone) to a remote server, where the user does not necessarily have to stay
connected waiting for the MA’s return. However, as it has been shown in the preceding

section, the use of REV/COD suffices in the first two application domains.

Certainly, every MA-based application could be alternatively designed using existing
established technologies [CHE95]. As with every design choice, the answer is given by
application requirements and engineering tradeoffs. Detailed comparative analysis of the three
mobile code paradigms can be found in [PUL99], with [BAL98] focusing on their quantitative
evaluation, using NSM applications as a case study. In addition, [MAG96, BIE98b, CHE98]
discuss the potential of MAs in management applications and [HAY99] explores their assets in
the wider field of telecommunications. In this section, we identify some aspects related to
distributed applications design where MAs can offer more efficient or flexible solutions
compared to REV/COD, with special focus given on distributed NSM applications. Given that
the distributed NSM approaches reviewed in Sections 2.9 & 2.10 apply the REV paradigm
concepts in the NSM area (see Section 3.2.1), the advantages of MAs over REV/COD are, in
effect, valid also when comparing MA-based solutions against existing distributed

management approaches.

= New programming paradigm: MAs provide a subjective advantage because of the
metaphor they embody. Agents that are able to dynamically and autonomously relocate
themselves according to the application needs may provide, for certain applications, the
building block of a uniform and elegant design where every active component is able to
spontaneously relocate itself. This characteristic of MAs is probably at the core of their
popularity, and provides also a link to other disciplines, like artificial intelligence, that
brought this concept to the extreme by proposing agent-oriented programming [JENOO] as

a new way to create distributed applications.

= Decreased dependency on a master process: Approaches based on REV or COD have
increased dependency on a master process (delegator) that communicates with one or more
mobile code components for controlling and co-ordinating their tasks. Conversely, MAs
carry out these tasks in a programmable and autonomous fashion that obviates the need for
co-operation with the master process [KAWOO]. In this sense, the interaction between the
MA and the delegator is limited to the stages of transmission and return of data [PUL99].

= Space savings: Resource usage is limited, because an MA resides only on one node at a
time. In contrast, static extensible servers require duplication of functionality at every
location. MAs carry the functionality with them, so it does not have to be duplicated
[BIE98D].

45

Chapter 3: Mobile Agents and Their Application on Network Management

Easier update of decentralised tasks: REV and COD paradigms are not suitable in cases
that mobile code needs to be frequently updated, since every update involves broadcasting
the updated code to all devices, resulting in excess usage of network resources. In the MA
paradigm, such updates are easier and more efficient as the MA code is updated at a central

location (code repository) and does not involve network interactions.

Traffic around the manager station: A main priority in NSM is to reduce the traffic around
the manager platform [BAL98]. REV and COD imply a pairwise interaction between the
manager and each managed device, where mobile code has been installed [PICO1]. Should
the manager-managed systems communication is relatively frequent or the size of the
managed network is fairly large, the associated traffic will affect the manager’s network
neighbourhood, although it is very much reduced in comparison with SNMP traffic. On the
other hand, MAs once unleashed can visit the devices autonomously, without requiring any
communication with the manager until all the results have been collected. Thus, no matter
how many devices are visited by the MA, the manager is involved only in the initial
dispatching of the agent and in the final collection of results, while the remaining traffic is

steered by the MA away from the manager.

Management of remote subnets: Considering the management of remote subnets,
connected to the manager site through low-bandwidth links, when using REV or COD the
traffic over interconnecting links increases with the number of devices residing in the
remote subnets and the frequency of communication required with the manager station,
due to the pairwise interaction between the manager and each managed NE. MAs offer a
more efficient solution as they need to traverse the interconnecting links only twice (to
visit the remote subnets and return the results), regardless of the number of visited devices.
Even if the state of the MA increases during this operation, bandwidth is assumed to be
‘cheaper’” within the LAN than on the low-bandwidth link.

Short-term distributed tasks: When distributed tasks are intended to run over a set of
devices for a relatively short period, it is more efficient to use a MA-based approach,
where a MA object sequentially visits the devices rather than broadcasting mobile code
and obtain the results from every NE. That also reduces the deployment time, especially
when the management of multiple NEs is involved (only one MA is issued by the
manager) [BOHOO0b].

Reduced deployment cost and delay: MAs can be used to dynamically increase
availability of certain services. For example, the density of fault detecting or repairing
agents can be increased upon detecting malfunctions, through creating clones of existing

MAs and dispatching them to areas of concern. Hence, the traffic and latency involved in

46

Chapter 3: Mobile Agents and Their Application on Network Management

the deployment procedure can be significantly reduced, as it is carried out autonomously

and not initiated from a central location [L1099].

= Local vs. global semantic compression of data: By visiting a number of devices, MAs can
also extend the concept of semantic compression enabled by REV and COD. These
paradigms can provide only a form of compression that is limited to a single device, and
local to it. The MA paradigm, in contrast, enables global semantic compression of data

across all the network devices visited.

= Device vs. Domain-level view: In parallel to the previous argument, approaches based on
REV or COD imply a local view of the device where the distributed code statically resides.
Should domain-level information incorporating data collected from a set of devices is
required, data correlation process should be performed at the manager station [LOPQO].
Alternatively, a collaboration scheme between static agents could be applied in order to
exchange and correlate information [MOU98a], however that would imply a more
complex system design. MAs offer a more simple solution to this problem as they can

perform data correlation through sequentially visiting the entire set of devices.

Some of the aforementioned arguments are also valid when comparing the MA paradigm
against static approaches based on distributed objects, with the additional advantage of
enhanced flexibility and reconfigurability of the former over the latter, as MAs allow the
dynamically augment management services at runtime, which is not possible when these

services are realised through rigidly configured static objects.

Conversely, in many cases a naive use of MAs may lead quickly to a highly inefficient
design. In network monitoring applications for instance, the use of a MA that roams the
network and collects information may actually lead to a design that performs worse than the
conventional one, especially when large amounts of data are accumulated within the MA state
at each host [BAL98]. Yet, this problem can be partially addressed by launching MAs able to
perform semantic compression of data, thereby keeping their size practically constant.
Increased security concerns is another argument that can be used against MA paradigm, as
MAs typically visit a large set of potentially malicious hosts and face the risk of tampering.
Concluding, MA technology cannot be considered as panacea in distributed applications
design; if the motivation for using MAs is to optimise system performance, e.g., in terms of
traffic or latency, attention should be paid to the choice between MAs and alternative mobile
code technologies. In certain cases, a synergy of the two approaches may be preferable. In
addition, there are several open issues related with MAs that must be addressed by MA

community to help the wide spread of this technology:

» Reducing migration overhead: the MA code should be as lightweight as possible [PICO1];

47

Chapter 3: Mobile Agents and Their Application on Network Management

= Migration delays: MAs have been criticised for being associated with migration delays of
the order of seconds or even tens of seconds, depending on the agent configuration and
functionality [KNI199, BOHO00a];

= Security: Network devices should be protected from malicious agents (and agents from
malicious machines) [V1G98];

= Fault tolerance: agents should be able to survive network and machine failures [NWA96];

= Performance issues: what would be the effect of having hundreds, thousands or millions of
MAs roaming on a network? [NWA96]

= MAs composition: it is essential to ease and automate the composition of service-

specialised MAs even by novice users, with no programming experience [MIL99].

3.5. AGENT MOBILITY

The field of MAs and mobile code has lately become a hot research topic covered by many
networking and software engineering conferences. As it has been shown throughout the
preceding sections, MA technology represents a promising programming paradigm, which can
enhance the flexibility and scalability of contemporary NMSs. However, its merits and
weaknesses should be carefully evaluated to ensure its effective use in NSM applications. This

section focuses on aspects related to agent mobility and MA platforms.

3.5.1. Elements of a Mobile Agent Platform

A basic component of a Mobile Agent Platform (MAP) is the MA Server (MAS),
equivalent to an ORB in CORBA, that runs on each host where MAs can execute. The main
purpose of the MAS is to provide an efficient execution environment able to receive,
instantiate and dispatch agents, serve as an interface between incoming MAs and the
underlying system resources and offer a set of services required by the MAs to perform their
distributed tasks.

Focusing on MAs, according to the definition given in Section 1.1, they comprise three

parts:

= the code part which defines the MAs’ functionality;
= the data part (persistent state), including the values of the variables declared within the
MA class;

= the execution thread (with an execution stack).

MAs state is dynamically updated as a result of their visits and interaction with distributed

servers where information is collected. MAPs that provide strong mobility (see Section 3.5.5.1)

48

Chapter 3: Mobile Agents and Their Application on Network Management

enable the transfer of all three parts on every MA migration. Most platforms involve the

transfer of only the code and state information (weak mobility).

An agent migration may be initiated either from the MA itself or the hosting MAS server by
invoking a nove primitive, which allows an MA to move to the next server included into its
itinerary?, through an agent transfer protocol (ATP). At the time that the nove method is
called, the MA’s state is saved and transferred through the network. At the destination site, the
MA state is recovered and the agent instantiated, typically provided with its own thread of
execution. ATPs are used to transfer agents between MASs and can be based on several
protocols such as sockets, HTTP, Java RMI, etc. In addition, MAPs also provide agent
development and deployment facilities, defined in APIs. A set of classes and interfaces are

supplied and should be integrated in the agent code in order to enable mobility.

Besides these basic functions, a MAP may include additional services and facilities. Fault
tolerance features insure that agents are reliably transferred and are not lost due to a system or
network failure. Many available MAPs include directory and location services [LAZ98]. These
services allow the agents to be aware of the existence of other agents and to track their
locations. Another important service is security, which deals with both the protection of hosts
from malicious MAs, and the protection of MAs against malicious hosts. Security mechanisms
have to ensure authentication, integrity, confidentiality and access control [FAR96]. Generally,
MAPs also provide primitives allowing MAs to communicate with each other and with the
servers on the visited machines. Inter-agent communication can be enabled by standardised
Agent Communication Languages (ACL), such as the Knowledge Query and Manipulation
Language (KQML) [KQML] and the FIPA ACL [ACL], developed by the Foundation for
Intelligent Physical Agents. These languages have been designed mainly for intelligent agents?.
In addition, a number of proprietary communication models have also been reported in the
literature (a detailed description of these models may be found in [INCO]), including direct

communication, blackboard, mailbox, meetings and method invocations.

3.5.2. Mobile Agent Languages

MA-based applications can, in principle, be developed in any programming language.

However, there are practical issues that render certain kinds of languages potentially more

2 The term itinerary refers to the list of devices to be visited by the MA. Itineraries may be pre-specified or
determined on-the-fly (see Section 3.5.5.3).

3 The term intelligent agent derives from Distributed Avrtificial Intelligence (extension of Artificial Intelligence) and
refers to a software component involved in a cooperative effort to resolve a problem. Intelligent agents are
typically composed of a communication mechanism, a rule base, a solution base and an inference engine
[MUL98].

49

Chapter 3: Mobile Agents and Their Application on Network Management

suitable for programming MAs. Given the heterogeneous nature of modern network devices,
portability is a first requirement (guaranteed by interpreted languages), while additional
features that enable easy development of mobility characteristics are also of major importance.

Other factors include object orientation, performance, etc.

Telescript [WHI96] was an early interpreted programming language for MAs developed by
General Magic Inc. The Telescript interpreter included a built-in mechanism for transparent
migration. Unfortunately, General Magic does not support Telescript anymore. Agent Tcl
[GRA95] is another MA language developed in the early period of MA technology. Agent Tcl

also supports transparent migration and can be useful for running existing Tcl scripts.

The popularity of Java has greatly influenced MA-based application developers. As a
result, all the MA platforms presented in Sections 3.5.6 and 3.6.1 are implemented in Java. In
addition to the generic benefits of Java highlighted in Section 2.6.1.1, its suitability for MA
programming is enhanced due to its inherent support for dynamic class loading, serialisation,

remote cloning and distributed objects communication. These features are discussed below:

Dynamic class loading: Java architecture enables the developer to write programs that
dynamically extend themselves by choosing at runtime classes and interfaces to load and use.
In fact, some of those classes and interfaces may not even exist when the program is compiled
[VEN98]. To enable a Java program to dynamically load classes not included within the local
name space, a customised ClassLoader (CL) object must be provided to obtain the classes
implementations (bytecode) and load them at runtime. A CL is defined by extending the
abstract j ava. | ang. Cl assLoader class and implementing its | oadCl ass() method.
For instance, customised CLs may dynamically load classes received through the network.
This feature makes Java particularly attractive for mobile code-based applications. More
sophisticated CLs may even allow to reload classes that have been already loaded, in case their

implementations have been modified at runtime (see Section 4.4.3).

Serialisation: Java also provides the serialisation feature [OSS97], which allows object
instances to be exchanged between different JVMs. Serialisation provides a means for
translating a graph of objects into a stream of bytes which can be sent as a message over the
network or written in a file. Each instance of a class implementing the
java.io. Serializabl e interface is eligible for serialisation. The wri t eQoj ect ()
method of the j ava. i 0. Cbj ect Qut put St r eamclass defines the default behaviour for
serialising an object, i.e. converting the object’s state to a stream of bytes. By default, all the
objects referenced by a serialised object are serialised (they must implement the
Seri al i zabl e interface); only the fields declared as transient or static [ARN96] are

excluded from the serialisation process. The symmetric process of recreating the object from

50

Chapter 3: Mobile Agents and Their Application on Network Management

its serialised representation is termed de-serialisation. De-serialisation is achieved by the
readObj ect () method of the j ava. i 0. Qbj ect | nput St r eamclass. The serialisation/
de-serialisation feature of Java is extremely useful when developing MA-based applications.
As discussed in Section 3.2.3, a fundamental aspect of agent mobility is the ability of MAs to
maintain their state information while migrating from one host to another. State can easily be
obtained upon migration through serialisation and subsequently recovered on the destination
host through de-serialisation. In Appendix B, we propose several ideas for reducing an MA’s
state size and therefore minimising the migration overhead. Appendix C presents the results of

experiments that provide a better understanding of the serialisation process.

Remote Cloning: Java provides inherent support for objects cloning (i.e. creating identical
copies of Java objects) through the cl one() method of the j ava. | ang. Obj ect class
[ARNO96]. Cloning is inspired by the fork process mechanism adopted in UNIX. Although
support for cloning has not been implemented with mobility in mind, it can greatly benefit MA
programming, as it enables the autonomous creation of MA clones at remote sites given that
specific conditions are satisfied. Remote cloning can reduce the latency and traffic involved in
MAs deployment, thereby enhancing the scalability and flexibility of MAPs [LIO99].

Remote Method Invocation (RMI): Java RMI [RMI] facility provides mechanisms for objects
communication in a location-transparent way (see Section 2.5.2). That can be very useful for

implementing a communication scheme between agents or agents and other Java applications.
On the other hand, two problems associated with MA programming in Java have been
identified:

= |t is not possible to implement strong mobility through Java, i.e. to carry MAs execution
stack along with their code and state. However, the majority of distributed applications

employing MAs can be implemented utilising weak mobility [CABOO].

= Another limitation of Java is that it does not allow the serialisation of classes not
implementing the j ava. i 0. Seri al i sabl e interface, e.g. threads (instances of the
j ava. |l ang. Thread class). In Section 6.3.4, we propose a way to get around this

problem.

As a result of the aforementioned advantages, we have chosen Java for the development of

our MA-based management framework, described in Chapter 4.

3.5.3. Security in Mobile Agent Systems

Security issues related to MA systems are of major concern and have prevented to a large

extend the adoption of agent technology by commercial management platforms. Generally,

51

Chapter 3: Mobile Agents and Their Application on Network Management

network operators are worried about the capabilities of having self-replicated MAs roaming
into communication networks. This behaviour closely mirrors that of a computer virus. A

slight change in the agent’s executable code is enough to turn an MA to a vicious virus.

The security problem is, in fact, twofold: hosts should be secured from malicious agents
[SAN98] and agents from malicious hosts [KAR98b]. The first problem has been more
extensively addressed, yet both need to be solved before we can use MAs in real distributed
system environments. These security problems have proved harder to solve than people
initially expected. As a result, MA security is one of the hottest topics within the agent research
community. For a good introduction to the whole range of security issues, the interested reader
is referred to [VIG98]. In our MA framework, we have addressed the problem of malicious
agents, through a security component that provides authentication, and access control services,
whilst offering data encryption to protect sensitive management information from malicious
hosts (see Section 4.4.1.3.2).

3.5.4. Standardisation Approaches

The well-known advantages of standards also apply in the agent mobility field, as they
allow MAPs inter-operation. In order to establish a common basis for future developments and
enable the interoperability of agent platforms developed by different manufacturers, two bodies
promote MA standardisation. OMG has defined basic interoperation capabilities between
heterogeneous MAPs in its Mobile Agent System Interoperability Facility (MASIF) [MASIF].
MASIF proposes the standardisation of agents, agent system names, agent system types and
location syntax; it defines two interfaces (MAFAgent Syst em and MAFFi nder) which
should be implemented to provide agent management and agent tracking, respectively,
functionality. In parallel, FIPA [FIPA] is focusing on the standardisation of basic capabilities
of intelligent agents. Although the scopes of the two standards are quite different, an
interworking or even integration of MASIF and FIPA may be possible in the medium-term
time frame [ZHA98a]. Examples of MASIF and FIPA-compliant MAPs will be given in
Sections 3.5.6 and 3.6.1.

3.5.5. Taxonomies of Mobility Patterns

This section attempts a classification of the mobility patterns in terms of several
characteristics: their support to retaining MAs execution state, their migration strategy (the
number of hops realised by MA objects) and their itinerary control (predefined or dynamically

configured itineraries).

52

Chapter 3: Mobile Agents and Their Application on Network Management

3.5.,5.1. Weak vs. Strong Mobility
Existing mobile code languages provide support for at least one of the following [CAR97]:

= Strong mobility: the ability of processes to move their code and execution state to a
different site. Processes are suspended, transmitted to the destination site, and resumed

there. For instance, Telescript provides mechanisms to implement strong mobility.

= Weak mobility: the ability to transfer code across different execution environments; code is
accompanied by its persistent state, but no migration of execution state is involved (see

Figure 3.2). For instance, Java supports only weak mobility.

Sun’s JVM does not allow capturing of processes’ execution states and, as a result, very
few Java-based MA systems provide strong mobility. Those that do, fall into three categories:
systems using a modified JVM [ACH97, PEI97], a custom JVM [SURO0O0] and systems using a
pre-processor [FUN98] approach. Clearly, the implementation of frameworks supporting
strong mobility is not a trivial task, whilst introducing performance penalties in agent transfers
[FUN98]. In addition, management tasks of configuration, maintenance and control typically
involve the execution of repetitive tasks on every node. That means that the requirements of
MA-based NSM can be comfortably met by frameworks that only support weak mobility
[CABO0O, CHEOQOb]. This statement is also proved by the remarkable precedence of Java over
other programming languages that support strong mobility. Our MA platform, described in

Chapter 4, supports only weak mobility.

Transport Migration of Migration of
of code code + data code + data + state
@ @ @—» mobility

Remote Evaluation

} Code Mobility
Code On Demand

Weak Mobility } Agent Mobility
Strong Mobility

Figure 3.2. Classification of code mobility and agent mobility paradigms

3.5.5.2. Single-hop vs. Multi-Hop Mobile Agents

A second classification of MAs is based upon their migration plan, i.e. on whether MAs
visit one or more hosts. Single-hop agents travel to a target host, start their execution and
remain there until they terminate. This type of agents do not need any data when migrating to
the target host (except maybe initialisation data) nor any methods for itinerary control.
Therefore, single-hop MAs compare to downloadable code, i.e. they represent a direct
application of REV paradigm. Bohoris et al. [BOHO0ODb] use the term constrained mobility for

single-hop agents.

53

Chapter 3: Mobile Agents and Their Application on Network Management

In contrast, multi-hop or itinerant agents can travel to several sites during their lifetime.
Multi-hop MAs are suitable for performing repetitive tasks over a set of devices. They can also
perform different tasks, and can adapt their behaviour depending on the tasks achieved in the
previously visited hosts. In [BOHO00b], multi-hop MAs are further categorised in weak and
strong MAs, with the former referring to the migration of an MA without preserving
information gathered from previous visits and the latter involving the migration of MAs that
preserve their state formed during previous visits (standard use of MAs). Weak MAs are
termed memoryless* agents in [CHEOOb]. To avoid confusion with the well-established
definition of weak and strong mobility given in the preceding section, we adopt the term
memoryless (multi-hop) MAs to refer to agents that cannot (can) preserve their persistent state
when migrating. As shown in Chapter 5, the choice between single-hop and multi-hop MAs is

application-dependent.

3.5.5.3. Itinerary Control

A last classification of MAs is in terms of the control mobile objects maintain on their
itinerary. Thus, MAs can either have fixed or dynamic itinerary [CHE98]. When the itinerary is
fixed, the agent migration path is known at the MA’s creation time and it does not change
during the agent’s execution. For instance, fixed itinerary agents are suitable for visiting a pre-
determined list of devices to collect data, where the itinerary is typically supplied by the user.
In contrast, agents with dynamic itinerary may change their migration path during their
execution. The support for dynamic itinerary is achieved though at the expense of increased
complexity and size on the MA’s code. A discovery agent that is sent to discover new
components in a network is an example of agent with dynamic itinerary, since its migration
path is specified depending on the detection of new components or subnets. The migration
schemes incorporating MAs with fixed and dynamic itineraries are termed passive and active

migration, respectively.

It is noted that migration decisions are either made by the MAs themselves or other entities
co-located at the same execution environment. Our MA framework, presented in Chapter 4,
supports only fixed itineraries (in performance management applications, the list of monitored
devices is known in advance), while migration decisions can be made by both the MAs and the
local MASs.

4 Both single-hop and memoryless mobility involve the transfer of agents code but not their persistent state.
However, this is inconsistent with the definition of mobile agents, according to which an MA is a computational
entity that carries both code and state information. In other words, the term Mobile Agent is used abusively
herein.

54

Chapter 3: Mobile Agents and Their Application on Network Management

3.5.6. Commercial Mobile Agent Platforms

The phenomenal popularity of MAs is reflected on several industrial initiatives that led to
the development of numerous MAPs [MAL]. State-of-the-art reports on general-purpose
MAPs can be found in [KRA98, COR98b, INCO], with interesting comparative performance,
robustness and scalability tests reported in [SILOO, MARINE, MIAMI98]. In this section, we
briefly review four representative and popular general-purpose MAPs, all implemented in Java:

Aglets, Concordia, Voyager and Grasshopper.

Aglets [Aglets]: The oldest and most well-known platform, developed at the IBM Research
Laboratory in Japan. The first version was released in 1996. The migration of Aglets is based
on a proprietary Aglets Transfer Protocol. The Aglets Software Development Kit (ASDK)
runtime consists of the Aglets server and a visual agent manager, called Tahiti. The ASDK
provides a modular structure and an easy-to-use API for Aglets programming and also

extensive support for security and synchronous/asynchronous agent communication.

Concordia [Concordia]: It has been developed by Mitsubishi Electric. This platform provides a
rich set of features, like support for security, reliable transmission of agents, access to legacy
applications, inter-agent communication, support for disconnected computing, remote

administration and agent debugging.

Voyager [Voyager]: It is probably the most popular MAP, in terms of number of users. It has
been developed by ObjectSpace. Voyager is an object request broker with support for MAs.
The agent transport and communication is based on a proprietary ORB on top of TCP/IP.
Voyager has a comprehensive set of features, including support for agent communication and

agent security and also provides support for CORBA and RMI.

Grasshopper [Grasshopper]: Grasshopper has been developed by IKV++, with its main power
lying on its compliance with FIPA and MASIF standards. MASs in Grasshopper comprise a
core agency and a set of one or more places (runtime environments where agents run). The
core agency offers a set of services to support agent migration and execution. The
communication service that supports agent communication and migration may use a variety of
protocols: CORBA 110P, Java RMI and plain sockets. Grasshopper also offers registration
services to keep track of running places and the agents running at each place. Security in
Grasshopper allows protecting both MAS-region interactions and agent-MAS interactions.
Fault tolerance mechanisms are also integrated, ensuring that agents and MASs can recover in
case of crashes or faults [BAU99].

The advantages of using one of the MAPs presented above, are that (a) they are relatively
easy to use and typically well-documented, providing attractive frameworks for the rapid

development of MA-based distributed applications; (b) most of them are robust, reliable and

55

Chapter 3: Mobile Agents and Their Application on Network Management

well-tested. Experiments, however, have demonstrated that these MAPs do not satisfy all
performance requirements, as they either involve increased migration latency (Aglets,
Voyager, Grasshopper) or poor scalability and robustness under stressing conditions
(Concordia) [SILOQ]. In fact, Grasshopper has shown to perform worse than others MAPs
[MARINE], however its rich functionality, security features and compliance with well-
established standards have been the main factors that contributed to its recommendation as the

appropriate development platform for several MA-related EU projects [MIAMI, MARINE].

From the management viewpoint though, there are several weaknesses shared between

commercial MAPS:

* Rich, but unnecessary functionality: Being general-purpose frameworks, most available
MAPs incorporate rich functionality, yet, usually unnecessary for management
applications. Some of these features are ‘hard-coded” within an ‘Agent superclass’ that has
to be extended in order to implement application-specific MAs and result in large MA
sizes that affect the usage of system and network resources. A subset of the provided
features would suffice for the majority of management tasks, however the exclusion of the

non-desired features is not feasible;

= Lack of essential features: Some features considered as essential when designing a flexible
management system are not supported by most general-purpose MAPs. For instance, the
ability of MASs to distinguish between different versions of the same MA class, which

may reflect the update/modification of an existing management task;

= Heavyweight migration schemes: The minimisation of MAs migration overhead is of major
importance for large-scale monitoring applications that involve frequent polling of a large
set of NEs. Existing MAPs incorporate complex and heavyweight migration protocols that
result in increased network overhead, which typically exceeds that of static distributed
objects communication mechanisms [KNI199, BOHO0O0a];

= No open-source MAPs: At the time this research commenced, there was no open-source
MAP that would allow the author to modify the code and perform application-specific

optimisations;

= Questionable support: Companies shipping commercial MAPs, often suspend their
support, e.g. General Magic has discontinued the Odyssey project, while that also seems to
be the case with IBM’s Aglets [INCA].

All these weaknesses make difficult the selection of a general-purpose commercial MAP as
implementation platform and led to the development of numerous application-oriented MAPS,

many of which are tailored to management applications (see Section 3.6.1).

56

Chapter 3: Mobile Agents and Their Application on Network Management

3.5.7. Applications of Mobile Agents

MAs can be useful in several application fields, although none of them necessitates their
use; in fact, each application can be designed based on existing technologies [HAR95,
MAG96]. However, the use of MAs can contribute to build these distributed applications in a
more simplified and effective way. In the following, we identify some areas in which MA
technology can actually give a positive contribution. NSM applications are not mentioned

herein as they will be elaborated later.

= [Information retrieval: MAs can be an effective tool for retrieving information within a
distributed system; in fact, an agent encapsulating the user’s query can migrate to the
place(s) where the information is actually stored; therein, the agent can obtain and filter
data, and return the user only the useful information [ISM99]. This idea has been used in

[PAP99] to reduce the latency involved in remote database interactions.

= Electronic commerce: E-commerce is an increasingly expanding area in the Internet; MAs
can help users to search the products that meet their requirements, find the most cost-
effective offers, etc. [DAS99].

= Mobile computing: Users want to access network resources from any position,
notwithstanding the band limits of current wireless technologies. Thus, users can submit
their requests through an agent, which runs their request within the network and returns the
results later (so the user does not need to remain connected, waiting for the results)
[CHE95, MIL99].

= Distributed Computation: MAs represent new paradigm for parallel execution of

computation-demanding tasks on a distributed network of workstations [SIL99b, GHA99].

3.5.8. Performance Evaluation of Mobile Agents

It is often argued that the advantage of agent migration lies in the reduction of (expensive)
communication costs by moving the code to the data rather than the data to the code [HAR95].
Although this argument is understandable from an intuitive point of view, not much research
has yet been conducted to evaluate the cost of agent migration on a quantitative basis.
Performance models regarding network load and execution time are needed to identify
situations on which agent migration is advantageous compared to RPCs and help to decide

which interaction model to be used.

A performance model for MA systems is introduced in [STR97]. The conclusion drawn
from this model is that an alternating sequence of RPCs and agent migrations may perform

better than a pure sequence of RPCs or a sequence of agent migrations. In particular, it is

57

Chapter 3: Mobile Agents and Their Application on Network Management

argued that agent mobility reduces both the overall latency and network load in cases that MAs
visit devices where the amount of data to be processed is large compared to the size of the
agent and the selectivity of the agent, i.e. its ability to reduce the size of the returned data by
remote processing, is high. This conclusion was validated by experimental measurements in a
realistic Internet-scale network scenario, using a prototype MA system implementation (Mole
[STR96]). Along the same line, Chia et al. proposed strategic mobility [CHI97], whereby
agents may choose to migrate to selective resources or instead to communicate with the needed
resource over the network, depending on the problem’s characteristics and the underlying

computing and network infrastructure.

NSM-oriented performance evaluations of MA platforms have been reported in several
research papers [BAL98, PIC98, RUB99, BOHO00a], reviewed in Section 3.6.3.

3.5.9. Discussion

It should have already become evident that MA technology cannot be considered as an ideal
solution for structuring every distributed application. A major problem that has prevented the
wide spread of MA technology is the difficulty to identify ‘killer applications’ [MIL99,
KOT99], i.e. applications that would strongly enforce the use of MA technology and become

the driving force towards its further spread, adoption and exploitation.

That is a rather controversial issue which reminds of the object-oriented versus procedural
programming debates. Although killer applications probably do not exist, there is a number of
application scenarios where MAs may improve the performance or efficiently complement
REV/COD paradigms (see Section 3.4). In that sense, MAs should be considered only as
another tool in the arsenal of distributed application designers [PIC01]. Concluding, we believe
that the decision on whether to use MAs or alternative mobile code technologies should follow
an unbiased quantitative and qualitative evaluation and depend on the specific characteristics

and requirements of the examined applications.

3.6. MOBILE AGENT-BASED NETWORK MANAGEMENT

The potential of MAs in structuring distributed application has been early recognised by the
management community, triggering intense research activity on MA-based distributed

management. In the field of Network and Services Management, Magedanz [MAG96] was the

5 At the time that object-oriented (O-O) programming was at its infancy, several developers often claimed that the
O-0 approach did not have a killer application either, still, it is now well accepted and widely used. While this
claim is questionable, it is true that O-O applications can also be implemented in more traditional ways
(procedural programming).

58

Chapter 3: Mobile Agents and Their Application on Network Management

first to signal the potential of MAs, describing several scenarios in which their use can offer
important benefits. MAs can encapsulate management scripts and be dispatched on-demand
where needed. An MA can be sent to a network domain and travel among its elements
collecting management data, and return with the data filtered and processed. Sending an MA
for this task is a substitute to performing low-level monitoring operations and processing them
centrally. Through semantic compression of collected data, the agent size can remain small and

save bandwidth usage.

In an interesting study on code mobility, Baldi et al. [BAL97] presented another advantage
of using MAs; when the network administrator is connected via an unreliable, costly or lossy
link, he/she can create MAs off-line, connect to the network to dispatch the agents, close the
connection and then reconnect later to get his agent back with the results. This principle is

actually implemented in Astrolog [SAH97].

This section starts with a description of several MAPs tailored to NSM, overviews several
MA-based management applications classified in terms of the mobility scheme they utilise,
discusses performance aspects related to these applications, surveys the research activity on the
field of active networks which is relevant to the scope of this thesis, and finally discusses

efficient organisation and mobility models for MA-based NSM frameworks.

3.6.1. Mobile Agent Frameworks for Network Management

The limitations of general-purpose MAPs, as highlighted in Section 3.5.6, have led to the
development of numerous management-oriented MAPs, aiming at optimising flexibility and
performance aspects. Simply viewed, these MAPs consist of two components: The MAs
themselves and the nodes where they can migrate and execute. There are several names
synonymous to nodes where MAs execute, such as Mobile Code Daemon [SUS98], agency
[SIL99a], place [ZAP97, BEL99], lieu [SAH97], etc. We adopt the term Mobile Agent Server
(MAS) for the remainder of this section. In the following sections, we present the most

representative platforms explicitly tailored to NSM applications.

3.6.1.1. IMA

The Intelligent Mobile Agents (IMA) framework [KU97], developed in Arizona State
University (USA), has been the first MAP intended for building decentralised NSM
applications. As such, IMA provides minimal functionality and poor integration with
management standards. IMA consists of three major components: the MA launcher or
managing entity, the MA code and the agent host. The managing entity is responsible for

launching the MAs and processing the data collected by them. The MA is a software program,

59

Chapter 3: Mobile Agents and Their Application on Network Management

which migrates among managed entities to collect information based on the policies defined by
the managing entity. The agent host is capable of receiving MAs and providing them access to
local resources. The agent host runs as a daemon process at each managed entity able to

receive and authenticate MAs.

3.6.1.2. MCT

The Mobile Code Toolkit (MCT) has been developed as part of the Perpetuum Mobile
Procura project [PMP] in a pursuit of the ultimate goal, a plug-and-play network [BIE97],
offering the basic functionality required to deploy NSM MAs. Every node to which MAs can
migrate has to run a Mobile Code Daemon (MCD) that includes a Migration Facility and a
Mobile Code Manager. The Migration Facility provides transport facilities to the agents. The
Mobile Code Manager manages the lifecycle of the agents present on the MCD. The access to
managed resources is handled by Virtual Managed Components, which provide a uniform
interface for the MAs to monitor and control the visited NE [SUS98]. In [WHI99], an MA
injection client is also introduced in order to create, deploy and manage MAs in the network.

Also, authentication and data integrity features have been incorporated in the MCT framework.

Several kinds of MAs are defined [BIE98a]. Applets, servlets and extlets are single-hop
downloadable components where applets are used for COD and servlets and extlets are used
for REV. Deglets are multi-hop agents with limited persistence, that terminate as soon as their

task is completed. Finally, netlets are persistent multi-hop MAs.

3.6.1.3. INCA

INCA (Intelligent Network Control Architecture) [NIC98] is an open architecture for the
distributed management of multi-service networks. It supports three code transfer schemes:
Push code distribution is used when the itinerary of the agent is known at creation time, where
the code of the agent can be pushed to the end nodes before the agent is launched. In the pull
code distribution, a station that receives a new MA has first to fetch its code. Finally, in the
migration code distribution, the code travels along with the MA state. Another original feature
in INCA is that the network administrator can assign priorities to MAs, depending on the
urgency of their task. Other interesting features include reliable and fault-tolerant
communications between stations, monitoring of the agent population deployed in the network
and facilities to launch and control MAs execution. In addition, INCA includes a location
service and a naming service, used for inter-agent communication. It is noted though, that

INCA architecture has not been implemented.

60

Chapter 3: Mobile Agents and Their Application on Network Management

3.6.1.4. MAGENTA

MAGENTA (Mobile AGENT environment for distributed Applications) [SAH97],
developed in the Institut de Recherche en Informatique et Systemes Aléatoires (IRISA,
France), targets mobile user applications where users are connected to the network with
unreliable and expensive connections. Hence, MAGENTA assists the administrators to
remotely control their managed network (possibly through portable computers), through
launching MAs to carry out distributed management tasks. Places where MAs can travel
(MASS) are called lieus. The heavier part of the management functionality is integrated into a
static management server. The framework is enriched with features such as fault tolerance,
adaptability of MAs to changes in the environment (they are capable of detecting the
disappearance of a lieu), etc [SAH98]. MAGENTA also offers a limited support of security

based on access control.

3.6.1.5. AMETAS

The Asynchronous MEssage Transfer Agent System [AMETAS] developed in University
of Frankfurt (Germany), uses the concept of a place as a MAS. Each place offers a mailbox
system that allows agents to communicate asynchronously. A place can extend its capabilities
by installing services that can be accessed through a control interface. MAs can therefore
access managed resources after installing appropriate services. Another feature of AMETAS is
that it defines human-agent interfaces through the definition of user adapters. Finally,
AMETAS uses a complex security mechanism including authorisation, access control and
encryption [ZAP97].

3.6.1.6. SOMA

The Secure and Open Mobile Agent (SOMA) architecture [SOMA], developed in the
University of Bologna (Italy), concentrates on security and interoperability as its two main
design objectives. SOMA has been developed on the top of an MA environment used for
NSM, MAMAS (Mobile Agents for the Management of Applications and Systems) [COR98a].
It enforces a strict security model with authorisation, authentication, integrity and secrecy
features. Interoperability with other MAPs is achieved through the support of the OMG
MASIF specifications [MASIF]. Moreover, a software add-on ensures interoperability with
CORBA-compliant distributed applications and allows inter-operation with legacy systems
through CORBA gateways [BEL99]. Several abstractions are defined within the MAMAS
architecture: The place abstraction where agents can execute (i.e. the MAS); the domain

abstraction which encloses a set of places; domains typically represent LANs and include a

61

Chapter 3: Mobile Agents and Their Application on Network Management

default place that embeds the gateway abstraction responsible for interconnecting different

domains.

3.6.1.7. JAMES

JAMES [JAMES] is a MAP designed for the management of telecommunications networks,
developed as part of a collaborative project between University of Coimbra (Portugal) and
Siemens. MASs in JAMES are called agencies. The JAMES manager allows the network
administrator to control active agents and agencies. A code server provides a central repository
where MA codes are stored [SIL99a]. Moreover, JAMES agents have a passive migration
strategy according to which the itinerary of each agent is known at launch time. Agencies make
use of this property to pre-fetch the agent code from the code server [SOA99]. This leads to
improving MA migration performance. JAMES also uses a checkpoint mechanism to provide
fault-tolerance. Agencies states are periodically saved on a persistent medium so that they can
be recovered after a crash and restarted from the last saved checkpoint. Moreover, MAs are

saved and maintained until they reach the next checkpoint.

3.6.1.8. MAP

The Mobile Agent Platform [MAP] has been developed as part of a collaborative project in
Universities of Catania and Messina (Italy). MAP architecture includes the following
components [PULOOa]: the Server (MAS), able to accept and activate MAs; the Daemon,
listening on a specific port for visiting MAs; the Context, that maintains a list of locally
executing MAs and manages inter-agent communication; the NetworkClassLoader that enables
MASs to run on a Server, even when their class is not present therein; the CodeServer,
integrated within the Context, which stores the classes available at the Server. Additional
features allow for synchronous/asynchronous inter-agent communication, to remotely retrieve
information about MAs and change their execution state, etc. A key feature of this platform is

its compliance with the MASIF standard, ensuring interoperability with other MAPs.

3.6.1.9. CodeShell

CodeShell [BOHO0Oc], developed in University of Surrey (UK), is an optimised mobile code
platform supporting the constrained mobility paradigm (see Section 3.5.5.2). As such,
CodeShell cannot strictly be classified as MAP, as it does not provide migration facilities to
launch MAs. The motivation that led to the development of this platform has been to address
the performance limitations (mainly large migration delays) of general-purpose MAPs (see
[BOHOO0a]). The basic components of the CodeShell architecture are a communication service

(using Java-RMI) which provides a mechanism for delegating management logic along with

62

Chapter 3: Mobile Agents and Their Application on Network Management

initial parameters to remote machines and a naming service that distinguishes between objects

and also binds one object to another.

3.6.1.10. Discussion

In this section, we described a number of MAPs designed and implemented for NSM

applications, which address some of the limitations of general-purpose platforms, discussed in

Section 3.5.6. All the presented MAPs support multi-hop agent applications, with the

exception of CodeShell, which exclusively supports constrained mobility, however none

supports memoryless or strong mobility. Interestingly, only SOMA and MAP comply with the

OMG MASIF standard (see Section 3.5.4), while Java is the implementation platform in all

cases. However, a number of limitations have been identified on these MAPS:

Heavyweight migration scheme: With the exception of few (e.g. [PULOQOa]), existing
MAPs involve the transfer of both state and code at each MA migration. The transfer of
code though is unnecessary, unless the MA visits a device for a first time, as the Java CL
stores every loaded class on a local code table. That inefficient scheme may result in
serious scalability problems both in terms of latency and migration overhead. This problem
is partially addressed through the migration strategy proposed in [SOA99] and [PULO00a],
where only the MA state is transferred and should the corresponding code is not present at
a visited device, the device's CL contacts and downloads the code from a remote code
server. This approach is very efficient in terms of network traffic (MA code is transferred
only when necessary), however it increases the latency (the MA’s execution cannot start
until its code is downloaded). In addition, it involves more complex migration
mechanisms, which are not necessary when MAs itinerary is known in advance. Instead,
we have chosen to adopt the ‘push’ scheme (defined in [NIC98]), whereby bytecode is
distributed at the MA’s construction time with only the persistent state transferred
thereafter, resulting in minimal usage of network resources (bytecode size is typically
much larger than state size [BAL98]) and faster class loading. This migration scheme is
described in Section 4.4.1.4.1 with a more refined design detailed in Section 6.3.5.

MA services customisation: The development and customisation of MA-enabled NSM
tasks is not effortless with available MAPs, as it requires programming skills and detailed
knowledge of the MAPs’ design. In Section 4.4.1.4, we introduce a tool that automates the
generation of service-oriented MAs in a user-friendly manner, according to specified

operational requirements.

Class loading: Most MAPs include a CL component, able to receive and load at runtime

visiting MAs bytecode. Yet, to the best of our knowledge, there is not any MAP which

63

Chapter 3: Mobile Agents and Their Application on Network Management

allows to modify (overwrite) the bytecode, i.e. to dynamically upgrade MA-enabled
management tasks. This problem is related to a limitation of Java class loading mechanism,

which we address through a customised CL, described in Section 4.4.3.

= Security: Not all management-oriented MAPs sufficiently address security issues related to
MAs. Examples of platforms without any support of security mechanisms or adopting
weak security schemes, include IMA, INCA, JAMES, CodeShell. In Section 4.4.1.3.2, we
describe a security component, which is integrated within our MAP and provides

authentication, authorisation and encryption services.

= Fault tolerance: MAPs should be able to survive situations where link or node failures
disrupt the normal migration process of roaming MA objects or the communication with
the manager station. However, only few platforms (MAGENTA and JAMES) have
addressed fault tolerance issues. In Sections 4.4.2 and 6.3.9, we discuss how network or

node failures are dealt within our platform.

= MA organisation models: The reviewed MAPs define architectures comprising two
hierarchical levels, corresponding to the manager and the NE ends, with the MAs used to
delegate NSM functionality from the manager to the NEs. This organisation model is
suitable for the management of small or medium-sized LANs but not adequate for large-
scale, geographically dispersed enterprise networks, typically structured in logical

hierarchies. This problem is discussed in Section 3.6.5.1.

3.6.2. Mobile Agent Applications in Network Management

MA-based distributed management has been a very hot research topic in the past few years,
with a large number of proposed applications reported in the literature. This section provides
an overview of MA-based approaches in a broad spectrum of applications, including network,
systems, fault, configuration and service management. In order to provide a more structured
overview, we follow the classification of Section 3.5.5.2, grouping these applications
according to the mobility scheme used (single vs. multi-hop agent applications) and the control
on agents’ itinerary (passive vs. active migration). Most of the applications described below
use the MAPs described in the preceding section as underlying platforms, whereas others have

chosen general-purpose platforms such as VVoyager [FERO1] or Aglets [PIN99, CHI99].

3.6.2.1. Single-hop Agents in Network Management

As a general rule, single-hop migration is useful to encapsulate a function or a service into
an MA and to deploy it to a remote location. A number of applications make use of this idea.
White et al. [WHI99] suggest that a Virtual Managed Component (VMC) resides at each NE,

64

Chapter 3: Mobile Agents and Their Application on Network Management

providing incoming MAs an interface to managed resources. The manager side of the NMS
requires a similar interface called the Virtual Managed Resource (VMR), which can be viewed
as a remote wrapper of the VMC. The VMR can be supplied as a single-hop MA that travels to
the remote NE, thereby, seamlessly enabling the management of newly installed NEs. In
addition, this allows network component suppliers to transparently use any NSM protocol

(even a proprietary protocol) for the management of NEs.

In [PULOOb], four types of MAs (programmed on the top of MAP platform, described in
Section 3.6.1.8) are identified to perform management functions. Among them, the daemon
agent is a single-hop agent sent to a network node to locally compute a health function (a
linear aggregation function of several MIB values) and automatically notify the manager
station when certain thresholds are exceeded. This scenario provides the advantage of saving
bandwidth when compared to a remote polling-based scenario. Single-hop agents are also
supported by the CodeShell platform (see Section 3.6.1.9), mainly applied to performance
management applications: the aim is to provide traffic rates, QoS alarms and periodic
summarisation reports by observing raw information such as traffic counters on NESs
[BOHO0OCc].

Other possibilities of applying single-hop agents are suggested in [MAG96]. A service or a
network provider can send single-hop MAs to user end-points in order to adapt his equipment
to new services. These agents can also achieve other tasks such as user accounting and

capturing user requirements.

3.6.2.2. Multi-hop Agents in Network Management
Fixed Itinerary (Passive Migration)

The most typical and widely-used scenario of applying multi-hop agents is to deploy an
agent to a list of hosts to locally perform management tasks and return to the manager
processed management information. In this context, mobility allows the agent to perform
semantic compression [BAL98], take decisions based on the past visited nodes and bring back
a report result to the management station. This scenario is proposed in many works for

different management activities.

Several research works on MA-based network monitoring involved rather simplistic
applications, whereby a single MA object sequentially visits a predefined set of hosts,
collecting a number of MIB values from each one without performing any processing upon
them. This approach, used in [KU97, SAH98, CHI99] fails to solve the scalability problems of
SNMP management as the state of travelling MAs grows rapidly (due to the unprocessed data

accumulated into the MA state) resulting in increased network overhead and response time, in

65

Chapter 3: Mobile Agents and Their Application on Network Management

addition to imposing computational burden to the manager station where data processing takes
place [BAL98]. The same principle is used in [COR98a], where MAs return system resources
utilisation reports from a group of devices. Simulation results have shown that using MAs as
management data collectors can be more efficient than SNMP-based management only when
the management of remote domains (separated from the manager station by bottleneck links) is
considered [RUB99].

The ability of MAs to return high-level information is exploited in [PULOOb], which
defines a verifier agent that returns a list of nodes verifying a certain condition, e.g. overloaded
CPU. In [SIL99a], MAs are used in a TMN environment to collect and process performance
data from a set of NEs in order to produce global reports about the performance of the
network. More advanced applications are proposed in [ZAP99] that presents NetDoctor, an
application built on top of the AMETAS platform (see Section 3.6.1.5). NetDoctor addresses
scalability issues by delegating NSM tasks to MAs that migrate to remote domains where they
act as local managers, performing SNMP operations. Several interesting applications are
proposed, including evaluation of health functions, termination of mis-behaving processes to
free-up system resources, etc. Similar applications have been proposed by Pinheiro et al.
[PIN99] that defined discovery agents to discover the existence of specific MIB variables on
given hosts, and aggregator agents to perform computations on MIB variables (several
aggregation levels may be defined). An interesting aspect is the dynamic adaptation of the
proposed architecture to changing network conditions, so that MAs move closer management
data to minimise their intrusiveness, in terms of the NSM-related traffic. This application has

been developed using Aglets as underlying mobility framework.

El-Darieby et al. proposed a fault management application, using intelligent MAs endowed
with a rule-based engine that allows to infer and diagnose possible faults on visited nodes
[ELD99]. Another interesting application is described in [KNI99] that uses MAs for
monitoring the conformance of Service Level Agreements (SLA) in enterprise networks. The
paper suggests to use MAs that periodically roam the network to collect SLA monitoring
results produced by other agents standing close to locations where user applications execute.
Both the applications described in [ELD99] and [KNI99] are developed on the top of the MCT
platform, described in Section 3.6.1.2.

Feridun et al. [FERO1] presented the Distributed Management Framework (DMF), an
architecture built on the top of the Voyager platform. The execution environments for
incoming MAs are provided by the Distributed Management Nodes (DMN), characterised by a
highly modular and lightweight design. The DMF has been tested on an application scenario
where an enterprise manager, running on a DMN, analyses IP traffic characteristics of remote

subnets. Upon receiving an event reporting that a performance threshold has been exceeded,

66

Chapter 3: Mobile Agents and Their Application on Network Management

the enterprise manager dispatches an MA to the remote subnet where the event originated
from. On arrival, the MA starts monitoring the traffic activity on the subnet using a packet
sniffer. When the specified monitoring period ends, the MA returns back to the enterprise

manager to deliver its collected data.

The Mobile Disman architecture described in [OL199] goes one step further, integrating the
IETF’s Distributed Management (Disman) framework [Disman] with a MA-based NSM
framework. Disman defines an architecture where a main manager can delegate control above
several distributed managers (DM), thereby improving the scalability, robustness and
flexibility of centralised approaches. In Mobile Disman architecture, MAs can by used to
implement DMs; providing mobility support to DMs allows them to adapt to dynamic
environment conditions, offers location transparency and simplifies tasks such as data
correlation and tasks distribution. However, Mobile Disman architecture is heavyweight, i.e. it
comprises many resource-demanding components that would certainly increase the
requirements on system resources; the fact that Disman is still only an Internet draft should
also be considered. In addition, Mobile Disman architecture is not supplemented by a

prototype implementation.
Dynamic Itinerary (Active Migration)

In their pioneer work, Appleby and Steward demonstrated the feasibility of employing
multi-hop actively migrating MAs to control traffic congestion in circuit-switched networks
[APP94]. A first class of MAs, called parent agents, randomly navigate among the network
nodes and collect utilisation information. By keeping track of this information, they gather an
approximate utilisation average of the network nodes. Therefore, they are able to identify
congested nodes, relatively to this average. When a congested node is found, a load-balancing
MA is created to update the routing tables of the neighbouring nodes so as to reduce the traffic
routed through the congested node. This application inspired other researchers to further
develop its ideas by using biologically inspired agents. The work of Minar et al. [MIN99]
covers this ground, using MAs to configure routing tables in a highly-dynamic radio frequency
network where nodes are low-power transceivers, moving from one location to another in a

two-dimensional space.

Shoonderwoerd et al. [SCH97] proposed to use ant-like MAs to achieve load balancing in
telecommunications networks. MAs randomly roam the network and put pheromones
depending on the distance from the source and the congestion of the followed route. Deploying
a sufficiently large number of such ant-like agents allows to route calls according to the
distribution of pheromones. Simulations show that such MAs significantly decrease call

rejections compared to other approaches. An improvement to this work is proposed in

67

Chapter 3: Mobile Agents and Their Application on Network Management

[BON98], where MAs no longer roam the network in a completely random manner, but follow

those places where the strength of pheromones is higher.

White et al. [WHI98] applied a similar approach in a network fault location application,
using multiple interacting swarms of MAs. Four types of agents are defined. Service
monitoring agents monitor the compliance of service instances to the required QoS. When
significant changes are detected, a service change agent is sent to mark the resources on which
the service depends (increase the pheromone intensity when the QoS has downgraded).
Condition sensor agents continuously roam the network and evaluate specific conditions on
the visited nodes, with the tendency to visit more frequently those nodes where problems have
been detected. Nodes with strong pheromone attract a fourth type of agents called problem
identification agents, with the capability to diagnose and repair certain patterns of problems.
As a general comment, it should be stated that the applicability of ant-based solutions in the
field of telecommunications is questionable; so far it has only been demonstrated in simulated

environments.

Active migration has been also applied in network discovery and dynamic configuration of
networks and services. In [SCH98] and [WHI99], the authors proposed a scenario, where MASs
(netlets) continuously roam the network to discover new devices and detect removed
components. Netlets are suitable for dynamic networks with frequently changing topologies
and supported services. An MA-based network discovery application is also described in
[FERO1].

In another work, Pagurek et al. [PAG98] developed a simulation testbed for the
configuration of Permanent Virtual Channels (PVC) in heterogeneous ATM networks. The
idea is to dispatch an MA that travels across the network switches, and progressively
configures the PVC fragments on each switch. After configuring the PVC route on a switch,
the MA travels to the next switch where it uses configuration information of the past switches
to correctly configure the current one. Cheikhrouhou et al. proposed a similar application

[CHEO0Oa], based on static intelligent agents with dynamically extended capabilities.

It is essential to notice that in the above applications, MAs provided a very interesting tool
to model either lightweight moving entities or biologically inspired entities used for
management tasks. The MA metaphor allows to model a self-contained entity that evolves in

its environment to accomplish simple tasks according to its own view of the network.

3.6.3. Performance of Mobile Agents in Network Management

While the main focus of MA-related research activity on distributed management has been

on developing NSM-oriented frameworks and using them on specific applications, some

68

Chapter 3: Mobile Agents and Their Application on Network Management

researchers concentrated on evaluating the performance of MA-based management. The
purpose of such performance studies is twofold. First, they suggest ways to efficiently use
MASs so as to outperform centralised NSM approaches. Second, they allow to determine how

MAs are best deployed for particular types of NSM operations.

Pioneer work on this direction has been presented in [BAL97] and [PIC98]. A management
task carried out on a set of NEs, involving multiple CS interactions with each NE has been
examined. Models of the overall traffic and the traffic around the management station are
computed for CS, CoD, REV and MAs approaches. The impact of semantic compression is
also studied for mobile code approaches. The purpose of these models is to provide the
network administrator with an objective quantitative criterion to choose the right approach,

given the management task and the managed network topology.

Liotta et al. [L1099] presented an evaluation of MA-based monitoring systems, providing
quantifiable metrics based on performance and scalability. MAs are used to perform
monitoring tasks in place of traditional centralised polling. Performance is measured using the
generated monitoring traffic and the monitoring delay. These parameters are evaluated for a
combination of schemes based on monitoring models, MAs organisation and MA deployment
patterns. Possible monitoring models consider MAs performing periodic polling. In the first
model, each MA polls and analyses a set of managed objects (MO); this MA is subsequently
polled by other MAs or the monitoring station. In the second model, each MA periodically
polls the MOs, analyses the results, and notifies other MAs or the monitoring station. The third
model differs from the previous on that MAs generate data (alarms) only if specific events are
detected. The MA organisation can either be flat or hierarchical, and the deployment scheme
can either be cloning-based or without cloning. This leads to four possible deployment
patterns: flat broadcast with no cloning, flat broadcast with cloning, hierarchical broadcast with

no cloning and hierarchical broadcast with cloning.

In a more recent work [LIOO01], the authors investigated the problem of optimal placement
of MAs acting as remote monitoring stations, so as to minimise data collection latency and the
network traffic incurred due to (localised) polling. To address this problem, a distributed
algorithm is proposed that relies on agents learning about the network topology through
standard management interfaces and subsequent deployment of MAs to remote domains
through a ‘clone and send’ process. Deployed MAs can possibly adapt to network changes and

move again in order to maintain optimality.

The latency aspects of MA migrations, with respect to management applications, have been
investigated by Lipperts [LIPO0]. The results of time measurements indicate that MA

migrations can be more time efficient than remote communications, especially when class

69

Chapter 3: Mobile Agents and Their Application on Network Management

loading is not necessary (the code of the MA is already at the destination host) and the
operations are performed over slow media. However, the decision concerning the replacement
of a remote communication scheme by MA migrations should take into account several
parameters, such as the number of remote communications to be replaced, the size of the
parameters involved in the remote communication, the size of the agent and the networking
environment. Lipperts proposed a solution based on utility theory to aid on deciding whether

MAs deployment is justified or not.

[ELD99] and [ZAP99] included brief quantitative evaluations of their proposed applications
demonstrating improved scalability compared to SNMP management. Similarly, [BOHO0Oc]
compared the performance of CodeShell against that of Grasshopper, RMI and CORBA-based
approaches in terms of response time, generated traffic and memory requirements. The
experimental results indicated that CodeShell offers the management flexibility benefits of general-
purpose MAPs, whilst achieving performance characteristics comparable to static DOT-based

approaches.

3.6.4. Active Networks

Active Networks (AN), which originated at MIT’s Software Devices and Systems Group,
advocate the use of active packets or capsules [TEN96]. Active packets contain user data and
programs, which are executed on every node along the route of the packet through the AN.
Such packets require a software layer on top of the hardware and communication protocols,
which can provide dynamic configuration, improved security, interoperability, extendable
protocols, etc. AN research is relevant to the context of this thesis, as programs carried by
active packets, resemble the functionality of MAs: an active packet can be thought of as a
multi-hop MA, which executes on every node along its path through the network; likewise, a
travelling MA can be mapped to an active packet, containing both data and a program, sent
from one active node to another, in an AN. Since the motivations for proposing the MA and
AN concepts are on the same direction, MA and AN technologies start to converge and
overlap, specifically in the management domain [KAWOO]. Nevertheless, only recently have
AN concepts been applied to distributed management [GRE99, RAZ00, KAWOQOQ].

Greenwood and Gavalas [GRE99] described a modular framework that exploits the ability
of active mobile processes or agents to interact with one another in order to realise active
network architectures. The process execution environment is integrated into the network
devices. The process kernel houses both pre-loaded and visiting agent processes. The proposed
framework is compared against traditional SNMP-based with the former outperforming the
latter both in terms of response time and network overhead when the calculation of health

functions combining large numbers of MIB objects is considered.

70

Chapter 3: Mobile Agents and Their Application on Network Management

Raz et al. [RAZ00] described a prototype system where legacy routers are enhanced with an
active engine, which enables the rapid deployment of new distributed management
applications. In particular, the active engine comprises an environment in which code
encapsulated in active packets can be executed. Physically, the routers forwarding mechanism
and the active engine may either reside on different machines or co-reside in the same box.
This prototype has been tested on a simple bottleneck detection application and offers the

functionality of the well-known traceroute program, in a more efficient way.

The convergence of MAs and ANs is more clearly portrayed in [KAWOO0] that introduces
the Active Distributed Management architecture. This architecture is characterised by a
programmable middleware platform (organised in different layers of abstraction), whose active
properties are drawn from the AN and MA paradigms. A number of applications are proposed

including variables monitor/control, bottleneck detection, topology detection, etc.

3.6.5. Synthesis and Discussion on Mobile Agents-Based Management Applications

This section attempts to highlight the benefits and shortcomings related to the application of
MA technology on NSM. The discussion is twofold: first, the effect of MA organisation
models is investigated with respect to the scalability and flexibility of MA-based approaches
on the management of large-scale networks; second, the effect of mobility schemes on
management applications is discussed and ways to effectively exploit the mobility feature of

MASs are suggested.

3.6.5.1. Organisation Models

As mentioned in Section 3.6.1.10, a common attributed shared between the MAPSs
developed for management applications is their structuring in two levels, corresponding to the
manager and the managed devices, with the MAs used to delegate functionality from the
former to the later. This simple organisation model implies a “flat” network topology where a
single MA is launched and visits the entire set of managed systems, causing scalability
problems both in terms of latency and network overhead. Flat models are not suitable for the
management of large-scale, hierarchically structured networks, which can be more efficiently

managed by MA platforms organised in hierarchical fashion [L1001].

The hierarchical organisation of agents is not an entirely new idea. For instance, hierarchies
of static co-operating agents have been proposed in [QUE97] to support the resource-control
part of a signalling system. In the management domain, this problem is partially addressed by
the hierarchical framework described in [LIO98] and also MAGENTA, AMETAS and Mobile

Disman architectures. In particular, Liotta et al. [LIO98] proposed an MA-based management

71

Chapter 3: Mobile Agents and Their Application on Network Management

architecture adopting a multi-level approach enabled by static Middle Managers able to launch
MAs. The same principle is used in MAGENTA platform. A second approach has been
reported in [ZAP99] and [OLI199] that proposed the use of MAs as mobile mid-level managers,
performing distributed management tasks. The first approach [SAH97, LI0O98] does not
adequately address the flexibility limitations of static hierarchical management frameworks
(see Section 2.11), Still, even the latter approach [ZAP99, OLI199] is not suitable for managing
networks with dynamically changing topologies and traffic patterns, as they lack mechanisms
to change the location where mid-level managers execute. This approach also involves the
deployment of a new MA for each introduced monitoring task, which complicates the
management of mid-level managers. In addition, critical issues such as criteria for segmenting
the network into management domains, explicit determination of the domain boundaries or
strategies for assigning mid-level managers to these domains, are not addressed. Furthermore,
the architectures described in [LIO98] and [OLI99] are not supplemented by prototype

implementations.

In Chapter 6, we introduce a hierarchical MA-based management framework that deploys at
runtime mobile mid-level managers (when specific criteria are satisfied), with the ability to

dynamically adapt to the managed network dynamics.

3.6.5.2. Mobility Schemes

The usage of MAs covers many aspects in NSM. Single-hop MAs are suitable for the easy
deployment of software, functionality and services [MAG96]. In particular, single-hop MAs
have been used to deploy adaptable instrumentation facilities, compute health functions
[PULOODb], provide on-the-fly adaptors for newly installed NEs and services [WHI99]; also to
return QoS alarms and periodic summarisation reports by processing raw management data
[BOHOOCc]. In that context, single-hop mobility can be considered as successor of the MbD

paradigm.

Multi-hop MAs go one step further, allowing the execution of management tasks on a set of
NEs in a sequential manner. Multi-hop mobility may be preferable in several application
scenarios (see Section 3.4), for instance when short-term tasks are to be executed over multiple
NEs; in such case the code deployment time is reduced, the manager station is not overloaded
and the network area around it is not saturated by the simultaneous generation and transmission
of agents [BOHOOb]. This mobility scheme is, therefore, suitable for collecting on-line data

and performing simple monitoring and configuration tasks on several NEs.

Hence, multi-hop MAs have been used to compute health functions [ZAP99, PIN99], return

reports related to a set of NEs [SIL99a], discover nodes verifying specific conditions

72

Chapter 3: Mobile Agents and Their Application on Network Management

[PULOODb], perform traffic analysis on remote subnets [FERO1], etc. Additional applications
include fault diagnosis [ELD99], or collection of data pre-processed by other agents [KNI99,
L1099]. It should be emphasised though that applications using multi-hop agents for collection
of data, later processed by the manager station [KU97, SAH98, CHI99, COR98a] do not scale,
as not only processing bottlenecks are created at the manager platform, but also the network
overhead is increased. Hence, it is essential to benefit from the semantic compression that
multi-hop MAs can perform while moving from one host to another, thereby preventing the

rapid growth of their state size and minimising the migration overhead [BAL98].

An aspect of management scalability not sufficiently addressed by existing applications
relates with the management of large sets of NEs. In such case, launching a single multi-hop
MA with the task to collect data from all the managed devices can lead to large round-trip
delays and also to increased network overhead, even when performing semantic compression
of data. In Chapter 5, we address this issue by launching several MA objects, travelling in

parallel, with each visiting a relatively small group of devices.

Interestingly, although the potential of using multi-hop agents to perform correlation of data
collected along their itinerary has been recognised by researchers [FUG98, LOPQOQ], none of
the existing applications implements this principle. MAs can be used to realise a simple data
correlation model, providing more even distribution of processing load and returning high-
level information to the manager station with no need for further processing. In Chapter 7, we
describe an application scenario where MAs can be efficiently used to perform correlation of

management data.

Active migration is often combined with a society of MAs imitating ant-like behaviour
[APP94, MIN99, SCH97, BON98, WHI98]. Although such kind of MA systems is particularly
difficult to manage, they are very suitable for dynamic networks, where random mobility
combined with a large number of MAs allows to easily detect changes related to performance,
faults or configuration and react accordingly. However, active migration is not necessary for
network performance management applications, which represent the main focus of this thesis,
as the list of managed devices involved in the monitoring process is typically known in
advance. Should new devices are installed, the latter can advertise themselves directly to the
manager, without requiring to be discovered by continuously roaming MAs (see Section
4.4.1.3.8). Besides, the use of active migration would imply increased complexity (extra code

needed for itinerary control), hence, increased MA size and migration overhead.

Concluding, management applications can benefit either by single-hop or multi-hop MAs
(see Section 3.6.3). The selection of the appropriate migration scheme should depend on the

type of the application, the managed network size, the duration of the management task’s

73

Chapter 3: Mobile Agents and Their Application on Network Management

execution, etc. As a result, NSM-oriented MAPs should support both single-hop and multi-hop
agents. The design of our MA framework, introduced in Chapter 4, satisfies this requirement.
Last, but not least, the choice of MA-based solutions instead of alternative approaches
management distribution approaches should necessarily be justified through analytical
evaluations. The performance of our framework and the applications developed on the top of it,

is assessed through extensive quantitative evaluations, validated by experimental results.

3.7. SUMMARY

The advent of MA technology has signalled many potential benefits in the network
management arena and attracted the attention of several researchers working on the field. In
particular, MAs promise to overcome the limitations of traditional centralised architectures and
address the weaknesses of distributed management approaches reviewed in the previous
chapter. As a result, MA-based management applications have largely increased in number.
The intensity of research activity on that field is strongly related with the proliferation of
MAPs expressly developed with management applications orientation. These platforms have
demonstrated improved security, fault tolerance, MA control, inter-agent communication and
interoperability features, while some also aimed at optimising the performance of MA
migrations through sophisticated code distribution mechanisms. All these facts signify that MA

community is about to reach the state of maturity.

However, there are a number of issues related to the scalability and flexibility of MA-based
management that need to be carefully evaluated. For instance, appropriate organisation models
and mobility schemes that meet the specific requirements of management applications need to
be identified and evaluated to ensure that MAs are effectively used and offer performance
benefits. The investigation of these issues comprises the main part of the research work
presented in the following chapters, which describe the design and implementation details of a
MAP tailored to management applications, with the main focus being on network monitoring

and performance management.

74

CHAPTER 4

THE MOBILE AGENT FRAMEWORK

4.1. INTRODUCTION

This chapter comprises the introduction to a core Mobile Agent (MA) framework design
and implementation issues. The framework is intended for use in Network & Systems
Management (NSM) applications, hence, a number of management-related issues have been
taken into account and several optimisations have been performed to achieve NSM orientation.
The presented infrastructure exploits the benefits of MAs to carry out semantically rich

management operations in a highly scalable, flexible and efficient manner.

The design and implementation ideas introduced in this chapter have been originally
published in the proceedings of the IEEE International Conference on Communications
(ICC’99). The description of several extensions have been included in papers published in the
proceedings of the 4™ IEEE International Symposium on Computers and Communications
(1SCC99) and the 3" International Workshop on Intelligent Agents for Telecommunication

Applications (IATA’99). Full references are given in Appendix A.

The remainder of this chapter is organised as follows: Section 4.2 highlights the main goals
identified for the framework’s design, with special focus on the particular needs and
requirements of management applications. Section 4.3 summarises our Mobile Agent Platform
(MAP) design. Section 4.4 comprises the core of this chapter, describing the implementation of
the introduced infrastructure. The features of the main building components are presented in
detail. Special focus is given on the framework’s fault tolerance features and its class loading
mechanism. A guantitative evaluation of the framework is presented in Section 4.5, where
simple mathematical formulations are devised to model the response time and network

overhead of centralised and MA-based management.

75

Chapter 4: The Mobile Agent Framework

To thoroughly evaluate the performance of the proposed framework, a number of timing
and network overhead experiments have been conducted and presented in Section 4.6. A first
set of measurements compares the performance of MAs against that of Java Remote Method
Invocation (RMI) both in terms of response time and network overhead. Following that, we
present experiments that evaluate the dependency of multi-hop MAs response time on the
amount of collected data and the itinerary length. The empirical results of these experiments
are contrasted with the theoretical findings of the quantitative evaluation and ways for
improving the MA framework’s performance are identified. Finally, Section 4.7 summarises

and draws the conclusions of this chapter.

4.2. MAIN GOALS OF THE MOBILE AGENT FRAMEWORK DESIGN

The following points have been identified as the main goals regarding the design and

development of our MAP:

= Network management applications orientation: Unlike publicly available general-purpose
MAPs, the introduced architecture should take into account the special characteristics and
requirements of NSM applications and therefore provide a flexible, scalable and
lightweight environment tailored to management operations. In addition, a variety of
features typically offered by general-purpose MAPs may be omitted as they do not add any
value to an NSM-oriented framework, while increasing the complexity of the platform and

its requirements on system resources.

= Mobility support: The ability of objects to move from host to host offers a powerful
abstraction that should not be disregarded when building distributed management
applications. The architecture should therefore provide a set of services to allow the
migration of management agents, regardless of the underlying management models.
Cloning of MA objects should also be supported in order to allow instant creation of MAs,
when it is required to share the responsibility of a management task among multiple MAs

with identical functionality or minimise MAs deployment latency.

* Modularity: Maintaining an architecture with intrinsic modularity eases the addition of

new services or the modification of existing ones.

= Support for existing management standards: Our architecture encompasses the dominant
NSM framework of Internet world, i.e. the Simple Network Management Protocol
(SNMP). Due to its huge installation base, integration with SNMP was considered of vital

importance to maintain compliance with legacy management systems. The importance of

76

Chapter 4: The Mobile Agent Framework

integrating MA-based management environments with SNMP is also discussed in [SIM99,
PAGO00].

Support for “‘disconnected’ operations: Management operations dependency on network
resources should be minimal, in other words, it is essential that management tasks
execution is not vulnerable to link or node failures or sensitive to traffic conditions. The
required support for disconnected operations can be guaranteed by using autonomous MA
entities, which are able of performing their decentralised management tasks without
requiring communication with a central manager station. These MAs should be able to
continue their execution even when the communication link with the manager is disrupted

or the manager station itself fails.

High performance: A variety of network performance management tasks have very
demanding time requirements. It is therefore of critical importance to design an
infrastructure that guarantees prompt execution of time sensitive monitoring tasks,
allowing sophisticated Network Management Systems (NMS) to foresee possible
congestions or failures and take preventive measures before the actual error occurs. As a
result, MA migrations should be optimised in terms of their latency and MA objects
assigned the highest priority among the processes executing on the same system. In
addition, the itineraries of multi-hop MAs carrying out management tasks should be

optimally designed so as to minimise the overall response time.

Scalability: Scalability is of major concern when designing distributed management
applications. MA-based approaches in NSM promise scalable solutions, however frequent
transfers of MAs may cause excessive use of network bandwidth and result in poorer
performance than centralised frameworks. Hence, it is essential to ensure that MA
migrations take place only when they are absolutely necessary, whilst imposing minimal

burden on network resources when they occur.

Lightweight footprint: The applications required to receive, instantiate and launch MAs
(Mobile Agent Servers) should be designed so as to be as lightweight as possible and
therefore provide execution environments that can be installed on any network device,

including those with limited storage capacity and processing capabilities.

Security: One of the main arguments commonly used against MAs is the security threats
this technology brings forth. Hence, security concerns should be carefully taken into
account, with the designed architecture offering protection against MA attacks and the MA
objects shielded from tampering and eavesdropping. In addition, access control on MAS

actions on system resources and services should be supported.

77

Chapter 4: The Mobile Agent Framework

= Fault tolerance: A MAP should be able to cope with situations where link or node failures
disrupt the normal migration process of roaming MA objects. Fault tolerance features
should also cope with the scenario where the failed node is the manager station itself and

ensure that the valuable management information collected by the MAs is not lost.

= Dynamic class loading: Existing management tasks often need to be modified. These
actions should be carried out in a user-transparent manner, without disrupting the NMS
operation. That could be achieved through a network class loader (CL) installed on every
managed device, able to receive at runtime the definition of an MA object representing a
management task. CLs should allow the NMS not only to introduce new services, but also
to replace existing ones; in other words, CLs should be able to distinguish different

versions of the same MA class.

= Ease in introducing new services: It is essential to provide an open architecture in which
the administrator can easily add new services at runtime. In our framework, there is a
direct mapping of management functions to certain MA objects. The effortless introduction
of new services is accomplished through a graphical tool that automates MA code
generation and eases the deployment of new MAs that carry out specialised management

operations.

= Platform Independence: Last, but not least, the implementation of a framework that
supports any network device, regardless of the underlying hardware platform or operating
system, is crucial in order to cope with the heterogeneity of modern multi-vendor
networking environments. The “write once - use everywhere” slogan of Java promises to

achieve the required degree of platform independence.

4.3. OVERVIEW OF THE INTRODUCED MOBILE AGENT PLATFORM

4.3.1. Implementation Language

The introduced platform is entirely developed in Java due to its inherent platform
independence that makes it portable across distributed heterogeneous environments. This and
other features, highlighted in Section 2.7.1.1 and 3.5.2, suggest Java as a suitable platform for
developing MA-based applications. Hence, the selection of Java as implementation language
for our framework has been a natural choice. In fact, the vast majority of MAPs developed

over the past few years are implemented in Java (see Sections 3.5.6 and 3.6.1.).

The framework’s source code has been developed using the Java Development Kit (JDK)
1.1 library, which was the most recent JDK version at the time the implementation of the

framework commenced. Although the compatibility of the prototype with the JDK’s latest

78

Chapter 4: The Mobile Agent Framework

version (1.2) has not been tested, it is expected that only minor changes are required to achieve

full compatibility.

4.3.2. Framework’s Overview

The framework introduced in this chapter provides the basic functions required to program
MA-based applications. Nevertheless, several optimisations have been incorporated during its
implementation to achieve a flexible design that not only has minimal requirements on
distributed system and network resources, but also integrates special features particularly
suited for NSM applications. The reasons that led to the decision to implement a new MAP
from scratch rather than using one of the many available general-purpose MAPSs, have been
highlighted in Section 3.5.6.

In our platform, the interface between the visiting agents and legacy management systems
is achieved through the Mobile Agent Servers (MAS). A MAS provides incoming MAs entry
points to services, represented by Java objects within the MAS. Security issues have also been
addressed including authentication of visiting MA objects, encryption of sensitive management

information and authorisation of MA actions.

A manager application has been developed to co-ordinate the policies of monitoring and
controlling the Network Elements (NE). In this chapter, we investigate the performance of the
“standard” use of MAs, i.e. multi-hop MAs, that is the agent code migrates sequentially
between managed devices with data processing performed locally. This alleviates the need for
broadcast polling and can result in a significant reduction in NSM data at the source, as only

high-level management information is delivered to the manager.

An MA is an instance of a user-defined Java class. This class must inherit the properties of
a generic class that provides all the core functionality to implement mobility. The platform
implements weak mobility, namely the MA can carry its persistent state but not its execution
stack. The implementation of strong mobility, apart from representing a non-trivial task as
explained in Section 3.5.5.1, is not considered essential for performance management
applications. That is, MAs are typically required to start execution from a specified entry point
(method) rather than resuming their operation from the point their execution was interrupted on
the previously visited host [CABOQ].

Unlike all known publicly available MAPs, which involve the transfer of both the agent’s
code and state information on every migration, the framework introduced herein adopts a more
lightweight mechanism whereby the bytecode is transferred to each managed device only once,
at the MA construction time (we assume that NEs have fairly large storage capabilbity);

following that, the transfer of the MA state is sufficient to carry out distributed management

79

Chapter 4: The Mobile Agent Framework

tasks. That results in moderating the demand on network resources, since bytecode size is
typically much larger than state size [BAL98].

We also introduce a novel tool prototype, the Mobile Agent Generator (MAG), which
creates MAS in response to service requirements. Such MAs may be generated post MASs
initialisation to accomplish intelligent management tasks, tailored to the needs of a changing
network environment. Thus, the MAG realises a flexible infrastructure through the creation of

new MA instances, which dynamically extend NMS functionality.

The introduced prototype is logically structured in 7 packages [ARN96], each of which
includes a number of classes implementing a specific part of the framework. A short
description of these packages is given in Table 4.1.

Number of .
Package classes Description
Qs 21 Implements the framework's user interfaces
Manager 15 Implements the manager application and its

building sub-components

VAS 12 Implements _thg Mobile Agent Server and its
building sub-components

The MA ‘base’ class, its service-oriented sub-

MCode 10 classes and several classes for manipulating MA
objects
RM 6 Implementations of the RMI servers and their

respective interfaces

Implementation of cryptography algorithms and
a customised SecurityManager

Security 2

Utilities 6 Various utility classes

Table 4.1. Structuring of the prototype in packages

Full details on the MAP’s building blocks implementation are given on Section 4.4.

4.4. INFRASTRUCTURE OVERVIEW - IMPLEMENTATION DETAILS

4.4.1. The infrastructure’s main building blocks
The infrastructure consists of the following major components (see Figure 4.1):
= The Manager, responsible for launching and controlling MAs and displaying results;

= The MA objects, capable of migrating between the managed entities to collect information
based on pre-defined policies;

»= The Mobile Agent Server (MAS), capable of receiving MAs and providing an interface to
the local physical resources;

80

Chapter 4: The Mobile Agent Framework

» The MAG, a factory that generates service-oriented MA objects.

SNMP Agent

Return &
Display results I T . -

SNMP Agent |
|

MAG — Mobile Agents Generator 1
MAS — Mobile Agent Server |
GUI - User Interface . Agent Host# n /
MA-MobileAgent ~— TTTTTTTTmmommmmmmmmmmmmmmn T
SNMP - Simple Network Management Protocol
MIB — Management Information Base

Figure 4.1. The Mobile Agents-based Infrastructure

The following sections elaborate on the design and implementation details behind its one of

these components.

4.4.1.1. Manager application

The manager application performs monitoring and control operations through interacting
with devices running agent processes. It composes a multithreading environment where a main
thread instantiates, controls and co-ordinates the operation of a number of specialised threads

(see Figure 4.2).

The manager maintains a ‘discovered’ list of active MASs. In particular, at startup time the
Network Discovery thread parses a text file (“network configuration” file), which includes a list
of the managed devices’ IP addresses and information regarding the subnets they are
physically connected to; it then ‘pings’ the corresponding hosts checking whether there is an
active MAS server thereon. It is noted that active servers are discovered either at manager
initialisation or whenever a new MAS starts operation. In the latter case, the manager
application is notified and the host name appended to that manager’s “‘discovered’ list. Clearly,
the discovery of active agent servers based on parsing a text file is not sufficiently flexible and
dynamic (it does not adequately deal with topology changes), however the design and
implementation of a topology discovery algorithm was beyond the scope of this research work.

The implementation of an automated naming service is not a trivial task, as it requires

81

Chapter 4: The Mobile Agent Framework

configuration information obtained from various sources. That includes the Management
Information Bases (MIB) of routers, bridges and switches, use of Internet Control Message
Protocol (ICMP) messages, the Domain Name Service (DNS), etc. [LIN99].

Manager GUI
| Mobile Agent | PT: Topology map
Mobile Code| Network i Generator SNMP-based GUI Mobile Agent| Migration Security
Repository | Discovery ! GUI | RMI Server | management Listener Facility Component
Thread Thread Mobile Agent applications Thread Component
Generator PT, Topology map

Main Manager Thread

Figure 4.2. Break-down of the components that compose the manager application

In the event of a pending MA-based task, the manager retrieves the MA’s definition from a
Mobile Code Repository (MCR), it instantiates an MA object and assigns it an itinerary
including all active agents hosts, unless a travel plan is manually specified. These actions are
basically performed by one of the Polling Threads, whose operation is described in Section
5.2.1.1. The MA’s state information is then compressed (using the Java gzip utility) and
transferred through the Migration Facility Component (MFC) to the first destination host.
When the MA returns back, it is received by the Mobile Agent Listener (MAL) thread, which
retrieves the results carried by the MA and presents them to the user. The MAL and MFC
components are basically identical to the ones used by the MAS entities; their implementation

details are discussed in Sections 4.4.1.3.1 and 4.4.1.3.5, respectively.

The manager application is equipped with a user-friendly Graphical User Interface (GUI)
including a MIB browser, ‘event’ and ‘results’ panels, a pull-down menu, several action
buttons, etc (see Figure 4.3). The Manager’s GUI also displays time statistics regarding the
response time of completed management tasks; these statistics can optionally be written in a
text file (this action is controlled through the GUI’s menu), in a format easily extracted and
inserted in a spreadsheet for further processing and analysis. Among the possible future
extensions of the framework, is its integration with the JDBC! driver to allow automatic
logging of operational results in a database that could be later used to generate high-level
reports or graphs. Another direction of future work will include the design and implementation
of an API used for developing manager applications, which will offer the manager GUI as an

optional feature.

1 The Java Database Connectivity (JDBC) [JDBC] kit allows Java programs to connect to any commercial
relational database (given that it provides JDBC drivers) and query or update it using the industry standard query
language (SQL). In the NSM context, JDBC makes it easy for Java-enabled management platforms to store or
retrieve management data from databases and possibly present it to the administrator in a user-friendly manner.

82

Chapter 4: The Mobile Agent Framework

Currently, additional facilities allow:

polling of agents for specific object values; the fluctuation of arithmetic values may

optionally be graphically illustrated using Java-enabled graphs updated in real-time (see

Figure 4.4);

initialisation of automated network discovery processes;

acquisition of on-line MIB variable descriptions (see Figure 4.5);

initialisation of MA-based or SNMP management operations. MA-based operations will be

described in detail in the following sections. SNMP operations have been supported in

order to compare their performance against MA-based solutions. These operations include

simple ‘get’, ‘get-next’ and ‘set’ requests, retrieval of SNMP tables and periodic,

synchronous/asynchronous polling of an arbitrary number of NEs for a set of MIB objects.

Bl Mobile Ageeas - Based Metwork M ansgement
Fi= EdR Commands Meteork Has Feip

Losded Hibkioales
N RFC12 3B Host: |eseilpggewacak *| Comeuney public
iy
* 3 mgmt . .
s e Object Wenddws: 1 381.21.22.1.19001
o (] svsten
& o el Paort: |'|!'| | Lot Yakee
& PHhanbes
[#Taim CoMRs W ENMP O Awailabie MA Classes: ipeDeimredsARceed -
@ [meniry |
g e _
& ez R
i Type rs CEom gsedbll = =
- W 0.0
iy Fopeed
T
gﬁ;:;ﬂf; ts Erom esedbll : _
P — 0.0 B
T -
il A P Siaies Messages;
F N e] e — ——— =
i finfrors Aveeage 1 125 y
iy PirLnkncweriet fugt gmceived a Hobile Agent back, ..
& MOouOcists 31 Time [maec) i 100
iy FOul s E Auvmeage @ 117
il B0l bl s P Fusc pegeived & Mobile Agent back...
iy POoulleecards 4: Time [(maec) 3 80 |
il FOnilEroors Average 2 110 |
B/ -

=EICIEEE

oje

Figure 4.3. The manager application Graphical User Interface

Several classes of the Java-based AdvnetNet SNMP package [AdventNet] have been

utilised to built high-level SNMP applications and also as a basis of the real-time line graph

and MIB browser components.

83

Chapter 4: The Mobile Agent Framework

El ma Graph | O =]

o aghn ipinHes eses on egedh], P sk

L TR S

Hulbng Fragiisnicsy I'_E L Threshaki

Stop Polisg | e

Figure 4.4. Polling of a MIB variable

- Ihaacrighionn [IF HIN Vaiskds : #frdlcheic

MAME [EneDoies:
QRIECTID | g il] e rgdsl doah-] e facen Tl (Endrg il e
-]
TYNTAN J_|
ACCESS [reaad- oy
BTATLE [coeetaiery
"The {olal monier of poies pes eved on e =]

msfece, edng famng chancs

CESCAFTION

| v
| e |

Figure 4.5. On-line acquisition of a MIB object description

The Manager application also starts and controls an RMI server; the role of this component
will be discussed in Sections 5.2.2.1 and 6.3.2.

4.4.1.2. Mobile Agent Implementation

An MA object is identified by its code (description of its behaviour), state information
(modifiable variables) and attributes (static/permanent information). In the context of

management-related applications, MAs are Java classes supplied with:

84

Chapter 4: The Mobile Agent Framework

* a unique ID string, which serves for distinguishing an MA object from others (the
development of a naming architecture was beyond the scope of this work, therefore, the ID

string is simple structured in a <origin_host:serial_number> format);

= an ‘itinerary folder’, including a list of hosts to be visited during the MA’s operational
travel; the itinerary may either automatically built or manually specified by the user (see
Figure 4.6).

= 3 ‘data folder’, used to store collected data;

= a ‘problems folder’, used to report faults;

= a flag denoting the transport protocol used for the MA'’s transfers;

= a flag indicating whether encapsulated data should be encrypted or not;

= a byte array containing the MA’s ‘signature’, used for authenticating the MA when it
arrives at a destination host;

Itinerary, data and problem folders have been implemented as Java vectors, i.e. dynamic
arrays (j ava. uti | . Vect or class). At each visited NE, a data sample is typically appended
to the data folder whereas the local NE address is removed from the itinerary vector. In this
way (i.e. by reducing the itinerary vector size) and by applying data aggregation methods, we
prevent the MAs state from growing too rapidly. MAs state is compressed (using the Java gzip
utility) before their transfer to the next host to minimise communication overhead. In addition,

the transfer of MAs over both TCP and UDP transport protocols has been implemented.

E! pendbfi Hanual Sethng ol Moksle Agenis recsey

F‘u"r’i|||_| A BT MOhes AGEnls Agrany
3 gy it Lk I EERE G Uk
bl esEEL AL Uk sedbl 2 esss A uR

sedbBessear.uk

edbllessmar.uk

Citer hogls addesd jo the Nobie Agenls IRnesny

Figure 4.6. Manual setting of a Mobile Agent’s itinerary

MA classes also include a number of methods that facilitate the interaction with polled

devices. The MA code is minimised in order to reduce bandwidth requirements. Through the

85

Chapter 4: The Mobile Agent Framework

process of serialisation, the state of an MA object can be saved, transferred through the

network and reconstructed (de-serialised) at the receiving node (see Section 3.5.2).

In order to improve design flexibility, maximise code reuse and accelerate prototype
development, an MA ‘superclass’ has been implemented, providing the root attributes listed
above, which are essential for any MA object. The MCode. MA superclass implements the
java.io. Serializabl e interface?, allowing instances of the class to be serialised/de-
serialised. Any class intended to employ mobility characteristics should necessarily sub-class

the MA superclass. The methods of the MA superclass are shown in Figure 4.7.

public final void setParams(String ID, String creator, Vector itinerary, boolean TCP, String type,
boolean encryption, byte[] sign){}

/* This method sets the MA's parameters; it can be invoked ONLY by the MA's creator (manager),

Otherwise, an Not_Authorised_To_Initialise_Exception exception is thrown. */

public void run(){} // The main execution block for this MA
public void provideHandle (MAServer MaServer){} // Binds the MA object to the local MAS entity
public final String getID(){} // Returns the MA's ID
public final String getCreator(){} // Returns the name of the host where the MA was originally created
public final boolean getTransmissionProtocol(){} /* Indicates the transport protocol used for the MA
transfers (true for TCP, false for UDP) */
public final Vector getData(){} // Returns the data collected by the MA
public final byte[] getSignature(){} // Returns the "signature" of the MA (used for authentication)
protected final void encapsulateData (Object value){} /* Inserts a new sample of data into the data
vector */
public final Vector getProblemsFolder(){} /* Returns the names of the hosts that could not be visited
during the MA's travel */
public final InetAddress getNextHost(){} // Returns the next host included into the MA's itinerary
public void onStart(){} // Invoked when the MA is first instantiated
public void onArriving(){} // Invoked when the MA arrives at a host
public void onMoving(){} // Invoked when the MA is about to be launched
public void onFailedMoving(String host) {} /* Invoked when the MA is not able to migrate to a
specific host */
public void onStop(){} // Invoked when the MA thread's execution is about to stop
public void onSuspend(){} // Invoked when the MA thread's execution is about to be suspended
public void onResume(){} // Invoked when the MA thread's execution is about to be resumed

Figure 4.7. The methods of the MA super-class

The set Par ans() method is invoked by the manager application to set the MA’s basic
parameters (e.g. ID, itinerary, etc). To protect MAs against tampering, sensitive MA properties
may be specified only once, when the MA is created. If a malicious host attempts to modify
these properties, a Not _Aut horised_To_Initialise_Exception exception is
thrown. There are also methods used by the MA itself, for instance to obtain the name of the
next host to be visited or request migration. Another set of methods is used to facilitate the
interaction with visited hosts, for example to bind the MA to the local MAS server, encapsulate

a sample of data into its data folder, return the MA’s ID, signature, data, etc. A last set of

2 A Java class cannot be serialised unless it implements the j ava. i 0. Seri al i zabl e interface, or it extends
another class implementing the j ava. i 0. Seri al i zabl e interface.

86

Chapter 4: The Mobile Agent Framework

methods are automatically invoked when the MA object is instantiated, arrives or moves from

a host, fails to migrate, or when its execution is started, stopped, resumed or suspended.

In addition, we have implemented several service-oriented classes (discussed in Chapter 7)
that extend the MA superclass. These in turn, are sub-classed by MA classes created by the
MAG tool. This flexible hierarchical approach minimises MA bytecode and eases the creation

of service-specialised MAs.

4.4.1.3. The Mobile Agent Server: Interface to Managed Resources

The interface between visiting MAs and legacy systems is implemented through MAS
modules (Figure 4.8); we assume that a MAS server is installed on every managed device.
Functionally, the MASs reside above standard SNMP agents, defining an efficient run-time
environment for receiving, instantiating, executing, and dispatching incoming MA objects,
whilst protecting the system against malicious agents attacks. The SNMP agent process is
started automatically at MAS initialisation, if not already active. The port in which the SNMP
agent listens for incoming requests can be specified by the user in the command line, otherwise
the default UDP port 161 is used. In Windows platforms, the standard SNMP service provided
with the operating system is used. In UNIX stations, the snmpd daemon that comes with the
UCD-SNMP package [UCD-SNMP] has been utilised. This package is originally based on the
earlier CMU-SNMP implementation, but has been greatly enhanced, ported and fixed so that it

supports, among others, Solaris, Linux and HP-UX platforms.

SNMP Agent

% -
. T
MAL

NE - Network Element
MFC MA - Mobile Agent
@ MAR MAS - Mobile Agent Server

s 3 . X
TY%\/?) MAL - Mobile Agent Listener

SC - Security Component
SFC — Service Facility Component

Discovery messages MEC - Migration Facility Component
} NDD CLD Bytecode MAR - Mobile Agent Registration
MAS J NDD - Network Discovery Dacmon
————————————————————————————— = CLD - Class Loader Daemon
RIA - Resource Inspection Application
RIA RMI RMI - Remote Method Invocation
Server JVM - Java Virtual Machine
777777777777777777777777777777 — 2, RMI calls SNMP — Simple Network Management Protocol
IVM %‘ MIB - Management Information Basc
NE

Figure 4.8. The Mobile Agent Server

Similarly to the manager application, the MAS class is designed so as to compose a multi-

threaded environment. Apart from increasing the framework’s modularity, this scheme allows

87

Chapter 4: The Mobile Agent Framework

independent components to work concurrently and therefore decrease the overall delay when
handling MA objects, especially when the rate of incoming MAs is relatively high or bursty.
For instance, a MAS may receive or authenticate an MA at the same time that a second MA is
dispatched to another host. The main building blocks of a MAS server are illustrated in Figure

4.8 with their implementation detailed in the following sections.

4.4.1.3.1. Mobile Agent Listener (MAL)

The MAL is a daemon, which basically includes two separate threads: the first
(MAS. TcplLi st ener class) listens for incoming MAs on a well-known TCP port, with the
second (MAS. UdpLi st ener class) listening on an advertised UDP port. To illustrate, let us
focus on TcpListener’s operation. TcpListener opens a TCP socket and blocks itself on
listening mode waiting for incoming MAs. Upon the arrival of an MA, its state is
decompressed and de-serialised. The MA is then authenticated by the Security Component
(SC). If the authentication is successful (the MA has been created by a trusted host), the MA is
first registered by the Mobile Agent Register (MAR) component. A separate thread is
subsequently created for the MA’s execution and assigned the maximum possible priority
(Thread. MAX_PRI ORI TY). That way, MA threads are always prioritised against other
pending executing threads on the local device, ensuring timely execution of their monitoring

tasks.

TcpListener then binds the MA object to the local MAS server (it provides it a reference of
the MAS class instance) to enable the interaction of the two parties (allow the MA to invoke
MAS methods and vice-versa). Last, the MA’s execution is started (its run() method is
called). From that point onwards, the execution of TcpListener and MA threads is detached,
with the first returning back to listening mode. The process of decompression and de-
serialisation is carried out by the recei ve() method of the TcpLi st ener class. The
latter is called by its run() method which also controls the MA’s authentication and
registration process and starts its execution. The implementation of these two methods is
presented in Figure 4.9. UdpListener’s operation only differs on that compressed and serialised

data are retrieved from a byte array, which forms the payload of a received UDP packet.

88

Chapter 4: The Mobile Agent Framework

// This is the nain execution block
public void run() {
while (true) {
MA ma = receive(); /| Receive (de-serialise) the MA object

if (ma!=null){

/1 Authenticate the recei ved MA

if (sc.Authentication(m)) {
/] Create a new thread for the MA's execution
Thread MaThread = new Thread(nmas. MAsThreadG oup, ma, "MA');
/1 Asign the MA object the maximumpriority
MaThr ead. set Priority(Thread. MAX PRI ORI TY) ;
ma. provi deHandl e(mas); // Bind the received MA to the |ocal MAS server
MaThread. start(); // Start the MA's thread execution
/1 Ask the Mbile Agent Register to register the received MA
mar . keepMaReport (ma, MaThread);

/1 Receives and de-serialises an MA object

MA recei ve()
/] Establish a TCP socket that can queue up to 3 MA objects
Server Socket serSock = new Server Socket (MA _TcpPort, 3);
Socket connection = null;
MasCbj ect | nput Stream = nul | ;

/1 Block to listening node waiting for incom ng MA objects
try {
connection = ser Sock. accept();
connecti on. set TcpNoDel ay(true); // Do not use Nagel's algorithm

/1 otain a reference to the socket's data input stream
I nput Streamis = connection. getlnputStrean();
/* Redirect the input streaminto a zip streamand then into an MAs' de-
serialisation stream */
dataln = new MAsObj ect | nput St ream
(new GZI Pl nput St ream new Buf f er edl nput Strean(is)));

/1 De-conpress and se-serialise the MA's state
try {
ma = (MA)datal n. readObj ect () ;
} catch (C assNot FoundExcepti on exc) {
Systemerr.printin("Problemin deserialisation: " + exc.toString());

connection. cl ose();
return nm;
} catch (1 OException e) {
try {serSock.cl ose(); connection.close();}
catch (Exception el) {
Systemerr. println("Socket has been already cl osed");

Systemerr.println("Exception while listening for MA connections : " + e);

Figure 4.9. TcpListener’srun() and r ecei ve() methods

4.4.1.3.2. Security Component (SC)

This component acts as the system’s protective barrier. Specifically, the SC verifies the
authenticity of the received MA through the use of security keys?, ensuring that only trusted
agents, dispatched by authorised hosts, are instantiated. In addition, it authorises the actions
performed by the locally executing MAs and insures the privacy of sensitive management data
returned to the manager station. The RSA (Rivest-Shamir-Adleman) algorithm [RIV78], based

3 Keys represent secret information used by cryptographic algorithms. In traditional cryptography, the sender and
receiver of a message know and use the same secret key (symmetric cryptography); the sender uses the secret key
to encrypt the message, and the receiver uses the same secret key to decrypt the message. Public-private key
algorithms use a different key for encryption and decryption. The generation, transmission and storage of keys are
termed key management.

89

Chapter 4: The Mobile Agent Framework

on the ‘public-private pair of keys’ paradigm, has been implemented providing both
authentication* and encryption® features. The reasons for choosing RSA rather than other
authentication (e.g. SHA-1, DSA, MD5) or encryption (e.g. DES) algorithms was that the
design and implementations of RSA authentication and encryption algorithms were very
similar; that characteristic helped to maximise code re-use and enabled rapid prototype
development. RSA’s security strength is related to the assumption that detection of the private
key (needed to sign or decrypt the transmitted data) is highly improbable. In particular, the
security of RSA relies on the difficulty of factoring large integers (dramatic advances in
factoring large integers would make RSA vulnerable). In the current prototype, the encryption
and authentication algorithm implementations are included in the Security. Security

class, whose method definitions are shown in Figure 4.10.

/I Encrypts the original message

public static byte[] Encryption(String message);

/I Decrypts the encrypted message

public static byte[] Decryption(byte[] encrMsg);

/I Generates a digital signature of the original message

public static byte[] Signature(String message);

/I Checks whether the original message is recovered after processing its sugnature
public static boolean Authentication(byte[] signature, byte[] original);

Figure 4.10. The method definitions of the Securi ty class
Thus, the steps followed during an MA object round-trip are:

= The manager application signs the MA using the public key. The digital signature generated

is stored in a byte array, encapsulated and sent along with the MA.

= Upon arrival, the SC executes the authentication function in conjunction with the private
key and verifies that the MA state has not be tampered (this ensures data integrity). If the
authentication is successful the MA’s execution is initiated, otherwise the manager is

informed accordingly.

» The data encapsulated into the MA’s state are first encrypted using the public key, given

that data encryption has been requested by the administrator at the MA’s creation time.

= The manager decrypts the data received by invoking the decryption method, which makes

use of the private key.

4 Authentication is defined as the action of verifying information in terms of identity or ownership.

5 Encryption is the transformation of data into a form that is as close to impossible to read without the appropriate
knowledge (a key). Its purpose is to ensure privacy by keeping information hidden from anyone for whom it is not
intended, even those who have access to the encrypted data. Decryption is the reverse of encryption, i.e. the
transformation of encrypted data back into an intelligible form.

90

Chapter 4: The Mobile Agent Framework

The integration of the SC with the Java Cryptography Architecture (JCA) [JCA], which
refers to a generic framework for accessing and developing cryptographic functionality for the
Java Platform, will be considered in future extensions of the framework. JCA encompasses the
parts of the JDK 1.2 Security API related to cryptography, as well as a set of conventions and
specifications. However, only authentication algorithm implementations are provided in the
current release. JCA also introduces a provider architecture [Providers] that allows for multiple
and interoperable cryptography implementations. Implementation interoperability means that
various implementations can work with each other, use each other’s keys, or verify each

other’s signatures.

Authorisation: The security of MAS entities has been strengthened by introducing
authorisation features that restrict the authority domain of visiting MAs on legacy systems.
Specifically, the Java standard Security Manager (SM), (j ava. | ang. Securi t yManager
class), has been extended to prevent MAs from directly reading/writing files, creating CLs or
sub-processes, shutting down the MAS application, etc. The identification of illegal actions is
achieved through registering the incoming MA threads to a given thread group, i.e. a batch of
threads that eases the manipulation of active MAs. Based on the fact that an MA cannot change
the thread group it belongs to, whenever a malicious action is detected, the SM checks the
thread group of the action’s originating thread; if this thread belongs to the MAs thread group,

the action is not permitted.

An issue not addressed by the current implementation of the SM is that MAs cannot be
restricted from entering an endless loop (consuming all CPU cycles), or creating thousands of
new threads. However, in such an emergency situation, the SM could selectively destroy all
threads not belonging to the MAS components’ thread group. Alternatively, a resource
accounting interface like Jrest [CZA98], a scheme for controlling allocation of different kinds

of resources (CPU, memory, etc) within the Java runtime system, could be used.

In general, the implementation of an impenetrable security shield, has not been a principal
aim during the development of our framework. Besides, agent security is a particularly
complex subject and represents an active and evolving research area [VI1G98]. However, with
the security precautions described in this section, we consider the network devices to be

reasonably safe from malicious MA attacks.

6 Jres allows per-thread accounting of heap memory, CPU time usage and the number of bytes sent and received
through a network connection. In addition to tracking resource consumption, tasks can be informed when new
threads are created. Another interesting feature of Jres interface is that it provides mechanisms for setting limits to
resources available to individual threads and associates an overuse callback method that is called whenever this
limit is about to be exceeded [CZA98].

91

Chapter 4: The Mobile Agent Framework

4.4.1.3.3. Mobile Agent Register (MAR)

MAS entities keep active control of the MA objects executing on their local devices. In
particular, the MAR component maintains a hashtable’ (j ava. uti | . Hasht abl e), using
MA IDs as a primary key and including a list of “MA_Info” objects, each mapped to an MA
object running on the local host. MA_Info objects are basically records that include a reference
to the MA object they correspond to (allowing the MAS server to perform a number of actions
upon it, i.e. invoke its methods) and additional information related to the MA, such as the
MA'’s class name, the execution frequency of its management task, its arrival time, its
execution status (activated, de-activated, suspended), etc. The hashtable is dynamically
updated whenever an MA arrives or leaves the host. Specifically, the MAL thread inserts a

new record when receiving an incoming MA, while the MFC thread deletes the corresponding

record as soon as the MA object migrates to another host.

EHIPIIH an M renneg on eeedbl 2 garex ec ok
Sapsgmin] Hpsurme LA rwaln Brimeale [T g ol Rimwy ary
18] Agan Class Pama Pl Mode Pl Fraquescy aymanicalan Enerspion Hlatug
asodoh:d lcpConnTablefiBaring | GnS 15 Ly actve
asedbf 10 FTablaFaling Gms an ¥ ¥ 5 LG N i
aapdod 35 ol et e S L c]1] ¥ atiive
gandsh 35 AnEmiRale] 15 ¥ ¥ AClie
Razlr sl La]

Figure 4.11. On-line visual profiling of Mobile Agent objects executing on a network device

The information stored within the hashtable can be remotely retrieved through an RMI call
(the get MAsReport () method of the MAS’s RMI server is invoked and a vector of
MA_Info objects is returned). A report about the MAs executing on any remote device is then
presented to the network administrator through the GUI shown in Figure 4.11. The
administrator may then select any of the MA instances presented in this GUI and perform a
number of actions upon them. In particular, he/she may suspend, resume, activate an MA or
modify its itinerary; these actions are carried out through RMI calls (see Figure 4.14) that
cause the automatic update of the remote hashtable and the invocation of a corresponding
MA’s method.

92

Chapter 4: The Mobile Agent Framework

4.4.1.3.4. Service Facilitator (SF)

Upon successful authentication, the MA is activated and provided a handle to the Service
Facilitator (SF) component, which serves as an interface between MAs and services offered to
them. SF generally includes the ‘know-how’ of the services offered to incoming MAs, i.e. all
the functionality needed by the MA objects to perform their decentralised management tasks.
An alternative approach would be to integrate this functionality within the MA classes
themselves; however, this would result in the unnecessary transfers of large pieces of code that

would seriously overload network resources.

At its current implementation, the SF component is solely oriented to NSM applications; as
such, it basically offers a library of methods that facilitate the interaction of MA objects with
the local SNMP agent. In particular, it allows the MAs to perform from simple SNMP requests
(“‘get’, ‘get-next’, ‘set’, etc) to relatively complex tasks (obtain an SNMP table, a specific
column or row of a table, etc). The Java-based SNMP package of AdventNet [AdventNet] has
been used as a basis to construct the complex management applications mentioned above. For
instance, the ‘get-table’ operation is implemented as a succession of ‘get-next’ requests, until
all the values of an SNMP table are retrieved. Currently, only SNMPv1 is supported, mainly
due to its simplicity. Although the first release of the SNMP protocol is known to exhibit
severe security limitations, that does not represent a problem in this case as SNMP requests/

responses are not transmitted through the network, but locally exchanged.

In a typical scenario, an MA passes an arbitrary number of object OID strings to an SF
method, which performs the SNMP query and returns the requested values. These values are
subsequently processed, if necessary, by an automatically invoked MA method. The value
acquired, either directly by the system or as a result of computation, is passed to the SC sub-

system, encrypted and encapsulated into the MA’s state.

4.4.1.3.5. Migration Facility Component (MFC)

The role of the MFC is to dispatch upon request an MA object to a specific network device.
An MA transfer may be requested either by the MA itself or any other thread that has a
reference to the MA object and the MFC component. MA transfers are triggered through
calling the nove() method of the MFC. The latter will invoke the noveTcp() or
nmoveUdp() method, depending on which transport protocol is used for the MA transfers (see
Figure 4.12).

7 Hashtables can be thought of as key-indexed arrays that enable efficient search of information.

93

Chapter 4: The Mobile Agent Framework

The MFC component is part of both the MAS servers and the manager application. In
essence, its operation is the inverse of the MAL’s operation. Namely, in the case that TCP is
used for MA transfers, a connection is established, the MA state is compressed
(java. util. zi p. &ZI PQut put St r eam class) and then serialised
(j ava. i 0. Obj ect Qut put St r eamclass) with the resulted byte stream directed into the
TCP connection output stream. When the data transfer is completed, the network connection is
released. In case that UDP is used as transport protocol, the procedure described above differs
only on that the compressed/serialised data are stored in a byte array and packaged within one
(or more) UDP packet(s) prior to their transmission (no connection needs to be
established/released). Following the MA’s migration, the MFC deletes the MA_Info object
associated with to the dispatched MA by invoking the corresponding method of the MAR

component.

/* Moves the MA object to the requested IP address. The returnToManager boolean shows whether the
operational travel of the MA has ended (the MA should return to the manager) while the tcp flag
denotes the transport protocol used for the MA transfers (true for TCP, false for UDP) */

public void move(MA ma, InetAddress addr, boolean returnToManager, boolean tcp);

/I Invoked by the move() method should the transport protocol used is TCP

public void moveTcp (MA ma, InetAddress addr, boolean returnToManager);

/I Invoked by the move() method should the transport protocol used is UDP

public void moveUdp (MA ma, InetAddress addr, boolean returnToManager);

Figure 4.12. The method definitions of the M gr at i onFaci | i t yConponent class

The life cycle of an MA object and its interaction with the visited MAS servers is illustrated

in the block diagram of Figure 4.13.

94

Chapter 4: The Mobile Agent Framework

Manager MA Server Mobile Agent

Create an MA Listen for
instance incoming MAs

v

Define itinerary

No >

7 MA arrived? Y
Sign, Compress, Request
Serialise & management info
Dispatch MA Decompress, E
Deserialise &
Authenticate
¢ Computation
required?
Register the MA
Compute
Notify the [NO_Kuthenticatio E(Y) value
manager successful?

A Yes ~Encryption
Decompress, Start the MA’s required?
Deserialise & [« execution
Aduthenticate |

t |

Obtain/return [»| Encapsulate
management info result
| Y
' < Request
Encrypt data migration
|
I A
; Get next -
OIS [GEIL: A < »{Return next node
Display/Store Y
results Serialise &
' Compress MA
A

Unregister the ><

MA
Send MA
tothe [< Yes Last node?
manager
No
Dispatch MA

to next host

Figure 4.13: Flow diagram of a Mobile Agent’s life cycle

95

Chapter 4: The Mobile Agent Framework

4.4.1.3.6. Mobile Agent Server RMI Server

The RMI server is implemented as a separate thread, which can optionally be instantiated
by the main MAS thread (this is indicated by the user in the command line that starts the MAS
application). The reasons that the RMI server presence is not compulsory is that it does not
directly interact with incoming MAs while it represents additional overhead on the local
system resources (mainly because of the r mi r egi st ry process). The role of the RMI server
is to enable remote interaction of the manager with distributed MAS entities and, hence, allow
the administrator to obtain reports regarding the CPU and memory load profile of network
devices or the number and type of MA objects currently executing on them. It also allows the
administrator to perform a number of actions upon the MAs, such as to change their execution

status, modify their itinerary, etc (see Figure 4.14).

public Vector getResourcesReport (ReportDescription descr) {} /* Returns a report on the local
resources (CPU & memory) usage */
public Vector getMAsReport () {} /* Returns a report about the MAs currently executing on
the local device */
public boolean suspendMA (String id) {3} // Suspends the execution of the MA with ID = id
public boolean resumeMA (String id) {} // Resumes the execution of the MA with ID = id
public boolean activateMA (String id) {} // Activates the MA with ID = id
public boolean deactivateMA (String id) {} // De-activates the MA with ID = id
public boolean disposeMA (String id) {} // Disposes the MA with ID = id
public boolean disposeAll () {} // Disposes all running MAs
public boolean modifyltininerary (String id, Vector itinerary) {3 /* Modifies the itinerary of the MA
with ID =id. */

Figure 4.14. The methods of the MAS’s RMI server class

4.4.1.3.7. Resource Inspection Application (RIA)

The RIA is an application developed in C programming language, which runs outside the
boundary of the MAS server. Its purpose is to monitor the usage of local resources in terms of
CPU and memory load. RIA is linked to the MAS application via the Java Native Interface
(JNI) that enables the inter-operation of Java applications with programs written in other
languages (see Section 2.7.1.1). That is, JNI allows RIA to invoke certain MAS methods and
vice versa. The motivation behind RIA’s development has been to allow the administrator but
primarily the MA objects to obtain information regarding network devices load. This
information is exploited (see Section 6.3.6) to provide even distribution of processing and

memory load among distributed agent servers.

4.4.1.3.8. Network Discovery Daemon (NDD)

The NDD is another thread instantiated by the main MAS thread, whose purpose is to
discover the station where the manager application runs, while also making the local host

‘visible’ to the manager. Its operation is essentially very similar to the Network Discovery

96

Chapter 4: The Mobile Agent Framework

thread of the manager application (see Section 4.4.1.1). In particular, upon startup the NDD
parses a text file including a list of the IP addresses of devices where manager applications are
likely to run and ‘pings’ the corresponding hosts, checking whether there is an active manager
thereon. When the manager receives the message, it appends the MAS’s hosting device to its

‘discovered’ list and notifies the NDD accordingly.

4.4.1.3.9. Class Loader Daemon (CLD)

The CLD is a daemon controlled by the MAS thread, whose role is to wait for MA class
definitions sent by the manager application at the time that a new management service is
introduced. The received MA classes are stored in a designated place (directory). CLD’s role is
discussed in the following section, while the class loading mechanism used by our framework

is described in detail in Section 4.4.3.

4.4.1.4. Mobile Agent Generator (MAG)

The MAG, is essentially a factory for constructing customised MAs. In the context of this
thesis, generated MAs are designed to poll static management agents according to certain

operational function requirements. A GUI, dedicated to the MAG tool, allows the operator to:

= assign a name to the MA,

= specify the generic type of service this MA is intended to carry out;

= define the MA’s functional requirements, i.e. determine its operational behaviour;

= set the polling frequency to determine how often instances of the constructed MA will be
launched;

= specify the transport protocol (either TCP or UDP) to be utilised for the MA transfers;

= determine whether the data collected by the MA are to be encrypted and the MA itself
authenticated,

= specify the class of network devices to be polled;

= optionally, define the MA’s itinerary, i.e. the order in which the MA will visit the managed
devices.
Options for editing the attributes, deleting or updating an existing MA instance are also

available. Snapshots of the MAG GUI are presented in Chapter 7.

4.4.1.4.1. MAG tool operation

The MAG uses a skeleton Java source code with empty slots filled with the user-specified
MA’s properties. The Java code created is then compiled through an invocation of the

conpi | e() method of sun. tool s.javac. Mai n class (this class is offered by Sun,

97

Chapter 4: The Mobile Agent Framework

although not included in the standard JDK library) [SunTools]. The generated Java bytecode is
subsequently compressed and transferred (multicasted) through TCP connections to all
operating agent hosts. The MA’s properties are compared, prior to its construction, against
those of the existing MA classes to ensure that there is no other with the same functionality; in

case such a class exists, the user is notified through a message.

On the agent side, the CLD receives and decompresses the transmitted bytecode, validates
the included Java class and stores it in a designated space. MAG’s functionality is illustrated in

the block diagram of Figure 4.15.

Start » Compile
: Broadcast the
-t »| Get Properties
il P bytecode to all
the active
agents

Is there any
MA with similar
functionality?

Inform the
operator

Java Skeleton » Build Java
Source Code Source Code

Figure 4.15: Mobile Agents Generator functional diagram

It should be emphasised that the transfer of the MA bytecode is performed only once, at the
MA construction time. From that point onwards the transfer of persistent state, obtained from
serialising the MA instance, is sufficient for MAS entities to recognise the incoming MA and
recover its state. In contrast, most available MAPs apply a policy that requires the transfer of
both the MA’s bytecode and persistent state, resulting in higher demand on network resources.
To illustrate, in our implementation the ratio (bytecode size):(state size) typically lies in the
range 10:1 to 15:1.

It should be emphasised that MA code is not ‘blindly” multicasted. For instance, in case that
a monitoring task is intended to be performed upon a limited set of devices, it would not be
meaningful to broadcast the bytecode of the MA to perform this task to every managed device,
as that would create unnecessary overhead. Hence, the administrator can specify the set of
devices to be monitored (through the GUI shown in Figure 4.16), with MA code being

exclusively sent to them.

98

Chapter 4: The Mobile Agent Framework

Eﬂll‘.l"lﬁ Spacilying bhe Polled Davices Lis

Agzlive Dherviters: Polled Devicas:

Aris AEsee ar Uk EIL‘E EREER .Uk
paedbl 1 angear. Uk

Figure 4.16. Specifying the devices to be monitored.

The functionality of MAs created by the MAG may only be an extension of limited generic
service types. These types are designed as sub-classes of the MA ‘super-class’, specifying
general patterns of MA-based NSM tasks. MAs constructed by the MAG tool extend one of
these sub-classes, refining their functionality and defining service-specialised MAs. Examples
of available generic NSM service types will be given in Chapter 7, that describes several MA-
based network monitoring applications. An alternative approach for structuring MA-based
applications would be to keep a unique MA structure (class), whose functionality would span a
wide range of management operations. However, such an approach would result in the
unnecessary transfer of dynamically growing code, much of which may only be occasionally

executed.

4.4.1.4.2. Advantages of using the MAG tool

The focus of current research on MA-based management is on the development of
execution platforms and applications for MAs. However, methodologies for building agents
have received little attention. Creating MAs can be tedious and susceptible to errors and also
requires programming skills and detailed knowledge of the MAP design. In particular,
introducing a new management operation would comprise the following steps: (a) design and
write the source code that defines the MA functionality; (b) compile the source code
(significant amount of time is wasted for coding and debugging, where programming expertise
is a prerequisite); (c) possibly modify and re-compile the core MAP component classes in
order to make possible the instantiation of the new MA class; (d) possibly reboot the manager
application to allow modifications to take effect; (e) reboot active MAS servers (unless their

class loader is able to recognise that the MA classes have been modified).

99

Chapter 4: The Mobile Agent Framework

To ‘condense’ this perplexing procedure in one sentence, we quote from [KIM98]: “If you
want another management function, just write another mobile code and ship it again through

the network™.
Therefore, the use of the MAG tool brings forth a number of advantages:

= The MAG ensures that the framework remains sufficiently flexible by enabling on-the-fly
construction of service-oriented agents, without the need for reconfiguration, re-installation
or re-instantiation of either the manager or the agent applications. The MAG functionality

can easily be extended so as to cover a wider range of management tasks.

= Ease in introducing new management tasks in a user-friendly manner. The productivity of
the development process is increased through reducing the time needed to develop an MA

and improving reliability as a result of reusing proven components.

= The generation of the MA bytecode and its distribution among distributed managed hosts is

automated and transparent to the user.

= The network administrator does not need to be aware of the implementation details behind
the introduced management service or the management framework, nor to have

programming experience.

Similar work has been recently reported in [GSC99], which describes the design and
implementation of an agent construction toolkit, the AgentBean Development Kit (ADK),

which is an extension of the Sun's Bean Development Kit (BDK).

4.4.2. Fault Tolerance: Tolerating Node Failures

A key aspect of our framework is its fault tolerance features. A MAP should be able to
survive network and systems failures to secure MA migrations. In particular, the following two

fault scenarios have been investigated:

Scenario 1: An MA should adapt to unexpected situations, such as the failure of a host MAL
thread. In this case, if TCP is used for MA transfers, the TCP connection establishment fails
(Figure 4.17a). The MA’s onFailMigration() method is then automatically invoked to record
the unreachable host’s name into the MA’s problem folder and retrieve the next destination
host from the itinerary vector (Figure 4.17b). The MA will then migrate to this host (Figure
4.17c). When returning to the manager host, the MA reports the failed devices to the manager

application, which in turn will take any necessary regenerative actions.

If UDP is the transport protocol choice, the detection of a failed device is more complex as
the UDP datagram carrying the MA’s state would simply be lost. A way to get around this

problem would be to enforce the destination host to issue an acknowledgement when

100

Chapter 4: The Mobile Agent Framework

successfully receiving an incoming MA. In case of a fault, the acknowledgement would never
reach the originating node and after a given time interval the MA image would be transmitted
to its next destination. However, that approach (proposed in [SAH98]) would create additional

traffic load, counterbalancing the benefit of UDP lightweight nature.

Host C

Manager

Figure 4.18. The specific case of MAL thread failure on the manager host

Scenario 2: A second scenario would be a fault in the MAL thread of the manager host itself
(Figure 4.18a), which represents a special case. Since loss of management data carried by an

MA should be avoided, an alternative approach to scenario 1 is employed. Upon detecting a

101

Chapter 4: The Mobile Agent Framework

fault, the MA ‘sleeps’ for a given interval (Figure 4.18b) and then resumes execution to retry
the connection. If the manager application recovers before a pre-determined number of retries

elapses, the MA is transferred (Figure 4.18c), otherwise it is disposed of.

The two algorithms described above have been examined in [BRUO1] (they are termed
“Skip” and “Wait-and-Retry” respectively); the paper evaluates the algorithms through
analytical models and simulation results. It is noted that the reliable operation of the described
fault tolerance mechanism has been verified by creating “virtual’ failures. In particular, fault
scenario 1 has been ‘simulated’ by instructing MAs to visit hosts that do not run a MAS server,
while surviving fault scenario 2 has been confirmed by shutting down the manager application

and restarting it, allowing travelling MAs to deliver their results.

4.4.3. Class Loading Mechanism

When an MA object arrives at a destination host, its bytecode is retrieved from the network
stream, stored in the local disk and cashed within a hashtable of the default JVM’s CL
(j ava. uti | . Hasht abl e). Since memory access is typically much faster than disk access,
the hashtable minimises the time needed to load the MA bytecode when another MA object of
the same class visits the same host in the future (it is assumed that a class loaded once, is likely

to be loaded again).

The default CL works fine as long as MAs’ definitions remain unchanged; it is not able
though to distinguish between two different versions of the same class, due to a limitation of
the Java language that does not allow to define two classes with the same name within the
same CL namespace [VEN98]. Hence, should an updated version of an MA visits a NE where
the old class is already stored in the cache, the CL will load the cashed version, even if the
updated class has been sent. This causes a problem when MA objects are being deserialised, as
the serialised data of the new class are incompatible with those of the old class version. Most
MAPs fail to cope with this MAs ‘versioning’ problem and, as a result, the user is forced to
‘reboot’ all the MAS servers where the old version of the updated MA class is already stored to
allow modifications to take effect. This solution is certainly not desired, especially for large-
scale distributed systems where the hosting devices of MAS servers are geographically
dispersed. The fact that MA classes carrying out management operations typically need to be
modified/updated on a frequent basis, makes the need for developing a CL that efficiently
deals with the versioning problem more pressing. The intelligent and lightweight class loading

mechanism used by our framework represents one of its most distinctive features.

Among other requirements, the customised CL should be able to distinguish between two

different versions of the same class, i.e. to force a class definition to be updated as it evolves,

102

Chapter 4: The Mobile Agent Framework

while reducing the communication cost as well as moderating the usage of NEs computational
resources. The Aglets MAP is the only known publicly available platform that deals with the
versioning problem; it allocates different CLs to different sets of classes, with a new CL
created for each updated version of an MA class [LAN98]. The distinction between the
updated and older versions of an MA is achieved by sending information about the names and
versions of classes along with the classes’ bytecode. A similar approach is adopted in [ISM99]
where a CL object is created for each MA class. However, that creates additional network
overhead (class version information transferred on every MA migration), while frequent MA

classes updates will trigger the creation of many CLs, with increased memory requirements.

A different approach is used in the MAP introduced in this thesis. In particular, a
customised Mobile Agent ClassLoader (MACL) class has been designed, which extends the
default (j ava. | ang. Cl assLoader) CL class and overrides its | oadCl ass() method.
The CLD thread of the MAS server maintains a list of the classes that have been already
received; thus, when a class definition is received, the CLD checks the received classes list and
should the same class has been received in the past, the MACL is forced to load the class

definition from the local disk rather than from the cache.

Start the
MA-ClassLoader

I

Wait for anew
MA definition

Has this MA™ (¢ Delete the old
been received MA-ClassLoader
again?
v
No Create a new
MA-ClassLoader
v
Load the received Reload all received
bytecode MA definitions

Figure 4.19. Class Loading mechanism block diagram

The main advantage of the proposed class loading mechanism is that a single MACL object
is used, leading to minimal use of local resources. This object is “replaced”, i.e. the old MACL
object is garbage collected, with a new one taking its place whenever one of the existing MA

definitions is modified. The new MACL object then loads the bytecode (definitions) of all the

103

Chapter 4: The Mobile Agent Framework

existing MA classes in order to minimise the time needed to load these MAs when they first
visit the NE (otherwise the bytecode would be loaded from the disk upon the MAs reception
leading to increased delay). The “replacement” technique was necessary, as a single CL does
not load the bytecode of a given class twice. The operation of the MACL is graphically
depicted in the block diagram of Figure 4.19.

In order to force the MAL thread to load the incoming MA object using the customised
MACL (and not the JVM’s default CL), a new class (MCode. MasCbj ect | nput St r ean)
extending the java.io.QbjectlnputStream class and overriding its
resol ved ass() method, has been implemented. Thus, by using the r esol ved ass()
method of the MAsCbj ect | nput St r eamclass, the MAL thread instructs the customised
MACL to load the latest version of the incoming MA definition.

The MACL design also caters for the improbable case that the definition of a visiting MA
object is not found in the local disk space (potentially because the local device was not
originally specified by the administrator among the ones to be monitored by the MA). In this
case aj ava. | ang. O assNot FoundExcept i on is thrown, the MACL contacts (through

RMI) the MCR thread of the manager application and ‘downloads’ the requested class file.

4.5. QUANTITATIVE EVALUATION & ASSESSMENT

A critical omission frequently noticed in research papers introducing new MA-based
frameworks for NSM is the analytical evaluation of the performance issues arising when
implementations of the corresponding models are used in real networking environments. With
very few exceptions (e.g. [L1099] that proposes detailed mathematical models for comparative
analysis of various MA-based management solutions depending on the MA organisation and
deployment patterns), most of these works claim improved performance over alternative
approaches, without providing any proofs. There are also several works (e.g. [SAH98, ELD99,
ZAP99]) that present simplistic quantitative evaluations, oriented to their respective presented

prototypes.

Reference [BAL98] comprises an interesting theoretical investigation of the three Mobile
Code paradigms (COD, REV and MAs). A general performance comparison among these
approaches is also provided, that may serve as a reference point for related quantitative
evaluations. In this section, we undertake a preliminary evaluation, in terms of bandwidth
usage and response time, comparing the performance of SNMP against that of our framework.
The results of this theoretical investigation will be contrasted to the empirical results presented

in Section 4.6.

104

Chapter 4: The Mobile Agent Framework

45.1. Response Time Evaluation

In this section, we model the response time measured when performing SNMP or MA-
based polling operations. First, let us consider SNMP-based polling (see Figure 4.20a).
Assuming that SNMP requests are broadcasted to all the polled devices with the responses

collected in parallel (asynchronous polling), the overall time for centralised polling, will be:

Tsnmpa = max(z(tdelyi +tp)+ta)+ N * toomp, fori=1.N (4-1)

where N accounts for the number of agents being polled, tq; is the average network latency
between the manager and the i™ agent, t, the processing time required for handling a single
request/response message, t, the time needed to access the system resources, and tem, the
computation time needed to process the collected data. The overall response time is determined
by the maximum individual time needed to poll any of the polled devices (hence the max

operator). Clearly, t, and t, depend on the number v of MIB values obtained from each host:
ty =th +(V-1)At, and t, =tj +(v-1)At, (4-2)
where tjand t; are the time needed to process the packet or contact the SNMP agent
respectively, when there is a single OID in the request packet varbind list; Atp and At, are

the extra time needed to process and retrieve each extra requested object, respectively.

SNMP Agent SNMP Agent
Agent Host Agent Host
) /V S
Manager SNMP Agent Manager

> - Agent Host Agent Host

g

X& SNMP Agent

- Agent Host Agent Host

Figure 4.20: Centralised (SNMP-based) vs. MA-based polling
In case that the manager polls the agents sequentially, waiting for the response before
sending the request to the next agent (synchronous polling), the overall response time is given
by:
N (4-3)

TSNMP,S ZZ(Z(tdel,i +tp)+ta +tcomp)
i=1

105

Chapter 4: The Mobile Agent Framework

Regarding MA-based polling, we consider the simplest case where a multi-hop MA
sequentially visits every network device (Figure 4.20b). In this case, the response time is

modelled as follows:

TMAs ztcr + (N +1) * (tdel +ts/d)+ N *(ta +tcomp) (4'4)
where t., is the time needed to create and instantiate an MA object, t, the average network

latency between the manager and the agent or any pair of agents, and tg,4 the time taken to
serialise/de-serialise an MA. Ty is defined as the time needed to create an MA object, plus

the total transition time to visit each device and return to the manager (hence the factor N+1),
plus the time needed to access and process the management information locally. Appendix B
proposes programming techniques to accelerate MA migrations, thereby reducing MA-based

polling response time.

Clearly, although useful, the modelling of response time for centralised and distributed
polling is not enough to provide a clear understanding on how their corresponding response
times scale. It is essential to conduct experiments incorporating response time measurements to
evaluate the weight of the time factors mentioned above. The results of such experiments are

presented in Section 4.6.

45.2. Network Overhead Evaluation

As evidenced in [FUG98], a key factor affecting performance is the overhead induced by
transport layer protocols. In particular, TCP is more reliable, yet, traffic intensive resulting
from its connection-oriented nature. In contrast, connectionless UDP sacrifices reliability in
favour of a lightweight communication mechanism [TAN96]. In our implementation, the

choice of the transport protocol is left to the network operator.

Examining SNMP-based polling, if Sy and S, are the sizes of the request and response
packet respectively and Oy is the overhead imposed by the transport protocol (UDP in the case
of SNMP), the polling of N devices for p Polling Intervals (PI) would result in wasted
bandwidth of:

Bsnmp :(Sreq + Sres +2*OT)* p*N (4-5)
Given that the sizes of the request and the response packets are almost identical (see Section
2.4.1) and assuming that v MIB variables are obtained from each host, the previous equation

becomes:

BSNMP z((z*sreq)+(v_1)*ASreq +2*OT)* p*N (4'6)

106

Chapter 4: The Mobile Agent Framework

where every extra value included in the SNMP response packet’s varbind list represents an

additional overhead of AS,, bytes, on average. We also assume that the number v of retrieved

MIB variables is such that allows the varbind list to be packaged within a single datagram

without exceeding the SNMP packet’s length limit.

It should be emphasised that the topological structure of the managed network is not taken
into account. In other words, it is assumed that the cost of transmitting a certain amount of
information from a device to another is independent of their location within the network. The
effect of this parameter on the evaluation of network overhead will be investigated in Chapter
6.

Regarding MA-based polling, in overall MA state is transferred N+1 times in every PI,
including its return back to the manager station. At each point of contact, the MA retrieves a
certain amount of management information b, subsequently processed by applying a filtering
operation. The polling cost highly depends on the increment rate of the MAs state size, which
in turn is a function of “selectivity” o (0<o <1), a metric defined in [LIO98] as the
proportion of data delivered to that acquired from each host. For high selectivity values (the
major part of the obtained data being filtered at the source) the MAs state size practically
remains constant, otherwise the state rapidly grows. Thus, an MA’s state size at its i" hop is

given by:

ST; =ST,y + (o *b)*i (4-7)
where ST; represents the compressed state size of an MA when migrating from the i host

(ST, is the initial state size). The network overhead imposed by MA-based polling is quantified
by:

N
Buns = N3G+Qp)+ P* D (STi +0r) (4-8)
Bytecode transfers | 41442 4 4 B

State transfers

The first term of Eqgn. (4-8) describes the overhead imposed when multicasting the MA
code to all active MAS servers, whilst the second represents the bandwidth consumed by the
MA state transfers between the manager and the polled devices. Post initialisation only the MA
state is transferred as the corresponding bytecode is multicasted only once, at the MA’s
construction time; hence, MA state transfers dominate on the overall overhead when
considering long-term monitoring tasks. It is therefore important to apply optimisations so as to
minimise the persistent state of MAs, thereby reducing the associated management cost. Such

optimisations are proposed in Appendix B.

MAs state size increases exponentially as a function of the hop count (number of visited

polled devices). This is demonstrated in Figure 4.21 that shows how the management cost per

107

Chapter 4: The Mobile Agent Framework

Pl varies as a function of the network size for various selectivity values (it is assumed that the
initial MA state size is 400 bytes, the amount of retrieved data is 1000 bytes and that no MA
state compression is performed). On the contrary, management cost increases linearly with
selectivity (see Figure 4.22). The bytecode transfer and the transport protocol overhead have

not been taken into account when drawing these figures, which basically illustrate the

N
dependence of state transfers overhead (ZSTi) on the network size N and selectivity o
i=0

respectively.

Interestingly, following the deployment of MA bytecode, MA-based approach results in a
number of message network transfers per polling interval which is almost the half of the ones
generated by SNMP (the ratio is (N+1):2N). This observation is of particular importance when
many managed devices are located on network segments remote to the manager station. In
such case, SNMP will create considerable traffic through the inter-connecting links, whereas
an MA object following an ‘intelligent’ itinerary plan would minimise their utilisation through

consecutively visiting the hosts residing on individual remote management domains.

1,400,000

1,200,000

1,000,000

800,000

600,000

Management cos

400,000

200,000

0 5 10 15 20 25 30 35 40 45 50

#Polled devices
—e—selectivity =0 —e— selectivity =0.2 selectivity = 0.4 selectivity = 0.6
selectivity =0.8 —=— selectivity =1

Figure 4.21. Management cost of MA-based polling as a function of the network size for various
selectivity values.

The findings of this simple evaluation suggest that MA-based polling performs better than
its centralised counterpart only in case that: (a) the volume of retrieved management data is
low, (b) the selectivity values are small, (c) the number of polled devices visited by a single
MA object is limited. As expected, in any other case MA-based polling does not scale well and

may even perform worse than the centralised model. However, the most important conclusion

108

Chapter 4: The Mobile Agent Framework

deduced from this evaluation is the exponential growth of MA state size with the number of
visited NEs.

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

Management cosl

1,000,000

500,000

T T T
0 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96

Selectivity
10 hosts 20 hosts —%— 30 hosts —¥— 40 hosts —o— 50 hosts

Figure 4.22. Management cost of MA-based polling as a function of the selectivity for various
network sizes.

4.6. EXPERIMENTAL WORK

To thoroughly evaluate the proposed framework’s performance, a number of experiments
have been conducted. In particular, the MA-based solution is compared against both SNMP
and a static distributed objects approach based on the Java RMI. This comparison follows two
directions: measuring the response time and the network overhead related to management

operations.

Response time: The time needed to complete a number of network performance management
operations is of critical importance when considering real-time management operations. It is
therefore important to experimentally evaluate the response time of MA-based applications and
compare it against distributed object approaches. The effect of a number of polling parameters
on the overall time also needs to be elucidated. Ut i | i ti es. Ti mer class has been created to
count the timestamps; it includes a number of methods that allow an application to instantiate,
start and stop a timer, obtain statistics such as average, standard deviations (SD), etc, print
these statistics in text files, etc. The Ti mer class uses the current TineM | 1'i s() method
of java.l ang. System class, which returns the current time in the precision of

milliseconds.

The response time experiments presented in this section, start with a performance

comparison of MAs against a representative distributed objects technology (DOT), Java RMI.

109

Chapter 4: The Mobile Agent Framework

In particular, a simple experiment is conducted where a string of variable length is transferred
from a remote device to the manager station either through an MA object or through an RMI
call. A second set of measurements deals with the overall time needed for a multi-hop MA to
visit a group of nodes and obtain a certain amount of information from each of them.
Additional timing experiments are described in Appendix C. These experiments aim at
providing a better understanding of the response time measured for MA migrations; the
objective is to investigate how the overall time is distributed among the individual phases of an
MA object migration and what is the effect of a number of factors such as the transport

protocol used and MA state size.

Network overhead: The traffic generated by the proposed management applications needs
also to be measured and compared against alternative approaches. The WinDump network
analyser [Windump], developed at the Politecnico di Torino, has been used for the network
overhead experiments. This program, which represents a graphical version of the well-known
tcpdump analyser, is capable of capturing packets transferred over a LAN and decoding their

contents, providing a useful insight of ongoing network interactions.

In particular, the traffic incurred through MA-based operations is measured and compared
against the traffic generated by Java-RMI invocations. The effect that data compression and the

transport protocol used for MA transfers have on the measured traffic volume is also weighted.

Regarding the experimental testbed, all these measurements have been taken over a lightly
loaded Ethernet in the role of the management network, using ten different machines with the
following specification: Windows NT operating system, Pentium 111 (450 MHZz) processor and
128MB of memory. The response time experiments were conducted during off-peak period

hours, in order to ensure minimum network traffic fluctuations.

4.6.1. Response Time Experiments
4.6.1.1. MAsvs. RMI

This part of the experimental work focuses on comparing MAs against Java RMI, in terms
of response time. As far as the MA-based approach is concerned, two different scenarios are

examined:

a) An MA object is instantiated by the manager application and sent to a remote device where
it obtains and encapsulates an amount of data (a string of characters) and returns back to
the manager to deliver the collected data (Figure 4.23a). This type of MA is termed ‘ping-
pong’ MA. In the next PI, a new MA is launched and repeats the same procedure.

b) An MA object is instantiated by the manager application and sent to a remote device where

it remains permanently. In every PI, this MA (termed the ‘Master”) creates a clone of itself

110

Chapter 4: The Mobile Agent Framework

(termed the ‘Slave’). The Slave encapsulates the obtained data and returns back to the
manager to deliver the collected information (Figure 4.23b). In the next PI, the same

procedure is followed with the creation of a new Slave agent.

The state of migrating MA objects can optionally be compressed before their transmission.

Manager

©)

Manager

Managed

RMI call

i
@

(©

Device

Figure 4.23. Strategies for obtaining information from remote devices: (a) ‘ping-pong’
MA, (b) MA cloning (‘Master-Slave’ scheme), and (c) RMI call.

These two schemes, are compared against a third scheme where an MA object is dispatched

by the manager application and remains permanently at a remote site, communicating the

obtained results to the manager through RMI calls (Figure 4.23c).

MAs (non- MASs (non- MAs MAs
compressed, | compressed, | (compressed, | (compressed, RMI
round trip) cloning) round trip) cloning)
Average| SD |Average| SD |Average| SD |Average| SD |Average| SD
10 84.3 20.2| 338 6.6 79.9 8.2 313 6.0 24.7 14.8
50 84.5 19.0| 355 54 78.7 59 26.6 6.9 254 145
_ |100 83.6 11.0] 325 8.3 78.1 5.7 29.1 6.4 23.6 7.2
é 200 86.4 18.0f 35.2 10.6 82.9 6.8 26.0 5.3 33.6 96.1
2 (500 88.5 6.5 35.0 54 86.9 7.0 329 10.8 22.7 6.3
< [1000 103.9 18.1| 426 4.6 97.1 13.2 29.3 5.8 249 11.3
g 2000 113.1 17.0| 45.6 5.6 108.2 12.7 26.8 7.4 21.7 12.8
z_cm 5000 147.8 28.6| 46.1 7.3 147.7 240 355 5.0 34.1 11.8
= 10000 249.2 35.6| 629 7.5 203.9 20.0 404 8.0 43.6 135
9 120000 379.3 33.3| 931 30.0 | 306.8 34.0 65.9 20.5 70.8 32.4

Table 4.2. Comparison of MAs vs. RMI-based approaches in terms of response time as a function

of the transferred data

The average response times and the corresponding SDs for the three schemes are presented
in Table 4.2. The effect of the amount of transferred information on the overall response time
is also investigated, hence the length of the string returned to the manager varies from 10 up to

20,000 characters. It is noted that MAs are transferred using the TCP protocol, since it is not

111

Chapter 4: The Mobile Agent Framework

feasible to time transfers over UDP. That is because such a measurement would pre-suppose
that the clocks of the sending and receiving hosts are perfectly synchronised, which cannot be
easily achieved (a way to get around this problem would be to ‘echo’ the UDP message back to
the origin host and measure the overall round-trip delay, yet, that measurement would not be
very accurate). In contrast, when considering MA transfers over TCP, the sender is able to
measure the migration latency, as the completion of the transfer is signified by the receiver’s
request to release the connection. In order to perform a direct comparison between MA cloning
and RMI-based approaches, the corresponding measurements have been taken at steady state,
that is after the code had been shipped to the remote elements, as the latter is performed only

once. Code deployment time is not included.

The results displayed in Table 4.2, are also graphically presented in Figure 4.24. As
expected, the approach that incorporates a round-trip travel of an MA object scales worse than
the scheme that involves remote cloning, as in the latter the MA travels only in one direction.
Interestingly, the response times of the MA-based remote cloning approach and the RMI
method invocations almost coincide, with RMI exhibiting a slightly worse scaling. Also, in
agreement with the conclusions of the previous section, the compression of MA state becomes

more attractive as the amount of encapsulated data, i.e. the MA state size, increases.

400.0

350.0 /

300.0 A

250.0 /

200.0 / /

100.0 — — — ,:t%.

50.0 _ _ _ /'//;
PR —— ee— o

0.0

Time (msec)

10 50 100 200 500 1000 2000 5000 10000 20000
String length (bytes)

—e— MAS (non-compressed, round trip) —=— M As (non-compressed, cloning) ~ —A— MAs (compressed, round trip)
—»— MAs (compressed, cloning) —o—RMI

Figure 4.24. Graphical representation of the MAs vs. RMI-based approaches comparison in terms
of response time

4.6.1.2. Multi-hop MAs

This set of experiments aims at investigating the effect of several factors on the overall
response time of multi-hop MAs, i.e. mobile objects that sequentially visit a number of polled
devices, obtain a certain amount of data from each one and return to the manager to deliver

their collected data. The evaluated factors are the transport protocol, the network size and the

112

Chapter 4: The Mobile Agent Framework

volume of data obtained from each host. The network size varies from 1 to 10 hosts, while the
amount of encapsulated data varies from 10 to 100, 500, 1000 and 2000 bytes. No data

compression is used in this case to ensure that the increment on the amount of encapsulated

data coincides with the MA’s state size increment. The results are presented in Table 4.3 and

Table 4.4, corresponding to time measurements where MAs are transferred over TCP and

UDP, respectively. The same results are graphically illustrated in Figure 4.25 and Figure 4.26.

Collected bytes (from each host)

10 100 500 1000 2000
Average| SD |Average| SD | Average SD |Average| SD [Average| SD
1 846 | 103 | 844 | 188 | 838 7.1 89.5 19.4 | 148.9 | 328.9
2 856 | 122 | 83.1 9.3 91.4 13.7 | 100.3 | 19.1 | 1196 | 20.8
3 893 | 124 | 89.0 | 161 | 985 144 | 1136 | 20.2 | 1955 | 411
a 4 1083 | 221 | 954 | 150 | 1248 | 169 | 1599 | 30.3 | 2745 | 29.3
'§ 5 108.6 | 149 | 1149 | 203 | 158.8 | 219 | 220.0 | 335 | 3745 | 313
% 6 138.7 | 205 | 1384 | 135 | 1938 | 19.0 | 301.6 | 23.6 | 503.6 | 38.9
E’ 7 1499 | 95 | 1619 | 184 | 2435 | 246 | 3833 | 354 | 6805 | 74.6
* 8 1738 | 17.4 | 1751 | 20.2 | 298.3 | 38.0 | 475.6 | 43.2 | 850.5 | 67.0
9 1855 | 145 | 1965 | 149 | 3575 | 39.2 | 620.1 | 487.3 | 1098.9 | 1135
10 199.3 | 11.0 | 2309 | 284 | 413.7 | 415 | 7928 | 69.7 |1390.1| 1152

Table 4.3. Average response time and standard deviation for multi-hop MAs for various network
sizes and volumes of collected data (TCP protocol used for MA transfers)

Collected bytes (from each host)

10 100 500 1000 2000
Average| SD |Average| SD | Average SD |Average| SD [Average| SD
1 776 6.3 78.1 6.5 88.2 145 | 873 19.0 | 947 10.8
2 812 | 125 | 865 | 108 | 88.9 9.6 95.7 10.1 | 113.6 | 209
3 81.1 6.4 849 | 143 | 1001 | 17.3 | 117.6 | 128 | 1852 | 29.7
.é 4 873 | 119 | 959 | 138 | 136.6 | 158 | 170.0 | 23.7 | 300.4 | 28.0
g’ 5 1047 | 9.2 | 117.7 | 10.7 | 161.0 | 128 | 227.0 | 225 | 399.0 | 30.0
E 6 1232 | 128 | 137.7 | 224 | 201.6 | 195 | 3139 | 31.9 | 5319 | 319
gto_ 7 1431 | 17.3 | 1625 | 191 | 2433 | 215 | 403.1 | 30.1 | 701.3 | 40.2
8 158.7 | 19.2 | 183.7 | 19.1 | 297.8 | 275 | 4979 | 353 | 858.1 | 41.0
9 180.2 | 235 | 210.2 | 159 | 357.6 | 30.7 | 602.7 | 42.3 |1101.1| 83.6
10 199.3 | 244 | 2356 | 149 | 4143 | 346 | 7609 | 63.2 |1384.3| 108.4

Table 4.4. Average response time and standard deviation for multi-hop MAs for various network
sizes and volumes of collected data (UDP protocol used for MA transfers)

113

Chapter 4: The Mobile Agent Framework

The results indicate an exponential growth of the overall response time as the network size

increases. Regarding the effect of transport protocol, UDP performs marginally better for small

volumes of encapsulated data while the performance of the two protocols converges for higher

volumes of data and larger network sizes. The experimental results agree with the conclusions

of the quantitative evaluation presented in Section 4.5.2, according to which it is necessary to

limit the itinerary length of multi-hop MAs in case that their selectivity is low, i.e. when the

volume of collected data at each visited host is high.

1400

1400

1200 1200
1000 / 1000
3z / B A
é 800 / K 800
E 600 E 600
= = //
400 / 400 //%
a0 - :":____{:/,*"—f i - —F—— ;
! = v * 0l . . -
0 L 2 3 4 5 6 7 5 9 " 10 100 500 1000 2000
#hosts # bytes (collected from each host)
‘+1o bytes —=— 100 bytes —~ 500 bytes —— 1000 bytes —%— 2000 bytes‘ :é:gg:s :?:gzzz +g:g::: +32g§: +iohﬁ§;s
(a) (b)
Figure 4.25. Response time for multi-hop MAs as a function of (a) amount of encapsulated
information and (b) network size (TCP protocol used for MA transfers)
1400 1400
1200 1200
1000 / 1000
= // g 800
< 800 E
: / 2 o /
E 600 E
) / / 400 /
400 /
/ 200 4 — |
200 M ‘%%/ ;
04 T T T
0 ! T 10 100 500 1000 2000
1 2 3 5 6 7 8 9 10 #hytes (collected from each host)
#hosts —e—1host —=—2hosts 3 hosts 4 hosts +5hosts§‘
‘+10 bytes —=— 100 bytes 500 bytes —%— 1000 bytes —x— 2000 byles‘ —e—6 hosts —+— 7 hosts —=—8 hosts 9 hosts —o— 10 host:
(@) (b)
Figure 4.26. Response time for multi-hop MAs as a function of (a) amount of encapsulated
information and (b) network size (UDP protocol used for MA transfers)
4.6.2. Network Overhead Measurements

An important scalability parameter that signifies the appropriateness of a model on

management applications is the volume of data transferred through the network when

implementing this model. Although scalability is suggested as the main argument that favours

the development of management frameworks employing MAs, very few works (e.g.

[BOHOQO0a]) supplement design ideas and implementations with quantitative evaluations or real

114

Chapter 4: The Mobile Agent Framework

traffic measurement data. In addition, the decision to adopt MA-based solutions for

management applications instead of static DOT-based approaches is rarely justified through

systematic performance comparisons.

This section attempts to correct this insufficiency by presenting the results of an experiment

that compares the performance of the proposed MA-based framework against Java-RMI, in

terms of the network traffic they incur. The experimental testbed is very simple in this case: it

comprises a pair of PCs, with the first playing the role of the manager and the second the role

of the managed device.

RMI (random | MA (TCP - MA (TCP- | MA (UDP- | MA (UDP -
sequence) repetitive random repetitive random
sequence) sequence) sequence) sequence)
Captured frames
0 8 9 9 1 1
10 8 9 9 1 1
’g 50 8 9 9 1 1
@ 100 8 9 9 1 1
£ | 500 8 9 9 1 1
£ [1000 11 9 9 1 2
= | 2000 13 9 12 1 3
% 5000 19 9 17 1 5
10000 32 9 25 1 9
Transferred data on the Transport layer (bytes)
0 699 842 842 503 503
> 10 713 846 858 506 518
E 50 776 848 932 508 587
= [100 855 849 986 510 664
? 500 1527 854 1515 515 1185
;—'; 1000 2327 859 2220 520 1838
E 2000 3901 865 3490 525 3079
& | 5000 8609 876 7115 535 6803
10000 16677 889 13613 550 12957
Transferred data on the MAC layer (bytes)
0 843 1004 1004 521 521
> 10 857 1008 1020 524 536
s [50 920 1010 1094 526 605
= | 100 999 1011 1148 528 682
‘é 500 1671 1016 1677 533 1203
;—'; 1000 2525 1021 2382 538 1874
E 2000 4135 1027 3706 543 3133
& [5000 8951 1038 7421 553 6893
10000 17253 1051 14063 568 13119

Table 4.5. Comparison of MAs vs. RMI-based approaches in terms of network overhead: The total
number of captured frames and the volume of the transferred data on the transport and MAC
layers

115

Chapter 4: The Mobile Agent Framework

First, the manager instantiates and launches an MA object to the managed device. The MA
then creates a string (j ava. | ang. St ri ng), which is either directly returned (passed as a
parameter) to the manager through an RMI call (first scenario) or encapsulated into the MA’s
state and returned to the manager application through a second MA transfer (second scenario).
The experiment has been repeated for string lengths that very between 0, 10, 50, 100, 500,
1000, 2000, 5000 and 10000 characters. Focusing our attention on the second scenario, the MA
transfers may be performed over TCP or UDP protocol. In addition, in order to assess the
effect of data compression, the encapsulated string might either be a repetition of a 10-
characters-long substring or composed by randomly generated characters (through using the
randon() method of the j ava. | ang. Mat h class). The use of data compression in the
RMI-based approach was not possible, as that would require modification of the code that

determines the way that RMI handles input and output streams.

By running the Windump network analyser and using appropriate filters, the packets
exchanged between the two devices have been captured and analysed. The results of this
experiment are shown in Table 4.5, that presents the total number of packets captured during a
single transaction, the volume of data transferred through the network on the OSI transport
layer (including the TCP/UDP headers) as well as on the MAC (Medium Access Control) layer
(including the Ethernet headers). The latter is also graphically presented in Figure 4.27. Unlike
response time experiments, there was no need to repeat the measurements since the network

overhead could be accurately measured by discriminating it from the background traffice.

Clearly, using TCP for transport protocol results in exchanging a much higher number of
packets, especially when the size of the actual ‘useful’ data is small; most of these packets
relate to the connections establishment/release phases. On the other hand, UDP, operating on
connectionless fashion, does not require the exchange of any control packets and thus results in

lower network overhead at the expense of more unreliable data transfers.

Notably, the effect of compression is much more prominent when the encapsulated string
represents a repetitive sequence of characters; in such case, there is a high degree of
redundancy, which is effectively exploited by the gzip compressor to achieve higher
compression ratio and diminish network overhead. Compression becomes more effective as the
volume of transferred information increases, for instance the compression ratio equals 90% for
50-characters-long string and 99.5% for 10000-characters-long-string. High compression ratios

are not, however, feasible when the string is randomly generated. Yet, the latter represents a

8 Windump offers a variety of “filters’ that control the capturing process so that the captured frames are those that
conform to certain restrictions, specified by the user.

116

Chapter 4: The Mobile Agent Framework

more realistic scenario, as collected management information is unlikely to exhibit high

redundancy.
20000
18000
16000 /-
14000 / X
I/
8
= 12000
: / ///
©
©
E 10000
=
2
s 8000
'_
6000
4000 /
2000 //
K & # * * * * —X
0 T T T
0 10 50 100 500 1000 2000 5000 10000
String Length (chars)
—e— RMI (repetitive sequence) —=— RMI (random sequence) MA (TCP - repetitive sequence)
—%— MA (TCP - random sequence) ~ —%— MA (UDP - repetitive sequence) —e— MA (UDP - random sequence)

Figure 4.27. Graphical representation of Mobile Agents vs. RMI comparison in terms of network
overhead

The most significant outcome of this experiment is that even when encapsulated strings are
randomly generated, the performance of MA-based solutions is slightly superior to that of the
RMI-based approach, especially as the volume of transferred data increases. The experiment
would be more complete if our framework was also compared against CORBA. However, a
similar comparison reported in [BOHOQ0a] indicated that CORBA and RMI performances are in
the same order of magnitude, with CORBA exhibiting slightly improved scalability. Still, these
conclusions may be reconsidered should different implementations of RMI and CORBA are

evaluated.

Although the relation of this experiment to management applications might not be evident,
it sufficiently demonstrates the competence of the proposed framework against static
distributed objects technologies. The results of additional experiments, presented in Chapter 7,
will prove the precedence of MA-based solutions over traditional centralised (SNMP-based)
models, in terms of network overhead, when considering realistic management scenarios. As a
final remark, it should be mentioned that the network overhead incurred in multi-hop MA-

based operations is not shown here, but will be examined in Chapter 5 (Section 5.4.2).

117

Chapter 4: The Mobile Agent Framework

4.7. SUMMARY - CONCLUDING REMARKS

This chapter comprised a description of the design and implementation of a Java-based
MAP intended for use in NSM applications. In order to achieve management orientation the
framework has been implemented from scratch, incorporating a variety of features that meet
the special requirements of distributed management applications. Hence, the presented
infrastructure exploits the benefits associated with MA technology, providing a lightweight
design with minimal impact in managed devices, moderate use of network resources, prompt
execution of time-sensitive tasks and ease in the introduction of new management operations.

The key features of the described framework are summarised in the following:

= Acknowledging the huge installation basis of SNMP within TCP/IP networks, the
introduced framework is integrated with an SNMP stack developed in Java, allowing

incoming MA objects to locally interact with SNMP agents through the SF component.

= A variety of GUIs offering MIB browsing, data visualisation, performance statistics and

high-level management operations have been designed.

= The manager application allows performing both centralised (SNMP) and distributed, MA-

based operations upon managed devices.

= MAS servers have been designed so as to have lightweight footprint on system resources
and therefore provide execution environments easily installable even on devices with

limited storage capacity and processing capability.

= Client/Server interactions between the manager and the managed devices is supported
through an RMI server controlled by the manager application and another optionally

installed and integrated within MAS modules.

= MAS entities keep an active control over locally executing MA threads through registering
and maintaining a reference of the corresponding MA objects. That also allows the
administrator to visually profile and remotely control (stop, suspend, resume, etc.) MAs

execution through RMI calls.

= A set of security features has been incorporated into the introduced framework. Travelling
MA objects are authenticated at each visited host ensuring that they have been originated
from a trusted host, their actions are authorised, whilst the data encapsulated into their state
can optionally be encrypted. Although not answering all the security concerns raised
against MA technology, these features ensure that NEs are reasonably safe against MA

attacks and MA objects shielded against malicious hosts.

118

Chapter 4: The Mobile Agent Framework

In order to improve flexibility and maximise code reuse, MAs are implemented following
a flexible hierarchical approach whereby MA classes created by the MAG tool inherit the
properties of an MA’s ‘superclass’, which defines the root attributes required to employ

mobility characteristics.

The administrator is given the choice between TCP and UDP as a transport protocol with
respect to MA migrations. As shown by the experimental results, the choice of transport

protocol may affect both the network overhead and latency of MA-based operations.
The itineraries of travelling MAs may either by automatically built or manually assigned.

A graphical tool (MAG) that automates the generation of MA code has been designed
facilitating the introduction of new management tasks conforming to generic service

patterns.

A number of fault-tolerance features have been integrated into the framework. These cover
the cases where a host included in an MA’s itinerary has failed, an interconnecting link has

broken or the manager station itself is down.

A customised MA ClassLoader has been created, which in addition to receiving new
instances of management tasks at runtime, is able to distinguish different versions of the

same MA class, thus enabling modifications over existing tasks to take instant effect.

A number of transport protocol parameters have been configured so as to accelerate MA
migrations and enable the timely execution of real-time management operations (see
Appendix B). Along the same line, MA objects are assigned the highest priority among the

processes executing on their hosting devices.

Based on the observation that the network overhead associated with MA transfers is
mainly due to the MA code rather than the MA state information, a lightweight code
distribution scheme has been implemented. In particular, MA bytecode is transferred to
managed devices at the MAs’ creation time, with only MAs state transferred following
that.

To further reduce the impact on network resources, MAs state is compressed (gziped) prior

to its transfer.

In addition to presenting implementation details, this chapter also included a quantitative

evaluation of the introduced framework, providing simple mathematical formulations that

quantify the response time and network traffic load associated with centralised and MA-based

management. Finally, a variety of experiments have been conducted in order to assess the

performance of the introduced framework in practice. The experimental work has been

119

Chapter 4: The Mobile Agent Framework

twofold, namely the framework’s performance is assessed both in terms of the response time

and the generated network traffic involved in management operations.

Experimental results revealed that our framework marginally outperforms RMI both in
terms of network overhead and response time when considering simple data transfers between
a pair of hosts (manager - managed device). Nevertheless, although reducing the number of
messages communicated through the network compared to centralised models, the use of MAs
for managing multiple NEs should be carefully evaluated. As evidenced in Section 4.6.1.2, the
use of a single multi-hop MA that visits all managed devices obtaining a specific amount of
data from each of them, represents a non-scalable solution, especially for tasks where
selectivity is low (i.e. only a small portion of the obtained information is filtered at the source).

That conclusion dictates that MAs itinerary length should be limited.

It should also be emphasised that the topological structure of the introduced framework and
the distribution of managed devices within the network have not been taken into account in the
guantitative evaluation of Section 4.5 or the experimental results, assuming fixed MA

migration cost, regardless of the location of sending and receiving devices within the network.

These issues will be addressed in Chapters 5 and 6, where more efficient models that
improve the framework’s scalability, flexibility and adaptation on changing networking

environments are identified.

120

CHAPTER 5

TWO COMPLEMENTARY POLLING SCHEMES FOR
IMPROVING MANAGEMENT SCALABILITY

5.1. INTRODUCTION

The core framework introduced in the previous chapter brings about all the benefits
associated with the application of Mobile Agents (MA) in Network & Systems Management
(NSM), i.e. dynamically customisable management services, local filtering of management
information, etc. However, it suits NSM applications that involve high selectivity values for
collected data and relatively small set of devices, concentrated in limited number of
management domains. In other words, its scalability is questionable as it represents a ‘flat’
model, whereby a single MA object is launched from the manager platform and sequentially
visits all the managed Network Elements (NE), regardless of the underlying topology (see

Figure 5.1). The scalability problem is twofold:

= First, in large networks the round-trip delay of the MA greatly increases as the overall

travel time depends on the number of hops realised by the MA.

= Second, the network overhead imposed by the MA transfers grows exponentially with the
network size; the slope of the overhead curve becomes steeper in the case of high selectivity

values (see Figure 4.21).

Furthermore, when utilising the flat model approach for the management of a large set of
devices, the problem of collected data inconsistency arises. In particular, when the
administrator requests a ‘snapshot’ of the managed devices status at a given time, the use of a
single multi-hop MA does not represent an appropriate solution. This is due to the non-
negligible time intervals between the acquisition of each data sample from every NE. For
instance, the data values collected from the first and the last itinerary hosts will refer to distant

time instants, affecting the consistency and reliability of extracted statistics.

121

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

The “flat” model has been adopted by the majority of Mobile Agent Platforms (MAP)
developed for NSM applications, e.g. [KU97, NIC98, BEL99, PIN99, PULOOb]. All the
aforementioned works involve frequent MA transfers, when the collection of management
statistics is considered, giving rise to scalability and data consistency concerns for the reasons
highlighted above. Hence, these platforms are not appropriate for network monitoring and

performance management, which represent the main application areas in this thesis.

Manager
%’
M)

Figure 5.1. ‘Flat’ MA-based polling

Performance management involves gathering and logging data generated by devices, which
may be analysed off-line or in real-time. That process helps in measuring the performance,
throughput and availability of network resources. The advantage of analysing the data in real-
time is that it allows sophisticated Network Management Systems (NMS) to foresee a possible
congestion or failure and take preventive measures before the actual error occurs. On the other
hand, collected data may be used to build daily, weekly or monthly graphs/reports to assist the
administrator in network planning. In such cases there is no need for real-time NSM data and,

hence, an alternative, complementary polling mechanism should be applied.

Therefore, we propose two MA-based polling schemes intended to provide efficient means
for obtaining both real-time and off-line management data. The first approach, called Get 'n’
Go (GnG), is used for the collection of real-time data; the network is partitioned into several
domains and a single MA object is assigned to each of them. In every Polling Interval (PI), this
MA sequentially visits all NEs within its network domain and obtains the requested
information before returning to the manager. The second polling scheme, termed Go 'n’ Stay
(GnS), targets the acquisition of data to be analysed off-line, where the need to obtain data in
short time frames is no longer an imperative. Thus, we introduce a method where an MA
object is ‘multicasted’ to all monitored devices; the MA remains there for a number of Pls and
collects an equal number of samples. Collected data may be delivered to the manager using

various approaches, namely through the broadcasted MA objects themselves, clones of these

122

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

objects or RMI invocations. The infrastructure described in Chapter 4 has been extended so as

to support the introduced polling schemes.

Two papers describing the design and implementation of the two polling schemes have
been published in the proceedings of the 3" International Workshop on Intelligent Agents for
Telecommunication Applications (IATA’99) and the [EEE Global Communications

Conference (Globecom’99). Full references are given in Appendix A.

This chapter is organised as follows: Section 5.2 describes the design and implementation
details of the two introduced polling schemes. Section 5.3 presents a performance analysis
regarding the network overhead associated with their use, with experimental results reported in
Section 5.4. Section 5.5 discusses the prons and cons of utilising the two polling schemes in

practical management applications and Section 5.6 summarises the chapter.

5.2. POLLING SCHEMES : DESIGN & IMPLEMENTATION

5.2.1. Get’n’ Go Polling Scheme

Recently reported NSM-oriented MAPs assume small or medium-sized networks with flat
topology structures. Hence, as the number of managed devices grows, the network becomes
increasingly unmanageable. This is a consequence of having a single MA responsible for
obtaining NSM data from all devices in every PI, giving rise to serious scalability concerns. In

addition, the order in which managed nodes are visited is typically arbitrary.

Manager

Remote LAN

=

Figure 5.2. The GnG polling scheme

This represents a significant problem when the management of remote LANS is considered,
as a travelling MA may have to be transferred several times across expensive and low-

bandwidth WAN links during its lifetime. Even worse, when the managed network spans s

123

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

subnets (s > 1) connected to the manager site through low-bandwidth WAN links, the overall
response time will increase rapidly, as the multi-hop MA will have to traverse a slow link at

least 2 x s times.

As previously mentioned, the concept behind GnG polling is to partition the managed
network into several logical/physical domains. For instance, in Figure 5.2, an MA object polls
the devices of the remote LAN, whereas a second MA is assigned to the network segment local
to the manager host. Hence, flat MA-based management can now be thought of as a special

case of GnG polling, where the managed network comprises a single management domain.

=] Pofling Schemas Conhiguration

Gt | Gng |
HadTilisimey Lilai
Wb of noddes assigned to aach MK 331G & Masm |l_i T
Pyrsical distibition of polled devices {168 per netwaork segmen}
Higrid g e I
Marmial Rimer ar e settng

Figure 5.3. GnG polling: Selecting the partitioning criterion

The partitioning criteria are specified by the administrator, during the configuration of the

monitoring task parameters. These criteria may be the following:

(a) the number of nodes assigned to each MA, i.e. equal distribution of managed hosts among
individual MAsS;

(b) the physical distribution of polled devices, i.e. one MA object assigned to each network

segment;

(c) a hybrid of these two approaches, i.e. individual MA objects do not visit NEs located on
different segments, but there is an upper limit of hosts assigned per MA. In other words, a
given network segment may be split in more than one logical domains with every

individual domain assigned to a different MA,;

(d) manually specified itineraries.

124

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

The criterion which is more appropriate for a given management task and its corresponding

parameters are selected through the GUI shown in Figure 5.3.

Should criterion (a) is applied, a maximum number of devices assigned per MA is also
specified. The number of MAs required per PI is then automatically evaluated and their
individual itineraries either manually or automatically specified. In the case that the number of
devices is not a multiple of the number of MAs used, the MA object, which is launched last
will be assigned a smaller set of devices. This design decision has been made to minimise the
overall delay, as the MA object launched first has a marginal time advantage over the one

launched last. Hence, should N network devices are divided in d management domains (¢ MA

objects used in every polling interval), some MAs will be assigned to (%—I NEs and the

remainder to L%J NEst. For instance, should 3 MAs are required for the management of 8

NEs, the first two will be assigned 3 NEs and the third only 2. Criterion (b) caters for the case
that managed devices are distributed among several subnets, with criterion (c) being more

suitable when a large number of NEs is concentrated in specific segments.

With the GnG approach, the launched MA objects travel and perform their management
tasks independently, whilst the number of devices they visit is limited, thereby minimising the
overall response time. This introduces a high degree of parallelism in the data collection

process and suggests GnG as a suitable polling scheme for the acquisition of real-time data.

As the number of devices assigned per MA is reduced, the volume of MAs required to
conduct polling is increased and the journey time of each of them decreased. Nevertheless, the
manager needs more time and consumes more CPU cycles to instantiate, launch and receive
back this increased number of MAs; a side-effect of launching and receiving a higher number
of MAs is that the traffic in the manager’s network neighbourhood is also increased. The
communication overhead is also affected, as short itineraries prevent MAs state from growing
too much. However, for large number of domains, the number of MA transfers per Pl increases
proportionally, which in turn implies higher requirements on network resources. That
represents an interesting trade-off, which signifies the need for a detailed investigation in order

to identify optimal solutions.

. N . | N N
! Precisely, n=N — d{—J MAs are assigned to visit lr—_l NEs and d — n MAs to [—J NEs.
d d d

125

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

5.2.1.1. Implementation of GnG Polling Scheme

GnG polling is carried out through Polling Threads (PT), implemented by the
Manager . PT class. PTs are started and controlled by the manager application; each of them
corresponds to a single monitoring task. They are created by the MAG tool, when defining the
properties of the MA that carries out the task. In particular, the properties of a monitoring
application are maintained as a Polling Thread Configuration (PTC) object (Manager . PTC
class). In addition to keeping existing PTCs in memory, they are also serialised and stored in
‘configuration files’. In principle, the serialisation process is very similar to the one used by the
MFC components during an MA migration; the two procedures differ only on that in the PTC
case the serialised information stream is directed to a file rather than a network connection.
Configuration files are updated every time that their corresponding PTC objects are updated
and used at the manager application initialisation, in order to restore the PTCs state (through

the inverse process of de-serialisation); that way, management tasks are defined only once.

PTs’ functionality is determined by their respective PTCs, which comprise a description of
the management application and include the polling parameters. Post their creation, PTs remain
on ‘waiting’ mode until activated by the administrator. When activated, PTs define the polling
task according to the requirements described in their respective PTC object and start the

polling operation.

Specifically, when considering the GnG polling scheme, PTs instantiate and launch the
required number of MAs (supplied with their corresponding itinerary) and then sleep for one
Pl; when that period elapses the same process is repeated. Meanwhile, a manager’s listener
daemon (Mobile Agent Listener thread) receives the MAs that return to the manager carrying
their collected data. In a future extension, we will consider PTs synchronisation, so that
monitoring tasks sharing the same polling frequency will not be initiated simultaneously. That

will ensure that the traffic around the manager host is evenly distributed over time.

Polling properties may be modified at runtime. For instance, the PI may be adjusted, or new
NEs may be added in the list of monitored devices. The discovery of a new active agent
process triggers an automatic re-evaluation of the required number of MAs per Pl and their

itineraries; this procedure is transparent to the user.

A graphical table (within the manager’s GUI) displays and allows modifications on existing
PT properties, such as PT activation/de-activation, polling frequency and the number of
devices assigned to each MA. That graphical component will be shown in Chapter 7 (Figure
7.13).

126

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

5.2.1.2. Optimal MAs Itinerary Planning

Despite the popularity of MA-based management applications, methodologies for designing
efficient MA itineraries have received little attention. In particular, the number of hops realised
by a multi-hop agent is not the only metric to evaluate the communication overhead of MA-
based operations. The order in which MAs visit the NEs is also a crucial factor; slight changes
on the agents’ itineraries may result in dramatically variant management costs. The scenario
illustrated in Figure 5.2 represents an ideal case in terms of the WAN link utilisation. That is
because the link is traversed only twice per PI; the situation could be worse if partitioning
criterion (a) was applied. For instance, network partitioning could be performed in such a way
that the two MA objects would be required to visit NEs located in both the segment local to the
manager station and the remote LAN. This is pictured in Figure 5.4a, with the first MA
following the itinerary AEF and the second GBCD. In this case, the WAN link is traversed
four times per PI. In a more pessimistic scenario, one of the MAs would not visit the remote
LAN hosts in sequence, but traverse the link twice on each direction (itinerary: AEBF), as
shown in Figure 5.4b. Apparently, itineraries scheduling lacks a mechanism that would
guarantee minimal use of links connecting individual management domains, in other words

optimal itineraries planning (OIP) is required.

Manager Manager
o ., & .
i T
T I8
4 =) P
‘wf “m)
Remote '(7'% - Remote LAN [=
Y oW FH) - M)
@) (b)

Figure 5.4. Non-optimised partitioning scenarios

Interestingly, the OIP problem exhibits many similarities with the Multi-point Line
Topologies or Constrained Minimum Spanning Trees (CMST) problems. A CMST is a
Minimum Spanning Tree (MST)? with the additional constraint on the size of the subtrees
rooted on the centre. CMST algorithms are typically used in graph theory, with the main
application area being network design problems. The most well known heuristics efficiently
dealing with this problem are Esau-Williams (E-W) and Sharma's algorithms [KER93]. These

2 A MST is defined as a tree (i.e. a connected graph without cycles) with the least total distance, cost, or some other
measure of delay or reliability.

127

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

algorithms propose near-optimal structures that minimise the total cost when a given network
of N terminals is examined. Being heuristics, these algorithms cannot guarantee real optimal
solutions; the latter would require the use of complex and time-demanding mathematical
methods, such as Integer Linear Programming (ILP) [KER93]. However, for a relatively small
number of terminals, the output of heuristics and ILP formulations typically coincide. The
input of E-W and Sharma algorithms comprises the number A of terminals to be connected, the
name of the central network site, constants #; and ¢;; (1<, j<N) that denote the traffic
requirement and the cost for connecting terminals i and ; respectively, and finally the aggregate

cost C,,, that sets a maximum limit for the cost of each individual multi-point line (subtree).

In principle, an algorithm dealing with the OIP problem would be a variation of a CMST
algorithm. In particular, the managed network 7 would be a union of its s individual segments:

V= {SO,Sl,..,SS}. The centre of the managed network (graph) would be the manager station
(denoted as terminal 0), located in segment S,. The traffic constants would be: i j =1,Vi, j,in

order to eliminate their effect on the proposed solution. In addition, the cost constants would be

¢;; =0 when ieS, and jeS; for any subnet S;, while ¢, ;>0 when ieS; and j¢S,.
Clearly, in the latter case, the cost c; ; will not be a constant value but will reflect the cost of

data transfers between two hosts located in separate network segments.

-4 Manager | _ Manager

(a) (b)

Figure 5.5. Applying an OIP heuristic to propose (a) two, or (b) three near-optimal itineraries.

Using as case study the simple network topology illustrated in Figure 5.2, the employment
of the algorithm briefly described above would prioritise the inclusion of the hosts located on
segment S; in a single management domain, for both the cases that two or three optimal MA
itineraries were requested (see Figure 5.5). In the extreme case that only one itinerary was
requested, the application of the OIP algorithm would ensure that the hosts located in S; would
be visited successively, namely the WAN link would only be traversed twice. Therefore, the

algorithm described above would not only provide near-optimal clustering of the managed

128

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

network in management domains, but also near-optimal solutions regarding the order in which

individual MA objects should visit their assigned NEs.

Should the output of the algorithm not satisfies the requirements set by the administrator
(regarding the desired number of NEs assigned to each MA), the C,.. parameter could be
adjusted (decreased), until a solution that incorporates the desired number of itineraries would
be obtained. Alternatively, an additional parameter C,;, could be used in conjunction with
Ca-

The application of an OIP algorithm presupposes that the manager platform (which runs the
algorithm) has detailed knowledge of its managed network topology, i.e. the physical location
NEs. A simple managed network topology model is described in Chapter 6. It should be noted
that the algorithm dealing with the OIP problem has not been implemented yet, but will

certainly be considered among possible optimisations of our framework in future extensions.

5.2.2. Go ’n’ Stay Polling Scheme

GnS polling introduces an alternative approach to performance management, targeting data
intended for off-line analysis. Within this approach, the mobility feature MA objects is not
fully exploited, as the MAs intended to carry out decentralised management tasks are
multicasted to the managed devices where they remain until their task is completed. This
reduces the need for MA transfers, which are restricted on deploying MAs to remote devices.
In addition, the proportion of usefi/ management information returned to the manager is

substantially increased, since NSM data are not necessarily delivered in every PI.

GnS approach may be useful for gathering performance information from a number of NEs,
deliver performance reports on scheduled basis and event-driven notifications when
performance thresholds are crossed. The user can analyse the performance reports and
notifications obtained to determine utilisation trends, isolate performance problems, and
possibly solve them before they cause non-reversible degradation of network performance. In
this way performance monitoring can also aid in providing traffic flow predictions (per hour,
day or month), long-term capacity and topology planning, identifying bottlenecks and

congestion points, monitor quality of service (QoS) parameters, etc.

In principle, GnS polling scheme comprises a direct application of single-hop or
constrained mobility (see Section 3.5.5.2). A prototype that implements a constrained mobility
platform (CodeShell) has been introduced in [BOHOOc] and described in Section 3.6.1.9.

129

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

5.2.2.1. Implementation of GnS Polling Scheme

The operation of GnS polling scheme is also controlled by PTs. Its implementation is much
simpler than that of GnG approach, as the itinerary of multicasted MAs basically consists of
only one host, while MAs are typically deployed only once during the monitoring task's

lifetime.

Upon reaching its destination, an MA is instantiated and its execution subsequently started
as a separate thread. Having the information of the PI duration embedded into its state, the MA
obtains raw performance information from the local legacy system through interacting with the
Service Facilitator (SF) component. The obtained data are processed, with the resulting higher-
level information being encapsulated. The MA then ‘sleeps’ for a period defined by the PI
duration (the sl eep() method of the j ava. | ang. Thr ead class is invoked). When this

interval elapses, the MA *wakes up’, resumes its execution and obtains another data sample.

= Lima Gaaph MREE

Hosuks semd By ulrl:lltlrm:~:l"-‘:lt-:|:1n'|:~d1|-:|m acls

Aeceiwed walusr 43,08 [=)
Aug 1D LB 15138 @ Threskald croazed -
Becaivad walue: 100.5% -
L] [
I--I|I|Il|l.-\..|'|_| g { Th eshicdil o R
| i Podliig | Ol

Figure 5.6. Graphical representation of statistics returned by MAs employing GnS polling

Collected samples are delivered to the manager station either in scheduled basis or in case
that a monitored performance indicator exceeds a pre-determined threshold. In the latter case, a
notification is instantly generated and sent to the manager platform. This functionality
resembles the operation of metric objects [1SO93] and the summarisation function [ISO92], as
specified in the corresponding standards. The data returned to the manager can be graphically
displayed using graphs updated in real-time. This is illustrated in the graph shown in Figure

5.6, which depicts the fluctuation of a simple performance metric that combines two MIB

130

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

objects over time (the metric value is evaluated at the managed devices by the MA objects that

return the processed data samples).

MA objects either remain on their hosting NEs for a given number of Pls and then request
the disposal of their execution thread, or execute in permanent basis (in the latter case the
monitoring task will only be terminated at the event of a manager’s request). Collected data

may be delivered to the manager using three alternative approaches:

(a) through the multicasted MA objects themselves: PTs will repeat the deployment of the
MAs to the NEs, given that the execution of the monitoring task is to be continued (see
Figure 5.7a);

(b) through clones of the originally deployed MAs (see Figure 5.7b): MA clones are
constructed through an explicit invocation of the clone() method of the

j ava. | ang. Qbj ect class;

(c) through an RMI call (see Figure 5.7c): the returnData() method of the

RM . Manager Rm Ser ver class is invoked.

Manager '“ﬁ\ . Manager '"@\ .
\l N \
c I Pzl e
e i
3 i'! ' J"_ s g
Remote;,’/leNs
(a) (b)

I :i4
Remotel/’LAN r g
/|
R

©

Figure 5.7. Approaches in GnS polling: data delivery through (a) the multicasted MA objects, (b)
clones of the multicasted MAs, (c) RMI calls

131

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

When applying approach (a), the supervising PT multicasts at regular intervals an MA
object to all monitored hosts. The MAs then remain active on the hosts for p Pls (where p is
specified by the administrator). When the p Pls elapse, the MAs return to the manager to
deliver the acquired samples. Meanwhile, PTs suspend execution for a period given by the
product of Pl and the number p of Pls that MAs remain on the managed devices (PI x p).
When this period expires, they resume operation and the process is repeated. In the extreme
case that p=1, the GnS scheme performs similarly to SNMP-based polling and identically to
GnG, when each MA is assigned to a single device. This data delivery method certainly
implies a higher management cost, as it involves a larger number of MA migrations. However,
it has been implemented for evaluation purposes. In approaches (b) and (c), the data returned to
the manager either by MA clones or RMI invocations are discarded from the data folder of the
MASs that remain on the NEs to continue their monitoring tasks; that way the usage of memory

resources by locally executing MAs is moderated.

The properties of GnS polling are specified through the GUI shown in Figure 5.8.

=] Pofling Schemas Conhiguration

G

Pingj - Pajuj WA
= M clemes
[E21]

 Poriedic notfication oo [0
B il et of excesding a thesshold

Pemmenl
& el iy S0

Figure 5.8. Configuring the properties of GnS polling scheme

In the case of updating a monitoring task that employs the GnS scheme, the manager first
requests the termination of executing MAs (through RMI calls to their hosting MAS servers)

and subsequently deploys their updated version whose execution is immediately started.

It is noted that all the properties required to configure either GnG or GnS polling are
declared in MCode. Moni t or class, which extends the generic MCode. MA class. In other
words, Monitor class defines the functionality of MA objects intended to perform

decentralised monitoring tasks. Monitoring MA classes need to extend the Moni t or class.

132

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

The administrator can modify the GnG/GnS parameters in real-time and also to change the
polling scheme from GnS to GnG and vice versa, depending on the managed network traffic
conditions and the types of management information required, without disrupting the
monitoring procedure. The transition from GnS to GnG triggers an automatic network domain

segregation process, which satisfies the chosen partitioning criteria.

5.3. PERFORMANCE ANALYSIS

In this section, simple mathematical formulations are devised in order to model the network
overhead associated with the employment of the two proposed polling schemes. This
performance evaluation essentially extends the evaluation of Section 4.5.2, using the same

definitions, symbols and formalisms.

Considering the GnG scheme, we make the assumption that managed devices are equally
distributed among individual MAs. Hence, the resulted overhead for GnG polling when

segmenting the network into d domains would be,

htot
Bgug =N*(C+0p)+d*p+*Y (ST, + O), where 1<d <N and hy, =(%1+1 (5-1)
h=1

where £, represents the number of hops for each MA object and the rest of the symbols
hold their usual meaning. The first term of the equation describes the overhead imposed when
multicasting the MA code to all MASs, whilst the second represents the bandwidth consumed

by the MA state transfers between the manager and the polled devices (each MA is assigned to

{%-‘ NEs, hence 4, transitions in total, including the return to the manager). Substituting S7),

from Eqn. (4-7), we obtain:

htot
BG, g =N*(C+Op)+d*p*|(STy +Or)*h,y, +Z(dS*h) ,1<d <N (5-2)
h=1

where dS accounts for the state size increment experienced on every MA hop (dS =o *b).
The conclusions inferred for multi-hop MA-based polling are valid for GnS polling also,
although a larger number of MAs (equal to d) are transferred on each PI. In particular, the GnG
scheme involves d * h,,, =~ N + d MA migrations, compared to N+1 involved in flat MA-based
polling. However, the former is expected to perform better in case that the managed network is
fairly large, selectivity values are high or large amounts of data are collected from each host. In
that case, the network segmentation will result in shorter itineraries, enforcing travelling MAs

to return back to the manager station before their state becomes prohibitively large.

133

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

This is graphically illustrated in Figure 5.9, which depicts the dependence of management
cost to network size and scalability values. As in Section 4.5.2, we assume an initial MA state
size of 400 bytes, 1000 bytes of retrieved data and that no data compression is performed.
Therefore, for low selectivity values (¢ = 0.05, i.e. only the 5% of the originally obtained
information is returned to the manager), using a large number of co-operating MAs (e.g. 20)
does not represent an appropriate solution, at least for small and average-sized networks (see
Figure 5.9a).

140000
120000
Selectivity = 0.05 /.
% 100000
o
o
=
S 80000 !
E M
(5]
g —
& 60000 =
= ,
40000
20000 -
0 : : : : : : : :
5 10 15 20 25 30 35 40 45 50
#hosts
—=—1MA 2MAs —e—4MAs ——6 MAs 8 MAs 10 MAs —e— 20 MAs
(@)
1400000
1200000
Selectivity = 0.9 /
% 1000000
o
(8]
2 800000
(5]
o
[+
S 600000
>
400000
200000
0
#hosts
‘+1MA 2MAs —e—4MAs ——6 MAs 8 MAs 10 MAs —o—20 MAs
(b)

Figure 5.9. Management cost for GnG polling scheme, as a function of the network size and the
number of management domains (i.e. number of MAs used per PI), for selectivity equal to (a) 0.1,
or (b) 0.9

134

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

The distinction is clear in the case of high selectivity values (see Figure 5.9b) where the
separating gap between flat MA-based management (using one MA) and GnG polling is
magnified. It is also evident that there is an optimal number of MAs associated with a given
network size, which minimises the management cost. For o = 0.9, that number is 3 MAs for a
network of 5 managed hosts, 6 MAs for 10 hosts, 8 MAs for 15 hosts, 10 MAs for 20 hosts,
etc. In our current prototype, the decision regarding the number of management domains is
made by the administrator, however, in a future extension we intend to provide automated
adaptation of that number to the size of the managed network in order to minimise the

associated network overhead.

Similarly to GnG, the network overhead for GnS polling scheme would be:

Bgus =N *(C+O0p)+ N«(ST, + Or)+ By (5-3)

where the first term of the summation represents the bytecode distribution, the second the
actual MAs deployment and the third the bandwidth wasted for data delivery. Only the last
term exhibits dependence on the time interval over which the monitoring task is executed.

Assuming that data are periodically delivered every p' Pls through the same MA objects that

were originally multicasted, B, is given by:
By =N +[2+(STy + 0,) +as']* {ﬁw (5-4)
p

The MAs return p’ data samples, which result in a state size increment of dS’. Following

the delivery of management information, a new set of MAs will be multicasted again (hence

the 2 multiplier). For a large p’, the number of MA transfers is minimised and GnS mode

becomes more lightweight in terms of bandwidth consumption. In the case of delivering data

through clones of the original MAs, B, becomes:
By =N+ (ST, +dS'+0T)>{£,1 (5-5)
p

Namely, the deployment of a new set of MAs every time that data are delivered is not

further required. Accordingly, data delivery through RMI is modelled as follows:
p

where Rmi(dS')denotes the traffic generated by an RMI call that passes as an argument a

data vector of size dS’.

A quantitative evaluation of response time for MA-based operations is not attempted here

as the adoption of GnG introduces additional complexity which makes its mathematical

135

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

modelling very hard, whereas modelling response time for GnS polling would be meaningless

since reducing latency is not a prime objective for this scheme.

5.4. EXPERIMENTAL RESULTS

In this section, we describe a number of experiments aiming at evaluating the performance
of the introduced polling schemes and comparing it against flat MA-based polling. The
physical distribution of managed devices is assumed as arbitrary to these experiments.

Similarly to the previous chapter, latency and network overhead measurements are presented.

5.4.1. Response Time Measurements

One of the main motivations that led to the design of GnG polling scheme has been to
reduce the response time of flat MA-based polling implementations. Hence, the investigation
of the factors affecting latency is of great importance. These factors include the network size,
the amount of collected data and the number of MAs employed in each PI. TCP is used for MA
transfers, while no data compression is applied. Practically, we have repeated the experiment
of Section 4.6.1.2, which investigates the performance of multi-hop MAs, i.e. flat MA-based
polling. Each travelling MA sequentially visits the polled devices included into its
management domain, obtaining a certain amount of information at each point of contact, which
can either be 50 (see Figure 5.10) or 2000 bytes (see Figure 5.11), before returning to the

manager station to deliver their collected data.

Figure 5.10a shows that the flat approach (using a single MA) does not scale well as the
number of NEs increases. This makes it necessary to partition the managed network into
several domains in order to maintain low overall response time. In particular, it is shown that in
the case that only 50 bytes are collected from each host, using 2 MA objects improves
efficiency for networks including more than 13 devices. Likewise, 3 co-operating MAs
perform better for networks of 24 managed devices or more. Interestingly, the respective
thresholds differ in the case that the amount of collected data equals 2000 bytes. In particular,
the transition to two or three co-operating MAs models would improve performance for a
number of hosts bigger than 4 and 9 respectively (see Figure 5.11a). This is due to the faster
growth of MAs state size, which in turn affects their transfer latency.

Depending on the managed network size, the optimum number of domains (number of MAs
working in parallel) can be determined from the minimum point of the corresponding curves of
Figure 5.10b and Figure 5.11b. All curves displayed in these figures are convex, suggesting
that the optimal solution always lies between the extremes of segmenting the network in very

few or too many management domains. Namely, it is shown that assigning a small number of

136

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

devices to each MA, i.e. launching a large number of MAs per Pl typically increases the
overall response time. That is, although the individual journey times decrease, the time
required for the manager to instantiate, launch and receive back these MAs dominates. Thus,
for a network of 15 devices, when collecting 50 bytes from each host, response time is
minimised when partitioning the network in 2 domains, i.e. assigning 8 NEs to the first MA
and 7 to the second. Ideally, the manager application (through the PTs) should dynamically
adjust the number of domains according to the current number of managed devices, aiming at
maximising efficiency. The conclusions reported in this section agree with the simulation
results presented in [RUBO0O0], which investigates strategies for reducing the delay involved in

MA-based performance management applications.

900 1000

800 900

700 800

700

600 —
3 / g 600
£ s00 £ o o .
£ @
@
£ 400 E 400
£ [~N— —F
= /'/

300 - / 300 I\\o///ﬁ//.///

200 /.//./ 200 o

- "—‘/"7‘(100 "

0 T
0 : : : : . . 1 2 3 4 5 7
3 5 7 9 1 15 21 30 #MAs (Management domains)
#hosts
—e—3 hosts 7 hosts —%— 9 hosts —e— 15 hosts
——1MA —=—2MAs 3MAs —+— 21 hosts —=— 30 hosts
(@) (b)

Figure 5.10. Polling response time of GnG polling in the case that 50 bytes are collected from each
host, as a function of (a) the network size, (b) the number MAs launched per PI

3000 3000

2500 A 2500
2000

1500 / 1500
1000 / =1 1000 \'\

500 / -/*’{’K’//H 500 - *;*/

2000

Time (msec)
Time (msec)

lt::;zs_,_,g:4.<47~4-///’/ F______—_—__'__________a
0 : ‘ ‘ ‘ ‘ 0 ‘
3 5 7 9 1 13 15 1 2 3 4 5 7
#hosts #MAs (management domains)
[o—1MA —=—2maAs 3MAS 4 MAs] ‘+3husts 7hosts —%— 11 hosts —e— 13 hosts +15hosts‘
(@) (b)

Figure 5.11. Polling response time of GnG polling in the case that 2000 bytes are collected from
each host, as a function of (a) the network size, (b) the number MAs launched per Pl

The information graphically presented in Figure 5.10 and Figure 5.11 is analytically
presented in Table 5.1 and Table 5.2 respectively.

137

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

MAs launched per Polling Interval

1 2 3 4 5 7 9
Average| SD |Average| SD |Average| SD |Average| SD |Average| SD |Average| SD [Average| SD
3 91.4 59 169.8 | 11.6 | 278.7 18.9 - - - - - - - -
5 114.6 5.4 173.4 | 19.7 | 260.4 | 15.6 - - 487.8 | 41.3 - - - -
. 7 158.8 5.7 1809 | 22.7 | 265.4 | 19.7 - - - - 698.3 | 77.8 - -
8
g 9 202.9 131 189.1 | 23.6 | 281.0 | 26.2 - - - - - - 912.0 | 813
(@]
B 11 | 250.7 5.4 202.1 | 19.1 | 2943 | 40.6 - - - - - - - -
i)
i 15| 355.9 | 254 | 268.2 | 220 | 331.3 | 382 - - 613.5 | 45.2 - - - -
21 | 5045 | 303 | 358.4 | 451 | 382.7 | 45.7 - - 6229 | 47.1 - - - -
30| 8035 | 641 | 531.4 | 813 | 4935 | 834 | 579.6 | 124.8 - - - - - -

Table 5.1. Average polling time and standard deviation for GnG polling, for multi-hop MAs for
various network sizes and numbers of management domains (50 bytes are collected from each

MAs launched per Polling Interval

host).

1 2 3 4 5 7 9
Average SD Average SD Average SD Average Sb Average Sb Average sD Average Sb
3 | 176.7 | 357 | 220.7 | 14.0 | 309.9 | 24.6 - - - - - - - -
o | 5 3004 363 | 2805 | 37.2 | 344.1| 42.0 - - 549.4 | 46.7 - - - -
<5
§ 7 |521.0 | 495 | 3350 | 373 | 3812 | 29.2 - - - - 816.0 | 86.7 - -
(@]
B 9 |1030.3| 46.8 | 4959 | 26.5 | 4548 | 333 - - 620.2 - - - 1129.5| 143.6
§ 11 |1452.3| 36.3 | 6385 | 28.6 | 496.7 | 48.1 | 596.9 | 49.9 - - - - - -
13 [1967.9| 68.0 | 821.1 | 37.4 | 590.6 | 61.9 | 605.9 | 58.9 - - - - - -
15 |2611.5| 71.8 |1084.2| 54.5 | 728.9 | 80.9 | 6475 | 746 | 779.3 | 48.0 - - - -

Table 5.2. Average polling time and standard deviation for GnG polling, for multi-hop MAs for
various network sizes and numbers of management domains (2000 bytes are collected from each

host).

5.4.2. Network Overhead Measurements

This section reports the results of a simple experiment that aims at measuring the network
traffic incurred when the management of a small set of devices is involved. The experimental
testbed comprises a PC that plays the role of the manager and 10 PCs in which a MAS server is
installed, simulating managed devices. We compare the performance of GnG polling (for
various network partitioning configurations) against that of GnS (for various data delivery

frequencies).

138

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

Figure 5.12. Network traffic incurred by GnG, GnS and RMI approaches as a function of the
polling intervals for data samples equal to (a) 50 bytes, and (b) 2000 bytes.

GnS GnS
RMI RMI (ping- (ping- Gns GnS GnG GnG GnG

clones (clones
(10PIs) | (100 PIs) | pong, 10 pong, (' \ (1 MA) (2 MAs) | (3 MAs)
Pis) 100 P1s) 10 Pls) 100 Pls)

Transmitted data on MAC layer, Kbytes (data sample: 50 bytes)

50 183 20 281 20 183 20 729 689 722

100 346 194 543 184 347 165 1459 1379 1443
o | 150 509 194 805 184 511 165 2188 2068 2165
S | 200 672 369 1067 349 675 309 2917 2758 2887
E 250 836 369 1329 349 838 309 3647 3447 3608
£ | 300 999 544 1591 513 1002 454 4376 4137 4330
=2 Transmitted data on MAC layer, Kbytes (data sample: 2000 bytes)
=] 50 3326 20 2788 20 2690 20 7640 4502 3558
£ | 100 6632 6518 5557 5243 5361 5224 15281 9004 7117
| 150 9939 6518 8326 5243 8031 5224 22921 13507 10675

200 13245 13017 11094 10467 10702 10428 30562 18009 14233
250 16551 13017 13863 10467 13373 10428 38202 22511 17792
300 19858 19515 16632 15691 16043 15632 45843 27013 21350

Table 5.3. Comparison of GnG, GnS and RMI-based approaches in terms of network overhead:
The volume of the transferred data on the MAC layer

In particular, network traffic is measured (by the Windump tool) for the cases that single
data samples comprise 50 or 2000 bytes. The performance of GnG polling is investigated when
employing 1 (flat management), 2 or 3 MAs. When considering GnS polling, data delivery
frequency can either be 10 or 100 Pls, i.e. 10 or 100 data samples respectively are returned to
the manager either through an RMI call or encapsulated into an MA state. Focusing to GnS
polling, data deliveries are performed either by the originally multicasted MAs, their clones or
RMI calls. The results graphically illustrated in Figure 5.12 are also analytically presented in
Table 5.3.

As expected, the presented results demonstrate a clear advantage of GnS over GnG polling
scheme, especially when the monitoring tasks execute for long time periods. The separating
gap is, however, reduced for large data samples (see Figure 5.12b). In both cases, flat MA-

based polling exhibits the worse performance amongst all alternative approaches. Regarding

139

5000 50000

4500 { 45000

4000 2 40000
8 ” L4
g
£ 3500 £ 35000
2 2
< 3000 < 30000 a”
8 S R
3 8
2 2500 S 25000 -
e e ot
& 2000 & 20000

1000 . 10000 4———= -

‘ B | 1 _‘/4.’3‘/
” | —————— — —
0% : : : : 0 : : : .
50 100 150 200 250 300 50 100 150 200 250 300
#Polling intervals #Polling intervals
—«—RMI(10PIs) 5 RMI (100 Pls) GnS - ping-pong (10 Ps) —+—RMI (10PI5) = RMI (100 PIs) GnS - ping-pong (10 Pls)
GnS - ping-pong (100 Pls) —— GnS - clones (10 Pls) —e——GnS- clones (100 Pls) GnS - ping-pong (100 Pls) —s— GnS - clones (10 Pls) —e——GnS - clones (100 Pls)
<-4 Flat (1 MA) GNG (2 MAs) GNG (3 MAS) <4<~ Flat (1 MA) GNG (2 MAs) GNG (3 MAs)

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

GnS polling, data deliveries through clones of the originally deployed MAs has been shown to
represent the most efficient approach. This conclusion agrees with the results presented in
Section 4.6.2, according to which our MA framework marginally outperforms RMI in terms of
network overhead when considering simple data transfers between a pair of hosts.
Furthermore, extra savings on GnS overhead may be achieved by applying more infrequent

data deliveries (every 100 instead of 10 PIs).

5.5. DISCUSSION

It should be already evident that the decision regarding the choice of the appropriate polling
scheme depends on a number of factors, such as the type of the monitoring task, response time
restrictions, the estimated task execution period, the physical distribution of managed devices,
etc. The following sections comprise an analytical comparison of the two polling schemes,

discussing the advantages and trade-offs associated with their employment.

5.5.1. GnG polling scheme

GnG polling represents an efficient management model in the case that real-time operations
are involved, namely when response time restrictions apply. Specifically, it has been shown
that for relatively large networks, applying logical network partitioning and letting a set of
MAs visiting their assigned nodes in parallel, may significantly improve efficiency in
comparison with both flat MA-based model (launching a single MA) or deploying an MA to
every device. In the latter case, each MA would typically be executing for a time negligible
with respect to its deployment time; hence, the agent deployment overheads would be

unacceptable for time sensitive applications [BOHOOb].

GnG polling also results in network overhead savings compared to the flat model,
especially when the amount of data stored within MAs state is substantial. When the
monitoring task is intended to run for a short time period, GnG polling may achieve network

traffic savings even over GnS mode.

GnG polling also relaxes the management station from processing bottlenecks that would
appear should GnS polling be applied for the management of a large number of NEs (in such
case, an equal number of MAs would be instantiated and launched, resulting in overloading the
manager platform). An invited side-effect of using a relatively small number of MAs is that
network capacity around the manager platform is not saturated by the simultaneous generation
and transmission of the agents, leading to more even utilisation of network resources. It should

be acknowledged though that flat management answers the two aforementioned problems

140

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

(manager overloading and management traffic distribution) more adequately, as only one MA

object is transmitted in every PI.

Furthermore, modifications of monitoring tasks are easier when employing GnG polling.
That is because the corresponding MA classes are updated on the manager station, with the
modifications taking effect on the PI following the update. On the other hand, when using the
GnS approach, MA updates are carried out through deploying the new version of the modified

MA classes; frequent modifications may result in a dramatic increment of network overhead.

Last, GnG polling may also reduce the utilisation of links connecting individual network
segments. If, for instance, a topology similar to the one illustrated in Figure 5.2 is considered,
the employment of GnG polling would allow the deployment of a single MA object
sequentially visiting all the NEs located within the remote subnet, before returning to the
manager station. If, on the other hand, GnS polling is employed, both MA deployments and
data deliveries will make use of the WAN link. Figure 5.13 depicts the number of MA transfers
over the WAN link for various GnG and GnS configurations. Clearly, when a large number of
NEs is concentrated in the remote subnet, GnS polling should apply infrequent data deliveries

to maintain low link utilisation (see Figure 5.13b).

1600 14000

1400 12000
5 remote devices 50 remote devices

1200

10000

1000
800 -/./././-/-
600

-/./ A/M 2000

400
200 /M 2000
e e e R §

10 40 70 100 130 160 190 220 250

8000

6000

MA transfers on the WAN link
MA transfers on the WAN link

#Pls #Pls

—o— Flat polling —=—GnG (2 MAs) GnG (3MAs) —x—GnS(LPI) —o— Flat polling —=—GnG (2MAs) GnG (3MAs) —x—GnS(1PI)
—x—GnS (5 Pls) —e—GnS (10 PIs) —+—GnS (100 Pls) —%—GnS (5 Pls) —e—GnS (10 Pls) —+—GnS (100 Pls)

Figure 5.13. Number of MA transfers over the interconnecting link required for the management
of a remote subnet including (a) 5, or (b) 50 devices

5.5.2. GnS polling scheme

GnS polling can be thought of as a natural evolution of the REV paradigm where the
uploaded MA code does not only represent a remote service, but can also act as a fully
autonomous software component. It is therefore particularly suited to programming and

dynamically extending the capabilities of network devices.

With respect to monitoring applications, GnS polling represents an attractive distributed

management model for off-line analysis of bulk management data. In particular, its use is

141

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

advantageous over GnG approach in cases that monitoring tasks are intended to run for
relatively long time frames. Since it performs MAs deployment only once, it practically
diminishes MA transfers through the network, reducing the associated traffic, given that data
deliveries are not very frequent. For certain classes of monitoring applications, when the
manager should be notified only on emergency situations, GnS scheme may reduce the
bandwidth usage even further as the manager is notified only when certain thresholds, referring

to performance metrics, are exceeded.

Furthermore, since management operations are performed locally, the polling frequency of
monitoring tasks can be increased (i.e. the Pl interval decreased) without putting any additional
strain on network resources. That would allow observing instantaneous fluctuations of network
& systems performance, providing more accurate statistics as the values of performance
indicators would not be averaged over long time periods. Increments of polling frequency
should however be regulated so as not to result in excessive consumption of system

computational resources.

5.6. SUMMARY

This chapter introduced two polling schemes that aim at answering the scalability problems
of flat MA-based management. Their implementation is based on the MAP presented in
Chapter 4. The two polling schemes complement each other, in the sense that they jointly

cover a wide range of monitoring tasks.

In particular, GnG polling is suitable for collecting on-line data and performing simple
control and configuration tasks on several NEs. Response time is minimised by employing a
number of MAs that travel within their assigned management domain, introducing a high
degree of parallelism in the data collection process. This method may also be preferable when
considering the management of remote LANs for short time range as it can reduce MA
transfers over the interconnecting links. Concerning the off-line analysis of management data,
we propose the GnS polling scheme. In this approach, MAs collect a larger amount of data
before delivering performance reports to the manager, leading to drastic reduction of MA
transfers. Hence, the selection of the appropriate polling scheme (and its associated
parameters), is a compromise between network overhead, response time, execution period, etc,
depending primarily on the type of management data to be collected. In both cases, semantic
compression of NSM data can be applied to further reduce bandwidth usage. The performance
analysis and results indicate a significant improvement in both response time and traffic

overhead when comparing the introduced polling schemes to flat MA-based polling.

142

Chapter 5: Two Complementary Polling Schemes for Improving Management Scalability

As a final remark, it should be emphasised that despite the improved scalability that GnG
and GnS polling schemes introduce over centralised and flat MA-based management, the
problem of managing remote subnets is not adequately addressed. Specifically, when
physically and geographically dispersed managed network topologies are involved, the
application of the two polling schemes implies a rather heavy utilisation of the interconnecting
links. The management system has therefore increased dependency on network resources,
whilst being prone to network failures. Furthermore, the manager station represents a single
point of failure, as it is still responsible for managing the entire managed network, regardless
of its size and topology structure. All these issues suggest that there is still space to further
improve MA-based management scalability and flexibility. Concrete ideas for achieving such

improvements are proposed in Chapter 6.

143

CHAPTER 6

ADAPTIVE HIERARCHICAL MANAGEMENT

6.1. INTRODUCTION

Contemporary large enterprise networks follow a hierarchical structure, spanning
applications, organisational and geographical boundaries. In order to cope sufficiently with the
unpredictable growth of the number of network devices, logical partitioning is being employed
as a design and deployment principle. Any of the following or a combination of these
partitioning criteria can be used: (a) physical distribution, i.e. partitioning based on the
‘geographical’ location of network elements (NE); (b) administrative subdivisions; (c)
grouping based on different access privileges and security policies; (d) performance-driven
network partitioning, e.g. aiming at evenly distributing traffic load among network segments.
The design of such networks’ management systems cannot escape that rule: the resultant

network clusters may be better managed by hierarchically structured management models.

However, there is a notable inconsistency between the topology of hierarchically structured
networks and the organisation models of emerging Mobile Agent (MA)-based management
frameworks, the majority of which insists on ‘flat’ architectures. That approach fails to solve
the scalability limitations of centralised architectures as it has been shown to result in increased
response time and network overhead (see Section 4.5). The situation seriously deteriorates
when considering management of remote LANS, connected to the backbone network through
low-bandwidth, expensive WAN links. In this case, frequent MA transfers are likely to create

bottlenecks and affect the overall management cost.

The response time part of flat management scalability problem is addressed by the
‘segmentation’ approach, i.e. Get 'n’ Go (GnG) polling, introduced in Section 5.2.1; this
scheme enables the parallel and therefore more time efficient data collection. The network

overhead problem is more efficiently addressed by the ‘broadcast’ approach, i.e. Go 'n’ Stay

144

Chapter 6: Adaptive Hierarchical Management

(GnS) polling, described in Section 5.2.2; this approach is not however suitable for real-time

operations or monitoring tasks whose execution is planned for short-time periods.

Geographically dispersed enterprise networks are more efficiently managed by hierarchical
management systems (presented in Sections 2.10 and 2.11) which obviate the need for
centralised Simple Network Management Protocol (SNMP) polling and localise management
traffic through mid-level manager (MLM) entities acting on behalf of the central manager.
However, existing hierarchical management solutions imply an inflexible and static definition
regarding the physical location where MLMs execute and the assignment of the managed
devices under their supervision (see Section 2.12). In other words, they are only suitable for
static network topologies but are not in step with the dynamically evolving topological and
traffic characteristics of large-scale enterprise networks. MA technology could provide the
means for enriching the functionality and improving the flexibility of hierarchical management
[MOU98a].

“ Manager Manager
Es»w(% s)
/{ »

< |

w L I g

Static Mid- \}[f= 1 =
Level Manager L
Remote L~AN4 Remote LAN;T/%'V }'
@L%f S5

ig] IO)|

<§k fiisini] E§y

@) ()

Figure 6.1. Approaches to hierarchical MA-based management

The concept of hierarchical MA-based management is not entirely new. In particular, two
approaches have been presented so far: (a) Use of static MLMs relying on MAs for the
network monitoring process [LI098, SAH98] (see Figure 6.1a); (b) Use of mobile MLMs
performing decentralised SNMP management [ZAP99] (see Figure 6.1b). The first approach
does not adequately address the flexibility limitations of proprietary hierarchical management.
Still, even the latter approach lacks mechanisms for achieving automatic adaptation of the
management system to changing network configurations, i.e. MLMs do not normally change
the location where they execute. This model also involves the deployment of a new MA for
each introduced monitoring task; these MAs work independently and do not necessarily
execute at the same host. However, this approach is not in line with the concept of a compact
MLM entity responsible for all the decentralised operations performed within its domain,
which in our opinion offers better grouping, organisation, manageability and control over
distributed Network & Systems Management (NSM) tasks.

145

Chapter 6: Adaptive Hierarchical Management

The aforementioned approaches have certainly realised a step forward, yet, their direct
application to distributed management is not straightforward. Critical issues such as well-
defined criteria for segmenting the network into management domains, explicit determination
of the domain boundaries or strategies for assigning mid-level managers to these domains, are
not elucidated. Although the problems that need to be solved have been identified, the rules
that define the mid-level entities’ deployment strategy, i.e. questions concerning when and
where to deploy, remove or change the location of mobile mid-level managers still remain
open. Furthermore, it is important to use MAs both as MLMs and for the actual monitoring
process in order to take advantage of their ability to filter management information at the
source. The development of a highly adaptive hierarchically structured MA-based management
model seems a rational approach to address these issues as well as to overcome the limitations

of statically configured NSM frameworks.

This chapter addresses these issues through introducing a highly scalable and adaptive
hierarchical management model. Such a model presupposes the presence of a novel
management element, termed the Mobile Distributed Manager (MDM), operating at an
intermediary level between the manager and the stationary agents. MDMs are essentially MAs,
which take full control of managing a specific network domain and localise the associated
management traffic. Apart from the fact that management functionality may be
added/configured at runtime, this architecture can also dynamically adapt to fluctuating
networking conditions. The system’s scalability is further improved by assigning monitoring
tasks to additional MAs (launched and controlled by the MDM) capable of filtering collected
data locally. MDMs are deployed to remote subnets according to policies defined by the

administrator.

The ideas introduced in this chapter have been originally published in the proceedings of
the 7" International Conference on Intelligence in Services and Networks (IS&N’2000), with
further extensions and implementation details published in the proceedings of the IEEE Global
Communications Conference (Globecom’2000). A brief overview is also included in a paper to
appear as an invited contribution in the Microprocessors and Microsystems special issue on
“Mobile Agent Technology: from first proposals to current evolutions”. An extended version
of the two conference papers has been submitted to Computer Networks journal. Full

references are given in Appendix A.

The remainder of the chapter is organised as follows: Section 6.2 describes and explains the
rationale behind our chosen hierarchical approach. Section 6.3 comprises the core of the
chapter, discussing the implementation details of the introduced architecture. The advantage of

the proposed model over non-hierarchical models is verified by a quantitative evaluation of the

146

Chapter 6: Adaptive Hierarchical Management

bandwidth usage, given in Section 6.4. The evaluation is complemented by experimental

results reported in Section 6.5. Finally, the chapter is summarised in Section 6.6.

6.2. HIERARCHICAL, MOBILE AGENT-BASED NETWORK MANAGEMENT

In search of more flexible solutions, this work aspires to push the concept of MA-based
hierarchical/distributed management much further. Specifically, we introduce the novel
concept of MDM, referring to a management component that operates at a level between the
manager and management agent end points. MDM entities are mobile objects that undertake
the full responsibility of managing a network domain, when certain criteria (determined by the
administrator) are satisfied. Upon being assigned to a domain, the MDM migrates to a host
running in that domain (Figure 6.2a) and takes over the management of local NEs from the

central manager.

As a result, the traffic related to the management of that domain becomes localised, as the
MDM is able to dispatch and receive MAs to collect NSM data from the local hosts (Figure
6.2b), or even execute centralised management operations upon them. The MDM continues to
perform its tasks without the manager’s intervention, even if the interconnecting link fails. A
first-line response can also be given to tackle trivial faults/alarms, with the manager being
notified only in case of a complex problem or emergency situation. In performance
management applications, only aggregated values and statistics are sent to the manager at
regular intervals, thereby diminishing the amount of data transferred through the WAN link.

The duration of these intervals is application-dependent and determined by the administrator.

Manager) Manager

I §ﬁ> / \\\
Remole LAN‘ \
s\ kas " /
\\ j » > ; g J

@ T (©)

Figure 6.2. Hierarchical MA-based management

The decision concerning the selection of the host where the MDM will carry out its
management tasks from, will be discussed in Section 6.3.6. It is noted that the management
domain assigned to an MDM entity may be confined to a single network segment or expand to

a larger set of hosts.

147

Chapter 6: Adaptive Hierarchical Management

The mobility feature of MDMs allows the network management system (NMS) adaptation
to network dynamics, optimising the use of network resources. Management functionality can
be downloaded at runtime, while this architecture can also dynamically adapt to changing
networking conditions. Namely, an MDM entity can be deployed to / removed from a network
segment in response to a change in network traffic distribution, or move to the least loaded

host to minimise the usage of local resources.

Notably, should the management domain assigned to an MDM comprises a large set of
nodes, scalability problems might arise if centralised or flat MA-based management are
employed for the data collection process. It is therefore important to further improve NSM
scalability by combining our hierarchical framework with GnG/GnS polling schemes. For
instance, MDMs can be easily coupled with GnG scheme: after deploying the MDMs to their
remote domains, these can launch sufficient number of MAs per polling interval (PI) to reduce
the overall response time. Alternatively, coupling the hierarchical model with GnS polling
would minimise MA transfers within individual domains, thereby reducing the localised traffic

volume.

The adaptive hierarchical management model is particularly suited to dynamically evolving
networking environments. Namely, when the administrators perform frequent changes on
network configuration, e.g. transfer network devices from one site to another or divide network
segments in two or more subdivisions by installing interconnecting devices (bridges, routers,
etc). The adaptability feature is also useful in cases that the manager platform is not
permanently connected to a specific network location. To illustrate, let us consider an
enterprise network comprising two separate segments, managed by a single manager
application, possibly running on a portable computer. Should the administrator disconnect that
computer from its current location and connect it to another site, the manager application might
consider (depending on the chosen management policies) re-organising the NMS, i.e. re-
defining the domain boundaries, terminating remote MDMs and deploying new ones to

different locations, etc. In the mean time, the management operation will not be affected.
Summarising, the proposed architecture meets the following design requirements:

» Load balancing: The total workload should be equally distributed among the various
processors of the underlying subsystems. MAs can take full advantage of the increasing
processing capability of network devices to achieve management intelligence distribution,
however that should not lead to exhaustive consumption of local resources. Therefore,
MDMs should be designed as lightweight as possible so as to have minimal footprint on

their hosting devices, i.e. they should be equipped with basic management functionality.

148

Chapter 6: Adaptive Hierarchical Management

= Fault-tolerance and robustness: MDM entities should be programmed in such a way so
that when detecting a failure on the inter-connecting link between their local subnet and
the manager's site or a failure on the manager platform itself, to continue performing their
decentralised tasks as normal. As soon as the communication channel is restored, all

management data collected in the meanwhile can be returned to the manager.

= Minimal intrusiveness: MDMs should be deployed at specific hosts so as to minimise their
intrusiveness in terms of the effect of management-related traffic on other applications and

the additional processing burden placed upon host processors.

= Dynamic adaptation: Topological and traffic characteristics of modern networks are
rapidly changing. A hierarchical NSM system should therefore be flexible enough to adapt
to those changes. Hence, the location where MDMs run is not fixed, neither is the set of
hosts under their control. MDMs can be transparently sent to a domain when the associated
cost savings are considerable or removed when their existence is no longer necessary.
They can also autonomously decide to move within their domain when the host processor

is overloaded and continue their operation on the least loaded node.

6.3. IMPLEMENTATION DETAILS

The hierarchical model introduced herein has been implemented as an extension of the core
MAP presented in Chapter 4. The following sections discuss in detail the implementation

aspects of the model.

6.3.1. Topology Tree and Topology Map of Active Devices

An important element of the hierarchical framework is the topology tree (implemented by
the Manager . Topol ogyTr ee class), a tree structure that comprises a representation of the
managed network, made available to the manager application. In particular, the topology tree
represents the underlying network topology, namely the individual subnets, the devices
physically connected to these subnets and the way the latter are interconnected. It also provides
information about the devices hosting active Mobile Agent Servers (MAS). Each of the
topology tree nodes corresponds to a specific subnet, with the node representing the manager

platform’s location being the root of the tree (see Figure 6.3).

The topology tree nodes are implemented by the Manager . Topol ogy Tr eeNode class

and provide the following information:
= the subnet’s name;

= the names of hosts and routers physically connected to this subnet;

149

Chapter 6: Adaptive Hierarchical Management

= aflag indicating the presence of an active MDM on this subnet;
= the number n, of local active hosts on this subnet;

= the number ny of active hosts on the subnet’s ‘subtree’ (the term subtree here denotes the
set of subnets located in hierarchically lower levels in the topology tree, including the

present subnet itself), hence ng >n, ;

= pointers to the upper level tree nodes;
= pointers to the next level tree nodes;

= a list of graphical components, each corresponding to a specific host, that will be made

visible on the topology map upon discovering an active MAS entity on that host.

Manager Station

Sub-network A |- %
ne

Sub-network B Sub-network C

Sub-network D

Figure 6.3. The topology tree structure

For instance, the number of active hosts in the subtree of Subnet A (in Figure 6.3) will be:

Ns subA = NisubA T NssubB + Ns subc = M suba T M subB + M subc + M subD (6-1)

All the information related to the managed network described above, is given to the
manager application upon its initialisation, through parsing the “network configuration” file,
described in Section 4.4.1.1. That file does not include activity status information, which is
automatically discovered. For each file entry, a new Topol ogyTr eeNode is created and
inserted into the topology tree. In particular, its ‘parent’ (upper-level) subnets are located and
then the next-level pointer of the parent nodes as well as the upper and next-level pointers of

the inserted node are updated.

1 A Topol ogyTr eeNode may have more than one ‘parent’ nodes. This is certainly inconsistent with the
definition of tree structures (as found in graph theory textbooks), hence, the use of the term ‘tree’ herein is
abusive.

150

Chapter 6: Adaptive Hierarchical Management

As discussed in the following sections, the topology tree plays a crucial role when the
manager application needs to make a decision on which subnets require the deployment of an
MDM entity.

|'|||I|ll Deaicsn | opeibeas Hap

1l
mueghl | pomEs mc gk - 8
! i b Ein Uk
i 1 2 e
¥
Ty,

]

] et ok | Ll

L =
—y i B s R
I

[T R TEe T

Figure 6.4. Topology map GUI

The topology tree is visually represented by the topology map Graphical User Interface
(GUI), implemented by the GUI s. Topol ogyMap class; that is a graphical component of the
manager application used to view the devices with currently active MAS servers. Managed
devices are graphically illustrated with different icons depending on their hardware platform
(PCs, workstations, etc). The topology map is updated at real-time when a new MAS is
initialised or an existing one terminates. Such events are detected by the manager’s Network
Discovery thread, as discussed in Section 4.4.1.1. A snapshot of the topology map is shown in
Figure 6.4.

6.3.2. MDMs implementation

The functionality of MDM entities is defined in the MCode. MDM class. As already
mentioned, MDMs are essentially mobile objects. Namely, the MDM class extends the
MCode. MA ‘superclass’, which defines the basic properties required to implement mobility
characteristics (see Section 4.4.1.2). Yet, MDMs also act as remote managers. However, due to
a limitation of Java programming language which does not support multiple inheritance, i.e. it
does not allow a Java class to subclass two separate ‘parent’ classes, MDMclass cannot extend

the Manager . Manager class. For that reason, the Manager . Manager | nt er f ace has

151

Chapter 6: Adaptive Hierarchical Management

been implemented. As its name suggests, Manager | nt er f ace is a Java interface? including
the definitions of a number of abstract® methods. Both Manager and MDMclasses implement
the Manager | nt erface in addition to the j ava. util . Cbserver interface, which
allows them to receive events notifications from the MAG tool4, when an existing Polling

Thread (PT) configuration is modified by the administrator.

MDMs deployment involves the transfer of the MCode. MDMclass and also a number of

classes that assist the MDM in performing its decentralised NSM operations. These include:

= the Manager . PT class, which controls the execution of specialised monitoring tasks
already defined by the administrator and the Manager. PTC class, whose instances

comprise descriptions (configurations) of the PTs;

= the MCode. Dormai nMbni t ori ng and MCode. Rl class which, as described in Section
6.3.6, are responsible for checking the utilisation of the hosts located within the MDM's

domain and ensuring that the MDM executes at the least loaded host;

= the RM . MdnRm Ser ver class, implementing the MDM’s RMI server which enables the

communication between the manager and the MDM.

All these six classes are packaged in a jars file whose size is 23.4 KB. The jar file is sent
along with an MDM object carrying information about its assigned domain (e.g. the names of
the managed devices located therein) and descriptions of the management operations it will
perform. Upon arriving to a remote host, the MDM first starts its RMI server and then registers
itself to the manager application (the regi ster MDMTOMAG) method of the
Manager Rm Ser ver class is invoked). The registration process is necessary in order to let
the manager know the MDM’s current location and also to subscribe to events generated by the
MAG tool whenever a PT configuration is modified. MDM’s registration process comprises

two phases: first, the MDM passes its current location IP address to the

2 Interfaces are defined similarly to classes, but include only declarations of methods. The designer of an interface
declares the methods that should be supported by classes that implement the interface and what the functionality
of these methods should be. Interfaces represent a powerful mechanism that helps to achieve many of the
advantages of multiple inheritance, without its problems [ARN96].

3 Methods declared as abstract can be defined either in abstract classes or interfaces. Their implementation is not
supplied; the classes extending the abstract class or implementing the interface are enforced to provide specific
implementations of the abstract methods [ARN96].

4 The Manager . MAGclass extends the j ava. uti | . Qoser vabl e class. An observable object can have one or
more observers (objects implementing the j ava. uti | . Cbserver interface). When an observable instance
changes, the Cbser vabl e'snot i f yObser ver s() method is called, causing all its observers to be notified of
the change by invoking their updat e() method [ARN96].

5 The Java Archive (JAR) file format enables bundling multiple files into a single archive file. Typically, a JAR file
contains the class files and auxiliary resources associated with applets and applications. The JAR file format
provides many benefits, namely security, decreased download time, compression, portability, etc [JAR].

152

Chapter 6: Adaptive Hierarchical Management

Manager Rm Ser ver object. The latter will then use that address to obtain (again through
RMI) a reference of the MDM object, which in turn is added to the MAG's list of observerse.
When an event is generated (a PT configuration is updated), the MAG will automatically
propagate the event to all the observers (i.e. the manager application and the remote MDMs),
which in turn will adjust the operation of the updated PT. The event propagation is completely
transparent to the user, who does not have to be aware of the remote location where MDMs

execute.

Upon successful registration, the MDM instantiates the Donai nMbni t or i ng object and
starts the execution of the PT threads. Likewise, before migrating to another host, the MDM
first enforces executing PTs to return their collected data to the manager, suspends the
execution of the PTs and unregisters itself from receiving MAG's events (through invoking the
r enove MDMFr onVAG() method of the Manager Rm Ser ver class).

6.3.3. MDMs Deployment Policies

A key characteristic of our hierarchical framework is its dynamic adaptation to changes on
the managed network. The structure of the proposed model is not rigidly configured, as MDMs
may be dynamically deployed to specific network domains, given that certain requirements are
met. Specifically, the administrator may explicitly set (through the GUI shown in Figure 6.5)
the policies that define the hierarchical NMS operation, i.e. specify the criteria that should be
satisfied for deploying an MDM to a network segment. The settings customising the operation
of the hierarchical management model are stored in an instance of the

Manager . Hi er ar chi cal Set ti ngs class.

In general, the deployment of MDMs may conform to either of the two following policies:
= Policy 1: the population of remotely active managed devices.

= Policy 2: the overall cost involved with the management of a remote set of devices.

When applying Policy 1, the administrator specifies the number of remote managed NEs
that will justify the deployment of an MDM to a particular network segment. This number may

either denote n; or ng (see Section 6.3.1). If, for instance, the specified number N denotes the

6 Dividing the registration process in two phases was necessary. Namely, it would not be possible to simply pass an
instance of an MDM object and append it to the observers' list. That would presuppose that the PT objects
controlled by the MDM would be serialised (when a method passes an object's instance through RMI, the object
is actually serialised and so are the objects referenced by the serialised object). However, that would not be
feasible as Java threads cannot be serialised. To get around this problem, the r egi st er MDMToMAG() method
obtains a reference of the MDM object. It is the MDM's reference that will be added to the MAG's observers list.
Thus, when a MAG event is generated, the MDM's updat e() method will be basically executed at the remote
host where the MDM is running and the PTs vector is maintained. Through this programming trick, i.e. by
registering a reference and not an instance of the remote MDM, we obviate the need for serialising the MDM
object.

153

Chapter 6: Adaptive Hierarchical Management

population of the examined subnet’s local devices n, an MDM will be deployed to every

network segment S with n,; g >N ; the boundaries of the domain assigned to the MDM will

then be limited to that segment. If, on the other hand, N denotes the active hosts on the subnet’s
‘subtree’ n;, the domain assigned to the MDM will include all the active hosts located within
the examined subnet’s subtree, excluding the hosts already assigned to another MDM. The
MDM will initially migrate to the least loaded host included into its assigned domain (this
issue is discussed in detail in Section 6.3.6).

When the population of NEs directly managed by an MDM exceeds a certain limit, that
domain will be divided to two independent domains, with another MDM undertaking the
management of the second domain. In particular, the remote MDM will be instructed to create
a clone of itself (through invoking the cl one() method of the j ava. | ang. Obj ect class).
The original MDM will pass to its clone information regarding its assigned domain, before
dispatching it to a new location. The cloning approach is preferable than deploying a new
MDM from a central location, as it reduces the deployment time in addition to saving the

network overhead associated with the deployment process.

Er:n:hmullm; ikee Husnmcdhcal Mamagemenl Spziem zeitingz

[+ Ercabiie iienanchical Neiwo i Sanapemen Selirgs

@ Humbar of remole acive managed devices
Deployment of MOMs will depend an:
& Owerall marcagement cosl

Talerarsce facior for resinclng MDOMs ascllation 00-1) IIHE CPU usage waight (1) ||].H
MOMs ilephoamneint dapoident on the nisnbier of deecan;

Mumriber of pemote aclive managed devices mgaenng e deplovment of an WO | L i

This numiber wil inciude. |The number of aciwe devices on a segmant's “subtree” j

FOEs deployment dependent on mansgemenl cost:

-
-

—1
-

Failt 1ndef aNCA INRC anS

(@ \Owerwrite least recendy cobetled data

(™ Reduce polling reque ncy |£ i tres

Figure 6.5. GUI for customising the hierarchical NMS policies

Lpan detecting & networkdmanager falurs:

Accordingly, when the number of NEs managed by an MDM is reduced so that the
requirements that originally triggered the MDM’s deployment are no longer met, the manager

154

Chapter 6: Adaptive Hierarchical Management

application might consider of merging two or more management domains. Specifically, it will
request an MDM to assign its managed devices to a neighbour MDM and subsequently

terminate its execution.

When applying Policy 2, the management cost may either be: (a) proportional to the inverse
of link bandwidth (a link with low bandwidth implies higher cost than a high-speed link), or
(b) manually specified. It should be noted that Policy 2 is not implemented in the current

prototype.

6.3.4. MDMs Deployment Implementation

Upon discovering an active MAS module, the topology tree is scanned to locate the
corresponding host and the subnet where the host resides; the host’s icon is also instantly made
visible on the topology map. Following that, the number n, of active hosts on that subnet is
increased by one and subsequently, through following the pointer to the upper-level nodes, all
the topology tree nodes up to the root are traversed and their number ng of subtree nodes is also
updated (increased by one). A similar procedure is followed when a MAS server is being shut

down.

Traverse the branch
including node S up
to the root updating

ns s for each node S7%

Wait for an MAS
server activation

Prepare to
traverse the

Discovered a topology tree

new MAS?

ﬂ Visit next subnet S

Make the host icon
visible on the
topology map

'

Find the topology
tree node S
‘including’ the
discovered host

Deploy an
MDM to S

‘ Update nt and n }7

Figure 6.6. MDMs deployment algorithm (an MDM is deployed to each subnet including at least
N active MAS servers).

155

Chapter 6: Adaptive Hierarchical Management

The discovery or termination of a MAS server triggers an event at the manager host. The
topology tree is then scanned with the subnets that meet certain requirements (determined by
the Hi er ar chi cal Setti ngs object) added to a list. In case that ‘Policy 1’ is employed,
referring to the policies listed in the previous section, that list will include the subnets with n
or ns (depending on whether the MDMSs deployment is a function of the active devices running
locally or in the whole subtree) greater or equal to the specified constant N. If ‘Policy 2’ was
employed, the cost corresponding to the management of each subnet would be evaluated and
the list of subnets created accordingly. Ultimately, an MDM will be deployed to each of the
subnets included in the list. The MDM deployment algorithm is illustrated in the block
diagram of Figure 6.6, for the simple case where an MDM is deployed to each subnet including
at least N active MAS servers.

ERl Polkng Thiesds Delivery Fiequencies

Pallirsg Thresd | Trpe | Crsiremry Frequency
pinDalrvemdvsFacesad | HeathFuncansEvaluatar 10|
pinysDiscaded HeathFuncionsEvaluator 10|88
plia arda dva Sen b e il F i G s E sl 1] ﬁ
ERoueTabla SnmpTabiaPolar 14 |58
Tesling SnmpTableFiBerer | 0 {5
Tesbngl SnmpTableF iR 10 |5
AnErmoiFahe SnmpTaklaFiRerar 15 &=
FTableFitarer AnmpTablaFiRare 3 ﬁ
pAddr TablePaller anmplableFoler 110 [
W:pConnStabaFimena AnmpTablaFiReras T |
*pCannTabla SnmpTablaPolar 1 |
fTableFoiler SnmpTabieFoler 3 E
L ILJ

Figure 6.7. Adjusting PTs delivery frequency

Certainly, the set of management tasks already performed by the manager on these subnets
will need to be conveyed to the MDM deployed therein. This is achieved through sending
existing Polling Thread Configurations (PTC) along with the MDM. PTCs functionality has
been described in Section 5.2.1.1. The reason for uploading the PTCs rather than the actual
PTs is that the latter cannot be transparently transferred along with the MDM retaining their
execution state, as Java does not support threads serialisation/deserialisation’. On the other
hand, PTC objects are serialisable. Upon its arrival at the remote subnet, the MDM instantiates
the PTs using their corresponding configurations, encapsulated into the MDM’s state. PTs will
thereafter start performing their tasks without any further disruption of the management
process. Individual PTs are responsible for periodically delivering their collected data to the

manager. The delivery frequency of monitoring tasks can be remotely adjusted by the

" Thej ava. | ang. Thr ead class does not implement the j ava. i 0. Seri al i zabl e interface.

156

Chapter 6: Adaptive Hierarchical Management

administrator, through the GUI shown in Figure 6.7; changes in delivery frequencies are
communicated to the PTs through invoking the updat e() method of the MInRni Ser ver
class. It is noted that PTs are not aware of whether they operate under the control of the
manager application or an MDM, as both Manager and MDM classes implement the

Manager | nt er f ace. That enables a flexible design and maximises code reuse.

6.3.5. MA Code Distribution Scheme

A key feature of MA-based NSM frameworks is their ability to dynamically customise
management services. Our hierarchical model should therefore ensure that new NSM services
(implemented by specialised MASs) can be introduced/updated at runtime, even post MDMs
deployment. However, that should not affect the framework’s performance, which primarily
depends on the size of travelling MA entities. In a typical Java-based MAP, both the MA code
and state are required at the destination to instantiate the received MA objects. Nicklisch et al.
[NI1C98] identified three alternative agent code transfer schemes: (a) “push”, (b) “pull” and (c)

“migrate” (see Section 3.6.1.3).

The majority of MAPs proposed for management applications [KU97, ZAP97, COR98a,
BEL99, SAH98, SUS98], with the exception of [SOA99] and [PULO00a], involve transfer of
both the MA’s code and state on each migration, namely they employ the “migrate” approach.
In Section 4.4.1.4.1, we have described a code distribution scheme implementing the “push”
scheme; i.e. bytecode is distributed at the MA’s construction time with only the state
information transferred thereafter, resulting in a much lower demand on network resources.
The “migrate” code distribution scheme offers a better starting point in terms of the associated
network overhead, since the bootstrapping procedure described above is not required.

However, it is outperformed by the “push” approach, after a small number of Pls elapses.

The introduction of the hierarchical management model reduces the code distribution cost
even further by adopting a “tree multicasting” approach. In particular, MA bytecode
distribution takes place in two successive phases. In the first phase the MAs bytecode is no
longer multicasted to all managed devices as in the flat model (see Section 4.4.1.4.1.), but
instead distributed to the MAS entities local to the manager segment and also to all active
MDMs. The latter will then forward the received bytecode to their supervised NEs (see Figure
6.8). Should a remote domain including N hosts connects to the manager site through a low-
bandwidth link, the tree multicasting approach will considerably decrease management cost as
bytecode is transferred only once (instead of N times) through the interconnecting link. The
execution of the monitoring task implemented by the uploaded MA class is started
immediately by a dedicated PT, instantiated by the MDM for this purpose.

157

Chapter 6: Adaptive Hierarchical Management

| Manager |

Remote LAN 4| » e
\\ i ” g I/
\‘ p // D: bytecode

Figure 6.8. MA bytecode through “tree multicasting”

6.3.6. Processing Load Balancing

Although MDMs have been designed to be as lightweight as possible, they cannot avoid
consuming memory and processing resources on the NE where they execute. The framework
should therefore be sufficiently flexible to allow MDMs to autonomously move to another
host, when their current hosting device is overloaded, to provide more balanced distribution of

the overall processing load.

This is accomplished through the regular inspection of the domain’s NEs, in terms of their
memory and CPU utilisation: an MA object, termed Resource Inspector (RI), implemented by
the MCode. RI class, is periodically dispatched (by the Domai nMoni t ori ng thread) and
visits all the local devices obtaining utilisation figures before delivering the results to the
MDM. Host load figures represent their average load over relatively long time windows to
avoid sensitivity to temporal utilisation peaks. If the hosting system is seriously overloaded,
compared to its neighbouring devices, the MDM will transparently move to the least loaded
node. In the example depicted in Figure 6.9, a RI object sequentially visits all the managed
devices in the MDM's local domain. At each host, the RI obtains the average CPU & memory
load values during the last interval, keeping track of the least loaded device (in this example
that will be Host D). Finally, the RI reports its results to the MDM, which in turn transparently
migrates from Host A to Host D after informing the manager application about its decision.
The correct and reliable operation of the MDMs transparent location change has been verified
by overloading an MDM’s hosting device (through launching several memory-consuming
applications and running heavy background jobs), thereby enforcing the MDM to migrate to a
least loaded host.

158

Chapter 6: Adaptive Hierarchical Management

Bl] cPu:28% s

L L] | Mem: 14% B cpru:49%

L] [Mem: 18% 5

W

|

.ﬁ.\\ Inform the
]
=

il

EEINIEIENE] CPU: 78%

EEEEE Mem: 65%

Figure 6.9. Obtaining host load profiles by a Resources Inspector MA object

MDMs are prevented from continuously oscillating between different hosts through
adjusting the value of the tolerance factor, 0< t; < 1. Assuming that an MDM executes on a
host x, with average utilisation Uy, the MDM will consider migrating to another host y only if
its utilisation is Uy < (1 - t;) U,. If for instance, t; = 0.2, the MDM will not migrate to y unless
its utilisation level is at least 20% lower than that of x.

A host’s average utilisation Uy is a linear function of the CPU and memory usage, i.e.

U, =axCPU, +bxM,. In particular, the administrator determines through the GUI shown

in Figure 6.5 the weight a that CPU usage CPU, will have on the evaluation of the aggregate

host utilisation, where 0 <a <1. The weight of memory usage M, will thenbe: b=1-a.

The MDM notifies the manager application about its new execution location before the
actual migration occurs. Should the manager attempt to contact the MDM while the latter is
still moving, an exception will be thrown and a new attempt to contact the MDM will take
place after a specified interval; in the meanwhile, the MDM arrives at its new hosting device
and is capable of receiving manager’s messages. The location where the MDM executes is
indicated on the manager's topology map through a label displayed next to the MDM’s hosting

159

=2 manager station

o

=7

Chapter 6: Adaptive Hierarchical Management

device icon. Location changes trigger real-time map updates. For instance, Figure 6.10
illustrates two snapshots of the topology map before and after the migration of an MDM from

esedb9.essex.ac.uk to esedb12.essex.ac.uk host.

M= B

[EiActive Devices Topology Map -

‘ |
L1
= |
esedhl.essenac.uk | =
o esedhd essexac.uk
i
esedbl? essexac uk
[
1 I | |
w2 [] esedbllesserac Lk | L4
= [=
-|_...| E i N AN q_!_i . esedhd.essenac.uk

wih i da gk acts essexac uk

Figure 6.10. Hlustration of an MDM location change on the manager’s topology map

6.3.7. Resources Monitoring Tool Implementation

In order to obtain devices’ load reports we have built a Resources Monitoring Tool (RMT),
developed in C, able to accurately measure the CPU and memory usage. On Windows
platforms, low-level functions of the Win32 API®¢ [Win32] have been utilised, whereas

standard Unix commands are executed under Solaris.

The integration of this tool with the MAS application, developed in Java, is achieved
through the Java Native Interface (JNI), discussed in Section 2.7.1.1. The JNI allows Java code
running within a JVM to inter-operate with applications and libraries written in other
languages, such as C or C++. JNI is used to write native methods to handle situations where an
application cannot be written entirely in Java. The steps required to achieve the integration of
Java and native programs are described in [JNI]. The Java front-end (methods) accessed by
incoming RIs provides them a uniform interface onto the local resources, whilst hiding the

underlying architecture, i.e. the native methods implementation.

Snapshots of hosts” load profiles are taken in regular intervals. The duration of these
intervals, termed observation periods O,, should be carefully specified: O, should be long
enough to avoid sensitivity on sporadic load peaks and, at the same time, short enough so as

not to omit potentially prolonged increments of processing load.

8 The Microsoft Win32 API provides building blocks used by applications written for Microsoft Windows NT,
Windows 2000, and Windows 95/98. Among others, an application using Win32 functions is able to manage
system objects such as memory, disks, files, and processes.

160

Chapter 6: Adaptive Hierarchical Management

RMT - C Program RIA - Java Program

JNI call
Start Start

Enumerate PIDs |<— | Check operating system |

v

Open and obtain a handle for each
process p;

v

Open and obtain a handle for each Yes WinNT?
process p;

v

Get the name of each p;and its kernel
and user time since startup JNI call

v

Calculate the overall execution time for
each p;since startup

v

Store currently active processes info in
newPr ocs, sorted in PID order

v

Calculate the execution time of each p;
over the last O, by comparing
newPr ocs and ol dPr ocs arrays

v

Calculate the CPU usage of each p;over
the last O,

v

Calculate system’s overall CPU and
memory usage over the last O,

v

| Copy newPr ocs to ol dProcs |
| Return CPU and memory usage to RIA I

v
| Sleep for an O, l—

Figure 6.11. RMT and RIA operation

The operation of the RMT tool is only briefly described in the following (a detailed
description would be beyond the scope of this thesis): RMT’s execution is started and
controlled by the Resource Inspection Application (RIA) of the MAS server (see Section
4.4.1.3.7), defined in the MAS. RI A class. A RIA thread is created and started upon the MAS

161

Chapter 6: Adaptive Hierarchical Management

initialisation. First, RIA checks the identity of the underlying operating system?. Should RIA
runs on a Windows platform, the RMT tool is initialised through a native call and starts

monitoring the local resources usage (in time intervals defined by the O).

In particular, RMT periodically executes the EnunProcesses() function [Win32],
which returns an enumeration of active system process identifiers (PID). Then, for each
retrieved PID, the QpenProcess() is invoked, opening and returning a handle to the
process object p;. Handles are used as process references to obtain the process name
(Get Modul eBaseNane() function) and also the process creation and execution time,
through calling Get ProcessTi mes() function. In particular, when invoking the latter
function at instant t,, it returns the time period that process p; has spent executing in kernel

Kp 1, @nd user mode U, since system’s startup.

p

The overall process execution time T, is then calculated (T, =K/ . +U,).

Pi tn

Individual process memory usages M are also found through calling the

Pi
Get ProcessMenoryl nfo() function. The information referring to currently active
processes is stored in newPr ocs array, sorted in PID order. The execution time of each
individual process over the last O, is then calculated, by using the information stored in
-T

newPr ocs and ol dPr ocs! arrays: T 0, = oy The CPU usage of p; is then

T Pi tn pi t

T,
easily found: CPU b Op = Pi ’O% . The aggregate system and memory usage can be
P

evaluated by summing up the individual process CPU and memory usages:

CPUo, =ZCPUpi’Op Mo, :ZMpi :
I I

Finally, the contents of newPr ocs array are copied to ol dPr ocs and RMT delivers a
system resources report to RIA through a JNI call. RMT then “sleeps’ for a time period equal
to O, (the Sl eep() function is called) before resuming execution and repeating the procedure
described above. RMT and RIA operation is illustrated in the block diagram of Figure 6.11. An

overview of the process enumeration procedure is given in [Win32Enum].

% This is achieved through simply examining the value of the local system’s file separator (the
get Property(“fil e.separator”) method of the j ava. | ang. Syst em class is invoked). The file
separator is ‘\’ for Windows systems and */* for Unix systems.

10 newPr ocs array contains a set of records, each of which corresponds to a specific process p; and includes its
PID, its overall execution time since system’s startup Tpi t and its memory usage M b - The information stored

in newPr ocs array refers to instant t,.

11 ol dPr ocs array stores similar information to newPr ocs, but refers to instant t,.;, where t,-t,.;=O,.

162

Chapter 6: Adaptive Hierarchical Management

Bl windewa MT Tack Managa

[Fie Opborn thew Hele
Apphcabiors [Procemss || Pasorrsncs |
irraagm Harea | PO cPu| P Torw | Menizage|]
et e 154 oo [T [RAL
HODEAGRT EXE 168 1] (31 0] il
dasghod s 7 o HOH0n oK
E<FLOFER EXE 182 iLi] [19LERy| 7441
hpEITd P 1Kl L] L) igd] e
FEMTHT EXE 195 m O 123K
aiphe xm 197 L] oz i rrd
EEPUIHE B TH 1] L0y s] TAHE
HTWDid E=E am o [RCEL] WK
rararel pm] [T]
AR m L
i iy 4] 1] Don HE
PATLET 4 M nd i [HDOHDE E1ZF
054 E-F 214 o RN K
Tervgeee il wn F4E] oo (IR IR i) Tad |
dszmal g Fak] L[] [HHIN il
nizial pes == oo HOH0n =18
P TH E4E m oo (3L 1] ok
IMSTHEHE L=X 2 L]] LHIAE T E ll
Erd Procam |
Frocarzes 43 CPU Lleaga: 13% Biarn, Livaga: 100158F, F 2555E0K

Figure 6.12. The Windows NT Task Manager

The C file implementing the procedure described above, along with the accompanying
header files are compiled creating a library (DLL) file. That library, along with psapi . dl |
file which includes the implementations of the Win32 API functions comprise the RMT tool,
representing an overall size of 100Kbytes. Among the existing Windows operating systems
family, the current implementation of the RMT supports only Windows NT platforms;
however, as claimed in [Win32Enum] only minor modifications are required to extend its
support to Windows 95/98 and 2000 systems. In general, the RMT tool provides information
very similar to that provided by the Windows NT Task Manager application (see Figure 6.12).

Regarding Solaris operating systems, the standard UNIX command ps -au is periodically
executed. That command prints the list of active system processes along with their PID, CPU
and memory usage, startup time, etc. The command’s output is captured and subsequently
parsed in order to obtain the host’s CPU and memory utilisation following a similar approach

to the one described for Windows platforms.

In addition to assisting MDMs to locate the least loaded host within their management
domain, RMT can also be utilised to provide user reports, describing the load profile of a
remote host. This can be achieved through simply right-clicking on the host’s icon on the
topology map (Figure 6.13a). The administrator then selects the kind of system resources

information he/she is interested in (Figure 6.13b). The user’s request is subsequently sent to the

12 Operating system-specific commands can be executed by a Java application through calling the
exec(<command>) method of java.lang.Runtime class. exec method returns the process
(j ava. | ang. Process) handling the command’s execution. The command’s output can also be captured
(through the get | nput St r ean{) method of j ava. | ang. Pr ocess) and subsequently parsed.

163

Chapter 6: Adaptive Hierarchical Management

remote MAS server (as a Manager. Report Descri pti on object). In particular, the
MasRni Ser ver’s get Resour cesReport () method is invoked (see Figure 4.14), with

the returned information displayed in the GUI shown in Figure 6.13c.

[e camriiced S priven Fogramcen inda

® Gl s el B Sy Ao Ciri o
@ Oy Sty RS P b i - |TI .
: | AT P S S T
.-!_ll_ _!’l + Ogonsimg Syl em o Dhwmnall Syst o Mirrery
e Mk S N v civmage) v all (P s+ Aveilabin Syadom Moy
[T T e ——

sapdni o e

L 1" 18 ol s I
=,
T SRR SRR ¥ B Aciear Procrsss w Pppcs TP Lhaages
R p—— ¥ Pt wcs et I Eirics g Tris
.-...J i . B i 1 | Nl | e ¥ PO s M " % i aris Mg meg Farsss
v PTorEes Os PN i BTy L

S e o

(a) (b)

Ellpl.r-“. ek U ppge Heport bor socly. senen. a0 gk
Ketam Processes Rilfonmatan Table:
Wear Mame| Process | FID | CPU %) | S1aniup Tims| CPL Time| wam Liaga
[l Augshacivp . |95 (03 144003 0100 1072 K
Pl ava-Djav., 9634 |01 143134 0104 14037 K
rzal [teman| (9787 |04 124371 (040 1152k
DI -iesh T 00 1410630 010 1076 K
il sh 968 |00 181065 010 1823 K
] minfcsh . (9638 |00 143133 |00 1036 K
el snmpd -p (9BH (00 1831324 (00 B0 K
Operaling System: Solerts 251 Unerall Sysiem Memong: 123951 K
FProcesses: i Frazilabile Sysiem Hnmerg: 12503 K
ifevesragel CPU L 0% dipwraraga) Mameny Usage: 14 %

©

Figure 6.13. Obtaining on-line resource usage reports from remote devices

6.3.8. Manager-MDMs Communication

One of our framework’s key advantages is that it considerably reduces the amount of
information exchanged between the manager platform and the managed devices. This is due to
the introduction of the intermediate management level, realised by dynamically deployed
MDMs. However, that does not obviate the necessity for bi-directional communication

between MDMs and the manager host. Java RMI [RMI] has been chosen for implementing the

164

Chapter 6: Adaptive Hierarchical Management

communication bus between the distributed MDMs and the manager host, due to its inherent

simplicity and the rapid prototype development that it offers.

In particular, the RM . Manager Rmi Ser ver class is used to pass information to the
manager, while the RM . MinRmi Server class has been implemented to enable
communication in the reverse direction (see Figure 6.14 for an overview of its methods). In the

MDM-to-Manager direction, we have the following information flow:

= delivery of data reports generated through filtering raw data collected from local devices
(these data have been obtained by MAs launched by the MDM’s PTs);

= registration of the MDM to MAG’s events;

= notification of the manager prior to an MDM’s migration to another host.

public boolean terminate () {} // Requests the MDM to terminate its execution
public boolean move (String host) {} // Requests the MDM to migrate to another location
public boolean clone() {} /* Requests the MDM to create a clone and share the management
responsibility of its assigned domain with it */
public boolean deliverData () {} // Requests the delivery of collected data from all running PTs
public boolean addPT (PTC configuration) {} // Uploads a new PT configuration
public boolean removePT (String PTname) {3} // Requests the disposal of an existing PT
public boolean update (String PTname, PTC newConfiguration) {} /* Updates an existing PT
configuration */
public boolean addManagedDevice (String host) {} /* Add a new host to the MDM's list of
managed devices */
public boolean removeManagedDevice (String host) {} /* Removes a host from the MDM's
list of managed devices */
public Vector getManagedDevices () {} // Returns the MDM's list of managed devices
public void returnDataFolder (String PTname, String MaSeqNum, Vector data) {} /* Invoked by an
MA with sequence number MaSegNum, which returns its collected data
to the PT that originally launched it */

Figure 6.14. The methods of the RMI.MdmRmiServer class
On the opposite direction, the manager may:

= request the MDM to terminate its execution, move to another domain or create a clone of

itself to share the management responsibility of its assigned domain;
= request the MDM to enforce its controlled PTs to deliver all their collected data;

= upload at runtime additional management services (PTCs) or request the termination of an

existing one;
= update an existing PT configuration;
= add/remove a NE from the MDM’s list of managed devices;

= obtain the list of the MDM’s supervised devices.

165

Chapter 6: Adaptive Hierarchical Management

6.3.9. Fault Tolerance

A key motivation for the development of the introduced hierarchical model has been to
minimise dependency on network resources and exploit MAs ability of acting autonomously,
without the manager’s intervention. Hence, MDM entities have been designed so as to tolerate
failures on the interconnecting links between their local subnets and the manager's site or on
the manager platform itself. Such failures are typically detected when MDMs attempt to return
aggregated results back to the manager. Upon detecting a failure (an exception is thrown when
the data transfer cannot be completed), they continue to perform their decentralised tasks as
normal while periodically checking for the status of the link and/or the manager. As soon as
the communication is restored, all management data collected in the meanwhile are returned to

the manager.

Certainly, in case that a large number of monitoring tasks are controlled by the MDM and
should the interruption of the normal communication flow between the MDM and the manager
be prolonged, the MDM’s size will significantly grow. That may in turn have a serious impact
on the MDM’s hosting device resources. Hence, in order to maintain control over the growth
of the MDMs state, the administrator may choose (through the GUI shown in Figure 6.5)
between the following models: As soon as an MDM detects the failure it will either (i)
overwrite the least recently collected management data by keeping only the latest acquired
values, or (ii) reduce the polling frequency of the individual monitoring tasks so that the
management data accumulation rate will decrease. The reliable operation of the fault tolerance
mechanism has been verified by creating ‘artificial’ failures on the manager host, i.e. by

shutting down the manager application and restarting it after an MDM detected the failure.

Future extensions will also cater for faults on MDMs hosting devices: The manager will
periodically check the status of the devices where MDMs currently execute. Should a hosting
device fails, the manager will automatically deploy another MDM to a ‘healthy’ host to take

over the management of the remote subnet.

6.4. QUANTITATIVE EVALUATION

This section presents mathematical formulations, which quantify the network overhead
associated with the employment of the proposed hierarchical model. This quantitative
evaluation builds upon previous evaluations, presented in Sections 4.5 and 5.3, using the same

definitions, symbols and formalisms.

Although mobility can often be beneficial for NSM, overheads induced by MAs and MDMs

in particular, e.g. due to their deployment and management should be accounted for very

166

Chapter 6: Adaptive Hierarchical Management

carefully. Slightly different configurations for a set of MDMs may result in dramatically
variant network loads [LIO98]. Hence, it is important to define concrete cost functions

estimating the corresponding overheads.
In this context, let the cost coefficients ksi,sj denote the cost of sending a byte of

information between arbitrarily indexed subnets S; and S;, where S, is the manager host
location. For multi-hop connections, the cost coefficients will be equal to the summation of the
individual links coefficients. In the following investigation, we make the simplifying
assumption that an MDM may manage only the hosts included in a single subnet and not a

wider set of devices.

A simple function characterising the bandwidth consumption for our hierarchical

architecture, is the following:

Chier =Cuistr + Cdepl +C pol + C deliv (6-2)

where the four terms represent the cost for distributing to the MAS servers the bytecode of
the MA that will undertake the monitoring task, the MDMs deployment cost, the bandwidth
used for the actual monitoring operation (polling) and the cost for delivering to the manager

host the collected data, respectively.

Concerning bytecode distribution, the lightweight “tree multicasting” scheme described in

Section 6.3.5 is adopted. The code distribution cost is therefore given by:

M
Cistr =[kso,so *Ng +Z[k5015i +Kgi g *(Nsi _1)}]*C (6-3)
i—0

where M is the total number of active MDMs, C the compressed bytecode size, S' represents

the subnet including host i, and Nsi the number of hosts included in subnet S'.

Likewise, Cgep €quals the cost of broadcasting M MDM objects to their corresponding

remote domains:
M —
Coept =D _Kg_ i *(Cmom +STo +n*Sprc) (6-4)
i=0

where Cypw is the size of the jar file uploaded at every MDM deployment®® (= 23.4 Kb),

ST; represents the compressed state size of an MA when migrating from the i host and Sprc

13 See Section 6.3.2.

167

Chapter 6: Adaptive Hierarchical Management

the average size of each of the n PT configurations attached to the MDM (each serialised PTC

object amounts approximately 250 bytes).

Cpol is defined as the summation of the cost induced for polling the NEs directly managed
by the manager host and the cost associated with polling the NEs that operate under the MDMs

control, multiplied with the number of Pls p:

m M Nj
Cpol = sti s * ST, +szsi si *STj |* P (6-5)
i=0 i=0 j=0
Clearly, the first term of the summation will dominate on the overall polling cost if the m

devices managed by the central manager platform are spread among several subnets.

Specifically, cost coefficients ksi gt are typically larger when an MA migrates from subnet S'

to another subnet S"* (Si ¢Si+1) rather than when it moves within the same subnet

(Si = S”l). As discussed in Section 4.5.2, MAs state size ST; does not remain constant, but
increases for each visited node, with the increment rate depending on the selectivity o, as
shown by Eqn. (4.7). The last term appearing in Egn. (6-2) represents the cost associated with
the delivery of the gathered data from the MDMs to the manager host:

—* D kg (6-6)

where Fg indicates (in number of Pls) the delivery frequency, namely how often MDMs

package the computed statistics of size D and deliver them to the manager.

It should be emphasised that MDM functionality is not necessarily limited to simply
gathering and delivering data to an upper-level manager. Although this thesis concentrates on
data-intensive network monitoring applications, a broad spectrum of management applications
(including fault, configuration and security management) could also be performed. Upon
arriving at their remote domains, MDMs may autonomously make management decisions and
take actions based on the values of collected MIB values (for instance when the value of an
aggregation function of several MIB objects exceeds a pre-specified threshold). These actions
may include first-line support to handle trivial faults, decisions to recalibrate the management
system as a response to changes sensed to traffic patterns or network configuration, e.g. to
share the management responsibility of its domain with another MDM, move to a nearby

domain, terminate execution, etc.

168

Chapter 6: Adaptive Hierarchical Management

6.5. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed hierarchical model, we have
conducted a number of experiments, using the same testbed described in Section 5.4.2, i.e. a
PC playing the role of the manager and 10 PCs with active MAS servers, simulating the
managed devices. In the experiments described below, we make the assumption that the
managed devices are separated from the manager platform by a WAN link (see Figure 6.15),

although they all actually reside on the same network segment.

Manager(|

Figure 6.15. The experimental testbed

The examined scenario involves the collection of a data sample from each host at every PlI;
the size of each data sample can either be 50 (Figure 6.16) or 2000 bytes (Figure 6.17). We
compare the performance of flat management, GnG (employing 2 MAs) and GnS polling (for
data delivery frequencies of 10 or 100 PIs) against that of the hierarchical model. Regarding
GnS polling, we have applied the cloning data delivery method described in Section 5.2.2.1, as
that was proved the most efficient according to the experimental results reported in Section
5.4.2.

Referring to hierarchical management, a number of data collection approaches have been
evaluated. In particular, the monitoring process is performed either through applying GnG
(launching one or two MASs) or GnS polling (with data delivered every 10 or 100 PIs).

Aggregated results are sent to the central manager with frequency of Fg, = 100 PlIs.

The deployment overhead associated with the MDM’s accompanying jar file (23.4 Kb) has
also been taken into account. The monitoring task is carried out by an MA object, whose
definition (class file) amounts 2.2 KB. When employing, the GnG or GnS polling schemes,
that file is multicasted to all active MAS entities, while in the hierarchical approach, the “tree

multicasting” technique is applied (see Section 6.3.5).

169

Chapter 6: Adaptive Hierarchical Management

5000 1600
4
500 1400
4000 B
X 1200
1 30 7 =
] A £
A~ =4
2 Z 1000
¥ 300 -
£ / z
; 2500 == 5 80
2 =
20 g 60
s
s ‘ 2
" 1500 = £ /
1000 [
// " —
. — 20 - —
0= T T T T 0 T T T T
50 100 150 20 20 30 50 100 150 20 20 30
#Polling intervals #Polling interwals
[—s—Gns(10pis) —&—GnS (100 Pls) GG (LMA) GG (2MAs) —+—GnS (10Pls) —=—GnS (100 Pls) GG (IMA) GG (2MAs)
|—#— Hierarchical - G (10 PIs) —s— Hierarchical - GnS (100 PIS) -+ Hierarchical - GG (1 MA) Hierarhical - GG (2 MAS —«— Hierarchicl - GnS (10 PIs) —e— Hierarchical - GnS (100 PIs) ---+. - Hierarchical - GG (1 MA) Hierarchical - GG (2 MAS
18000 30000
16000
250000
14000
(kan ki) =(10:1) (kan k) =(200:9)
12000 200000
g g
£ 1000 £
5 5
£ £ 150000
s &
g a0 g
&]
= =
#Polling intenals #Polling intenels
[—+—Gns(10Pis) —&—GnS(100Pls) GG (1MA) GG (2MAs) —+—GnS (10Pls) —&— GnS(100PIs) GG (LMA) GG (2MAY)
|—%— Hierarchica - GnS (10Pls) —#— Hierarchicdl - GS (100Ps) - .+ Hirarchial - GnG (1 MA) —=— Hierarchical - GnG (2 MAY) —— Hierarchical - GnS (10P1s) —e— Herarchical - GnS (100PIS) -+ Hierarchical - GnG (1 MA) —=— Hierarchical - GnG (2 MA)

Figure 6.16. Network overhead measurements for data samples of 50 bytes: (a) Overall
management traffic, (b) Network traffic through the WAN link, Overall management cost in the
case that the cost coefficient for the WAN link is (c) 10, or (d) 200 times higher than for the high-

speed LAN

The overall network traffic is illustrated in Figure 6.16a and Figure 6.17a, as a function of
the number of Pls. As expected, the plain GnG approach scales worse in all cases. The
combination of hierarchical model with GnG polling slightly reduces network overhead as it
localises MA transfers within the MDM’s local domain. Accordingly, the coupling of
hierarchical management with GnS polling improves the performance of the plain GnS

approach (that has also been expected).

The suitability of our hierarchical model for the management of geographically dispersed
networks is depicted in Figure 6.16b and Figure 6.17b, which report the data volumes
transferred over the “WAN link’ connecting subnets Sy and S; (see Figure 6.15). Since that link
does not physically exist, the curves actually depict the traffic sent/received by the manager
host. It is noted that the various flavours of the hierarchical result in transferring identical data
volumes, as the traffic over the “WAN link’ is restricted in aggregated data deliveries from the

MDM to the manager.

170

Chapter 6: Adaptive Hierarchical Management

An invited side-effect of the hierarchical approach is that following the MDM deployment,
transferred NSM data are associated with the management of only N-1 hosts, out of the overall
N managed devices. That is because the MDM resides on a managed NE, with all the
management interactions between the former and the later taking place locally. For that reason,
whenever the MDM applies GnG polling, its hosting device is visited last by travelling MA

objects in order to avoid an unnecessary migration.

50000 10000
45000 9000
40000 £
. X
o 35000 s £ 0
g E : ——
2
<
30000 =+ S o0 A
=
g z > il
S 25000 T 500
£ ES
s 4 <
£ 2000 : £ a0
s S
£ T
" 15000 4= - £ 300
10000 - £ 200
- / =
5000 — 1000
0 0
50 100 150 20 250 30 50 100 150 20 250 30
#Polling interals #Polling interals
—+—GnS(10PIs) —a—GnS(100PIs) GG (LMA) GG 2MAS) —+—GnS(10PIs) —a—GnS (100PIS) GG (LMA) GG 2MAS)
—— Hierarchical - Gn (10 Pls) —s— Hierachical - G (100 PIs) - -+ - Hierarhical - GnG (1 MA) Hierarchical - GG (2MAS —— Hierarchical - Gn (10 Pls) —e— Hierachical - GnS (100 PIs) -+ - Hierarhical - GnG (1 MA) Hierarchical - GG (2 MAS
140000 2000000
1800000
120000 . .
(ke kang)=(200:9)
. . 1600000 {—————
Kwan -Kian)=(10:1
100000 1400000 /
8 - 8 1200000
5 5
£ £ 1000000 z
g g / P
g a0 g &
H] H]
= S 80000 /
=
400000
0 : ! ! ! 0 : ! ! !
50 100 150 20 0 %0 50 100 150 20 0 %0
#Polling intenels #Polling intenvels
—+—GnS(10Pks) o GnS(100PS) GG (IMA) GG 2MA) (10PIs) 100P1S) GG (IMA) GG 2MA)
—%— Hirarcical - GnS(10Pls) —e— Hierachical - GrS(100PIS) -+ Hitarchical - GG (LMA) Hirarhical - GnG (2MAs) —%— Hirercical - GnS(10Pls) —e— Hierachical - GS(100PIS) -+ Hitarchical - GnG (LMA) Hirarchical - GG (2MAs)

Figure 6.17. Network overhead measurements for data samples of 2000 bytes: (a) Overall
management traffic, (b) Network traffic through the WAN link, Overall management cost in the
case that the cost coefficient for the WAN link is (¢) 10, or (d) 200 times higher than for the high-

speed LAN

The network traffic comparisons discussed so far have not taken into account the increased
cost associated with transferring data over a low-bandwidth link rather than over high-speed
links. Figure 6.16¢,d and Figure 6.17c,d illustrate the overall management cost when the ratio
of the WAN link over the LAN link cost coefficients is (kso S 1ksl,sl)=(1011) or (200:1). It
can now be observed that the coupling of the hierarchical model with GnG polling represents a
cost-effective approach, as MA transfers are not performed over the ‘expensive’ link.

However, the combination with GnS polling remains the most efficient solution. To further

reduce the utilisation of the ‘WAN link’ and, hence, the overall management cost, MDMs

171

Chapter 6: Adaptive Hierarchical Management

should apply a superjacent level of data aggregation, delivering to the manager only higher-

level information.

The results graphically illustrated in Figure 6.16 and Figure 6.17 are also analytically
presented in Table 6.1.

GnS (10| GnS(100 | GnG (1| GNnG (2 |Hierarchical - | Hierarchical - |Hierarchical - |Hierarchical -
Pls) Pls) MA) MAs) | GnS (10 PIs) | GnS (100PIs) | GNG (1 MA) |GnG (2 MAs)
Overall network traffic, Kbytes (data sample: 50 bytes)
50 197 33 748 716 133 59 694 677
100 361 178 1473 1408 262 179 1391 1358
150 524 178 2198 2101 335 179 2034 1985
200 688 323 2923 2793 464 300 2732 2666
250 852 323 3647 3485 538 300 3375 3293
300 | 1016 468 4372 4178 666 420 4073 3974
Network traffic over the WAN link, Kbytes (data sample: 50 bytes)
50 115 33 154 253 30 30 30 30
100 197 106 285 483 84 84 84 84
© | 150 279 106 416 713 84 84 84 84
S [200 361 178 547 943 139 139 139 139
§ 250 442 178 678 1173 139 139 139 139
£ | 300 524 250 809 1403 194 194 194 194
g Overall network traffic, Kbytes (data sample: 2000 bytes)
S| 50 2704 33 7654 4501 1261 59 6347 3842
i 100 | 5374 5237 15285 8979 4511 4450 14691 9682
150 | 8045 5237 22915 | 13457 5713 4450 20987 13473
200 | 10715 | 10442 | 30546 | 17936 8963 8840 29331 19313
250 | 13386 | 10442 | 38177 | 22414 10165 8840 35627 23105
300 | 16057 | 15646 | 45808 | 26892 13415 13231 43972 28944
Network traffic over the WAN link, Kbytes (data sample: 2000 bytes)
50 1368 33 1407 1495 30 30 30 30
100 | 2704 2635 2791 2966 2078 2078 2078 2078
150 | 4039 2635 4175 4437 2078 2078 2078 2078
200 | 5374 5237 5558 5909 4127 4127 4127 4127
250 | 6710 5237 6942 7380 4127 4127 4127 4127
300 | 8045 7839 8326 8852 6175 6175 6175 6175

Table 6.1. Comparison of network traffic generated by GnG and GnS polling schemes against
hierarchical management approaches

6.6. SUMMARY

This chapter has introduced the concept of adaptive hierarchical management that provides
a rationale for the use of MA technology. A synopsis of the main contributions of the proposed

model follows:

(a) The hierarchical architecture is intrinsically dynamic by employing mobile mid-level
managers (MDMs) that may transparently move to a specific network domain to take over
its management responsibility and localise the associated traffic. Although hierarchical
MA-based management is not an entirely new concept (see [LIO98, SAH98, ZAP99]), our

infrastructure goes one step beyond by offering improved adaptability to changing

172

Chapter 6: Adaptive Hierarchical Management

(b)

(©

(d)

(€)

)

(9)

networking environments and defining concrete policies regarding network segmentation
into management domains, MDMs deployment, explicit determination of domain

boundaries, etc.

Apart form their ability to move from a management domain to another, MDMs may also
move within their managed domain. In particular, MDMs periodically inspect the
resources availability of their managed nodes and choose to move and resume execution to

the least loaded host.

In addition to addressing flexibility issues, management scalability is also further improved
by fully exploiting the benefits of agent mobility, as MDMs rely on MAs for the data
collection process; these MAs apply filtering operations locally, thereby minimising the
volume of data transferred within the individual management domains. The cost associated
with the distribution of code implementing new management tasks, is also minimised by

applying an efficient “tree multicasting” bytecode distribution technique.

The hierarchical NSM approach implies localisation of network traffic in the individual
management domains, thereby providing more balanced traffic distribution and reducing

the overhead in the area around the manager station.

Our proposed design ideas are supplemented by a prototype that helped on gaining hands-
on experiences and revealing problems related to the use of MAs in distributed
management applications.

Fault tolerance issues have been addressed, securing that distributed MDM objects
continue to perform their decentralised tasks even if an interconnecting link or the manager
platform fails.

An analytical quantitative evaluation oriented to our specific framework design has been
undertaken, deriving formulations that define the management cost associated with the

proposed architecture.

A prototypical implementation of the introduced MAF has been tested in a realistic

topology scenario, comparing its performance against flat MA-based management and plain

GnG/GnS polling schemes. The experimental results section, which complements the

guantitative evaluation study, has shown that the proposed architecture outperforms the other

candidate approaches with sufficient distinct, both in terms of the overall management cost and
the bandwidth usage of low-bandwidth WAN links.

173

CHAPTER 7

NETWORK MONITORING AND PERFORMANCE
MANAGEMENT APPLICATIONS

7.1. INTRODUCTION

Research activities in the field of network management incorporating Mobile Agent (MA)
technology have attracted much attention, promising to overcome the flexibility and scalability
limitations inherent in centralised archetypes. As a result, several Mobile Agents Platforms
(MAP) have been proposed for distributed management (see Section 3.6.1), covering a wide
spectrum of applications, including traffic analysis [FERO1], network testing [GRI97], fault
[SUG99, ELD99], configuration [PAG98, KIM98, YUCO00] and security [KAR98a, LAZ97]
management areas. Following that trend, a number of research papers have investigated the use
of MAs for performance management and network monitoring [KU97, ZHA98b, SAH98,
CHI99, ZAP99, RUB99, BEL99, PIN99, PUL0OOb, BOHOOc]. However, only a few have
identified realistic management applications where MAs could be used for filtering
management data, thereby improving the performance of centralised models. Most of these
applications focus on the computation of aggregated functions, that ‘compress’ a number of
Management Information Base (MIB) objects to a single value [ZAP99, PIN99, PULOOb] or
on sending QoS alarms and delivering periodic summarisation reports by observing raw
information [BOHOOc]. These applications certainly represent an effective use of MAs,

nevertheless, there still are several critical limitations/omissions, summarised in the following:

(i) The MAPs used for developing the aforementioned applications are typically heavyweight
(see Section 3.6.1.10). That results in prohibitively ‘costly’” MA sizes that may seriously
affect network performance should frequent MA transfers are involved. The impact of
MA migrations on management performance has been addressed in [BOHO0Oc], proposing
the exclusive use of constrained mobility, i.e. single-hop agents, in distributed

management applications.

174

Chapter 7: Network Monitoring and Performance Management Applications

(i1)) No appropriate method for remote processing/filtering of bulk monitoring data stored in
Simple Network Management Protocol (SNMP) tables has been proposed so far. That
represents a significant problem, considering the continuous growth of these structures
(e.g. tables storing IP routing information), which cannot be efficiently retrieved through

SNMP, especially when only a small portion of their stored data is needed.

(iii) Network monitoring applications utilising multi-hop MAs have failed to exploit agents
autonomy and mobility features. In other words, their functionality is restricted on
performing repetitive tasks and obtaining specified data patterns from a set of managed
devices. The collected data are not effectively used by the MA, but are simply carried
throughout their operational travel before being delivered to the manager station. The
quantitative evaluation of Section 4.5.2 has indicated an exponential growth of
management cost with network size, when a constant amount of data is obtained from
each visited host. Hence, mobility does not only remain unexploited (apart from potential
response time benefits when short-term monitoring tasks are involved), but also

contributes in increasing the associated management cost.

The lightweight, dynamic and adaptive management framework introduced in the previous
three chapters addresses sufficiently the first problem, enabling the introduction of
management operations in a flexible and scalable manner. The results of a number of
experiments have been presented, verifying the precedence of our framework over alternative
MA-based approaches and its competence against static distributed object technologies.
However, these experiments comprised measurements of response time and network overhead
when transfers of variable-length strings were involved, with the relation to management
applications not being evident. It is therefore necessary to assess the suitability of our
framework on realistic management scenarios, whilst comparing its performance against that

of the dominant management protocol of the TCP/IP world, i.e. SNMP.

In this chapter, we focus on the second and the third of the aforementioned problems
introducing Network & Systems Management (NSM) data intelligent filtering applications.
These applications enable the ability of MAs for performing decentralised management
operations to apply remote processing of bulk monitoring data, whilst exploiting their mobility
feature and the knowledge (data) acquired throughout their travel to increase their selectivity

on the data obtained in their next visits.

In particular, we describe ways to: (i) aggregate several MIB values into more meaningful
performance indicators, (ii) efficiently acquire atomic snapshots of SNMP tables, and (iii) filter
tables’ contents by applying arbitrarily complex filtering expressions. Regarding the table

filtering application, we introduce the idea of domain or global level filtering. Specifically, we

175

Chapter 7: Network Monitoring and Performance Management Applications

exploit the multi-node movement that MAs often undertake to perform a superjacent level
(second stage) of data filtering, in domain or even in network level. This is achieved through
correlating the results collected by the hosts that have been already visited with the results

obtained from the currently visited host.

The ideas discussed in this chapter have been published in the proceedings of the 2000
IEEE/IFIP Network Operations and Management Symposium (NOMS’2000), with an extended
version published in the Computer Communications special issue on “Mobile Software Agents
for Telecommunication Applications”. The first application has been originally introduced in a
paper published in the proceedings of the IEEE International Conference on Communications

(ICC’99). Full references are given in Appendix A.

The remainder of the chapter is organised as follows: Section 7.2 reviews existing
approaches on bulk management data retrieval and discusses their limitations. Section 7.3
introduces the first NSM application, i.e. using MAs for computing aggregated MIB object
values. Section 7.4 discusses the SNMP table polling application, while Section 7.5 proposes a
model for remote filtering of SNMP tables. The results of a number experiments evaluating the
performance of the proposed applications are presented in Section 7.6, proving their
precedence over traditional centralised NSM in terms of network overhead. Finally, Section

7.7 summarises and draws the conclusions of this chapter.

7.2. BULK MANAGEMENT DATA RETRIEVAL

Since the early days of SNMP, the requirements for managing IP networks have changed
considerably. An important change is that the total amount of management information that
needs to be transferred has increased greatly [OLI99]. The management operations defined in
the IETF approach are usually low-level, as the management station can typically only get and
set atomic MIB object values. Semantically rich operations, such as ‘get-column’ or ‘get-table’

are not available yet.

Five problems associated with SNMP-based bulk data transfers have been identified and

summarised in the following:

(a) End-to-end latency: Using SNMP for retrieving large volumes of MIB data involves a
high number of Protocol Data Unit (PDU) exchanges over the network. That results in
increasing end-to-end latency, mainly due to the asynchronous nature of SNMP operations, i.e.
a get - next request is typically sent after a get - r esponse corresponding to the previous
request has been received by the manager. Potential network problems due to the unreliable

nature of the transport protocol (UDP), such as dropped PDUs and retransmissions may also

176

Chapter 7: Network Monitoring and Performance Management Applications

contribute to increasing latency. In addition, the response time of SNMP operations is also
affected by the length of the management ‘control loop’ between the manager and the managed
devices, i.e. the number of subnets (hops) that individual request/response packets need to

traverse.

The latency problem can be partially addressed through implementing the algorithm
described in RFC 1187 [ROS90], which suggests the use of multiple threads in parallel where
each thread retrieves only a portion of the table. However, this approach does not reduce the
number of PDUs exchanged and fails to shorten the ‘control loop’, while causing potential

overload problems at the agent side due to bursty traffic.

(b) Network Overhead: SNMP frameworks are inefficient in terms of the bandwidth
utilisation when bulk NSM data are transferred over the network. In addition to the large
number of PDUs exchanged, the high overhead is also due to the inefficient Basic Encoding
Rules (BER) encoding and the Object Identifier (OID) naming scheme, which introduces a

high degree of redundancy. These two problems have been discussed in Section 2.4.3.

(c) SNMP MIB tables retrieval: SNMPvI1 incorporates an inefficient scheme for MIB table
transfers. When using the get - next operator, the retrieval of large tables with many rows
requires at least one get - next operation per table row, increasing the total time needed to
transfer a set of management data between the agents and the manager. Should a table row
cannot be accommodated into a single PDU (due to message size constraints) even more
operations per row are needed. Versions 2¢ & 3 of SNMP provide a more efficient means of
transferring bulk management data, through the get - bul k operator [STA99]. Still, the
message size constraint applies also in this case, resulting in a large number of PDUs
exchanged when considering the transfer of management data in the order of MByte.
Additional problems related to MIB tables arise when considering tables that have rows in
which some columnar objects do not exist; in other words, tables that allow their row entries to

have ‘holes’ in them. This issue is discussed in [SPR99].

(d) Data inconsistency: Another problem associated with bulk management data transfers is
that the manager cannot guarantee to retrieve SNMP tables in a consistent state [GOL95]. This
is particularly true for large tables, as their retrieval involves a large number of PDU
exchanges. The non-negligible time intervals between the retrievals of individual table rows
(these intervals highly depend on the length of the management ‘control loops’) lead to
potential inconsistencies. Namely, the agent may update the table contents before completing
the table retrieval; in such case different sections of the table will reflect updates at different

times, resulting in an inconsistent view of the table. In general, race conditions between

177

Chapter 7: Network Monitoring and Performance Management Applications

concurrent updates of MIB data and their remote retrieval may result in management

observations missing critical elements of the corresponding sample behaviour sequence.

(e) Remote filtering: In a typical management scenario, the manager may need to search for a
single value in a table. In SNMP management the whole table has to be transferred from the
remote element to the management station, where the table rows are searched for the value
[BAL97]. Hence, large tables will impose heavy network traffic load and will result in
computational bottlenecks on the management station. The OSI Systems Management (OSI-
SM) [ISO91a] addresses some aspects of management decentralisation through
scoping/filtering [ISO91b] and also the Metric Monitoring [ISO93] and Summarization
[ISO92] systems management functions: the searching logic is executed at the device and only
high-level values are transmitted to the manager. The drawback of this approach is that the
logic implementing remote filtering operations is ‘hard-coded’ on the network elements (NE);

such functionality needs to be agreed upon and standardised beforehand [BOHOOb].

Sprenkels and Martin-Flatin [SPR99] proposed three alternative approaches to solve the
problems associated with bulk management data retrieval. In the first, the authors suggest an
SNMP-over-TCP scheme to overcome the UDP packet length constraint, replacement of BER
encoding, compression of MIB data and introduction of a get - subt r ee operation. The
second approach involves the operation of SNMP in conjunction with the File Transfer
Protocol (FTP), whereby every SNMP agent implements two specific MIB modules, saves a
certain amount of MIB data into a file and uploads that file to a particular FTP server. The
third approach goes one step further proposing the replacement of the SNMP itself by another
protocol running over TCP (e.g. HTTP). In effect, all these approaches still imply increased
dependency in network resources while involving moderate to radical modifications on
existing SNMP frameworks, which cannot be easily realised in short-term. As such, they could
only be used to solicit discussions on future Internet management frameworks and protocols. In
addition, the approaches proposed in [SPR99] do not consider data filtering as a means to

reduce the network overhead imposed by bulk management data retrieval.

We believe that the limitations of SNMP highlighted above may be addressed in a more
efficient way, whilst protecting companies’ investments on existing frameworks and taking
advantage of the huge installation basis of SNMP. In particular, using an MA-based approach,
sequences of primitive operations can be grouped into higher-level operations, sent to the NEs
and executed locally, independently of the manager station. This brings forward the benefit of
flexibility and scalability into the management architecture and provides improved
performance by reducing the number of messages exchanged between the management agents
and the manager platform, thereby limiting the overall network overhead. Latency and data

consistency problems are addressed by local management interactions, which considerably

178

Chapter 7: Network Monitoring and Performance Management Applications

shorten the management ‘control loop’, whilst semantic compression of management data may

be applied to NSM data prior to their transfer to the manager station.

In the following sections, we describe three novel applications of MAs on network
monitoring, demonstrating their ability to sufficiently address all/ the aforementioned problems

of bulk management transfers.

7.3. HEALTH FUNCTIONS EVALUATION

Developing effective technologies to support compression of real-time management
information is a crucial problem in NSM. In practice, the majority of Network Management
Systems (NMS) are passive and offer little more than interfaces to raw or partly
aggregated/correlated NSM data, typically retrieved through centralised polling. Manager
platforms often rely on frequently inspecting the values of specific MIB objects to ensure that
managed devices operate on a ‘healthy’ state. Cases often occur however, where one or two
MIB variables are not a representative indicator of systems’ state and hence an aggregation of
multiple variables is required. A method to achieve efficient data aggregation/compression is
to use health functions (HF), defined in [GOL93a] as linear combinations of several MIB

objects that provide single indices of network state.

Observations of operational variables within the SNMP model are typically made through
inspecting the values of MIB objects whose data type is counter or gauge [STA99]. A counter
represents a cumulative (integral) of an operational variable. Typically, only the change in the
counter versus its value provides useful indication of the network state. For example, the MIB-
IT [McC91] counter i pQut Request s accounts for the total number of datagrams sent by a
network host since its initialisation. Only the rate at which this counter changes represents an
indication of the network state. HFs typically combine MIB variables to more useful status
indicators. For instance, five MIB-II objects are combined to define the percentage E(?) of IP

output datagrams discarded over the total number of datagrams sent:

r (t) 3 (poutDiscards + ipOutNoRoutes + ipFragF ails) *100 (7-1)
ipOutRequests + ipForwDatagrams

The objects appearing in the fraction’s numerator represent the IP output datagrams
discarded for various reasons (e.g. no route could be found, fragmentation was not possible,
lack of buffer space, etc.), while i pFor wDat agr ans accounts for the number of forwarded
datagrams. E(t) provides an average sense of discarded datagrams ratio over a time window
since boot-time. A useful indication of the instantaneous network state is provided by the

derivative e(t)zE ’(t). This derivative may be approximated by frequent sampling of the

179

Chapter 7: Network Monitoring and Performance Management Applications

respective managed variables and computations of the E(#) value changes over a Polling
Interval (PI) equal to 4t:
o)~ £/~ E 2= 20) (7-2)
At

Contemporary NMSs do not support the flexibility and decentralisation required to
effectively compute HFs. An HF could not be usefully incorporated as part of a static MIB
design, as the specific function used and its parameters depend on the particular installation,
configuration and administrative policies. These parameters vary among different systems and
during different times within the same network. The OSI-SM supports encapsulation of
functions within managed objects and their remote invocation by managing entities [ISO93],
yet, these functions are statically bound to a managed object at its design time. Again,
designers of managed objects may not provide configuration or time-independent HFs. This
problem has been addressed in [PAV6] which proposes extensions to the management
functions mentioned above, with the intention to eventually lead to fully dynamically defined

monitoring policies without having to re-design the managed objects.

In addition, HFs cannot be usefully computed by centralised managers, as the polling rates
required to aggregate the MIB variables may far exceed platforms processing capability;
considerable network overhead may also be generated, as a result of failing to perform
semantic data compression and reduce data volume at the source. Regarding the HF of Eqn.
(7-1), the least ‘expensive’ option when performing SNMP polling would be to group the five
OIDs in a single get - r equest packet. The response packet would then include the OIDs
along with the requested values, with the OIDs occupying more space than the actual values.
These request/response packets are typically transmitted regardless of the monitored systems
health status. A fairly large number of managed devices and frequent polling may result in
excessive usage of network resources. Another problem associated with remote polling is that
it introduces random perturbations in approximating temporal derivatives of managed
variables, leading to errors and potential hazards in management decisions (this is discussed in

detail in [GOL93a]).

All these problems suggest that the computation of HFs is more efficiently addressed when
performed in proximity to the data source. [GOL93b] examined Management by Delegation
(MbD) paradigm as candidate technology to support the flexible and effective evaluation of
HFs. Herein, we investigate the potential of MA technology to achieve the same goal.
Delegating dynamically customisable HFs to MAs enables direct observation of network
behaviours at sufficient precision. HFs may be modified at runtime to reflect varying behaviour
patterns at different systems or times. By computing health indicators locally, vast amounts of

real-time data can be significantly compressed.

180

Chapter 7: Network Monitoring and Performance Management Applications

The MAs constructed by the Mobile Agent Generator (MAG) tool (see Section 4.4.1.4) are
able to compute HFs, thereby providing a way to semantically compress large amounts of data
into single indices representing portions of the system status. Thus, a single value is returned to
the manager station, relieving it from processing NSM data, while the MA’s state size remains
as small as possible. MAs can also be instructed to transmit computed values only in the case
that certain thresholds are crossed. Another advantage of relying on MAs to compute HFs is
their ability to autonomously execute actions based on the current state of a device. They can
take precautionary steps to prevent critical situations, or possibly repair the system without the
manager’s intervention. Actions for every possible threshold event can be defined in the code
of the agent. An action could be triggered if a threshold is exceeded for a certain number of

sample intervals so that temporary peaks are filtered out.

Ve Bl Help File Wl Hely

sl it Pl | o Tanw Fomws | Srow® Fanss Fiesw sl it Pl | o Tanw Fomws | Srow® Fanss Fiesw

Lo g

Bliamis 7 W b i WA |+- [IE]

e Fare=a

Fpirg re=uae =
LR L et T] -

I K

|.|-\..-\..-.--g. 3] & e o e i Py S

LR T T
1T Ely: rdinl Mg i Bl

mELLmsbsrwas [

—

Lo g

Bliamis 7 W b i WA |-H.--l"\-l-: [

e Fare=a

™ e ol sl

Foiing imlmssl (e |04
Tl Depvinded. [e -

I K

By ey P Bk

mELLmsbsr AN [

[fermtmmn et gt s b

e

Folll g S BE Folll g S BE
B e G v aT rarae of @1 Fedea pe I!- a B e G v aT rarae of @1 Fedea pe II- E
™ G W Sy 1 " WSy ¥ 1
Siwws Mnaemn: Siwws Mnaemn:
T Eaypwa [F B
Ll ag oy propa vy o idnDwvead e v I | Ll ag oy propa vy o idnDwvead e v I |
Exiiling ey peopa e of ind D mded [t pedi s Exiiling ey peopa e of ind D mded [t pedi s
ol s o il o e vy s e e s B a1 e vy B e o s B
o TOor Tl P oo e o ST] I Tor
r e % [H
™ Aakivain ™ Aakivain
& e & e

Figure 7.1. Setting the properties of two HF evaluators through the MAG GUI

It is noted that either Get 'n” Go (GnG) or Go 'n’ Stay (GnS) polling schemes may be used,
when monitoring tasks that involve HF computations are considered, depending on the type
and execution period of the task. When collected values are intended for off-line analysis, GnS
may be employed and multiple samples be obtained before delivered to the manager
application, reducing the associated network overhead to a great extend. A downside of using
GnG is that the calculation of HF derivatives (see Eqn. (7-2)) takes place at the manager host.
Alternatively, the HF values obtained in the previous PI from every visited host would have to

be carried within the MAs’ state, resulting in larger state sizes and increased network overhead.

181

Chapter 7: Network Monitoring and Performance Management Applications

On the other hand, when using GnS, derivatives are calculated locally, relaxing the manager

station from this task.

Furthermore, when utilising the GnS scheme, the polling frequency can be considerably
increased at the expense of a slight increment on network load. That overcomes the limitation
of SNMP-based management applications, characterised by a linear relationship between the
desired accuracy of monitoring (polling frequency) and the generated network overhead.
Through performing local interactions and filtering the data samples which are of no interest,
MAs can apply higher polling frequencies without putting any additional burden on the
network. HF values returned to the manager can be plotted in graphs updated in real-time (see

Figure 5.6).

Definitions (classes) of MAs able to calculate HFs, extend the MCode. HF class, which
defines the basic properties of an ‘HF evaluator’ agent. This process is fully automated through
using the MAG tool, which allows specifying the HF formulation and also a number of
additional parameters that determine the polling task operation. In particular, the administrator
determines the set of managed devices to be monitored, the polling frequency, the transport
protocol used for MA transfers (TCP or UDP), whether obtained values should be encrypted or
not, the polling scheme (GnG or GnS), whether MAs return every computed HF value or just

the ones exceeding a specified threshold, etc (see Figure 7.1).

Surprisingly, the idea of exploiting code mobility to remotely calculate HFs has been also
conceived by fellow researchers and discussed in research papers published nearly at the same
time that it was first introduced by the author (June 1999). Specifically, Zapf et al. [ZAP99]
examined the evaluation of HFs as a case study for AMETAS MA platform in May 1999. The

same idea has been also proposed a year later in [PULOOb].

7.4. SNMP TABLE POLLING

As discussed in Section 7.2, some of the major drawbacks of SNMP are related to the bulk
transfer of data and in particular the retrieval of large SNMP tables. The widely deployed
SNMPv1 has not been designed for transferring large amounts of data. In addition, the total
amount of management information that needs to be transferred has been increased greatly, e.g.
IP routing tables and TCP connection tables are continuously growing. Later protocol versions
(v2¢ & v3), apart from their limited installation basis on managed devices, do not answer this

problem sufficiently, even though they provide the get - bul k operator.

182

Chapter 7: Network Monitoring and Performance Management Applications

Let us consider the retrieval of an SNMP table consisted of thousands entries. When using
the get-next operator (SNMPvl model) the table retrieval requires at least one get-next
operation per table row (see Figure 7.2a). Should the number of columns per row is such as to
exceed the packet size limit, more than one pair of request/response packets will be required
per table row. Network overhead is also affected by the inefficient OID naming scheme, which
results in very high information redundancy when obtaining SNMP table snapshots. Apart
from the apparent impact on network resources, table polling operations typically experience
significant latency and lead to potential data inconsistencies. All these issues have been

discussed in detail in Section 7.2.

get-next request
get response

Manager Agent

get-next request
get response

(a)
get-bulk request, max=10
get-bulk response
|

Manager Agent

get-bulk request, max=10
get-bulk response
[|
(b)

get-bulk request, max=1000

Manager Agent

get-bulk response

—

(©
MA et-next re

g get response

get-next req
_Setresponse |

(d
Figure 7.2. Acquiring an SNMP table snapshot through: (a) successive get - next requests, (b)

multiple get - bul k requests, (c) a single get - bul k request, (d) MA migration and locally issued
get - next requests.

Manager Agent

The situation improves with the introduction of the get - bul k request, which adds to the
ability of SNMP to efficiently retrieve large blocks of data by specifying a maximum number
of successive values to be returned (max-repetitions) [STA99]. That means that the human
manager has to guess a value for the max-repetitions parameter. Using small numbers for max-
repetitions may result in too many message exchanges (Figure 7.2b). Using large numbers,
however, may result in an ‘overshoot’ effect [SPR99]: the agent returns data that do not belong
to the table; these data will be sent over the network just to be discarded (Figure 7.2¢). The
impact of the ‘overshoot’ effect is only restrained by the maximum SNMP packet size limit,

which also applies to the get - bul k PDUs.

183

Chapter 7: Network Monitoring and Performance Management Applications

Herein, we propose a way to improve the retrieval of SNMP tables both in terms of network
overhead and latency. An MA object is dispatched by the manager and visits a pre-determined
number of hosts. At each place of contact, when received by the local Mobile Agent Server
(MAS), the MA acquires an SNMP table through issuing successive get - next requests (see
Figure 7.2d). The table contents are then encrypted, if requested, and encapsulated into its state
before moving to the next host or returning to the manager. The MA may also obtain several
snapshots of the table (with a pre-determined frequency) and wrap them all into its state before
delivering to the manager for further analysis (GnS polling scheme). The administrator should
be very careful concerning the selection of the appropriate polling scheme. The decision should
mainly depend on the size of the SNMP table; moderate or large table sizes may result in
dramatic increments of multi-hop MA sizes, causing excessive usage of network resources,
pointing GnS as the most appropriate polling scheme choice for this application. This issue is

discussed in Section 7.6.1.2.

| T ©] - |
Fiec O Holm
Hieal T Fisvtions Evalualy SN Table Poller | couiP Tabdn File |
Nelils Ropenin L EHlT Tres:
B Lo b
& 5l RPCD
e T bl ey Srdemed
preannTabls LI
g i
I
»
_ Em | s | et | Doeote
Lk gt Pallzd Devican:
WA M I—”“FH 8 bl B AT
SOIErap i EESELAT Uk
mee g e gk
Tell & Ma#E |l'|r-lr
dom g e
Felne) Hags:
™ Gl W Ga J i II_!
& Gon Swy W el | A a0 T REE T |'|_ E‘r ool B
o e e e
c
Eolfing tee graperiex i dTabiaPalls: 3 [* Ererption
[Astarbicasan
" TCF
& uop
A
& Dascwak

Figure 7.3. Configuring SNMP table polling operations through the MAG GUI

In addition to limiting the number of message exchanges involved during table transfers,
network overhead is further reduced by performing data compression prior to MA migrations
(through the Java gzip utility). The overall latency is also reduced (especially for large tables),

as the round-trip delay of each request/response message exchange (the ‘control loop’ length)

184

Chapter 7: Network Monitoring and Performance Management Applications

is significantly shorter. An invited side effect of that is the improved consistency of the

acquired values. Experimental results on table transfers latency are reported in Section 7.6.1.2.

The SNMP table is encapsulated into the MA’s state as a two-dimensioned array. That
solves the OID redundancy problem, since the OIDs are not returned to the manager at all; the
table’s OID (which is the common prefix for all the table objects) added to the value’s location
into the array (column, row) is sufficient to build the corresponding object’s OID (that could

also be accomplished by modifying SNMP).

Definitions (classes) of MAs able to obtain table snapshots, extend the MCode. TP class,
which defines the basic properties of a ‘table poller’ (TP) agent. New polling operations, used
to obtain specific SNMP table views may be added/modified in runtime, specifying the SNMP
table and the hosts to be polled, the PI, etc (see Figure 7.3). Table snapshots can be graphically
presented to the administrator through the Graphical User Interface (GUI) shown in Figure 7.4.

KElEn (2 Dby 135 ooono 130 -
ielen (0 npe 3% noonn TTHEE
slen (il 184 Lono 4307

ITn-| T | i 28 e

Figure 7.4. Graphical display of SNMP table contents

Regarding the implementation of the MA-SNMP agent interaction, instead of reinventing
the wheel and developing everything from scratch, we re-used publicly available software as
much as possible. Thus, we have used several classes of the AdventNet package [AdventNet]
abstracting MIB nodes, issuing SNMP requests, receiving SNMP responses, etc. AdventNet
classes have been used as the skeleton upon which higher-level management operations have
been built. For instance, table snapshots are obtained through simply invoking the
get Tabl e() method of the MCode. SFC class. Currently, only SNMPv1 is supported,
mainly due to its simplicity and because this protocol version is the only one implemented by

the Windows NT ‘SNMP service’. In future extensions we intend to implement the ‘get-table’

185

Chapter 7: Network Monitoring and Performance Management Applications

operator through sending successive get - bul k requests aiming at further reducing latency

and improving data consistency.

Snapshot views of SNMP tables can be very useful in a variety of applications aiming at
investigating transient problems of short duration or identifying trends on changing networking
conditions. For instance, a management application may need to retrieve the IP routing table of
a router in order to analyse routing configuration patterns. Using SNMP, this retrieval is likely
to be very slow and some of the variable values may be updated before the retrieval
completion. A management application could be misled and deduce wrong conclusions due to
such concurrent updates. It is therefore necessary to obtain atomic table snapshots, in which
the values of the MIB variables being retrieved are guaranteed to be consistent or at least are
less likely to change during the retrieval. The router’s IP routing table (MIB-II
I pRout eTabl e) views can be timestamped to identify the time the corresponding snapshots
have been taken. Intermittent routing conditions can be detected through taking several
snapshots of the routing table (i.e. a trace of views) at specified intervals, and later evaluate the

differences between them to accurately analyse the behaviour of dynamic route changes.

7.5. SNMP TABLE INTELLIGENT FILTERING

In most existing network monitoring applications, the retrieved bulk data are usually
utilised to feed a processing module responsible for extracting results in a more high-level and
“‘understandable’ form. These results may be used later on to aid on capturing utilisation or
error rate peaks, indicate failed devices, foresee possible congestion points, plan future
network upgrades, etc. In fact, only a small portion of the obtained values is proved useful as,
in by far the majority of cases, bandwidth is consumed to learn nothing other than that the
network is operating within acceptable parametrical boundary conditions. This is because the
processing action, i.e. the filtering of management data takes place on the manager and not on

the NE side.

Therefore, we propose a third application of MAs on network monitoring exploiting their
ability to dynamically upload management logic in order to perform intelligent filtering of
NSM data on selected SNMP tables. Specifically, this type of MA is able to acquire an SNMP
table and subsequently apply a pre-determined filtering pattern to it. Definitions of MAs able
to perform table filtering, extend the MCode. TF class, which defines the basic properties of a
‘table filterer’ (TF) agent.

The filtering operators offered in the current prototype are classified in Arithmetic (Max,

M n, Bi gger, Less) and Textual (Mat ch, Excl ude) with the corresponding methods

186

Chapter 7: Network Monitoring and Performance Management Applications

implemented in the MCode. TF class; the method definitions are shown in Figure 7.5. These
operators typically take as input the acquired SNMP table and filter it keeping only the rows
for which a given element (defined by its column index) meets certain criteria, e.g. is greater

than a threshold value or matches a given text string.

String[][] Max (String table[][], int collndex, int rowsPerHost, int overallRows, boolean
ascending);

String[][] Min (String table[][], int collndex, int rowsPerHost, int overallRows, boolean
ascending);

String[][] Bigger (String table[][], int collndex, double biggerThan, int rowsPerHost, int
overallRows, boolean ascending);

String[][] Less (String table[][], int collndex, double lessThan, int rowsPerHost, int
overallRows, boolean ascending);

String[][] Match (String table[][], int collndex, String matchedValue);
String[][] Exclude (String table[][], int collndex, String excludedValue);

Figure 7.5. Arithmetic and textual filtering operators method definitions included into the
MCode. TF class

7.5.1. Textual Operators

When considering textual operators, the TF agent first obtains a snapshot of the requested
table (following the procedure described in Section 7.4) and stores it in a two-dimensional
array T[] [] comprising | 7 lines. T is passed as an argument to the Mat ch() (Excl ude())
method of the MCode. TF class, along with the column index ¢; which the filtering operation
will be applied upon, and the value (string) v that should be matched (excluded). The method
then scans the table and ultimately returns a subset T of the original table T, keeping only the
table rows that satisfy the condition: T[j][¢;]=v (T[j][ci] #V), j =1.. 1. The volume of
table values transferred to the manager station may be considerably decreased by performing

this simple filtering operation.

An example of using textual operators would be to filter the MIB-II t cpConnTabl e
[McC91], which lists information about all the TCP connections of a host. The status of these
connections is indicated by the value of the t cpConnSt at e table column. Possible
connection states are: ‘closed’, ‘listen’, ‘synSent’, ‘synReceived’, ‘established’, ‘finWaitl’,
‘finWait2’, ‘closeWait’, ‘lastAck’, ‘closing’, ‘timeWait’ and ‘deleteTCB’. The administrator
might be interested in obtaining information referring only to the currently established
connections. Using SNMP, a management application must retrieve all the entries of the table,
and locally select those that match the criteria, i.e. t cpConnSt at e = “established”. This
retrieval will require many remote network interactions (especially for hosts with hundreds of

TCP connections) and therefore will be very slow. Also, the retrieved table row variables may

187

Chapter 7: Network Monitoring and Performance Management Applications

be concurrently updated before the entire retrieval has been completed, resulting in providing

inaccurate table views.

pterlerd® el et sl e gl g Ll ELL]
T ITaal %. i Rt a1 ! mk'.
] aTan s BN 137001 iy 0aad fall
= e = e 182548 BB H {F) n0id i
ars emmsimanes (s e (% 152348 L H 1 LETT] T
aE LTI e e (% 122348 BRI 1M aaaa L
== Wb 138,348 BRET] 1028 naaa =
He s wwein apsmen i Taar Taam| P
e e e I s () 11548 b i [T 1
T TR - | i (% 152546 BbiLH BT andad
e PR LT ETT] S L TE]
Car LI FIN T S ERE T] A 152345 BB T
Lo LRI R CERE T] ™ 158148 NBE T —
e WENEIT 188 TR A Ll 188108 VAR 71 i
1l o e R R L e R R Al
|y b o m il | bty b et m bbb
(a) (b)

Figure 7.6. Displaying information returned by a TF agent applying the (a) Mat ch, or (b)
Excl ude operator

Using the MA-based approach, the table values related to non-established connections will
be discarded by the Mat ch operator, preventing unnecessary data transfers (see Figure 7.6a).
Likewise, established connections information could be omitted through applying the
Excl ude operator and returning table rows for which: t cpConnSt at e # “established”
(see Figure 7.6b). The filtering operation could also be based on columns other than
tcpConnSt at e. For instance, an MA could monitor the number of TCP connections
maintained between specific host pairs by checking the t cpConnRemAddr ess column
values, or the type of TCP applications running on specific hosts (e.g. t cpConnRenPort =

21 would indicate an FTP connection). Filtering patterns making use of textual operators are

configured through the MAG GUI (see Figure 7.7a).

In addition to monitoring applications, simple configuration tasks could also be performed
ensuring quick response to data updates and high precision. For instance, an MA object could
be instructed to selectively terminate TCP connections for specific source/destination hosts. In
such case, the MA would first obtain the table rows for which t cpConnRenAddr ess =
‘aaa.bbb.ccc.ddd’ and then modify the operational status for their corresponding connections

through a simple set request, i.e. t cpConnSt at e = “deleteTCB”.

188

Chapter 7: Network Monitoring and Performance Management Applications

Fie Pl Hep Fie Pl Hep
Haa® Ppwime s Syaake DHEP Tably Py TP Jale fleim | Haa® Ppwime s Syaake DHEP Tably Py TP Jale fleim |
Bdokde Bpprd e Lisi: H0 Tyaa: Bdokde Bpprd e Lisi: H Tyaa:
— T o] T T — Rl B T
THLIre i a Tarire 5 a
ArLee b e W ol i ALl e k- .
o L3« (=
LT e BT] & 0 naTecin H
i arwrCiuial et ——
&
=
= =
B - | St Desste |
1Ha hyad THat hyad
Wk [HeCorw ElbiF v Takin: |boCine T e Colwra: | brel e wi@dn B | Pl Tubin: | Ty CHETE |-r-u.
(™ M Vehm I sdcn ok M ek e
[Wi [Eichach Waies Msihed sk | S iirsd I 7 i [e vees | [Wyhaln R
G £ Cauor
I_ P ey m Paiid Corvran LEaie 1) = [™ GmasCimsing P e Il:_E Palimd Curvican F 'l
e TP ol WiTeH
L racar G e e e O | T R e e A |
G v Siey ¥ |l '1 L [l T AT |l '1 k
rann bR T e
" "
CREINERE F R B CEEE M D8 R = I esiemtien = 3O T8 BOp BREL O 17 BDiF ! 2l ' itsinmtien
Cepirpms ¥ oy sl e raifon ra e Hee iepE aed [e sy Ceuirpes ¢ thETLE i EEE TR REE = suteri san
CREITEE I Pl ELE O 0 N BB e Ceminpas o SrelrisE o b i
Cepirp=s ¥ o pwiReTAd S oL foa Eeen regsaid " ok I Ter
mirarg re popeiE olizpCore Bl e —
Edrarg o popiE ol izplore Bl S I AL "':"::E
o [g 1 e il
o | ¥ g . 1 L B iy

(@) (b)

Figure 7.7. Configuring SNMP table filtering operations through the MAG GUI for (a) Textual
and (b) Arithmetic operators

7.5.2. Arithmetic Operators

The filtering operation is more complex when arithmetic operators are considered: the user
may specify the maximum number of rows that may be returned from individual hosts, the
maximum number of rows returned from all the polled devices, whether the results will be

sorted in ascending or descending order, etc.
In that case, filtering may be based on:

(i) a given table column, e.g. for the MIB-II interfaces table (i f Tabl e) [McC91], “get the

row (interface) with the maximum number of received bytes (maxi f1 nCct et s)”;

(i1) a pre-defined HF, e.g. “return the two most heavily loaded interfaces for which the

utilisation level is higher than 60%”.

The first of the aforementioned examples is implemented through invoking the Max method

with the following parameters:
String[][] maximum = Max (table, 10, 1, -1, true);

The arguments passed to the method are: a snapshot of the interfaces table, the column
index of i f 1 nOct et s within i f Tabl e (10), the number of table rows acquired from each

host (1), an indication that there is no limit on the number of rows returned by all managed

189

Chapter 7: Network Monitoring and Performance Management Applications

hosts (-1) and also request for sorting table rows in ascending order of i f | nQct et s (true). It
is noted that TF agents do not necessarily encapsulate the entire table, but may only store (if
requested) only selected table columns. Stored results are optionally encrypted prior to their
transfer to the manager station. The results returned by the TF agents are displayed on a GUI,

shown in Figure 7.8.

Pk ol plod o en e ga wh bae @1 ol S HMP b

hril FOpstSahri Hlankl vargs firddeta daUcarh #aHUca
a1l Dhewrs, 1 mied. FRI24007 1 DS s =
-

1 |]

|u..-|qu...|u.. ahiBn e " e

Figure 7.8. Results of i f Tabl e filtering

The second example is similarly implemented, through an invocation of the Bigger method:
String[][] bigger = Bigger (Utilisation (getTable (“ifTable’’)), HFcolumn, 0.6, 2, 10, false);

which returns the two most heavily loaded interfaces of each host, in descending order,
given that their utilisation is greater than 60%. A maximum of ten interfaces will be returned to
the manager coming from any of the polled NEs. Should a large number of interfaces are
utilised over 60%, only the ten interfaces with the highest utilisation will be returned (the
information referring to the rest will be discarded). The Utilisation method, defined in the
MA'’s implementation code, takes as a parameter the interfaces table and calculates the
utilisation HF for each one of its rows:

(ifInOctets + ifOutOctets) * 8 (7-3)
(ifSpeed * SysUpTime *100)

U(t)=

The HF values are appended to the interfaces table, which is subsequently sorted into HF
values order (using the Uti | iti es. Qui ckSort class). The resulting table is scanned and
the rows (two, at maximum) with HF values greater than 0.6 are returned, in descending order.
In the case where only specific table columns are requested (e.g. only the number of bytes sent
by the most heavily loaded interfaces), the rest of the columns will be discarded. For devices
with large number of interfaces (e.g. routers), that filtering method results in significant

network load savings. An advantage of using HFs in filtering expressions is that complex HFs

190

Chapter 7: Network Monitoring and Performance Management Applications

incorporating a large number of MIB objects can be defined only once and then re-used by
other filtering operations. A rich library of HFs can easily be created that way and efficiently

utilised to accelerate the customisation of filtering patterns.

El Bevineg Cusloass aton

W [T sl F dpare Taisle | FTsb Column |n-.mlw

Fitering Wehod WE i

a a T TCrpR— =
et b s | - -
[Esthids'vaks B HbdnrSiwhn

T Maximun Valies
™ Mnmum Yalues

m Biger Ban
T Leszhan

Al aien| = 0k

[* whinla Row [* oichal Fileding

i OperSinks
[LE i]
i Hirecimia

i rinleardfit
i nhl e iPrils
M D0
il e

HnlnkerossmiFrol
Apply tering in oo of EHWF ehie Columsvales o

=
ar Ha et Furkdon values ¥

r—

(~ Column Valuss 18 H
r; f"' i 1
e C _owmo | e |

Filening Eqression

| DiggerF CUtsisaber, TF Dot _HF_am_Rasils) = 08, Limied_Rowe. | aun || oR

(e snsa] S e |
Hurnbier of Feaws Limilatians = alih Furection

o v et T AU ot -]

[Limitasarall musnbes of rows Hame [.1!rii’mu |_

Wxw oo radl reum ot rowes: || 10

(" REcanding arder P Fanesion| mindciets:: B0 Do "SE prad sys L
fw Cisdcimding oo

Figure 7.9. Customising the SNMP table filtering operation parameters

The range of table filtering applications is practically unlimited. Consider, for example, a
typical routing device, whose routing table (MIB-II i pRout eTabl e) comprises hundreds or
even thousands rows. A management application may need to process all the table entries for
which the next-hop field (i pRout eNext Hop) has certain values. For instance, the next-hop
field may represent the IP address of a device, which is due for service. This selection criteria
may be specified as “retrieve all the i pRout eTabl e rows for which ipRouteNextHop =
aaa.bbb.ccc.ddd”. For an SNMP application, this would require first retrieving all the routing
table rows to the management station and subsequently performing the data filtering. Yet, only
a few of these are of interest to the management application. Thus, using SNMP involves a
large overhead of remote interactions. Significant cost savings may be achieved through

applying the proposed MA-based approach.
Simple SNMP table filtering applications are customised through the MAG GUI (see

Figure 7.7b). When such applications are characterised by increased complexity, their

configuration is performed through the GUI shown in Figure 7.9.

191

Chapter 7: Network Monitoring and Performance Management Applications

7.5.3. Domain or Global Level Filtering

The filtering applications described in the preceding sections involve obtaining high-level
management data from individual devices. Device-oriented statistics are not directly useful to
the network administrator should generic views of the entire managed network status are
required. Such views can be obtained by correlating the data returned by individual hosts; data
correlation is typically performed by the manager. In addition to causing processing

bottlenecks at the manager platform, this scheme may also generate considerable network load,

should the compression ratio achieved over the originally obtained NSM data is not very high.

max Ua=40%

max Ug=55% :

discard max

B
max Up=60% :

discard max

.Y
-
B2
max U(t) = 60% _
Router D

Figure 7.10. Global filtering applied on the network interfaces of a set of routers

Herein, we propose a more effective and scalable method for obtaining network-oriented
statistics through introducing the concept of domain or global level filtering. In particular, we
exploit the multi-node movement of MAs to perform an additional level (second stage) of data
filtering, in domain or even in network level. This is achieved by comparing/merging the
results already collected with those that have been just obtained/processed. Hence, not only
data processing is evenly distributed among network devices, but the MA’s state size is
prevented from growing rapidly (and therefore the network overhead is further reduced), since

the amount of information stored in the MA’s data folder practically remains constant.

It should be emphasised that global filtering is well suited for both GnG and GnS polling
schemes. In the former case the MA may, for example, return the two most heavily loaded
interfaces found in the entire network, whereas in the latter, record a utilisation or error rate
peak on a host within a given observation period. When employing GnS polling, higher sample
rates may be used without putting any additional burden on the network, since this will not
affect the MAs state size. In the GnS polling approach, MAs simply correlate ‘old’ with ‘new’

data and cannot provide a global view of the managed network since their ‘visibility’ is

192

Chapter 7: Network Monitoring and Performance Management Applications

restricted on a single device. Global views can only be obtained through multi-hop MAs.
Hence, the use of the term “global filtering” in the context of GnS polling, is somewhat

unidiomatic.

Figure 7.10 illustrates a management scenario where an MA is assigned the task to return
information about the most heavily loaded interface on a network of routers. The MA visits the
routers sequentially and computes the usage of their network interfaces. It then compares the
value of the most heavily loaded interface found so far against the highest value found on the
local router. If the former is higher, no information is collected and the MA migrates to the
next router; otherwise, it discards its encapsulated data and stores the MIB values referring to
the most heavily loaded interface of the local router. The same process is repeated at every
visited router. At the end of its route, the MA will send to the manager the global maximum

interface utilisation and its corresponding router address.

mr.llllt-ll hitming of active agests o the linllciziz colesn ol the @1 abls labls

OperStales M_asiChange iiniiclets Winllcas®is | ifnHLCEsiPH
g (1] |0 hirs, 0 minu.. S09B7304 |72z |5TED44 -
1) |0 hossrs, 0 rrinu ., SO9EE0 ¢ |775m |sTH116 -
] (D hipers, O freny , | S61 BSA40 Lkl |STE1TH -
] D hiegrs, 0 freny . | SEE 1894 | TI600 |STROED |
ug 1] 0 howor, 0 v, 84 T304 3 | 19755 |STH136 |
L] I [#] |

FHE L el TR TR
aiEdb10 pEae At yk

pEEhl e EEaE A0 1k
Figure 7.11. Results returned by an MA performing global filtering operations over a set of
managed devices

Should SNMP was used to accomplish the same task, the manager would first obtain
interfaces table snapshots from all routers (through successive get - next requests), and then
process and correlate the collected data to extract the requested information. A relatively large
number of routers, each with several network interfaces, would imply numerous remote
interactions and heavy network load. Using a ‘constrained mobility’-based approach would
significantly improve scalability as distributed single-hop agents would only return to the
manager pre-processed data referring to their local device. Yet, data correlation would be
performed at the manager platform in order to obtain network-wide generic management

views, implying considerable processing burden. Furthermore, when the initial data filtering

193

Chapter 7: Network Monitoring and Performance Management Applications

performed by distributed MAs is not highly selective, large amounts of data may be transferred

to the manager station, potentially over low-bandwidth links.

In GnG polling scheme, the results are delivered to the manager and then displayed on a
graphical table component, with the interface information drawn in different colours,
indicating the host they have been obtained from. Figure 7.11 presents the results returned by
an MA which visits a set of 10 devices and returns the table rows corresponding to the 5 most

heavily loaded interfaces in this small network within the last observation period.

To epitomise, global filtering reveals a great potential for the use of agent mobility for NSM
operations, as global statistics cannot be extracted unless the management application has a
higher-level view of the managed devices and performs centralised operations upon them. This
view has also been expressed in [GOL96]: “Other computations must be centralised. For
example, consider an application that needs to find the least loaded Ethernet segment to install
a new device. To make this decision, the application needs to correlate performance data
obtained from many segments. Another example is an application that displays an updated
network connectivity map. Both examples are centralised because they need to merge and

correlate information from several sources.”

We have shown that high-level views of managed elements can be obtained through
exploiting the ability of TFs to move from host to host and perform data filtering/correlation in
two stages, based on the knowledge/data already collected throughout their travel. Clearly,
network overhead savings are greater when MAs encapsulate non-negligible amounts of data,
even after processing the originally obtained information. Should data correlation was not
used, multi-hop TFs would experience rapid growth of their state size. If, on the other hand,
global filtering is applied, TFs state size remains constant as either the information already

carried by the MA or the data obtained at the currently visited device is discarded.

7.5.4. Boolean Filtering Operations

In addition to the scenarios already examined, the construction of filtering expressions with
increased complexity has also been considered. Thus, MAs may be constructed with the ability
to apply arbitrarily complex boolean expressions, namely logical AND and OR operators,

correlating individual filtering functions.

An example employing the AND operator would be: “return the interfaces with utilisation
0.6<U(t)<0.8”. The output array bigger of the Bigger method invocation (mentioned in
Section 7.5.2) would then be passed as a parameter to the Less operator to apply a second level

of filtering:

String[][] final result = Less (bigger, HFcolumn, 0.8, 2, 10, false);

194

Chapter 7: Network Monitoring and Performance Management Applications

In contrast, when the OR operator is considered, the two output tables (arrays) resulting
from the individual expressions are simply concatenated. For example, to view the TCP
connections with either ‘listen’ or ‘established’ state, the following expression needs to be

applied:

String [][] result = concat (Match (getTable (“tcpConnTable”), tcpConnState, “listen”),
Match (getTable (“tcpConnTable”), tcpConnState, “established”));

The procedure followed by TF agents to filter the contents of SNMP tables, as described in

Figure 7.12. SNMP table filtering operation flow diagram

the last sections, is illustrated in the flow diagram of Figure 7.12.

Start execution Global Yes Retrieve & decrypt
> filtering the results
-« | enabled? stored so far
\ 4 ¢
Obtain the SNMP
table through Compare/Merge
get-next requests <« theprevious with
the current results
Yes Boolean
Compute the HF o expression
value for every Filtering included?
row and append basedon
it to the table HF values? No
Y
. Yes Encrypt all
Encryption N
Sort the table in Yes Arithmetic engi 42 the results
descending order | filtering
of a given column operator?
No
» No v
A Encapsulate
Filter the table all the results
according © the
filtering expression
g GnS Sleep for a
Poll P
Strip the table No n?o&rel’§ —» polling interval
keepingonly the |<€—— Wholle row !
requested columns required?
.| Yes
Migrate to the
next host

Chapter 7: Network Monitoring and Performance Management Applications

It is noted that following the creation of MAs able to compute HFs, obtain SNMP table
snapshots or filter table contents, their corresponding task configuration parameters may be

easily modified at runtime through the user-friendly GUI shown in Figure 7.13.

EF':-IInu Thegadda Tahile HmEEBR
Heath Funcions Evalslors | SMMF Table Polers SHWP Toldo Fikenors
RE Mafs Tabde PR | e 1T] | Filer W an.-.-.’un:m::uan:n P
Tazing imable Epaad Custom " ¥ -
Tasing! Mahle Minlctals Custom v
rErufale Mable Minlctats Custom v
HT st Fibrar ITable finCeiats L FUET L ¥

gl onnSiataFilenar vplomnTadle kplonnSiaie Maichvaiue ¥

'”' . . . 7 . z 1 ¥

Figure 7.13. Runtime configuration of MA-based management applications

7.5.5. Relevant Work

Relevant work has been reported in [GOL96], which describes ways to create MIB views
within an agent. Views are created by defining operations on SNMP tables using a View
Definition Language (VDL). However, the support of a VDL interface (VDL translators)
requires extensions to standard SNMP agents and increases the footprint on network devices,
while delegation agents need to be always updated as soon as a new control operation is
introduced. This is not a prerequisite in the MA-based approach, where the local MAS modules
are unaware of the incoming MAs functionality. In addition, the data stored within the created
MIB views are queried through standard SNMP interactions, i.e. get and get - next
requests, which may create considerable traffic should the selectivity of the involved

management operations is very high.

Anerousis introduced Marvel architecture, whose information model supports the
generation of computed views of management information [ANE98], thereby increasing the
level of semantics available to the management-application designer. Computed views consist
of monitoring, control, and event views of management data collected from agents. These data
are aggregated into Marvel objects (also known as aggregated managed objects) using spatial
and temporal filters. Marvel objects may co-reside with management agents or execute at

external repositories, depending on the amount of processing required (some aggregations can

196

Chapter 7: Network Monitoring and Performance Management Applications

be very CPU intensive). However, in addition to statically define the location of Marvel
servers, aggregations of management data are obtained through standard management
protocols such as SNMP or CMIP, exhibiting the same scalability problems of the VDL
approach.

7.6. EXPERIMENTAL RESULTS

In order to thoroughly evaluate the performance of the proposed management models, we
have conducted a number of experiments measuring the response time and the network
overhead involved when employing the management applications described in the preceding
sections. The performance issues related with the three applications, i.e. computation of HFs,
SNMP table polling, and table filtering are investigated separately, with their performance

compared against SNMP-based management.

7.6.1. Response Time

7.6.1.1. Health Functions Evaluation
A. SNMP time measurements

Response time measurements started with an evaluation of the SNMP protocol. The
differences between synchronous and asynchronous polling are investigated, while the
dependence of the overall time on several parameters, such as the managed network size and
the number of collected MIB objects, is also evaluated. Similarly to all previous response time
measurements, for every pair of (#polled devices, #MIB objects), experiments have been

repeated 100 times with average times and standard deviations subsequently calculated.

As described in Section 4.5.1, in asynchronous SNMP polling, get requests are sent to all
monitored devices with the responses collected in parallel. When a response is received, an
event is generated and a callback method automatically invoked, which in turn handles the
response packet and extracts the results included within its varbind list. On the other hand,
synchronous polling involves sequential polling of SNMP agents. The thread that carries out
the polling operation remains engaged, waiting the response before sending a get request to
the next agent. Synchronous/asynchronous SNMP polling operations have been implemented

using the AdvnetNet’s Java-based SNMP stack.

The experimental testbed comprises a PC where the manager application executes and a
number of PCs varying from one to ten, with active SNMP agents, playing the role of the
managed devices. At each polling interval, the manager sends a get request to each of the

polled devices retrieving the values of specific MIB-II objects (one to six objects), needed to

197

Chapter 7: Network Monitoring and Performance Management Applications

compute the value of an HF. In any case, the retrieval of all MIB objects requires a single

get/request pair of SNMP packets, as the maximum packet limit is not exceeded.

Time (msec)

900

800

=
=}
S

o
S
3

1%
S
3

s
=)
S

w
=]
3

900

700

500
— .

\.\.
Time (msec)

—
//ﬁ//f//-:/ I /,/47

200 xx///-
e o — e
100 . — .
= . [—) N .
0 ‘ ' ' ' ' ' 1 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10 # Collected Objects
Polled devices —o— 1 host —=—2hosts 3 hosts —>—4 hosts —%— 5 hosts
‘ —— I var —=—2vars 3vars 4vars —%—5 vars —8— 6 vars —e—Ghosts —+— 7 hosts 8 hosts 9 hosts 10 hosts
(a) (b)

800

700

\

. o
0
0 i i 1 2 3 4 5 6
1 2 3 5 6 8 9 10 # Collected objects
#Polled devices
—o— 1 host —#—2 hosts 3 hosts 4 hosts —¥— 5 hosts
‘ 1 var 2 vars 3 vars 4 vars 5 vars 6 vars —e— 6 hosts —+—7 hosts —=— 8 hosts 9 hosts 10 hosts
(c) (d)

Figure 7.14. Response time as a function of the network size and the collected MIB objects per
host for synchronous (a, b) and asynchronous (c, d) SNMP polling operations

The timing measurements are graphically illustrated in Figure 7.14 and indicate a linear
increment of response time both as a function of the network size and the number of retrieved
MIB objects. Surprisingly, asynchronous polling does not result in a drastic reduction of
response time in comparison with its synchronous counterpart. However, the former scales
slightly better than the latter (the slope of the corresponding curves are less steep). It should
also be noted that the time needed by the manager application to compute the value of the HF
for each of the polled devices has not been measured. The results illustrated in Figure 7.14 are

detailed in Table 7.1(synchronous polling) and Table 7.2 (asynchronous polling).

198

Chapter 7: Network Monitoring and Performance Management Applications

Polled Devices

Polled Devices

Collected MIB objects

1

2

3

4

5

6

Average

SD

Average

SD

Average

SD

Average

SD

Average

SD

Average

SD

324

373

40.7

38.7

45.4

41.2

48.1

38.1

54.5

43.0

56.8

46.4

64.5

43.0

86.8

45.6

93.3

47.0

109.0

493

118.4

47.9

133.2

46.2

101.3

41.8

119.5

48.0

151.2

49.2

159.2

53.5

180.0

48.0

200.9

50.9

125.0

43.6

162.0

47.3

193.4

51.5

2154

54.0

251.1

57.2

267.6

61.2

163.8

44.8

219.8

50.2

248.6

52.4

289.3

59.6

3184

69.0

344.6

71.1

215.7

47.4

243.2

66.9

327.7

115.9

345.6

79.3

415.9

117.5

437.1

108.4

259.7

63.1

324.4

71.6

375.7

90.7

413.3

89.1

469.6

117.7

504.6

116.7

297.1

81.1

364.9

95.2

428.6

973

466.2

104.4

538.0

117.8

588.1

125.6

O 00| N o O | W[N| =

3253

80.9

403.1

93.1

462.9

913

513.0

119.6

573.9

117.9

629.9

144.6

[y
o

422.7

93.1

474.3

98.7

564.7

113.2

641.5

179.3

687.1

148.4

813.1

191.3

Table 7.1. Synchronous SNMP time measurements

Collected MIB objects

1

2

3

4

5

6

Average

SD

Average

SD

Average

SD

Average

SD

Average

SD

Average

SD

85.4

92.0

90.8

85.3

105.6

92.7

106.6

95.2

121.8

102.4

130.7

106.4

108.7

78.3

132.3

87.9

133.7

84.6

165.7

114.8

173.3

101.2

174.1

82.3

152.2

72.0

172.0

72.5

204.4

74.5

2123

77.8

228.6

823

238.1

89.2

187.5

60.3

261.1

99.9

272.6

106.8

283.9

115.7

315.0

115.0

312.6

115.1

251.4

88.7

287.1

95.3

325.0

114.5

343.5

100.3

355.2

98.0

383.5

107.3

285.1

107.2

313.9

99.0

368.1

95.0

395.2

116.1

403.1

89.3

449 4

113.8

315.1

88.6

373.6

1114

424.6

96.8

440.9

103.9

482.4

109.4

498.9

120.2

389.2

117.6

400.4

98.2

475.0

107.6

512.3

115.5

553.7

118.3

586.3

124.0

O 00| N o O | W[N| =

4222

933

468.5

121.5

533.2

102.9

565.8

108.0

618.6

140.7

652.2

132.5

[y
o

541.5

93.7

510.1

125.2

579.8

112.3

616.3

139.0

684.4

159.0

731.7

149.7

Table 7.2. Asynchronous SNMP time measurements

B. Multi-hop MAs time measurements

The response time experiments described in the preceding section have been repeated to
measure the time needed to complete the same operations through employing multi-hop MAs
rather than SNMP polling. In fact, these experiments do not significantly differ from those
presented in Section 4.6.1.2; the only difference is that in this case the obtained management

data are real and not ‘simulated’ by encapsulated character strings.

199

Chapter 7: Network Monitoring and Performance Management Applications

In particular, a single MA object is launched from the manager platform and sequentially
visits every managed device. At each point of contact, the MA retrieves a number of MIB
object values (varying from one to five), computes and encapsulates the value of an HF and
subsequently migrates to the next host included into its itinerary. In addition to the network
size and the number of MIB objects retrieved, the effect of the transport protocol used for MA

transfers is also evaluated.

450.0

450.0

Time (msec)

200.0

150.0

100.0 1

50.0

0.0

400.0 / 400.0

350.0 / 350.0

3000 = 3000 _—1
S —
8 2500 — |3 2500 ///
£ 2 2500 e
£ 2000 - e
: e R e —

150.0 /% 150.0

100.0 _ - / 000 /P/\/

500
50.0
0.0 - . . . - -
2 3 4 5 6 7 8 9 10| 00 " j
i 1 2 3 4
Polled devices # MIB objects
—e— | MIB object —=— 2 MIB objects 3 MIB objects —%— 4 MIB objects —%— 5 MIB objects 2hosts —— 4 hosts —#— 6 hosts —e— 8 hosts —o— 10 hosts

400.0 400.0

350.0 350.0 ——

300.0 300.0 —

= —
/// P /7
2500 2500 —

e

2000 /

Time (msec)

;-:// 1500 T————
———=% — 100.0

2 3 4 5 6 7 8 9 10| ‘ ‘ ‘
#Polled Devices ! : # MIanbjectS)

—&— 1 MIB object —=—2 MIB objects 3 MIB objects ——4 MIB objects —%— 5 MIB objects —=— 2 hosts 4 hosts —@— 6 hosts —+— 8 hosts —o— 10 hosts

(c) (d)

Figure 7.15. Multi-hop MAs response time measurements as a function of the network size and
collected MIB objects per host, when the transport protocol is TCP (a, b) or UDP (c, d)

The graphs shown in Figure 7.15 depict an almost linear relationship of response time
versus the network size and the number of obtained MIB objects. In addition, the overall
latency gain of UDP over TCP-based migrations is marginal, although the former is shown to
scale better than the latter as the network size increases. A comparison between Figure 7.15
and Figures 4.25 and 4.26 depicts an increment of the response time of multi-hop MAs for the
same number of visited hosts, when real management data are collected. This is due to the time
spent on interacting with the SNMP agents and obtain the MIB values. On the other hand, in
the experiments described in Section 4.6.1.2, MAs simply encapsulate a pre-constructed string,

without any further interaction with the local device.

200

Chapter 7: Network Monitoring and Performance Management Applications

Collected MIB objects
1 2 3 4 5

Average| SD |Average| SD |Average| SD |Average| SD |Average| SD

82.7 | 17.7 | 842 | 21.5 | 82.5 | 19.8 | 964 | 59 | 82.0 | 6.2
86.5 | 189 | 89.7 | 22.5 | 91.6 | 449 | 91.6 | 33.0 | 96.8 | 18.3
97.1 | 16.7 | 954 | 15.1 |100.9| 8.0 |114.3| 11.6 |137.5| 17.8
1189| 93 |1259]| 145 [142.0| 16.7 |127.4| 16.6 | 179.6 | 24.3
142.1] 20.6 |164.2| 19.0 | 166.2| 19.0 | 157.5| 17.9 |214.1| 18.2
166.5| 17.6 |180.1| 19.1 | 188.9| 20.4 | 188.1 | 20.0 |256.6| 16.7
215.5(316.0 |216.6| 13.9 [217.1| 6.7 |249.6| 20.7 |292.1| 22.5
242.7| 21.8 {249.9| 23.1 |257.5| 11.1 |281.1 | 6.6 [324.4| 15.6
242.8 | 17.5 [296.5| 16.3 |306.0 | 17.1 |316.7| 27.1 |373.7| 20.0
2689 24.6 |312.5| 16.4 [311.8| 17.7 |352.0| 19.0 |412.0| 29.5

Polled Devices

©O©| O N| O U | W N|

[y
o

Table 7.3. Response time measurements for multi-hop MAs, when using TCP for MA transfers

Collected MIB objects
1 2 3 4 5

Average [SD Average SD Average |SD Average [SD Average [SD

86.0 | 7.5 | 863 | 5.2 | 86.7 | 13.5 | 89.8 | 10.6 | 76.0 | 6.2
89.2 | 107 | 914 | 54 | 914 | 83 | 945 | 11.1 | 953 | 4.1
88.8 | 19.1 |110.6| 6.7 [103.8| 9.1 |117.4| 82 |116.7| 5.9
97.9 | 104 {129.0| 12.4 |122.2| 10.8 | 128.2| 12.6 | 132.8| 10.9
113.0| 10.2 |147.0| 109 | 1754 | 193 |172.6| 7.4 |191.7| 21.0
1353| 93 |164.1| 173 [175.0| 11.1 |187.1| &7 |193.9| 10.8
175.1] 16.0 |224.5| 13.7 {231.2| 11.8 |241.4| 11.5 |236.5| 9.1
193.0| 13.4 |247.7| 209 |253.5| 11.2 |278.0| 22.2 |278.1| 10.9
228.6| 21.6 [256.5| 13.8 |266.6 | 19.8 |305.9| 15.2 [323.4| 19.3
237.5| 33.5 |277.4| 18.7 |304.2| 30.7 |333.7| 22.0 |349.4| 29.0

Polled Devices

©O©| O N| o U | W N|

[y
o

Table 7.4. Response time measurements for multi-hop MAs, when using UDP for MA transfers

Interestingly, the multi-hop MAs-based polling scheme exhibits reduced latency in
comparison with SNMP polling, for the same number of polled devices and retrieved MIB
objects. It should be admitted though that SNMP-based operations latency would probably be
lower should a non-Java implementation of the SNMP stack was used (due to the performance
limitations of Java). The results illustrated in Figure 7.15 are also presented in detail in Table

7.3 (MA transfers over TCP) and Table 7.4 (MA transfers over UDP).

201

Chapter 7: Network Monitoring and Performance Management Applications

C. GnG-based polling time measurements

A last set of timing experiments related to HFs computation, aims at evaluating potential

latency gains when replacing the ‘flat’, multi-hop M As-based polling by GnG polling.

Time (msec)

2500 1400.0
1200.0
2000 /
1000.0
O I
1500 /2 2 800.0 —
X E
< P
X /> £ 600.0
1000 N = /
X 400.0
500 200.0
%/"
r:*?"z: : 0.0
0 T T T T T T T T T T T T 1 2 3 4 5 6 7 8 9

10

3 4 5 6 7 8 9 10 11 13 15 18 21 30 # MAs (management domains)
#Polleddevices Shosts —%—7hosts —+— 9 hosts Thosts —o— 13 hosts 15 hosts
[+—1MA —=—2MAs —+—3MAs SNMP (synch) —¥— SNMP (asynch) | 18hosts —— 21 hosts 30 hosts
(a) (b)

Figure 7.16. Response time measurements for various GnG scheme configurations, as a function of
(a) the network size, and (b) the number of launched MAs (management domains)

MAs launched per Polling Interval
1 2 3 4 5

Average SD Average SD Average SD Average SD Average SD

1375 86 |189.4| 9.1 |298.6| 223 - - - -
179.6 | 23.0 | 198.0 | 17.9 - - 406.7 | 24.4 - -
214.1| 153 | 201.6 | 15.6 | 300.7 | 18.0 - - 522.2| 40.0

256.6 | 20.2 |209.0 | 21.0 [308.7 | 185 | - - - -
292.1| 344 |213.1| 25.1 |301.6| 454 | - - - -
3244 69 |232.1| 225 |328.7|2162.8434.8 | 43.7 | - -
3737 | 174 | 2644 | 18.6 3364 | 413 |561.8 | 650 | - -
10 | 4120| 76 |2674| 23.6 [349.7| 56.7 | - - 5756 73.8
11 14483 | 187 |276.8 | 23.8 [357.7| 339 | - - - -
13 15259 127 | 334.1] 289 3783 50.0 | - - - -
15 1603.5| 385 |416.1 | 37.9 [440.7 | 37.6 | - - - -
18 | 719.8| 425 |474.0 | 655 [4789 | 46.0 | - - - -
21 18362 50.1 |539.6| 643 | 5328|499 | - - - -
30 |1185.3| 58.5 | 860.0 | 108.6 | 729.5 | 73.5 | 740.4 | 69.2 | 902.4 | 88.4

O 00| N o Oof | W

Polled Devices

Table 7.5. Response time measurements for several GnG polling scheme configurations

In particular, the manager platform partitions the managed network into a number of
management domains and launches an equal number of MAs per PI, each assigned to a specific
domain. At each point of contact, the MA retrieves five MIB object values needed to evaluate a

HF, computes and encapsulates the HF value and subsequently migrates to the next host

202

Chapter 7: Network Monitoring and Performance Management Applications

included into its itinerary. TCP has been used as a transport protocol for MA transfers. Timing
measurements are graphically illustrated in Figure 7.16 and analytically presented in Table 7.5.
Figure 7.16a shows that a GnG scheme employing two or three MAs optimises the overall
latency for networks comprising more than 5 or 20 hosts, respectively. Notably, the transition
‘threshold’ from one to two MAs (5 hosts) does not coincide with the respective threshold
found in the experiment of Section 5.4.1 (see Figure 5.10), which is 13 hosts. This is again due
to the time spent on interacting with the managed devices, which is negligible in the latter case.
The curves corresponding to SNMP polling latency are also drawn in Figure 7.16, depicting
the improved scalability offered by MA-based solutions (SNMP response times for network

sizes larger than 10 devices have been extrapolated).

Depending on the managed network size, the optimum number of domains (number of MAs
working in parallel) can be determined from the minimum point of the corresponding curves of
Figure 7.16b. Being consistent with the measurements presented in Section 5.4.1, the results
indicate that assigning very small or large numbers of devices to each MA is unlikely to
optimise the overall response time. Thus, for a network of 30 devices, response time is

minimised when partitioning the network in 3 domains, i.e. assigning 10 NEs to each MA.

7.6.1.2. SNMP Table polling

One of the main advantages of the SNMP table polling application introduced in Section
7.4 has been claimed to be the improved consistency of the retrieved table values. In this
section, we present the results of a simple experiment that proves the validity of that argument.
In particular, we compare the time needed to retrieve the contents of several MIB-II tables

through:

= remote SNMP interactions, where each table row is retrieved by a single get - next

request;

= an MA-based approach, where an MA locally interacts with the SNMP agent and obtains

table snapshots through successive get - next requests.

In that latter approach, we do not measure the MA migration delay but only the time needed
to complete the management operation. The performance of the two approaches has been
compared for the retrieval of i f Tabl e that includes 2 rows and 22 columns (2x22),

i pAddr Tabl e (2x5), i pRout eTabl e (7x13), t cpConnTabl e (46x5), udpTabl e
(18x2).

203

Chapter 7: Network Monitoring and Performance Management Applications

The results are illustrated in Figure 7.17 and analytically presented in Table 7.6, which also
reports the improvement in latency when using the MA-based approach instead of traditional
SNMP table polling. As expected, the retrieval latency gain is higher for tables with large

number of rows (one get - next /r esponse pair of packets is exchanged for every row).

120.0-
100.0-]
80.0-
3]
% 60.0-
=
e
40.0
20.0
0.0
ifTable ipAddrTable ipRouteTable tcpConnTable udpTable
\ O MAs Table Polling B SNMP Table Polling
Figure 7.17. SNMP vs. MA-based table polling time measurements
SNMP Table Polling Time (msec)
ifTable ipAddrTable | ipRouteTable |tcpConnTable| udpTable
(2x22) (2x5) (7x13) (26x5) (18x2)
Average| SD |Average| SD |Average| SD |Average| SD |Average| SD
©
2 MA Table 26.9 15.0 6.6 7.1 30.1 16.8 | 71.0 | 353 15.7 10.1
2| (Twva)
IS
2| SNMP
% Table 372 | 26.0 | 9.7 11.3 | 472 | 269 | 102.5| 30.6 | 30.7 | 389
a (Ts)
c
(3]
8 | (T -Tus) 278 31.6 363 307 49.1
e /TS (%) . = . = . = . = . =
£

Table 7.6. Latency gain of MA-based against SNMP table polling

The adoption of the MA-based approach certainly does not result in a drastic reduction of
the overall latency. However, the time gain is expected to be amplified when: (a) retrieving
MIB tables with larger number of rows (e.g. large routing tables), or (b) polling managed
devices separated by low-bandwidth links from the manager host. In the latter case, the MA-
based approach diminishes the length of the management ‘control loop’, resulting in low

latency per get - next request, which is negligible compared to remote network interactions.

204

Chapter 7: Network Monitoring and Performance Management Applications

Unfortunately, this cannot be pictured in Figure 7.17, where SNMP operations are performed
over a high-speed LAN.

7.6.1.3. SNMP Table filtering

The last set of response time experiments aims at evaluating the performance of the table
filtering applications described in Section 7.5 and comparing it against SNMP. In particular,
two filtering applications have been considered. In the first, a variable number of hosts (one to
ten) is polled, retrieving the i f Tabl e row corresponding to the network interface that
received the maximum number of bytes (max i f | NCct et s). In the second, the contents of
polled devices t cpConnTabl e are filtered so as to obtain the table rows for which

t cpConnSt at e = ‘timeWait’.

1200

1000

%
S
S

Time (msec)
=)
[=3
(=]

IS
=
S

1 2 3 4 5 6 7 8 9 10
#Polled devices

‘ — & MAs (ifTable) — = MAs (tcpConnTable) - --A - - SNMP (ifTable) SNMP (tcpConnTablc)‘

Figure 7.18. Response time performance comparison of SNMP vs. MA-based approach for table
filtering applications

With the MA-based approach, a single MA object is launched from the manager platform
and sequentially visits every managed device. At each host, the MA obtains a snapshot of the
requested MIB table, stores the table rows satisfying the filtering pattern and subsequently
migrates to the next host. Our experimental testbed comprises exclusively Windows NT
machines, which include only two interfaces. In the first application, only one of the two
i f Tabl e rows is returned to the manager, whilst in the second MAs store an average of 5 out
of 28 tcpConnTabl e rows. When applying the SNMP model, table snapshots are first
obtained through remote synchronous interactions, with the table contents filtered following
the retrieval completion. The results presented in Figure 7.18 and Table 7.7 indicate a slight
precedence of the MA-based approach over the SNMP implementation. Regarding the SNMP
timings, the processing time needed by the manager application to filter the retrieved tables

and obtain the requested high-level information for each of the polled devices has not been

205

Chapter 7: Network Monitoring and Performance Management Applications

measured; the corresponding time measurements are, therefore, lower than the real polling

response times.

The employment of GnG polling scheme is expected to further reduce the overall response
time of MA-based polling, although relevant experiments have not been conducted. It should
be emphasised though, that the primary goal of table filtering applications has been to reduce
the network overhead and not the response time. Network overhead measurements will be

presented in the following section.

SNMP Table Filtering Time (msec)

MAs SNMP MAs SNMP

(ifTable) (ifTable) (tcpConnTable) | (tcpConnTable)

Average SD Average SD Average SD Average SD

1 90.1 18.8 37.2 26 152.9 299 102.5 30.6

2 113.0 18.15 83.7 22.1 193.2 23.6 190.8 31.1

3 133.9 13.5 150.2 29.5 230.6 19.9 307.0 18.3

§ 4 175.2 35.1 203.4 30.1 300.9 41.1 380.7 28.6
§ 5 221.7 37.35 260.9 29.5 383.7 349 490.9 41.7
§ 6 2553 51.3 302.1 33.7 490.0 30.6 670.1 55.3
§ 7 2943 45.15 340.5 40.2 505.1 29 711.1 37.7
8 3353 279 387.2 48.4 575.5 44.2 824.3 42.7

9 389.5 68.25 404.4 39.1 651.3 38.8 970.4 66.3

10 422.9 33.15 451.0 40 728.2 374 1045.7 29

Table 7.7. MAs vs. SNMP table filtering times

7.6.2. Network Overhead

The main motivation for developing the introduced applications has been to improve
management scalability, mainly in terms of network overhead. In this section, we present the
results of a bundle of experiments, which aim at evaluating the applications performance and
compare it against that of the centralised model (SNMP). We have examined two separate case
studies: In the first, the management of a medium-sized LAN is considered. For simplicity
reasons, we assume that all the managed NEs and the manager station are connected in a single
network segment. In the second, we consider a more general case, whereby the managed
network comprises three separate segments, one of which is connected to the manager station
through a slow WAN link. It should be noted that the networking environments corresponding
to each of the aforementioned case studies are not real. Yet, by measuring the size of the
employed MAs code, their initial state size and the state size increment resulting when
encapsulating specific data samples, the network overhead incurred when employing each of

the introduced applications can be accurately estimated.

206

Chapter 7: Network Monitoring and Performance Management Applications

7.6.2.1. LAN Environment Case Study

In the first case study, we consider a LAN environment of 50 managed devices. The
network overhead imposed by the three proposed applications has been compared against the

AdventNet SNMPv1 implementation.

The SNMP get request/response message has been measured 90 bytes, on average (at the
MAC layer), while every extra value included in the SNMP packet’s varbind list represents an
additional overhead of 17 bytes, on average. Table 7.8 summarises all the MA attributes
needed to evaluate the network overhead of the introduced applications. The values reported in

the table have been measured using the Windump network analyser [Windump].

HF Evaluation| SNMP table polling | SNMP table filtering
Compressed code size
(in Kbytes) 1.25 1.36 1.95
Compressed (initial) 381 384 447
state size (in bytes)
State size increment per 2 68 13
sample (in bytes) (one extra value)| (8x21 extra values) (1x21 extra values)

Table 7.8. Attributes of the MA classes corresponding to the three proposed applications

Figure 7.19a compares the performance of SNMP-based polling against the MA-based
approach, when the calculation of the HF appearing in Eqn. (7-3) is considered. Despite the
object aggregation, the GnG scheme does not outperform centralised polling (the performances
of these two approaches are expected to converge for larger number of aggregated values). In
addition, the segmentation of the managed network into fen domains (employing 10 MAs in
GnG polling) does not seriously effect bandwidth consumption, while reducing the overall
response time (see Section 7.6.1.1). The situation improves with GnS scheme, which becomes
more attractive as the delivery frequency decreases. It is noted that the starting point for
GnG/GnS polling is at 62.5Kbytes, representing the overhead incurred for broadcasting the
compressed MA code to all NEs (50x1.25Kb).

Figure 7.19b, drawn on logarithmic scale, compares our table polling method against the
traditional approach, when considering the retrieval of an interfaces table consisted of eight
rows (8x21 entries). We assume that each get - next request retrieves an entire table row.
The MA-based approach clearly surpasses SNMP-based polling due to the lightweight data
‘encoding’ method employed, data compression, and the fact that the whole table is wrapped
into the MA’s state before delivered to the manager. It is worth noting that the network
partitioning into fen domains provides better results in this case. This is explained by the rapid

growth of the MA’s state encountered when a single MA object is responsible for polling all

207

Chapter 7: Network Monitoring and Performance Management Applications

NEs (the MA state size is increased by 68 bytes each time a NE is visited, as shown in Table

7.8).

1200

1000 4

S -y %
=) =3 S
S S S

Bandwidth Usage (Kbytes)

[}
1=
S

o

%

100,000

210,000 1
41

1,000 4

Bandwidth Usage (Kbyt

3
8

%
*

%
*

0

10

.20
Polling Intervals

30

40

10

20
Polling Intervals

30

40

—&— SNMP-based polling
—— GnSpolling (5 Pls)

—— GnGpolling (1 MA)

e-- CnGpolling(lOMAs)‘

‘+ SNMP-based 5pol]jng —— GnG polling(1 MA) —e— GnG polling(10 MAs

—%— GnSpolling (50 Pls) GnSpolling (5 PIs) ~ —a— GnS polling (50 PIs)
(a) (b)
100,000

=

[=3

=3

=}
I

1,000

Bandwidth Usage (Kbytes)

30

40

.20
Polling Intervals
—@——GnG polling (1 MA)
GnG polling (10 MAs)
- - - M- - - GnS polling-Global Filt. (5 PIs)

—— SNMP-based polling
—— GnG polling - Global Filt. (1 MA)
—¥—— GnS polling (5 Pls)

GnS polling (50 PIs)

(©)

Figure 7.19. Bandwidth consumption of SNMP-based polling against the proposed MA-based
applications: (a) HF computation, (b) SNMP table polling, and (c) SNMP table filtering

The same experiment is repeated for the table filtering application, with the pre-eminence
of the MA-based against the SNMP approach being more distinct (see Figure 7.19¢). In this
scenario, MAs bring back only the most heavily loaded interface (from each host). It should be
emphasised that global filtering improves the framework’s performance both in GnG and GnS
cases, since it keeps the size of the MAs state constant (in this case, the most heavily loaded
network interface is returned). The bandwidth usage is reduced even further when single table
entries (instead of entire rows) are requested (this is not shown here). The results illustrated in

Figure 7.19 are also analytically presented in Table 7.9.

208

Chapter 7: Network Monitoring and Performance Management Applications

Network Overhead - Health Function Computation (Kbytes)

SNMP GnG (1 MA) |GnG (10 MAs)| GnS (5PIs) | GnS (50 Pls)
2 0 0 62.5 62.5 62.5 62.5
E 10 164.1 277.2 288.7 137.9 81.1
i 20 328.1 491.8 514.8 213.3 81.1
% 30 492.2 706.5 741 288.7 81.1
& 40 656.3 921.1 967.2 364.1 81.1

(a)
Network Overhead - SNMP Table Polling (Kbytes)

SNMP | GnG (1 MA) |GnG (10 MAs)| GnS (5PIs) |GnS (50 Pls)
o 0 0 68.4 68.4 68.4 68.4
§ 10 3437.5 1068.9 388.6 175.1 87.1
% 20 6875 2069.5 708.8 281.8 87.1
% 30 10312.5 3070.1 1029 388.6 87.1
S 40 13750 4070.7 1349.2 495.3 87.1

(b)
Network Overhead - SNMP Table Filtering (Kbytes)
SNMP GnG |GNG - Global| GnG GnS | GnS Global GnS
(1 MA) | Filt. (1 MA) | (10 MAs) | (5PIs) | Filt. (5PIs) | (50 Pis)

2 0 0 97.7 97.7 97.7 97.7 97.7 97.7

g 10 34375 | 482.1 326.8 378.6 191.3 186.2 119.5

i 20 6875 866.6 555.9 659.6 285 274.8 119.5

% 30 10312.5 | 1251.1 785 940.5 378.6 363.4 119.5

= 40 13750 | 1635.6 1014.1 1221.5 4723 452 119.5

(c)

Table 7.9. Network overhead estimation for SNMP-based polling, against the proposed MA-based
applications: (a) HF computation, (b) SNMP table polling, and (c) SNMP table filtering

7.6.2.2. LAN-WAN Environment Case Study

In the second case study, we investigate performance issues in a generic topology scenario,
whereby the managed network comprises three separate segments, one of which is connected
to the manager site through a low-bandwidth WAN link. Such topology is suitable to evaluate
the applicability and the management cost savings achieved when deploying the introduced
applications, using as underlying management platform the adaptive hierarchical MA-based
framework described in Chapter 6. The test network is shown in Figure 7.20; the network
domain margins are depicted by the dotted curved lines, while an indicative label is displayed

below the icon of the hosts where Mobile Distributed Managers (MDM) execute.

The quantitative model presented in Section 6.4 has been applied to that test network.

Referring to this particular topology, we assign the cost coefficients the following values:

209

Chapter 7: Network Monitoring and Performance Management Applications

ksyso =ks, s, =ks,s, =1, ks, 5, =5 and kg, g =50. Coefficient values are chosen so as to

reflect the bandwidth availability on the links they correspond to.

Figure 7.20. LAN-WAN environment test network

The suitability of our hierarchical model has been tested by considering the table filtering
application as case study. According to the measurements mentioned in the previous section,
the following variables are assigned the values: S, = 90 bytes, AS,,, = 17 bytes, C = 1.95
Kbytes, and ST, = 447 bytes. Equations (4-6), (5-2), (5-3), (6-2)-(6-6) are applied to compare
the performance of SNMP polling against that of MA-based flat and hierarchical management
in terms of the overall cost, as shown in Figure 7.21, drawn on a logarithmic scale. The
functions defining the cost of MA-based flat management represent special cases of those

developed for hierarchical management.

The same filtering application examined in the preceding section is considered here, i.e.
information referring to the most heavily loaded interface of each host is obtained. Using such
filtering pattern improves system scalability, due to the low selectivity ratio ¢ achieved over
the acquired data. In particular, the MA state size increases by only 13 bytes for each visited
host (o xb =13 in Eqn (4-7)), as showed on Table 7.8. We also assume that management data
are gathered by the MDM and delivered to the manager at regular intervals (in this case, the
delivery frequency is F,; = 10 PIs). The MDM that runs on Subnet 2 for instance, having to
poll 4 devices, it gathers D = 4 devices x 13 bytes/device = 52 bytes every PI and delivers
through a Remote Method Invocation (RMI) to the manager a total of F,; x D =10 x 52 = 520
bytes every 10 PlIs.

210

Chapter 7: Network Monitoring and Performance Management Applications

1.0E+09

1.0E+08

[
i
5

L]

0 100 200 300 400 500

Polling Intervals
-.-m... MA-based flat NM

[y
@
>

Management Cost

—>— SNMP-based polling
—e— Hierarchical MA-based NM

1.0E+08

1.0E+07

10E406 L=

Management Cost

1.0E+05

1.0E+04

0 10 20 30 40 50
Polling Intervals

—— SNMP-based polling

---m--- GnG polling
—=— GnS Polling

—eo— Hierarchical MA-based NM

Figure 7.21. Management cost of
hierarchical framework against SNMP and
flat MA-based polling

Figure 7.22. Comparison of the management
costs for hierarchical, SNMP-based, GnG
and GnS polling

1.0E+09

1.0E+08

1.0E+07

1.0E+06

Management Cosl

1.0E+05

1.0E+04

0 100 200 300 400 500
Polling Intervals
---m--- MA-based flat NM

—¢— SNMP-based polling
—e— Hierarchical MA-based NM

10000

1000

100

10 ==

Management Traffic (Kbytes)

0 100 200 300 400 500
Polling Intervals

—— SNMP-based polling
—e— Hierarchical MA-based NM

---m--. MA-based flat NM

Figure 7.23. Comparison of the management
costs when the cost coefficients are
proportional to the inverse of link

Figure 7.24. Bandwidth usage of the WAN
link imposed by hierarchical, SNMP-based
and flat MA-based management

bandwidth

Clearly, the introduced hierarchical architecture gives rise to a remarkable reduction of
management cost, while the cost of flat management is surpassed by that of centralised polling
only after the first 70 Pls. It is also noted that the starting point for the cost induced by the
hierarchical infrastructure is much lower than the equivalent of flat management, due to the

lightweight “tree multicasting” code distribution scheme, described in Section 6.3.5.

It should be also emphasised that for both SNMP and MA-based flat management,
whenever a packet or an MA object is sent through a link, the traffic associated with the actual
transfer affects both the network segments attached to that link. For instance, if an MA was to
poll all the devices of Subnet 1 and then (on its i™ hop) move to Subnet 2 to continue its
execution, the migration cost for the transfer between Subnet 1 and Subnet 2 would be:

(kSLSo +ksy s, ksys,)* ST;. In contrast, hierarchical MA-based management relaxes the

network from this unnecessary burden, as after the MDMs deployment, the management traffic

is localised thereby minimising the use of interconnecting links.

211

Chapter 7: Network Monitoring and Performance Management Applications

As shown in Figure 7.22, the introduction of GnG polling (see Section 5.2.1), where a
single MA is assigned to each of the management domains (network segments), slightly
improves the performance of flat model in terms of management cost, while it can greatly
reduce the overall response time, as evidenced in Section 7.6.1.1. We have also measured the
management cost for GnS polling (see Section 5.2.2), where the MAs are assumed to deliver
collected data every /0 Pls. Although the cost is reduced compared to GnG scheme, it still
does not fall below that of hierarchical management. In addition, GnS polling cannot be

utilised in time-critical applications.

Figure 7.23 illustrates the same comparison as Figure 7.21, with the difference that the cost
coefficients are now proportional to the inverse of link bandwidths. Assuming that all the
subnets are 10 Mbps Ethernet and that the bandwidths of the links connecting Subnet 0 to
Subnet 1 and Subnet 2 are 10 Mbps and 64 Kbps respectively, the cost coefficients

become:kso’so ZkSl’Sl ZkS2>S2 :kS0>Sl =1 and kSO’SZ =156.25 (When Inultlplled Wlth a

normalising factor ¢,,. =107). The increase of the WAN link coefficient value amplifies the

separating gap between the cost of hierarchical management and these of SNMP-based and flat

management, although this is not ‘visible’ due to the logarithmic scale.

Figure 7.24 focuses on the traffic generated from each of the examined models on the WAN
link connecting Subnet 0 to Subnet 2. Again, the hierarchical framework outperforms both flat
MA-based and SNMP management with sufficient distinct. In particular, following bytecode
distribution and MDM deployment, the hierarchical framework uses the WAN link only to
deliver the statistics to the manager host, every /0 Pls. In contrast, SNMP heavily utilises the
link to broadcast request messages and receive back the associated responses, while in flat
management an MA object traverses the link at least twice in every PI, provided that MAs
itineraries are optimised so as to poll the remote LAN hosts in sequence. The results illustrated

in Figure 7.21-Figure 7.24 are detailed in Table 7.10.

Although our prototype has not yet been tested in a large enterprise network environment, it
is expected to scale well, especially when combining our hierarchical framework with
GnG/GnS polling schemes, as discussed in Section 6.2. For instance, MDMs could be easily
coupled with GnG scheme: after deploying the MDMs to their remote domains (possibly
comprising large numbers of hosts), these could launch a sufficient number of MAs per PI in
order to reduce the overall response time. Alternatively, coupling the hierarchical model with

GnS polling would minimise data transfers within the individual domains.

212

Chapter 7: Network Monitoring and Performance Management Applications

Management Cost - Fixed Cost Coefficients

snmp | MAbased | g Gng | Herarchical
" 0 10 848640 848640 848640 273467.4
‘_E“ 100 44200000 35357340 31978140 1954560 1201967 .4
§ 200 88400000 69866040 63107640 3060480 2130467.4
é’ 300 132600000 | 104374740 | 94237140 4166400 3058967.4
E 400 176800000 | 138883440 | 125366640 5272320 3987467.4
** 500 221000000 | 173392140 | 156496140 6378240 4915967 .4
(a)
Management Cost - Cost Coefficients Dependant
on Link Bandwidth

" 0 10 1273958.4 401155.95

g 100 66352000 49078158.4 1533430.95

% 200 132704000 96882358.4 2665705.95

é 300 199056000 144686558.4 3797980.95

E 400 265408000 192490758.4 4930255.95

¥ 500 331760000 240294958.4 6062530.95

(b)
Network Traffic over the WAN link (Kbytes)
SNMP-based MA-based Hierarchical
polling flat NM MA-based NM

" 0 1.0 7.8 2.4

g 100 406.3 100.2 6.2

% 200 812.5 192.6 10.0

é’ 300 1218.8 284.9 13.8

5 | 400 1625.0 377.3 17.6

** 500 20313 469.7 21.4

(c)

Table 7.10. (a) Management cost of SNMP against MA-based flat management, GnG, GnS and
hierarchical MA-based management for fixed link cost coefficients, (b) Management cost
comparison when cost coefficients are equal to the inverse of link bandwidth, (c) Network traffic
over the WAN link for SNMP, flat and hierarchical MA-based management

7.7. CONCLUSIONS

We have presented three novel applications of MAs on network monitoring and
performance management. The applications, which have been developed on the top of the
lightweight MAP described in Chapters 4-6, address the scalability limitations of centralised
NSM that become significantly more pronounced when transfers of bulk network monitoring

data are considered (see Section 7.2). In particular, MAs have been utilised to: (i) aggregate

213

Chapter 7: Network Monitoring and Performance Management Applications

several MIB values into more meaningful network health indicators (HFs), (ii) acquire SNMP

tables snapshots, and (iii) filter SNMP tables contents applying complex filtering expressions.

Delegating HFs to distributed MAs enables direct observation of network behaviours at
sufficient precision. By computing health indicators locally, vast amounts of real-time data can
be significantly reduced, while HF configurations may be dynamically updated to reflect
varying behaviour patterns at different systems or times. Although the idea of using HFs to
semantically compress management data is not new (see [GOL93a]), here we exploit the

powerful MA paradigm to compute HFs in a more flexible and dynamic manner.

MAs have been also used to efficiently retrieve SNMP tables, where table snapshots are
obtained through local interactions and sent to the manager through single transfers. In addition
to diminishing the number of remote network interactions, this approach improves
management scalability even further through performing more efficient data ‘encoding’ and
data compression, whilst offering a more consistent view of retrieved table contents by
decreasing the length of the management ‘control loop’. Atomic SNMP table views are
particularly useful in a variety of applications aiming at investigating transient problems of

short duration or identifying trends on changing networking conditions.

The observation that only a small portion of retrieved SNMP contents is typically useful to
management applications, led to the development of a third -and more complex- application. In
particular, the ability of MAs to dynamically delegate management intelligence to managed
devices has been exploited to perform intelligent filtering of SNMP tables and enable delivery
of high-level, pre-processed information to the manager platform. A variety of textual and
arithmetic operators are provided to facilitate the exclusion of table values that do not satisfy
pre-determined filtering criteria. Decentralised table filtering may lead to significant
management cost savings, especially when highly selective filtering patterns are considered,

while relaxing the manager platform from processing huge amounts of data.

We have also exploited MAs ability to realise multi-node itineraries to introduce the
concept of domain/global filtering, where MAs use the knowledge/information already
collected to perform a superjacent level of data filtering. Global filtering approach defends the
use of the MAs’ mobility feature in NSM applications, especially in cases where a ‘global
view’ of the managed network is required, i.e. when data obtained from different sources need
to be correlated. Although it cannot be considered as ‘killer application’, it certainly represents
a case where the use of multi-hop agents is the most appropriate delegation technique, if not
always, at least in many scenarios. That fact has also been acknowledged in [MARO1], which
presents a critic perspective on the current status of MA technology with special focus to NSM

and cites our application as one of the few where the use of agent mobility is justified.

214

Chapter 7: Network Monitoring and Performance Management Applications

The experimental results presented in Section 7.6 have demonstrated that the introduced
applications are competent in terms of response time, compared to a Java-based SNMP stack
implementation (in fact, a slight performance precedence has been indicated). In addition, they
confirmed a significant improvement on traffic overhead when testing the proposed
applications in realistic management scenarios and comparing them against traditional

centralised polling.

As a final point, it should be stressed that MA-based approaches to distributed management
applications are neither a panacea nor the only possible solution to distribution problems.
Many of the ideas proposed in this chapter could be realised using the concepts of OSI-SM
management functions or, alternatively, by modifying the SNMP framework (e.g. by
incorporating dynamically configured data filtering capabilities within SNMP agents).

215

CHAPTER 8

SUMMARY, CONCLUSIONS & DIRECTIONS FOR
FUTURE WORK

In this final chapter we bring together the work described in the previous chapters of this
thesis. Section 8.1 explains the significance of the thesis in terms of its main contributions and
summarises the main findings. Section 8.2 presents the conclusions drawn through the research
experience gained, regarding network monitoring applications in which agent mobility can be

effectively used. Section 8.3 identifies areas in which this work could be developed further.

8.1. SUMMARY OF MAIN CONTRIBUTIONS

The main objective of this thesis has been to assess the values and weaknesses of Mobile
Agent (MA) technology form the management viewpoint and identify ways for the effective
use of this technology in distributed management applications. That involved the design and
implementation of MA platform (MAP) expressly oriented to Network & Systems
Management (NSM), and the development of three network monitoring and performance
management applications implemented on the top of our framework. The research
contributions of this thesis have been outlined at the end of Chapters 4-7. We re-iterate through

the main findings below.

The contributions and findings related to the design and implementation of our MA-based

management framework are summarised in the following:

= The MA framework introduced in Chapter 4, is characterised by a lightweight design that
makes it particularly suitable for developing MA-based applications with minimal impact
on network and system resources. That has mainly been achieved through designing a code
distribution scheme that involves the transfer of MA bytecode to managed devices at the
MASs’ creation time, with only MAs state being transferred following that. This is in
contrast with the majority of MAPs, which enforce the transfer of both the MA code and

state in every agent migration. This code distribution model has been refined in Chapter 6,

216

Chapter 8: Summary, Conclusions & Directions for Future Work

by taking advantage of remotely located Mobile Distributed Managers (MDM) to
implement a tree multicasting code distribution scheme. Mobile Agent Servers (MAS)

have also been designed so as to have a lightweight footprint on hosting devices.

Being implemented in Java, the framework is portable across all platforms supporting the

Java Virtual Machine (JVM), addressing the requirement for integrated management.

Integration with legacy systems is achieved through an MA-to-SNMP gateway integrated
within the MAS, which allows incoming MA objects to locally interact with SNMP agents.

A set of security features has been incorporated, shielding network devices against
malicious MAs attacks and protecting management data from eavesdropping. In particular
the Security Component (SC), an integral component of the MAS, provides authentication
and access control (authorisation) services, whilst the data carried by MAs can optionally

be encrypted.

Fault-tolerance issues have also been addressed, covering scenarios where a host included

in the MAs’ itinerary (or the manager) fails or an interconnecting link breaks.

The MA class versioning problem has been addressed through a customised MA
ClassLoader (MACL), which allows distinguishing between different versions of the same

MA class, thereby enabling modifications of MA-based NSM tasks at runtime.

A Mobile Agent Generator (MAG) tool has been implemented to automate the
introduction/customisation of service-oriented MAs through a user-friendly Graphical User
Interface (GUI).

Additional features include: (a) design of GUIs offering Management Information Base
(MIB) browsing, data visualisation, management tasks customisation, etc.; (b) support for
Remote Method Invocation (RMI) interactions between the manager and the managed
devices; (c) visual profiling and active control over remotely executing MA threads; (d)
support for MA transfers over TCP or UDP protocols, with the choice made by the

administrator depending on the application; (e) management data compression.

Experimental results revealed that our framework marginally outperforms Java RMI both
in terms of network overhead and response time when considering simple manager-
managed systems interactions. However, a detailed investigation of the factors affecting
MA-based NSM scalability indicated an exponential growth of management cost with the
managed network size when using a single multi-hop MA to collect data from a number of
managed devices (‘flat” MA-based management); that represents a non-scalable solution,
especially when MAs are not highly selective. This conclusion dictates that MA itineraries

length should be limited and led to the optimisations described in Chapter 5.

217

Chapter 8: Summary, Conclusions & Directions for Future Work

In particular, Chapter 5 introduced two complementary polling schemes that aim at
answering the scalability problems of flat MA-based management. In particular, Get ’n’
Go (GnG) polling is suitable for collecting real-time data and performing short-term
control and configuration tasks on multiple network elements (NE). Response time is
minimised by relying on a number of MAs to carry out distributed management tasks in a
parallel fashion. In addition, when considering networks with large numbers of managed
hosts, the network overhead of flat management is also reduced due to the limited number
of hops corresponding to each MA (the overall amount of data accumulated within MAs
state is reduced). Regarding the off-line analysis of management data, we proposed the Go
'n’ Stay (GnS) polling scheme. In this approach, single-hop agents are dispatched to
managed devices and collect a large number of data samples before delivering
performance reports to the manager, thereby leading to drastic reduction of MA transfers.
Collected data can be delivered either by the originally deployed MAs, clones of these
MAs or RMI invocations; the second approach has been found to be the most cost-
effective solution. In the GnS approach, MAs-manager communication can also be event-
driven, with the manager notified only when specific performance thresholds are crossed.
Concluding, the selection of the appropriate polling scheme is application-dependent, with
the management task execution period and the type of management data to be collected
being the main factors. Experimental analysis of GnG scheme has shown that there is an
optimal number of MAs that minimises the overall latency and network overhead,
depending on the managed network size; GnS polling overhead is reduced for lower data

delivery frequencies.

In Chapter 6, we introduced further extensions, devising a flexible and adaptive
hierarchical MA-based management model, which meets the requirements for the
management of dynamic, large-scale enterprise networks. That model incorporates mobile
mid-level manager entities (MDMs), transparently deployed to remote network domains to
take over their management responsibility and localise the associated traffic. Our
infrastructure offers adaptability to changing networking environments and defines
concrete policies regarding network segmentation in management domains and MDMs

deployment, explicit determination of domain boundaries, etc.

To minimise network overhead on remote domains, MDMs rely on MAs for the data
collection process. Depending on the application, these can either be single-hop or multi-
hop agents. MDMs may also move within their managed domain to ensure balanced
distribution of processing and memory load over managed systems. In particular, MDMs
periodically inspect the resources availability on managed nodes and choose to move and

resume execution to the least loaded host. Finally, fault tolerance issues are also addressed,

218

Chapter 8: Summary, Conclusions & Directions for Future Work

securing that distributed MDM objects continue to perform their decentralised tasks even
when the communication with the manager platform is not feasible. When considering the
management of remote domains, empirical results demonstrated that the proposed
architecture outperforms alternative solutions, both in terms of the overall management
cost and the bandwidth usage of low-bandwidth WAN links.

It is emphasised that the management models proposed throughout Chapters 4-6, are
supplemented by analytical quantitative evaluations and experimental results, which
quantify their performance in terms of the latency and network overhead incurred when

used for realistic management operations.

The contributions and findings related to the network monitoring and performance

management applications described in Chapter 7, are listed below:

The first application involved the computation of health functions (HF) by MAs, enabling
the semantic compression of several MIB variables into a single system indicator. That
allows the direct observation of managed systems health and obviates the need for
transferring vast amounts of data over the network. HF configurations may be dynamically
updated to reflect management needs at different systems or times, while HF values can
optionally be delivered to the manager only when pre-determined thresholds are crossed.
Either single-hop or multi-hop agents can be used to compute HFs. In LAN environments,
the latter perform worse than SNMP, while single-hop agents (GnS polling) offer the most
scalable solution. In LAN-WAN management scenarios, multi-hop MAs outperform
SNMP as they reduce the usage of expensive WAN links. However, in that scenario, the

MA-based hierarchical model improves management scalability even further.

The second application involved efficient SNMP table retrievals. MAs have been used to
obtain table snapshots through local interactions with SNMP agents; table snapshots are
then delivered to the manager through single transfers. That scheme improves management
scalability as it reduces the number of network interactions and applies data compression,
whilst ensuring improved consistency of retrieved table contents. A variety of applications
can benefit from table snapshots to investigate transient problems of short duration or
identify trends on changing networking conditions. In cases that views of SNMP tables
including large amounts of data are requested, single multi-hop agents represent an non-
scalable approach as the state of these MAs would rapidly grow; in that case, using
multiple MAs (GnG polling) can offer performance benefits, yet, GnS polling provides the

most scalable solution.

The third, and most complex, application exploits the ability of MAs to perform intelligent

filtering of SNMP tables and enable delivery of high-level, pre-processed information to

219

Chapter 8: Summary, Conclusions & Directions for Future Work

the manager platform. Filtering patterns can be defined/reconfigured at runtime, using a
variety of textual and arithmetic operators, ensuring the transfer of only those table values
that satisfy specified filtering criteria. Table filtering operations may lead to significant
cost savings, especially when highly selective filtering patterns are involved. Furthermore,
multi-hop agents have been used to correlate the data collected during their itinerary and
offer domain/global views of managed devices. Empirical results have shown that MA-
based approaches outperform SNMP with sufficient distinct, especially when using our

flexible hierarchical model for table filtering applications in a LAN-WAN environment.

An important contribution of the introduced applications relates to a factor that currently
prevents the acceptance of MAs, whose nature is less technological. MAs will be adopted
only when a sufficient body of literature will provide incontrovertible evidence about
when, where and how they are useful. The proposed applications serve as case studies in
which the implications of using MAs in a real application domain can be thoroughly
analysed on a quantitative and experimental basis; such case studies are still very rare. The
MA research community must put more effort into validating its own outcomes, in order to

gain credibility outside.

8.2. APPLICABILITY OF AGENT MOBILITY IN MONITORING APPLICATIONS

One of the main objectives of the research work described in this thesis has been to identify

efficient mobility patterns for management applications. That involved the investigation of

single-hop and multi-hop mobility, with the latter representing the most common use of MAs
[KU97, SAH98, CHI99, ZAP99, ELD99, PULOOb]. Generally, multi-hop agents can offer

flexibility and performance benefits over single-hop agents in the scenarios described in

Section 3.4. In the management context and particularly on network monitoring and

performance management, we have identified the following areas in which multi-hop agents

can enhance flexibility and scalability:

Collection of real-time data: Multi-hop agents represent an efficient approach for real-time
monitoring operations, i.e. when response time restrictions apply. Specifically, when the
latency involved in MA migrations is relatively small (i.e. lightweight, efficient agent
transfer protocols are used), multi-hop mobility may significantly improve the efficiency
of management data collection operations, compared to the single-hop mobility approach,
in which an MA object is deployed to every device. However, this performance gain is
conditional to the following: (a) short-term monitoring tasks performed over large sets of
hosts should be involved, especially when these hosts reside in remote subnets (in such

case, each MA would typically execute for a time negligible with respect to its deployment

220

Chapter 8: Summary, Conclusions & Directions for Future Work

time); (b) MAs should be able to perform semantic compression of collected data
(otherwise their state size will rapidly grow, affecting both the network overhead and
response time of the monitoring task). In addition, the latency of time-sensitive

management operations can be further reduced using the GnG polling scheme.

Data correlation: The ability of MAs to realise multi-hop itineraries can be exploited to
perform data correlation, bringing forth the concept of global filtering. In particular, MAs
deliver to the manager a domain/global-level view of managed devices and obviate the
need for further processing/correlation of data either by the manager or a mid-level entity.
That saves the manager from considerable processing burden and provides a more even
distribution of computational load. To the best of our knowledge, this is the only scenario
in which MAs employed in monitoring applications use the information already collected
to perform a superjacent level of data filtering. Hence, the ability to perform data
correlation can be used as a solid argument in favour of multi-hop mobility in the

management domain.

Flexible and adaptive hierarchical management: MAs have been shown particularly
suitable to implement flexible mid-level managers (MDMs), able to perform decentralised
management tasks. In this context, agent mobility can be effectively exploited to localise
management traffic, reduce the dependency on inter-connecting links and perform
distributed management tasks without the manager’s intervention. Although, in theory, this
can be achieved through simply uploading the mid-level manager code to a remote host
(i.e. using single-hop agents), multi-hop agents add a new dimension in management
flexibility and autonomy. For instance, they can dynamically migrate to another host to
optimise the average resource usage on managed systems. Furthermore, they can directly
observe changes in topology or traffic characteristics, re-define the boundaries of their
assigned domain and create clones to share its management responsibility. Remote cloning
offers the advantage of reducing the latency and overhead associated with the deployment

of a new mid-level manager entity from a central location [LI1099].

It should be emphasised though that multi-hop agents do not represent a one-way approach

on MA-based management applications. As explained in Section 3.2.3., multi-hop MAs can be

regarded as a ‘superset’ of single-hop mobility, as they can offer all the functionality provided

by the latter, with the additional ability of autonomous migration. As a result, single-hop

agents can complement their multi-hop counterparts and provide an effective management

delegation mechanism in management scenarios where the latter fail to offer performance gain.

In particular, single-hop agents are suitable for dynamically augmenting the management

capabilities of NEs, monitoring the performance and health of managed systems over long

221

Chapter 8: Summary, Conclusions & Directions for Future Work

periods and minimising data transfers by returning QoS alarms and periodic summarisation

reports after processing raw management information.

8.3. DIRECTIONS FOR FUTURE WORK

The current prototype of our core MA framework presented in Chapter 4 can serve for

structuring scalable, flexible and dynamically customised distributed management operations.

The following optimisations could be considered in future extensions:

The framework can be extended to enable web-based management operations. To achieve
that, the front-end of the framework should be designed as an applet rather than an
application, allowing the administrator to remotely control its managed network through

loading the management applet on standard web browsers.

MA transfers can be implemented using Java RMI as ‘transport protocol’ and compared, in

terms of latency and network overhead, against MA transfers over TCP and UDP.

To provide a more complete performance evaluation, the performance of our framework
should be compared against that of the Common Object Request Broker Architecture
(CORBA). Although in theory CORBA is more heavyweight and slow than Java RMI, the
choice of an appropriate implementation may lead to marginal performance gain compared
to RMI [BOHO00a].

The integration of a resource accounting tool, such as Jres [CZA98] can be considered as a
means of controlling the occupation of system resources (CPU, memory, etc) within the

Java runtime system and potentially killing mis-behaving MA processes.

The integration of the SC with the Java Cryptography Architecture (JCA) can also be
considered to allow compliance and interoperability with other cryptography
implementations. Such integration will incorporate the design of a provider [Providers],
encapsulating the implementations of the SC component’s authentication and encryption

algorithms.

The framework’s fault tolerance could be improved so as to cover a broader range of fault
scenarios in addition to the ones mentioned in Section 4.4.2. For instance, the case where
the hosting device of an MA fails while the MA is still executing its task should also be
taken into account. Therefore, MAs should transparently resume computations that are
affected by system or network interruptions or failures. That can be achieved by
periodically saving the MA’s persistent state information, as proposed in [BRUO1]. This

feature should be optionally used depending on hosting devices storage capacity.

222

Chapter 8: Summary, Conclusions & Directions for Future Work

The functionality of the MACL (described in Section 4.4.3.) can be extended so as to
maintain information about the last time each of the existing MA classes has been loaded.
For those classes not being used for time exceeding a certain limit, their bytecode will be
removed from the MACL’s hashtable and their associated class files deleted. That way, the
use of local memory and disk space would be minimised. In the case that one of the MAs
whose bytecode has been removed visits the same device, MACL would download its code
from the manager’s Mobile Code Repository (MCR) component. An alternative way for
optimising the usage of local memory and disk resources would be to enforce the MAs
themselves to inform the managed devices whether they execute a long or short-term
management task. In the latter case, the Migration Facility Component (MFC) would
request MACL to remove the MA code from the hashtable, as soon as the MA migrates to

another host.

Additional code distribution models need to be investigated and compared against the
solution adopted in our prototype. For example, the code pre-fetching proposed in
[SOA99], whereby the bytecode of an MA object is transferred to the hosts included into
the MA’s itinerary right before the MA’s travel begins.

Finally, several optimisations could also be performed to maximise the framework’s
performance with respect to the network overhead and response time associated with MA
transfers. In particular, the optimisations suggested in Appendix B considerably reduce the
MAs state size and therefore moderate the impact of MA migrations upon network
resources. In addition, response time could be further reduced by saving the time needed to
create MA objects at the beginning of each Polling Interval (PI) and also the time needed to
translate host names to their respective IP addresses. This issue is also discussed in

Appendix B.

Regarding the two complementary polling schemes described in Chapter 5, the following

optimisations could be considered in future extensions, to further improve their efficiency:

GnG scheme performance could possibly benefit by applying a variation of the technique
described in [BAR99]. Namely, enforce individual MAs to download their state (i.e. their
collected data) to the manager station after visiting a fixed number of NEs. That would
represent significant gain in network overhead, especially when large amounts of data are
collected from each host, as it would prevent MAs state from growing over a certain limit;
yet, response time penalties associated with the employment of such scheme should be

investigated in detail.

Optimal itineraries can be designed by implementing the Optimal Itinerary Planning (OIP)

algorithm described in Section 5.2.1.2.

223

Chapter 8: Summary, Conclusions & Directions for Future Work

In GnG polling, network segmentation could be automated and dynamically adapted to the
managed network, aiming at minimising the response time and/or network overhead

depending on the number and physical distribution of NEs.

The performance of GnS polling can be optimised by eliminating information carried

within the MAs’ state that is only useful for multi-hop agents, e.g. itinerary.

Additional experiments should be conducted in large-scale networking environments
comprising several remote management domains. That would allow to evaluate the effect of
network partitioning in reducing the overall response time over flat MA-based model.
Should experiments on such environments are not feasible, “virtual’ remote segments could
be created, introducing some fixed time penalty to MA transfers whenever an agent

traverses a simulated ‘WAN link’.

The functionality of the hierarchical model proposed in Chapter 6 can be further improved

through incorporating the following optimisations:

The topology map GUI can be designed as an expandable graphical component: The map
will initially display a representation of the managed network where individual subnets
will be illustrated as icons that will expand to provide a detailed view of their included

managed devices.

MDMs deployment Policy 2, described in Section 6.3.3., can be implemented to enable the
dynamic placement of MDMs depending on the management cost associated with the

management of a remote domain rather than the number of devices included therein.

The Resources Monitoring Tool (RMT) tool (see Section 6.3.7) can be extended so as to

support Windows 95/98 and 2000 operating systems.

The configuration of the hierarchical model can be saved through serialising the
Hi erarchi cal Settings object (see Section 6.3.3.) whenever the settings are
modified. The serialised information would be stored in a file, used to restore the settings
at manager startup. That would obviate the need for the administrator to re-define the

hierarchical system’s configuration.

MDMs autonomous decision making can be further enriched: in the current version of our
prototype, the decision regarding the segmentation of a management domain (already
assigned to an MDM) in two parts, is made by the manager. For instance, should a new
device is connected to a segment within the boundaries of the examined domain, its local
MAS server will publicise its initialisation through communicating directly with the
manager. It is then left to the manager to decide whether the remote MDM can cope with

the increased number of managed devices or its domain should be divided in two. As a

224

Chapter 8: Summary, Conclusions & Directions for Future Work

future extension, we intend to enforce the MDMs to make such decisions without requiring
any communication with the manager. In particular, at the time that an MAS server starts,
it will first get (through a network ‘map’) a list of the hosts residing on the same subnet
and then broadcast an “I'm-alive” message to them. Should an MDM executes on one of
these devices, it will instantly acknowledge the receipt of the message and append the
‘discovered” host to its list of managed devices, otherwise, after a pre-determined time
interval elapses, the MAS will send the message to the manager platform. In the former
case, if the number of NEs managed by the MDM exceeds the specified limit, the MDM
will divide its domain in two parts, create a clone of itself and send its clone to take over
the management of the second domain. That approach will increase the ability of the
MDMs to make autonomous decisions, while minimising the dependency on links

connecting remote subnets to the manager site and also the overhead of MDM deployment.

The current three-level hierarchical model can be extended to a multi-level hierarchy,
whereby MDMs could be supervised by other MDMs residing on higher levels rather than

directly by the manager platform.

The existing prototype allows the manager to download on-the-fly new monitoring task
definitions to distributed MDMs. However, the functionality of the MDMs themselves
cannot be modified at runtime. Therefore, rather than deploying MDMs with fixed
capabilities able to perform only dynamically customisable monitoring tasks, the MDM
should also provide an interface allowing the manager to plug-in software components
implementing new functionality. That interface could be implemented through the

MInRni Ser ver component thereby enabling the design of MDMs as extensible engines.

The functionality of the monitoring applications described in Chapter 7 can be further

enriched through applying the following extensions:

Management applications often need to retrieve information scattered among several MIB
tables, e.g., routing information specific to certain type of interfaces and their current
utilisation. For instance, the MIB-Il i pRout eTabl e [McC91] keeps track of IP routes,
with interfaces information found in i f Tabl e. An application may need to correlate
routes with interface utilisation for capacity planning purposes. That correlation could be
achieved by using the i pRout el f I ndex column of i pRout eTabl e as index for the
corresponding retrievals from the i f Tabl e. Such operations imply joining two MIB
tables, in a fashion similar to database table joins. Currently the table filtering operations
described in Section 7.5 do not support table joins, which could be considered in future

extensions.

225

Chapter 8: Summary, Conclusions & Directions for Future Work

= The applications described in this chapter considered exclusively filtering of MIB-II
objects/tables. Hence, additional applications and filtering patterns should be envisaged
and applied to other MIBs. For instance, MAs may work in conjunction with Remote
Monitoring (RMON) probes to provide, on demand basis, high-level network-oriented
statistics, e.g. an MA could visit all the devices with installed RMON probes and return to
the manager information about the least loaded Ethernet segment. This information,
retrieved from the RMON MIB [WAD95], could be used for network planning, for
example to help the administrator decide where to connect a new managed device so as to

achieve even distribution of traffic.

Another scenario could be to return a number of N host pairs that communicate in more
frequent basis and therefore generate a substantial amount of traffic (this information can
be extracted from the RMON matrix group). The administrator might then consider
connecting these hosts in the same segment so that the generated traffic will only affect
that segment. In the case that no RMON probes are installed, MAs could extract similar

information from packet sniffers, like the C-based sniffer tool used in [FERO1].

= The latency associated with table retrievals can be reduced by implementing the ‘get-table’
operation through successive get - bul k (instead of get - next) requests; that would also
improve table values consistency. Since the get-bulk operation is only available in SNMP
v2c and v3 frameworks, MAs could be instructed to first check the SNMP version of the
local agent and then accordingly invoke an appropriate ‘get-table’ method implementation,

issuing either get - next or get - bul k requests.

= Current filtering patterns allow Table Filterer (TF) agents to either obtain single column
values or the whole table row. These patterns should be extended so as to allow

encapsulation of an arbitrary number of table column values.

= The MAG tool’s functionality can be extended so as to provide the user a ‘library’ of
actions to be triggered at the event of specific threshold crossings. Such an extension would

enable MAs to perform simple configuration or fault management tasks.

226

BIBLIOGRAPHY

[ACH97]

[ACL]

[ADAOO]

Acharya A., Ragnganathan M., Saltz J., “Sumatra: A Language for Resource-
Aware Mobile Programs”, Proc. of the 2™ Int. Workshop on Mobile Object
Systems (MOS’97), LNCS vol. 1222, Springer-Verlag, July 1997.

FIPA, FIPA ACL Message Structure Specification. Revision XC00061D,
August 2000.

Adachi A., De Mondonca M.F., De Souza J.N., “Push Model in Web-Based
Network Management”, Proc. of the Int. Conf. on Telecommunications
(ICT’2000), May 2000.

[AdventNet] AdventNet, http://www.adventnet.com/.

[Aglets]

IBM, Aglets, http://www.trl.ibm.co.jp/aglets/.

[AMETAS] AMETAS (Asynchronous MEssage Transfer Agent System), Distributed

[ANE98]

[ANE99]

[APP94]

[ARN96]

[AUSO00]

Systems and Operating Systems research group, Johann Wolfgang Goethe-

University, Frankfurt, Germany, http://www.vsb.cs.uni-frankfurt.de/ametas/.

Anerousis N., “An Information Model for Generating Computed Views of
Management Information”, Proc. of the 9" IFIP/IEEE Int. Workshop on
Distributed Systems: Operations & Management (DSOM’98), pp. 169-180, Oct.
1998.

Anerousis N., “An Architecture for Building Scalable, Web-based Management

Services”, Journal of Networks and Systems Management, 7(1), March 1999.

Appleby S., Steward S., “Software Agents for Control”, in Modelling Future
Telecommunication Systems, Cochrane P. and Mealthey P. Eds., Chapman &
Hall, 1994.

Arnold K., Gosling J., “The Java Programming Language”, Addison-Wesley,
1996.

Austin C., Pawlan M., “Writing Advanced Applications for the Java Platform”,
March 2000,

227

Bibliography

[BALI7]

[BAL9S]

[BAR99]

[BAU99]

[BEL99]

[BIE97]

[BIE98a]

[BIE98b]

[BOG73]

[BOHOO0a]

http://developer.java.sun.com/developer/onlineTraining/Programming/
JDCBook/index.html.

Baldi M., Gai S., Picco G.P., “Exploiting Code Mobility in Decentralised and
Flexible Network Management”, Proc. of the 1% Int. Workshop on Mobile
Agents (MA’97), LNCS vol. 1219, pp. 13-26, April 1997.

Baldi M., Picco G.P., “Evaluating the Tradeoffs of Mobile Code Design
Paradigms in Network Management Applications”, Proc. of the 20" Int. Conf.
on Software Engineering (ICSE’98), pp. 146-155, April 1998.

Barbeau M., “Modeling and Comparison of Bandwidth Usage of Three
Migration Strategies of Mobile Agents”, Proc. of the 1% Int. Workshop on
Mobile Agents for Telecommunication Applications (MATA’99), pp. 197-210,
Oct. 1999.

Baumer G., Breugst M., Choy S., Magendaz T., “A Universal Agent Platform
Based on OMG MASIF and FIPA Standards”, Proc. of the 1% Int. Workshop on
Mobile Agents for Telecommunication Applications (MATA’99), pp. 1-18, Oct.
1999.

Bellavista P., Corradi A., Stefanelli C., “An Open Secure Mobile Agent
Framework for Systems Management”, Journal of Network and Systems
Management (JNSM), 7(3), Sep. 1999.

Bieszczad A., Pagurek B., “Towards Plug-and-Play Networks with Mobile
Code”, Proc. of the Int. Conf. on Computer Communications (ICCC’97), Nov.
1997.

Bieszczad A., Pagurek B. “Network Management Application-Oriented
Taxonomy of Mobile Code”, Proc. of the IEEE/IFIP Network Operations and
Management Symposium (NOMS’98), Feb. 1998.

Bieszczad, A., White, T., Pagurek, B., “Mobile Agents for Network
Management”, IEEE Communications Surveys, 1(1), Sep. 1998.

Boggs, J., “IBM Remote Job Entry Facility: Generalize Subsystem Remote Job
Entry Facility”, IBM Technical Disclosure Bulletin 752, IBM, Aug. 1973.

Bohoris C., Pavlou G., Cruickshank H., “Using Mobile Agents for Network
Performance Management”, Proc. of the 2000 IEEE/IFIP Network Operations
and Management Symposium (NOMS’2000), pp. 637-652, April 2000.

228

Bibliography

[BOHOOb]

[BOHO00C]

[BONO9S]

[BRUO1]

[BUMOO]

[CABOO]

[CAR97]

[CAS90]

[CAS93]

[CAS96]

[CCITTY2]

Bohoris C., Liotta A., Pavlou G., “Software Agent Constrained Mobility for
Network Performance Monitoring”, Proc. of the 6™ IFIP Conf. on Intelligence in
Networks (SmartNet’2000), pp. 367-387, Sep. 2000.

Bohoris C., Liotta A., Pavlou G., “Evaluation of Constrained Mobility for
Programmability in Network Management”, Proc. of the 11th IFIP/IEEE Int.
Workshop on Distributed Systems: Operations & Management (DSOM’2000),
pp. 243-257, Dec. 2000.

Bonabeau E., Henaux F., Guerin S., Snyers D., Kuntz P., Theraulaz G.,
“Routing in Telecommunications Networks with Ant-Like Agents”, Proc. of the
2" Int. Workshop on Intelligent Agents for Telecommunication Applications
(IATA’98), LNCS vol. 1437, pp. 60-71, July 1998.

Bruce S., Linton D.G., “Evaluating Recovery Protocols for Mobile Agents in
Network Management Applications”, Proc. of the 7" IFIP/IEEE Int. Symposium
on Integrated Network Management (IM’2001), in press, May 2001.

Bumpus W., Sweitzer J.W., Thompson P., Westerinen A.R., Williams R.C.,
“Common Information Model: Implementing the Object Model for Enterprise
Management”, Wiley, 2000.

Cabri G., Leonardi Z., Zambonelli F., “Weak and Strong Mobility in Mobile
Agent Applications”, Proc. of the 2" Int. Conf. and Exhibition on the Practical
Applications of Java (PA-Java’2000), April 2000.

Carzaniga A., Picco G.P., Vigna G., “Designing Distributed Applications with
Mobile Code Paradigm”, Proc. of the 19" Int. Conf. on Software Engineering
(ICSE’97), pp. 22-32, May 1997.

Case J., Fedor M., Schoffstall M., Davin J., “A Simple Network Management
Protocol (SNMP)”, RFC 1157, May 1990.

Case J., McCloghrie K., Rose M., Waldbusser S., “Manager-to-Manager
Management Information Base”, RFC 1451, April 1993.

Case J., McCloghrie K., Rose M., Waldbusser S., “Transport Mappings for
Version 2 of the Simple Network Management Protocol (SNMPv2) ”, RFC
1906, Jan. 1996.

CCITT, “Maintenance: Telecommunications Management Network - TMN

Management Functions”, Recommendation M.3400, Oct. 1992.

229

Bibliography

[CHAIT]

[CHEQ5]

[CHE9S8]

[CHEOOa]

[CHEOOD]

[CHI97]

[CHI99]

[Cisco00]

[Concordia]

[COR984]

[COR98D]

[CORBA]

Chadha R., Wuu S., “Incorporating Manageability into Distributed Software”,
Proc. of the 5™ Int. Symposium on Integrated Network Management (IM*97),
pp. 489-502, May 1997.

Chess D., Grosof B., Harrison C., Levine D., Parris C., Tsudik G., “Itinerant
Agents for Mobile Computing”, IEEE Personal Communications, 2(5), pp. 34-
49, Oct. 1995.

Cheikhrouhou M., Conti P., Labetoulle J., “Intelligent Agents in Network
Management, a state of the art”, Networking and Information Systems, 1(1), pp.
9-38, 1998.

Cheikhrouhou M., Conti P., Labetoulle J., “Automatic Configuration of PVCs in
ATM Networks”, Proc. of the 2000 IFIF/IEEE Network Operations and
Management Symposium (NOMS’2000), pp. 535-548, April 2000.

Cheikhrouhou M., “Software Agents in Network Management”, PhD thesis,
Insitut Eurocom/Ecole Polytechnique Federale, Lausanne, Sep. 2000.

Chia T.H., Kannapan S., “Strategically Mobile Agents”, Proc. of the 1% Int.
Workshop on Mobile Agents (MA’97), LNCS vol. 1219, pp. 13-26, April 1997.

Chirico M., De Milato F., Scapolla A.M., “Mobile Agents for Secure
Management of Networks”, HP Openview University Association (HP-
OVUA’99), June 1999.

Cisco Systems, Release Notes for Cisco 10S Release 12.1(5)DA for Cisco
DSLAMs with NI-2, Dec. 2000,
http://www.cisco.com/univercd/cc/td/doc/product/dsl_prod/ios_dsl/rel121/relnot
es/reln1215.htm.

Mitsubishi Electric, Concordia,

http://www.meitca.com/HSL/Projects/Concordia/.

Corradi A., Stefanelli C., “How to Employ Agents in Systems Management”,
Proc. of the Third Int. Conf. and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents (PAAM’98), pp. 17-26, March 1998.

Corkery M., “A Review of State of the Art in Mobile Agent Systems”,
Technical Report, Dep. Computer Science, National University of Ireland,
Maynooth, Ireland, 1998.

CORBA/IIOP 2.4 Specification, Nov. 2000,

http://www.omg.org/technology/documents/formal/corbaiiop.htm.

230

Bibliography

[CZA98]

[DAS99]

[DCOM]

[Disman]

[ELD99]

[FAR96]

[FERO1]

[FIPA]
[FUGY8]

[FUN9S8]

[GAV99]

[GHA99]

Czajkowski G., Von Eicken T., “Jres: a Resource Accounting Interface for
Java”, Proc. of the Int. Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’98), Nov. 1998.

Dasgupta P., Narasimhan N., Moser L.E., Melliar-Smith P.M., “MAgNET:
Mobile Agents for Networked Electronic Trading”, IEEE Transactions on
Knowledge and Data Engineering, 11(4), pp. 509-525, July-Aug. 1999.

Microsoft, “Distributed Component Object Model Protocol -- DCOM/1.0”, Nov.
1996,

http://msdn.microsoft.com/library/specs/distributedcomponentobjectmodelproto

coldcom0.htm.

Bierman A., Greene M., Stewart B., Waldbusser S., “Distributed Management

Framework”, August 1998, http://www.alternic.org/drafts/drafts-i-j/draft-ietf-

disman-framework-02.txt.

El-Darieby, Bieszczad A., “Intelligent Mobile Agents: Towards Network Fault
Management Automation”, Proc. of the 6™ IFIP/IEEE Int. Symposium on
Integrated Network Management (IM’99), pp. 611-622, May 1999.

Farmer W., Guttman J., and Swarup V., “Security for mobile agents: Issues and
requirements”, Proc. of the 19th National Information Systems Security Conf.,
pp. 591-597, Oct. 1996.

Feridun M., Krause J., “A Framework for Distributed Management with Mobile
Components”, Computer Networks, 35(1), pp. 25-38, Jan. 2001.

Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org/.

Fuggetta A., Picco G.P., Vigna G., “Understanding Code Mobility”, IEEE
Transactions on Software Engineering, 24(5), pp. 342-361, 1998.

Funfrocken S., “Transparent Migration of Java-Based Mobile Agents: Capturing
and Re-establishing the State of Java Programs”, Proc. of the 2™ Int. Workshop
on Mobile Agents (MA’98), LNCS vol. 1477, pp. 26-37, Oct. 1998.

Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “A Progressive
Network Management Architecture Enabled by Java Technology”, Proc. of the
1* Int. Conf. and Exhibition on the Practical Applications of Java (PA-Java’99),
pp. 61-72, April 1999.

Ghanea-Hercock R., Collis J.C., Ndumu D.T., “Co-operating Mobile Agents for
Distributed Parallel Processing”, Proc. of the 3 ACM Conf. on Autonomous
Agents (Agents’99), pp. 398-399, May 1999.

231

Bibliography

[GOKO98]

[GOLY1]

[GOL93a]

[GOL93D]

[GOL95]

[GOL96]

[GOL98]

[GRAJ5]

Gokhale A., Schmidt D., “Evaluating CORBA Latency and Scalability Over
High-Speed Networks”, IEEE Transactions on Computers Journal, April 1998.

Goldszmidt G., Yemini Y., Yemini S., “Network Management by Delegation”,
Proc. of the 2™ Int. Symposium on Integrated Network Management
(ISINM’91), April 1991.

Goldszmidt G., Yemini Y., “Evaluating Management Decisions via Delagation”,
Proc. of the 3™ Int. Symposium on Integrated Network Management
(ISINM’93), April 1993.

Goldszmidt G., “On Distributed Systems Management”, Proc. of the 31
IBM/CAS Conf., Oct. 1993.

Goldszmidt G., “Distributed Management by Delegation”, PhD thesis, Columbia
University, New York, Dec. 1995.

Goldszmidt G., “Network Management Views using Delegated Agents”, Proc.
of the 6th IBM/CAS Conf., 1996.

Goldszmidt G., Yemini Y., “Delegated Agents for Network Management”,
IEEE Communications Magazine, Special Edition on Network Management
Paradigms, March 1998.

Gray R., “Agent Tcl: A Transportable Agent System”, Proc. of the CIKM
Workshop on Intelligent Information Agents, 4™ Int. Conf. on Information and

Knowledge Management, 1995.

[Grasshopper] IKV++ GmbH - Grasshopper, http://www.ikv.de/products/grasshopper/.

[GRE97]

[GRE99]

[GRI97]

[GSC99]

Green S., Hurst L., Nagle B., Cunningham P., Somers F., Evans R., “Software
Agents: A review”, Technical report, Department of Computer Science, Trinity
College, Dublin, Ireland, May 1997.

Greenwood D., Gavalas D., “Using Active Processes as the Basis for an
Integrated Distributed Network Management Architecture”, Proc. of the 1% Int.
Working Conf. on Active Networks (IWAN’99), LNCS vol. 1653, pp. 199-211,
July 1999.

Grimes G., “Intelligent Agents for Network Fault Diagnosis and Testing”, Proc.
of the 5™ Int. Symposium on Integrated Network Management (IM*97), pp. 232-
244, May 1997.

Gschwind T., Feridun M., Pleisch S., “ADK - Building Mobile Agents for

Network and Systems Management from Reusable Components”, Proc. of the

232

Bibliography

[HARY5]

[HAR99]

[HAY99]

[HEG94]

[HUN97]

[INCO]

[ISM99]

[1S0914]

[1S091b]

[1S092]

[1S093]

[ITU94]

Joint Symposium: 1% Int. Symposium on Agent Systems and Applications / 3"
Int. Symposium on Mobile Agents (ASA/MA’1999), Sep. 1999.

Harrison C., Chess D., Kershenbaum A., “Mobile Agents: Are they a good
Idea?”, IBM Research Report, RC 19887, March 1995,

http://www.infosys.tuwien.ac.at/Research/Agents/archive/mobagtibm.ps.qgz .

Harrington D., Presuhn R., Wijnen B., “An Architecture for Describing SNMP
Management Frameworks”, RFC 2571, April 1999.

Hayzelden A.,Bigham J., “Agent Technology in Communications Systems: An
Overview”, Knowledge Engineering Review, 14(4), pp. 341-375, Dec. 1999.

Hegering H.G., Abeck S., “Integrated Network and System Management”,
Addison-Wesley, 1994,

Hunt R., “SNMP, SNMPv2 and CMIP - The Technologies for Multivendor
Network Management”, Computer Communications, 20(2), pp. 73-78, March
1997.

EU-Inco 977113 Project, Gulyas L., Kovacs L., Micsik A., Pataki B., Zsamboki
l., “Mobile Software Agents”, public deliverable, June 2000.

Ismail L., Hagimont D., Mossiere J., “Evaluation of the Mobile Agent
Technology: Comparison with the Client/Server Paradigm”, Proc. of the Int.
Conf. on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’99), pp. 306-313, Nov. 1999.

Information Technology, Open Systems Interconnection, “Systems Management

Overview”, Sep. 1991.

Information Technology, Open Systems Interconnection, “Common
Management Information Protocol (CMIP) — Part 1: Specification”, ISO/IEC
9596, Nov. 1991.

ITU-T Rec. X.739/X.738, Information Technology - Open Systems
Interconnection, “Systems Management - Part 13: Summarization Function”,
DIS 10164-13, ISO/IEC, Oct. 1992.

ITU-T Rec. X.739/X.738, Information Technology - Open Systems
Interconnection, “Systems Management - Part 11: Metric Objects and
Attributes”, DIS 10164-11, ISO/IEC, Oct. 1993.

ITU-T, Recommendation X.690. Information Technology, “ASN.1 Encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER)”. ITU, July 1994,

233

Bibliography

[JAMES]

[JAR]

[Jasmin]

[JAVA]

[JB]

[JBM]

[JCA]

[JDBC]

[JDMK]

[JENOO]

[JIA00]

[UIT]
[JMAPI]
[IMX]

[INI]

[JSAPI]

JAMES: A Mobile Agent Platform for the Management of Telecommunication
and Data Networks, University of Coimbra, Portugal, SIEMENS Portugal,
http://james.dei.uc.pt/.

Sommerer A., Sun Microsystems, “The Java Tutorial: JAR files”,

http://java.sun.com/docs/books/tutorial/jar/.

“The Jasmin Project, A Script-MIB Implementation”, http://www.ibr.cs.tu-

bs.de/projects/jasmin/.

Sun Microsystems, “Java Language Overview”, White paper,

http://java.sun.com/docs/overviews/java/java-overview-1.html.

Sun Microsystems, JavaBeans specification, Dec. 1996,

http://java.sun.com/beans/docs/spec.html

The Java-Based Management Page, http:/joe.lindsay.net/javamgmt.html.

Sun Microsystems, “Java Cryptography Architecture API Specification &
Reference”, Dec. 1999,
http://java.sun.com/products/jdk/1.2/docs/quide/security/CryptoSpec.html.

Sun Microsystems, JDBC Database Access tutorial,

http://java.sun.com/docs/books/tutorial/jdbc/index.html.

Sun Microsystems, Java Dynamic Management Kit, (JDMK), 1998,

http://www.sun.com/software/java-dynamic/.

Jennings N.R., “On Agent-Based Software Engineering”, Artificial Intelligence,
117(2), pp. 277-296, 2000.

Jiao J., Nagvi S., Raz D., Sugla B., “Towards Efficient Monitoring”, IEEE
Journal of Selected Areas in Communications, 5(18), pp. 723-732, May 2000.

Java JIT Compiler Overview, http://www.sun.com/solaris/jit/.

Sun Microsystems, Java Management API Architecture, Revision A, Sep. 1996.

Sun Microsystems, Java Management Extensions (JMX) specification, 1999,

http://java.sun.com/products/JavaManagement/index.html.

Sun Microsystems, Java Native Interface (IND tutorial,

http://java.sun.com/docs/books/tutorial/nativel.1/index.html.

Sun Microsystems, Java Security APl Overview, Feb. 1997,

http://www.javasoft.com/products/jdk/1.1/docs/quide/security/JavaSecurityOver

view.html.

234

Bibliography

[KAH97]

[KAL97]

[KAR983]

[KAR98b]

[KAWO0]

[KEL99]

[KER93]

[KIMO8]

[KNI99]

[KOO95]

[KOT99]

[KQML]

[KRA9S]

Kahani M., Beadle H., “Decentralised Approaches for Network Management”,

Computer Communications Review, 27(3), pp. 36-47, July 1997.

Kalyanasundaram P., Sethi S., Sherwin M., Zhu D., “A Spreadsheet-Based
Scripting Environment for SNMP”, Proc. of the 5™ IFIP/IEEE Int. Symposium
on Integrated Network Management (IM’97), pp. 752-765, May 1997.

Karygiannis A., “Network Security Testing Using Mobile Agents”, Proc. of the
Int. Conf. on Telecommunications (ICT*98), July 1998.

Karjoth G., Asokan N., Giilcl C., “Protecting the Computation Results of Free-
Roaming Agents”, Proc. of the 2" Int. Workshop on Mobile Agents (MA’98),
LNCS vol. 1477, pp. 195-207, Sep. 1998.

Kawamura R., Stadler R., “Active Distributed Management for IP Networks”,
IEEE Communications Magazine, 38(4), pp. 114-120, April 2000.

Keller A., Reiser, H., “Dynamic Management of Internet Telephony Servers: A
Case Study based on JavaBeans and JDMK”, Proc. of the 3" Int. Enterprise
Distributed Object Computing Conf. (EDOC’99), pp. 135 - 146, Sep. 1999.

Kershenbaum A., “Telecommunications Network Design Algorithms”,
McGraw-Hill eds., 1993.

Kim G.J., Kim Y.S., Lee H.H., “A Design of Management System for ATM
Switches Using Mobile Agent Concept”, Proc. of the IEEE Global
Telecommunications Conf. (Globecom’98), pp. 2504-2508, Nov. 1998.

Knight G., Hazemi R., “Mobile Agent based Management in the INSERT
Project”, Journal of Network and Systems Management, 7(3), Sep. 1999.

Kooijman R., “Divide and Conquer in Network Management Using Event-
Driven Network Area Agents”, Technical University of Delft, The Netherlands,
May 1995.

Kotz D., Gray R., “Mobile Agents and the Future of the Internet”, ACM
Operating Systems Review, 33(3), pp. 7-13, August 1999.

Finin T., Fritzson R., McKay D., McEntire R., “KQML as an Agent
Communication Language”, Proc.of the 3™ Int. Conf. on Information and
Knowledge Management (CIKM’94), pp. 456-463, Nov. 1994.

Krause J., “Technology Review of Java-Based Mobile Agent Platforms”,
Technical Report SSC/1998/009, SSC, EPFL, Lausanne, Switzerland, Feb.
1998, http://sscwww.epfl.ch/Pages/publications/ps_files/tr98 010.ps.

235

Bibliography

[KU97]

[LANOS]

[LAN99]

[LAZ97]

[LAZ98]

[LEEOO]

[LEV99]

[LIN99]

[L1098]

[L1099]

[LIO01]

[LIPOO]

Ku H., Luderer G., Subbiah B., "An Intelligent Mobile Agent Framework for
Distributed Network Management”, Proc. of the |IEEE Global
Telecommunications Conf. (Globecom ’97), pp. 160-164, Nov. 1997.

Lange D., Oshima M., “Programming and Deploying Java Mobile Agents with
Aglets”, Addison-Weslay, 1998.

Lange D., Oshima M., “Seven Good Reasons for Mobile Agents”,
Communications of the ACM, 42(3), pp. 88-89, March 1999.

Lazar S., Sidhu D., "Discovery: A Mobile Agent Framework for Distributed
Application Development”, Technical Report, Maryland Center for

Telecommunications Research, University of Maryland, 1997.

Lazar S., Weerakoon 1., Sidhu D., “A Scalable Location Tracking and Message
Delivery Scheme for Mobile Agents”, Proc. of the 7" |EEE WETICE Conf.,
June, 1998.

Lee J-O, “Enabling Network Management Using Java Technologies”, IEEE
Communications Magazine, 38(1), pp.116-123, Jan. 2000.

Levi D., Schoenwaelder J., “Definitions of Managed Objects for the Delegation
of Management Scripts”, RFC 2592, May 1999.

Lin H.C., Lai H.L., Lai S.C., “Automatic Link Layer Topology Discovery of IP
Networks”, Proc. of the IEEE Int. Conf. on Communications (ICC’99), June
1999.

Liotta A., Knight G., Pavlou G., “Modelling Network and System Monitoring
Over the Internet with Mobile Agents”, Proc. of the IEEE/IFIP Network
Operations and Management Symposium (NOMS’98), pp. 303-312, Feb. 1998.

Liotta A., Knight G., Pavlou G., “On the Performance and Scalability of
Decentralised Monitoring Using Mobile Agents”, Proc. of the 10" IFIP/IEEE
Int. Workshop on Distributed Systems: Operations & Management (DSOM’99),
pp. 3-18, Oct. 1999.

Liotta A., Pavlou G., Knight G., “Active Distributed Monitoring”, Proc. of the
2001 Int. Conf. on Communications (ICC’01), in press, June 2001.

Lipperts S., “How to Efficiently Deploy Mobile Agents for an Integrated
Management”, Proc. of the 3" IFIP/GI Int. Conf. on Trends towards a Universal
Services Market (USM?2000), Sep. 2000.

236

Bibliography

[LOP0O0]

[LUD97]

[MAG96]

[MAL]

[MAP]

[MAR98]

[MAR993]

[MAR99b]

[MAROO]

[MARO1]

[MARINE]

[MASIF]

[MAZ96]

Lopes R.P., Oliveira J.L., “On the Use of Mobility in Distributed Network
Management”, Proc. of the 33" Hawaii International Conference on System
Sciences (HICSS-33), Jan. 2000.

Luderer G., Ku H., Subbiah B., Narayanan A., “Network Management Agents
supported by a Java environment”, Proc. of the 5™ IFIP/IEEE Int. Symposium on
Integrated Network Management (IM’97), May 1997.

Magedanz T., Rothermel K., Krause S., “Intelligent Agents: An Emerging
Technology for Next Generation Telecommunications?”, Proc. of the IEEE

Conf. on Computer Communications (Infocom’96), March 1996.

Mobile Agent List, http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/

mole/mal/mal.html.

MAP (Mobile Agent Platform) project, Universita di Catania (Italy), Universita
di Messina, Italy, http://sun195.iit.unict.ityMAP/.

Martin-Flatin J.P., “IP Network Management Platforms Before the Web”,
Technical Report SSC/1998/021, SSC, EPFL, Lausanne, Switzerland, Dec.
1998, http://icawww?2.epfl.ch/~jpmf/papers/tr 1998 021.pdf.

Martin-Flatin J.P., Znaty S., Hubaux J.P., “A Survey of Distributed Enterprise
Network and Systems Management Paradigms”, Journal of Network and
Systems Management, 7(1), pp. 9-26, March 1999.

Martin-Flatin J.P., “Push vs. Pull in Web-Based Network Management”, Proc.
of the 6™ IFIP/IEEE Int. Symposium on Integrated Network Management
(IM”99), pp. 3-18, May 1999.

Martin-Flatin J.P., “Web-Based Management of IP Networks and Systems”,
Ph.D. thesis, Swiss Federal Institute of Technology, Lausanne (EPFL), Oct.
2000.

Marques P., Simfes P., Silva L.M., Boavida F., Silva J.G., “Providing
Applications With Mobile Agent Technology”, 4™ IEEE Int. Conf. on Open
Architectures and Network Programming (Openarch’01), in press, April 2001.

AC340 MARINE (Mobile Agent enviRonments in Intelligent NEtworks)
project, “MARINE Agent Platforms”, public deliverable 11201, Sep. 1998.

GMD Fokus, IBM Corp., “The OMG Mobile Agent System Interoperability
Facility (MASIF) Standard”, http://www.fokus.gmd.de/research/cc/ima/masif/.

Mazumdar, S., “Inter-Domain Management between CORBA and SNMP: Web-
based Management - CORBA/SNMP Gateway Approach”, Proc. of the 7"

237

Bibliography

[McC91]

[McC96]

[McK00]

[McM99]

[MEY95]

[MIAMI]

[MIAMI98]

[MIL99]

[MIN99]

[MIT94]

[MLM]

[MORY7]

[MOU983]

IFIP/IEEE Int. Workshop on Distributed Systems: Operations & Management
(DSOM’96), Oct. 1996.

McCloghrie K., Rose M., “Management Information Base for Network
Management of TCP/IP-based Internets: MIB-11”, RFC 1213, March 1991.

McCloghrie K., “An Administrative Infrastructure for SNMPv2”, RFC 19009,
Feb 1996.

McKee P., Marshall 1., Henning 1., “Research Directions in Distributed
Systems”, BT Technology Journal, 18(2), April 2000.

McManus E., “Script MIB Implementation Experience”, Simple Times, 7(2),

Nov. 1999, http://www.simple-times.org/pub/simple-times/issues/7-2.html.

Meyer K., Erlinger M., Betser J., Sunshine C., Goldszmidt G., Yemini Y.,
“Decentralizing Control and Intelligence in Network Management”, Proc. of the
4™ Int. Symposium on Integrated Network Management (ISINM’95), pp.4-16,
May 1995.

MIAMI: Mobile Intelligent Agents for Managing the Information Infrastructure,

http://www.fokus.gmd.de/research/cc/ecco/miami/.

MIAMI project public deliverable, “Platform Enhancement Requirements”,
Document number: AC338-GMD-WP2-DS-016, Aug. 1998, available at:

http://www.fokus.gmd.de/research/cc/ecco/miami/public/doc/entry.html.

Milojicic D., “Mobile agent applications”, Trend Wars, IEEE Concurrency, 7(3),
July-Sep. 1999, http://computer.org/concurrency/pd1999/pdf/p3080.pdf.

Minar N., Kramer K.H., Maes P., “Cooperating Mobile Agents for Dynamic
Network Routing”, in “Software Agents for Future Communications Systems”,
Hayzelden A. and Bigham J. (Eds.), Springer-Verlag, 1999.

Mitra N., “Efficient Encoding Rules for ASN.1-Based Protocols”, AT&T
Technical Journal, 73(3), pp. 80-93, 1994.

SNMP research, “The Mid-Level Manager”,

http://www.snmp.com/products/mIim.html.

Morgan B., “CORBA meets Java - Distributed Object alternatives: DCOM and
RMI”, JavaWorld, 2(10), Oct. 1997, http://www.javaworld.com/javaworld/jw-
10-1997/.

Mountzia M-A, “A Distributed Management Approach Based on Flexible
Agents”, Interoperable Communication Networks, 1(1), pp. 99-120, 1998.

238

Bibliography

[MOU98b]

[MOU99]

[MUL98]

[NIC98]

[NWA96]

[OL199]

[0SS97]

[PAGIS]

[PAGO0]

[PAP99]

[PAR9S]

[PAU9S]

Mountzia M-A, “Flexible Agents in Integrated Network and Systems

Management”, PhD thesis, Technische Universitat Miinchen, 1998.

Mountzia M-A., Rodosek G.D., “Using the Concept of Intelligent Agents in
Fault Management of Distributed Services”, Journal of Network and Systems
Management, 7(4), Dec. 1999.

Mdller, J.P., “Architectures and applications of intelligent agents: A survey”,
The Knowledge Engineering Review, 13(4), pp. 353-80, 1998.

Nicklisch J., Quittek J., Kind A., Arao S., “INCA: An Agent-Based Network
Control Architecture”, Proc. of the 2™ Int. Workshop on Intelligent Agents for
Telecommunication Applications (IATA’98), LNCS vol. 1437, pp. 143-155,
July 1998.

Nwana H., Ndumu D., “Introduction to Agent Technology”, BT Technology
Journal, 14(4), pp. 55-67, 1996.

Oliveira J.L., Lopes R.P., “Distributed Management Based on Mobile Agents”,
Proc. of the 1% Int. Workshop on Mobile Agents For Telecommunication
Applications (MATA’99), pp. 243-258, Oct. 1999.

Sun Microsystems, Object Serialisation Specification, 1997,

http://java.sun.com/j2se/1.3/docs/quide/serialization/spec/serial-title.doc.html.

Pagurek B., Li Y., Bieszczad A., Susilo G., “Network Configuration
Management in Heterogeneous ATM Environments”, Proc. of the 2™ Int.
Workshop on Agents in Telecommunications Applications (IATA’98), Paris,
France, July 1998.

Pagurek B., Wang Y., White T., “Integration of Mobile Agents with SNMP:
Why and How”, Proc. of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’2000), pp. 609-622, April 2000.

Papastavrou S., Samaras G., Pitoura E., “Mobile Agents for WWW Distributed

Database Access”, Proc. of the 15" Int. Conf. on Data Engineering (ICDE’99),
March 1999.

Park J.K., Ban NJ., Kim T.G.,, “Java-Based Network Management
Environment”, Proc. of the IEEE Int. Conf. on Communications (ICC’98), pp.
1124-1128, June 1998.

Paul H., Krishnan S., “The benefits of CORBA-based network management”,
Communications of the ACM, 41(10), p.73-79, Oct. 1998.

239

Bibliography

[PAV96]

[PAVOO]

[PAVO1]

[PEI97]

[PER97]

[PHA98]

[PIC98]

[PICO1]

[picoJava]

[PIN99]

[PMP]

[Providers]

Pavlou G., Mykoniatis G., Sanchez J., “Distributed Intelligent Monitoring and
Reporting Facilities”, IEE Distributed Systems Engineering Journal, (3)2, pp.
124-135, 1996.

Pavlou G., “Using Distributed Object Technologies in Telecommunications
Network Management”, IEEE Journal of Selected Areas in Communications,
18(5), pp. 644-653, May 2000.

Pavlou G., “Network & Service Management and Control”, Notes for the MSc

in Communication Networks and Software, University of Surrey, 2001.

Peine H., Stolpmann T., “The Architecture of the Ara Platform for Mobile
Agents”, Proc. of the First Int. Workshop on Mobile Agents (MA’97), April
1997.

Perkins D.T., “SNMP Versions”. The Simple Times, 5(1), pp. 13-14, Dec. 1997,

http://www.simple-times.org/pub/simple-times/issues/5-1.html.

Pham V., Karmouch A., “Mobile Software Agents: An Overview”, IEEE
Communications Magazine, 36(7), pp. 26-37, 1998.

Picco G.P., “Understanding, Evaluating, Formalizing and Exploiting Code
Mobility”, PhD thesis, Politecnico di Torino, Feb. 1998.

Picco G.P., “Mobile Agents: An Introduction”, Microprocessors and

Microsystems, in press, 2001.

Sun Microsystems, picoJava technology,

http://www.sun.com/microelectronics/communitysource/picojava/.

Pinheiro R., Poylisher A., Caldwell H., “Mobile Agents for Aggregation of
Network Management Data”, Proc. of the Joint Symposium: 1* Int. Symposium
on Agent Systems and Applications / 3 Int. Symposium on Mobile Agents
(ASA/MA’99), Sep. 1999.

Perpetuum Mobile Procura Project, Network Management and Artificial
Intelligence Laboratory, Department of Systems and Computer Engineering,
Carleton University, Canada,

http://www.sce.carleton.ca/netmanage/perpetuum.shtml.

“How to Implement a Provider for the Java Cryptography Architecture”, Sep.
1998,
http://java.sun.com/products/jdk/1.2/docs/quide/security/HowTolmplAProvider.
html.

240

Bibliography

[PUL99]

[PULO0a]

[PULOOD]

[QUEYT]

[RAZ00]

[RES97]

[RFCs]

[RIV78]

[RMI]

[ROS90]
[ROS96]

[ROT97]

Puliafito A., Riccobene S., Scarpa M., “An analytical comparison of the client-
server, remote evaluation and mobile agents paradigms”, Proc. of the Joint
Symposium: 1% Int. Symposium on Agent Systems and Applications / 3" Int.
Symposium on Mobile Agents (ASA/MA’1999), Sep. 1999.

Puliafito A., Tomarchio O., Vita L., “MAP: Design and Implementation of a
Mobile Agents Platform”, Journal of System Architecture, 46(2), pp.145-162,
Jan. 2000.

Puliafito A. Tomarchio O., “Using Mobile Agents to implement flexible
Network Management strategies”, Computer Communications, 23(8), pp. 708-
719, April 2000.

Quendt B., “An Agent-Based Resource-Control in a Signalling System for the
Open Telecommunication Market”, Proc. of the 2" Int. Conf. and Exhibition on
The Practical Application of Intelligent Agents and Multi-Agents (PAAM’97),
pp. 381-394, April 1997.

Raz D., Shavitt Y., “Active Networks for Efficient Distributed Network
Management”, IEEE Communications Magazine, 38(3), pp. 138-143, March
2000.

Rescigno A., “Optimal Polling in Communication Networks”, |EEE
Transactions on Parallel and Distributed Systems, 8(5), 1997.

Network Management RFCs, http://www.iol.unh.edu/consortiums/netmgt/rfc-

main.html.

Rivest R.L., Shamir A., Adleman L., “A Method for obtaining Digital
Signatures and Public-Key Cryptosystems”, Communications of the ACM,
21(2), Feb. 1978.

Sun Microsystems, Java Remote = Method Invocation (RMI),

http://java.sun.com/products/jdk/rmi/ index.html.

Rose M., “Bulk Table Retrieval with the SNMP”, RFC 1187, Oct. 1990.

Rose M., “The Simple Book: an Introduction to Networking Management”, 2™
Ed., Prentice Hall, 1996.

Rothermel K., Hohl F., Radouniklis N., “Mobile Agent Systems: What is
Missing?”, Proc. of the 1% IFIP Int. Working Conf. on Distributed Applications
and Interoperable Systems (DAIS’97), pp. 111-124, Sep. 1997.

241

Bibliography

[RUB99]

[RUB00]

[SAH97]

[SAH98]

[SANOS]

[SCHY7]

[SCH98]

[SCHOO]

[SIE96]

[SIL99a]

[SIL99b]

Rubinstein M., Duarte O.C., “Evaluating Tradeoffs of Mobile Agents in
Network Management”, Networking and Information Systems Journal, 2(2), pp.
237-252, July 1999.

Rubinstein, M., Duarte O. C., “Using Mobile Agent Strategies for Reducing the
Response Time in Network Management”, Proc. of the 16th IFIP World
Computer Congress (ICCT’2000), pp. 278-281, Aug. 2000.

Sahai A., Billiart S., Morin C., “Astrolog: A Distributed and Dynamic
Environment for Network and System Management”, Proc. of the 1% European

Information Infrastructure User Conf., Feb. 1997.

Sahai A., Morin C., “Enabling a Mobile Network Manager through Mobile
Agents”, Proc. of the In Proc. of the 2™ Int. Workshop on Mobile Agents
(MA’98), LNCS vol. 1477, pp. 249-260, Sep. 1998.

Sander T., Tschudin C.,. “Protecting Mobile Agents Against Malicious Hosts”.
In Vigna G. (Ed.). Mobile Agents and Security, LNCS vol. 1419, pp. 44-60,
Springer, 1998.

Schoonderwoerd R., Holland O., Bruten J., “Ant-like agents for load balancing
in telecommunications networks”, Proc. of the 1% Int. Conf. on Autonomous
Agents (Agents’97), Feb. 1997.

Schramm C., Bieszczad A., Pagurek B., “Application-Oriented Network
Modelling with Mobile Agents”, Proc. of the IEEE/IFIP Network Operations
and Management Symposium NOMS’98, Feb. 1998.

Schonwalder J., Quittek J., Kappler C., “Building Distributed Management
Applications with the IETF Script MIB”, IEEE Journal on Selected Areas in
Communications, 18(5), pp.702-714, May 2000.

Siegl M. R., and Trausmuth G., “Hierarchical Network Management: A Concept
and its Prototype in SNMPv2”, Computer Networks and ISDN Systems, 28(4),
pp. 441-452, Feb. 1996.

Silva L.M., Simoes P., Soares G., Martins P., Batista V., Renato C., Almeida L.,
Stohr N., “JAMES: A Platform of Mobile Agents for the Management of
Telecommunication Networks”, Proc. of the 3" Int. Workshop on Intelligent
Agents for Telecommunication Applications (IATA’99), LNCS vol. 1699, pp.
76-95, Aug. 1999.

Silva L.M., Batista V., Martins P., Soares G., “Using Mobile Agents for Parallel
Processing”, Proc. of the Int. Symposium on Distributed Objects and
Applications (DOA’99), Sep. 1999.

242

Bibliography

[SILOO]

[SIM99]

[SLO94]

[SOA99]

[SOMA]

[SPR99]

[STA90]

[STA9S]

[STA99]

[STR96]

[STR97]

[STR99]

[SUG99]

Silva L., Soares G., Martins P., Batista V., Santos L., “Comparing the
Performance of Mobile Agent Systems: A Study of Benchmarking”, Computer
Communications, 23(8), pp. 769-778, April 2000.

Simoes P., Silva L.M., Fernandes F.B., “Integrating SNMP into a Mobile Agent
Infrastructure”, Proc. of the 10" IFIP/IEEE Int. Workshop on Distributed
Systems: Operations & Management (DSOM’99), Oct. 1999.

Sloman M. (eds.), “Network and Distributed Systems Management”, Addison-
Wesley, 1994.

Soares G., Silva L.M., “Optimizing the Migration of Mobile Agents”, Proc. of
the 1% Int. Workshop on Mobile Agents for Telecommunication Applications
(MATA’99), pp. 161-178, Oct. 1999.

SOMA: Secure and Open Mobile Agent, Laboratory of Advanced Research on
Computer Science, Dipartimento di Elettronica, Informatica e Sistemistica,

Universita di Bologna, Italy, http://www-lia.deis.unibo.it/Software/SOMA/.

Sprenkels R., Martin-Flatin J.P., “Bulk Transfers of MIB Data”, The Simple
Times, 7(1), pp. 1-7, March 1999, http://www.simple-times.org/pub/simple-

times/issues/7-1.html.

Stamos J.W., Grifford D.K., “Implementing Remote Evaluation”, IEEE
Transactions on Software Engineering, 16(7), pp. 710-22, July 1990.

Stallings W., “SNMPv3: A Security Enhancement to SNMP”. IEEE
Communications Surveys, 1(1), pp. 2-17, March 1998.

Stallings W., “SNMP, SNMPv2, SNMPv3 and RMON 1 and 2”, 3“ ed.,
Addison Wesley, 1999.

Straller M., Baumann J., Hohl, F., “Mole-A Java Based Mobile Agent System”,
Proc. of the Second European Conf. on Object Oriented Programming
(ECOOP’96), p327-334, July 1996.

Straller M., Schwehm M., “A Performance Model for Mobile Agent Systems”,
Proc. of the Int. Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’97), pp. 1132-1140, June 1997.

Strassner J., Baker F., “Directory Enabled Networking”, Macmillan Technical
Publishing, 1999.

Sugauchi K., Miyazaki S., Covaci S., Zhang T., “Efficiency Evaluation of a
Mobile Agent Based Network Management System”, 6" Int. Conf. on

243

Bibliography

[SunTools]
[SURO00]

[SUS98]

[TACO0]

[TAN96]
[TEN96]

[TINA93]

Intelligence and Services in Networks (IS&N’99), LNCS vol. 1597, pp. 527-
535, April 1999.

“Sun.tools”, http://www.cis.ohio-state.edu/~gb/cis788.07r/javac/packages.html.

Suri N., Bradshaw J., Breedy M., Groth P., Hill G., Jeffers R., “Strong Mobility
and Fine-Grained Resource Control in NOMADS”, Proc. of the Joint
Symposium: 2™ Int. Symposium on Agent Systems and Applications / 4 Int.
Symposium on Mobile Agents (ASA/MA’2000), Sep. 2000.

Susilo G., Bieszczad A., Pagurek B., “Infrastructure for Advanced Network
Management based on Mobile Code”, Proc. of the IEEE/IFIP Network
Operations and Management Symposium (NOMS’98), pp. 322-333, Feb. 1998.

Tacker M., “Java 1/O and Compression”, ACM Crossroads, No 4, March 2000,

http://www.acm.org/crossroads/xrds6-3/ovp63.htmi.

Tanenbaum A., “Computer Networks”, Prentice-Hall, 3 ed., 1996.

Tennenhouse D., Wetherall D., “Towards an Active Network Architecture”,
ACM Computer Communication Review, 26(2), pp. 5-18, April 1996.

Rubin H., “An Overview of the TINA Consortium Work”, Document TB-
G1.HR.001-1.0-93, TINA Consortium, Dec. 1993.

[UCD-SNMP] “The UCD-SNMP Home Page”, http://ucd-snmp.ucdavis.edu/.

[VAS97]

[VENOS]

[VIG98]
[Voyager]
[WAD95]

[WBEM]

[Web]

Vassila N., Pavlou G., Knight G., “Active Objects in TMN”, Proc. of the
IFIP/IEEE Symposium on Integrated Network Management (IM’97), pp. 139-
150, May 1997.

Venners B., “Designing with Dynamic Extension: How Dynamic Extension
Works in Java and How to Use it in Your Designs”, Dec. 1998,

http://www.artima.com/designtechniques/dynaext.html.

Vigna G. (Eds.). Mobile Agents and Security. LNCS vol. 1419, Springer, 1998.

ObjectSpace, Voyager, http://www.objectspace.com/products/voyager/.

Waldbusser S., “Remote Network Monitoring Management Information Base”,
RFC 1757, Feb. 1995.

Distributed Management Task Force, WBEM Initiative, Feb. 2000
http://www.dmtf.org/wbem/.

The Web Management Page, http://joe.lindsay.net/webbased.html.

244

Bibliography

[WEL96]

[WHI96]

[WHI98]

[WHI99]

[Win32]

Wellens C., Auerbach K., “Towards Useful Management”, Simple Times, 4(3),
pp. 1- 6, July 1996, http://www.simple-times.org/pub/simple-times/issues/4-
3.html.

White J.E., “Telescript Technology: Mobile Agents”, White paper, General
Magic Inc., 1996.

White T., Bieszczad A., Pagurek B., “Distributed Fault Location in Networks
Using Mobile Agents”, Proc. of the 2™ Int. Workshop on Intelligent Agents for
Telecommunication Applications (IATA’98), LNCS vol. 1437, pp. 130-141,
July 1998.

White T., Pagurek B., Bieszczad A., “Network Modelling for Management
Applications Using Intelligent Mobile Agents”, Journal of Network and Systems
Management, 7(3), pp. 295-321, Sep. 1999.

Platfptm SDK: Win32 API, http://msdn.microsoft.com/library/psdk/portals/
win32start_1n6t.htm.

[Win32Enum]Microsoft support, “How to Enumerate Applications in Win32”,

[Windump]

[YUCO00]

[ZAP97]

[ZAP99]

[ZHA98a]

[ZHA98D]

http://support.microsoft.com/support/kb/articles/Q175/0/30.asp.

“WinDump: tcpdump for Windows”, Computer Network Group, Politecnico di

Torino, http://netgroup-serv.polito.it/windump/.

Yucel S., Saydam T., “Distributed Connection Management Using Mobile
Agent Technology”, Proc. of the 2000 Int. Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2000), June 2000.

Zapf M., “Design Paradigms in Agent-Based Systems”, Proc. of the 1* IFIP Int.
Working Conf. on Distributed Applications and Interoperable Systems
(DAIS’97), pp. 101-107, Sep. 1997.

Zapf M., Herrmann K., Geihs K., “Decentralized SNMP Management with
Mobile Agents”, Proc. of the 6™ IFIP/IEEE Int. Symposium on Integrated
Network Management (IM’99), pp. 623-635, May 1999.

Zhang T., Magedanz T., Covaci S., “Mobile Agents vs. Intelligent Agents -
Interoperability and Integration Issues”, 4™ Int. Symposium on Interworking,
July 1998.

Zhang D., Zorn W., “Developing Network Management Applications in an
Application-Oriented Way Using Mobile Agent”, Computer Networks And
ISDN Systems, 30(16-18), pp. 1551-1557, Sep. 1998.

245

APPENDIX A

LIST OF PUBLICATIONS

= Journals:

[GAV00a] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Advanced Network
Monitoring Applications Based on Mobile/Intelligent Agent Technology”, Computer
Communications, Elsevier Science, special issue on “Mobile Software Agents for
Telecommunication Applications”, Vol. 23, No 8, pp. 720-730, April 2000. The paper was
selected as the best paper published in 1999-2000 by a postgraduate student within the
Electronic Systems Engineering Department, University of Essex, and received the “British

Telecom Postgraduate Publication Prize”.

[GAVO01la] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Mobile Software Agents
for Decentralised Network & Systems Management”, invited paper, to appear in
Microprocessors and Microsystems, Elsevier Science, special issue on “Mobile Agent

Technology: from first proposals to current evolutions”.

[GAVO01b] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Hierarchical Network
Management: A Scalable and Dynamic Mobile Agent-Based Approach”, submitted to

Computer Networks, Elsevier Science.

» Refereed Conferences, Symposiums and Workshops:

[GAV99a] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “A Progressive Network
Management Architecture Enabled by Java Technology”, Proceedings of the 1* International
Conference and Exhibition on the Practical Applications of Java (PA-Java’99), pp. 61-72,
London, UK, 21-23 April 1999.

[GAV99bh] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “An Infrastructure for
Distributed and Dynamic Network Management based on Mobile Agent Technology”,
Proceedings of the IEEE International Conference on Communications (ICC’99), Vol. 2, pp.
1362-1366, Vancouver, Canada, 6-10 June 1999.

246

Appendix A: List of Publications

[GRE99] Greenwood D., Gavalas D., “Using Active Processes as the Basis for an Integrated
Distributed Network Management Architecture”, Proceedings of the 1% International Working
Conference on Active Networks (IWAN’99), LNCS Vol. 1653, Springer-Verlag, Covaci S.
(Eds.), pp. 199-211, Berlin, Germany, 30 June - 2 July 1999.

[GAV99c] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “A Hybrid Centralised -
Distributed Network Management Architecture”, Proceedings of the 4™ IEEE International
Symposium on Computers and Communications (ISCC’99), pp. 434-441, Sharm El Sheikh,
Egypt, 6-8 July 1999.

[GAV99d] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Using Mobile Agents
for Distributed Network Performance Management”, Proceedings of the 3™ International
Workshop on Intelligent Agents for Telecommunication Applications (IATA’99), LNCS Vol.
1699, Springer-Verlag, Albayrak, S. (Eds.), pp. 96-112, Stockholm, Sweden, 9-11 August
1999.

[GAV99¢e] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Complementary Polling
Modes for Network Performance Management Employing Mobile Agents”, Proceedings of the
IEEE Global Communications Conference (Globecom’99), pp. 401-405, Rio de Janeiro,
Brazil, 5-9 December 1999.

[GAVOOb] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Deploying a
Hierarchical Management Framework Using Mobile Agent Technology”, Proceedings of the
7" International Conference on Intelligence in Services and Networks (IS&N’2000), LNCS
Vol. 1774, Springer-Verlag, Delgado J., Stamoulis G.D., Mullery A., Prevedourou D. and Start
K. (Eds.), pp. 333-348, Athens, Greece, 23-25 February 2000.

[GAV00c] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Enabling Mobile Agent
Technology for Intelligent Bulk Management Data Filtering”, Proceedings of the 2000
IEEE/IFIP Network Operations and Management Symposium (NOMS’2000), pp.623-636,
Honolulu, Hawaii, U.S.A., 10-14 April 2000.

[GAV00d] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Implementing a Highly
Scalable and Adaptive Agent-Based Management Framework”, Proceedings of the IEEE
Global Communications Conference (Globecom’2000), Vol. 3, pp. 1458-1462, San Francisco,
U.S.A., 27 November-1 December 2000.

247

APPENDIX B

PLATFORM DESIGN OPTIMISATIONS

B.1. INTRODUCTION

The framework described in Chapter 4 represents a Mobile Agent Platform (MAP) with the
core functionality needed for Network & Systems Management (NSM) applications. Several
design decisions are incorporated aiming at minimising the use of network resources. Most of
these efforts have been directed towards diminishing the effect of Mobile Agent (MA) code
transfers, acknowledging the fact that the bytecode size is typically far larger than the
corresponding state size. Therefore, through the proposed bytecode distribution scheme (see
Section 4.4.1.4.1), MA code transfers are performed only once, at the MAs creation time;
following that, only MA state transfers are involved in every migration. Although the gain
achieved over publicly available MAPs, which enforce the transfer of both the state and code
in every migration, is already evident, it is still important to reduce the state size as much as
possible. This issue is investigated in Section B.2, with Section B.3 looking at programming

techniques that minimise MAs migration latency.

B.2. MINIMISING MOBILE AGENT STATE SIZE

MAs own their mobility characteristic to their ability to carry their persistent state as the
latter represents the knowledge/data collected throughout their lifecycle. The state comprises
the output of the serialisation process (see Section 3.5.2). At the destination end, the state is
reconstructed through the inverse process of de-serialisation. MAs state includes information

about the MA class (e.g. the name of the class, the package that this class belongs to, etc.) and

248

Appendix B: Platform Design Optimisations

the values of the non-transient' and non-static variables/objects declared within the MA class
[OSS97]. Should this class extends another class defining the basic MA functionality, the
MA'’s state will include the values of the transient objects declared within the superclass as

well.

Since the proposed framework involves only the transfer of MA objects state and not their
code, it is apparent that the minimisation of the state size is a crucial factor on reducing the
overall network overhead. In addition to compressing the MA state using compression
algorithms, it is worthwhile investigating alternative techniques for further reducing the
volume of transferred data. As a result, a number of experiments/measurements have been
conducted and several possible optimisations have been identified; when performing these
optimisations, significant cost savings in terms of the state size may be achieved. A list of

potential optimisations follows:

(a) Reduce the number of non-transient objects: Only the objects whose values are subject
to change at each visited host, i.e. the objects that represent the knowledge obtained by an MA
during its lifecycle, should be declared as normal (non-transient). The remainder variables
should be declared as transient and assigned an initial value. Each time the MA is re-
instantiated (de-serialised), the transient variable is assigned the same value specified by the
programmer, even if that value was changed during the MA’s execution on a previously visited
host. In other words, when applicable, an object value should be ‘hard-coded’ within the MA
class. That decreases the degree of flexibility and autonomy given to the MA, as its
behaviour/decisions cannot depend on the value of the transient objects, but saves the

potentially unnecessary transfer of information related to the value of these objects.

(b) Use small number of characters for variable names: As noticed from Table B.I,
serialised MA state carries information regarding the non-transient variable names (in addition
to their corresponding values). By shortening the length of these names (e.g. using
abbreviations instead of long, fully descriptive names) the amount of bytes required to encode

this information would be reduced.

(c) Use small number of characters for MA class names: The MA state also embodies
information referring to the corresponding MA class name as well as the package this class
belongs to. Similarly to the previous optimisation, by assigning brief names to both the MA

class and their packages, a few extra bytes could be saved.

' Objects or variables declared as ‘transient’ are not taken into account during an MA's serialisation process. When
the MA state is de-serialised, transient objects are always assigned their initial values, namely they do not have
any ‘memory’ of their value at the time the MA was serialised.

249

Appendix B: Platform Design Optimisations

(d) Use primitive instead of complex data types: As described in Section 3.5.2, during the
serialisation process, referenced objects are processed recursively until all non-transient objects
are serialised. When not using primitive data types, but complex data structures for non-
transient objects, improved flexibility is offered at the expense of increased state size, as these
structures typically contain references to other objects. It is therefore preferable to choose
primitive types whenever this is feasible, for instance to use arrays instead of
java. util.Vector structures to store a list of values, to represent integer variables with

int rather than with powerful and complex j ava. | ang. | nt eger objects, etc.

Size increment for Size increment for

Modification non-compressed compressed state
state (bytes) (bytes)
Use a java.util.Vector structure instead
; 32 5
of String][]
Use java.lang.Integer object instead of
int 19 10
Use 20 characters string instead of 3 17 15
characters string
Include an additional 10 characters-
. . . 47 23

long non-transient String variable
Include an additional non-transient int

. 17 10
variable
Include an additional non-transient
java.util.Vector variable containing a 79 28

10 characters-long string

Include an additional non-transient
String[] variable containing a single 10 49 29
characters-long string

Table B.1. The effect of applying various source code modifications on the MA’s state size

To illustrate the effect of the optimisations discussed above, we have measured the
difference experienced in state size when applying the following modifications. These

measurements are presented in Table B.1.

Yap | sr %oMobileAgentPackage.MobileAgentExampleF+| 6? §? O | Z | doTaskZ > encryptDatal
?hopL dataFoldert ?Ljava/util/Vector;L itineraryt ?Ljava/util/Vector;L & originatingHostt
?Ljava/lang/String;xr (MobileAgentPackage.MobileAgentSuperclass ? =+$&-°]? ? Z ? tcpL creatort
?Ljava/lang/String;L ? idt ?Ljava/lang/String;L ? itt ?Ljava/util/Vector;L ? seqt
?Ljava/lang/String;xpt ? plato.essex.ac.ukt plato:Osr ? java.util.Vector+u}[C;»? ? 2?1

? capacitylncrementl ? elementCount[? elementDatat ? [Ljava/lang/Object;xp? ur
?[Ljava.lang.Object;?+ X f? s)I? xpq ~pppppppppt ? sequenceNumber? sq~? uq~&
PPPPPPPPPPq ~ ? 4 ~

Figure B.1. The content of a MobileAgentPackage.MobileAgentExample class instance (object’s
state) as shown when printed on the standard output.

Figure B.1, illustrates the content of the byte array including the state of the MA presented
in Figure B.2a, as it appears when printed on the standard output. Although several characters
seem meaningless, it is clear that long package, class and non-transient variable names occupy

more space in the serialised representation of the MA object state, than short names.

250

Appendix B: Platform Design Optimisations

Significant reductions in the overall state size may be achieved by applying some of the
optimisations outlined above. Given that the state size is typically not more than a few
hundreds of bytes, it is clear that by summing up the savings obtained by the individual

optimisations may lead to trimming a significant portion of the state size.

The proposed optimisations are illustrated in Figure B.2. The source code of an MA object
with ‘non-optimised’ state is listed in Figure B.2a, with its ‘optimised’ counterpart presented in
Figure B.2b. It can be noticed that in the latter case, several variables have been declared as
transient, simpler data structures are used, whilst variable, class and package names have been
shortened. Through applying all these optimisations, the size of the MA state is reduced from
628 bytes (391 when compressed) down to 333 bytes (227 when compressed). That

corresponds to a reduction of 47% (41.9% when compressed).

package MobileAgentPackage; package MAPack;
public class MobileAgentExample extends public class MAExample extends MA {
MobileAgentSuperclass { String][] it;
Vector itinerary; String[] data;
Vector dataFolder = new Vector(); transient String origin = "plato.essex.ac.uk";
String originatingHost; transient boolean encryptData = true;
boolean encryptData; transient boolean doTask = true;
boolean doTask = true; transient int hop = 0;
int hop = 0;
public MAExample (String[] itinerary) {
public MobileAgentExample (Vector it, String host, it = itinerary;
boolean encrypt) { }
itinerary = it;
originatingHost = host; public void onArriving () {
boolean encryptData = encrypt; hop++;
J J
public void onArriving () { public void run () {
hop++; System.out.println ("Hop number: " + hop);
doTask = (hop % 2 ==0) ? true: false; if (doTask)
} Task();
public void run () { }
System.out.println ("Hop number: " + hop);
if (doTask) void Task() {
Task(); }
} }
void Task() {
§
b
(a) (b)

Figure B.2. Example source code of an MA with (a) ‘non-optimised’ vs. (b) ‘optimised’ state size.

It is clear though that transient objects do not allow the MA to make autonomous decisions
based on their value. For instance, the MA corresponding to Figure B.2a will execute the
Task() method only every second hop, while that shown in Figure B.2b cannot make such a
decision based on the value of ‘hop’ variable, as that is assigned the same value hop = 0, every
time the MA arrives at a new host. In addition, non-transient objects make it easier for user
applications to interact with the MA and dynamically change its state content at runtime. For

instance, in Figure B.2a, the user passes to the MA, through its constructor, the name of the

251

Appendix B: Platform Design Optimisations

originating host to whom the MA will return when completing its itinerary; the name can vary,
depending on the host that creates the agent. In contrast, in Figure B.2b the name of the
originated host is hard-coded within the MA bytecode and not transferred within the MA state.
That implies an inflexible design, which is preferable though in the case that MAs are always
created by a single device. However, should that device changes, the originating host name
will need to be changed accordingly, that is the MA class will have to be modified and then re-
compiled. Concluding, the choice of whether to declare an object as transient or non-transient

represents a trade-off between flexibility and migration cost.

In the current framework implementation, none of the optimisations described above is
applied. For instance, as far as variables and MA class names are concerned, relatively long
and, therefore, more meaningful and descriptive names have been chosen, thereby introducing
an additional migration penalty. Also, no effort has been put to reduce the number of non-
transient variables so as not to affect the flexibility of dynamically modifying the MA
functionality. That decision was dictated by the need of conducting a variety of experiments/
measurements under varying conditions, created by modifying several MA-based application
parameters. It was therefore important to represent these parameters as non-transient objects in
order to allow user applications to easily and instantly modify these parameters, e.g. through a
Graphical User Interface (GUI), without going through a
shutting down_the application/source modification/compilation/starting the application
procedure. Yet, as soon as such experimental investigations are finalised, optimal parameter
values should be proposed and subsequently hard-coded so that the resulting MA state size is

minimised.

B.3. MINIMISING THE LATENCY OF MOBILE AGENT TRANSFERS

In addition to reducing MA state size, minimising the delay associated with MA transfers is
also of major importance, especially when considering time-critical management tasks. The
investigation of the migration process itself is presented in Appendix C, where the MA transfer

is broken down to several successive phases and ways of accelerating them are identified.

As mentioned in Section 4.4, MA transfers may be realised either over TCP or UDP as
transport protocols. Hence, this section aims at investigating ways for optimising these
protocols performance. The protocol parameters that may be customised through Java network

programming are limited to the following:

(a) Stream buffering: The hierarchical nature of the I/O class library (j ava. i 0 package)

allows the programmer to build up streams in hierarchical manner. This is exemplified in the

252

Appendix B: Platform Design Optimisations

following code fragment taken from the TcpLi st ener class of the MAL component (see
Figure 4-9):

I nput Streamis = connection. getlnputStrean();

MasObj ect | nput Stream datal n = new MasObj ect | nput Stream
(new &ZI Pl nput St r eam(new Buf f er edl nput Strean(is)));

Since the getlnput Strean() method of the java.i 0. Socket class returns an
java.io.InputStream object, the latter has been wrapped by a
java.io. Buf f er edl nput St r eam instance, which is in turn wrapped by a
java. uil. zip. &ZI Pl nput Stream object. The main advantage of the
Buf f er edl nput St r eam class is that it enables data buffering. Without buffering, data
would be read byte-by-byte, thus degrading performance [TACO00]. The buffer size may be
specified, otherwise the default size is used. The default size is large enough for most purposes.
A similar approach is followed for MAL’s UdpLi st ener class, where the MA state is

retrieved and read from a byte array.

(b) TCP “No Delay” option: This optimisation refers to MA transfers through TCP. Since the
size of transferred data is relatively small, the TCP NODELAY option is set on the client side.
Without setting the TCP NODELAY option, the communicating parties activate Nagle
algorithm [TANO96], which buffers incoming requests until the preceding request is
acknowledged. On high-speed networks the use of Nagle algorithm can unnecessarily increase
latency. TCP NODELAY option is set by both the sender and the receiver site following the

establishment of a TCP connection, using the instruction:

| connection.setTcpNoDelay(true); |

(c) Further optimisations: In addition to configuring transport protocol parameters, as
suggested above, there are also several improvements that may be performed to speed up the
MA migration process. For instance, minimising the MA state size through adopting the
optimisations suggested in Section B.2 would positively affect the migration latency, as it
would considerably reduce the volume of transferred data. A second possible optimisation
would be to include IP addresses rather than host names in the MAs itinerary vector. That
would save the time needed to access the Domain Name Server (DNS), in other words, it
would obviate the need to translate the names to their corresponding IP addresses prior to MA

transfers.

Optimisations (a) and (b) have been already applied in our framework implementation

while (c) is included in the list of potential future extensions.

253

APPENDIX C

MOBILE AGENT MIGRATIONS TIMING EXPERIMENTS

C.1. INTRODUCTION

In this appendix, we present the result of timing experiments that aim at providing a better

understanding of the response time measured for Mobile Agent (MA) migrations. The

objective is to investigate how the overall time is distributed among the individual phases of an

MA migration and what is the effect of a number of factors such as the transport protocol used

and the MA state size. In particular, the migration process is first divided into several

independent, successive phases in order to assess the weight of their respective delays on the

overall latency.

C.2. MOBILE AGENT MIGRATION TIMING MEASUREMENTS

The MA used for this experiment, termed ‘ping-pong’ MA, is launched by the manager

application, visits a single remote Mobile Agent Server (MAS) server and then returns back to

the manager, without performing any kind of task. Therefore, the phases identified are:

1.

2.

MA object creation (instantiation);

MA object serialisation by the manager application;
MA transfer to the MAS server;

MA object de-serialisation at the MAS side;

MA object serialisation by the MAS server;

MA transfer back to the manager station;

MA object de-serialisation at the manager side.

254

Appendix C: Mobile Agent Migration Timing Experiments

Both TCP and UDP transport protocols are considered for the MA transfers, while the
serialised MA state can either be compressed before its transmission or non-compressed.
Another investigation issue is the effect of the serialised MA’s state size on the overall
migration delay. In particular, one of the experiment’s objectives is to examine to what extend
does the increment of the state size affects the distribution of the individual migration phases
delay. The average times corresponding to each migration phase are presented in Table C.1 and
Table C.2, with the former corresponding to an MA object with relatively moderate state size
(476 bytes when compressed, 678 bytes when uncompressed) and the latter to an MA with
larger state size (1152 bytes when compressed, 3970 bytes when uncompressed). The state size

growth is realised by increasing the number of the MA’s non-transient variables [ARN96].

Migration MA Manager MAS MAS Manager MA Overall
Phase Creation Ser/tion Deser/tion Ser/tion Deser/tion Transfer Time
TCP, 6.12 3.24 8.06 5.19 5.37 56.04 84.02

compressed

TCP,non- 1 g 0.74 6.22 0.46 6.32 59.15 76.98

compressed
UDP, 4.92 3.67 456 6.02 6.23 53.71 79.10
compressed

UDP, non- | g 59 2.66 2.89 1.74 231 55.79 73.68

compressed

Table C.1: Time measurements (in msec) depicting the distribution of delays for a “ping-pong”
MA with a ‘small’ state size (476 bytes compressed / 678 bytes uncompressed) during its lifetime
(each table value represents 100 individual time measurements)

Migration MA Manager MAS MAS Manager MA Overall
Phase Creation Ser/tion Deser/tion Ser/tion Deser/tion Transfer Time
TCP, 4.82 8.03 151.51 7.41 23.97 66.68 262.43

compressed

TCP, non- 1} g g4 3.09 148.13 2.84 29.10 89.20 282.17

compressed
UDP, 8.34 7.12 149.42 6.60 18.43 6131 | 251.22
compressed

UDP, non- |44 55 8.85 149.25 428 7.11 80.18 | 260.88

compressed

Table C.2: Time measurements (in msec) depicting the distribution of delays for a “ping-pong”
MA with a ‘large’ state size (1152 bytes compressed / 3970 bytes uncompressed) during its lifetime
(each table value represents 100 individual time measurements)

The main reason for conducting time measurement experiments with ‘ping-pong’ rather
than with single-hop MAs is that it would not be feasible to measure MA transfers over UDP,
as explained in Section 4.6.1.1. It is noted that the column representing the transfer delay
represents the summation of the time needed to transfer the MA object from the manager host

to the MAS site and vice-versa.

255

Appendix C: Mobile Agent Migration Timing Experiments

90.00

80.00]

70.00 |

60.00 |

50.00 — |

40.00 — |

Time (msec)

30.00 — |

20.00 — |

10.00 — |

MA Creation Manager MAS Deser/tion MAS Ser/tion Manager Overall Transfer Overall Time
Ser/tion Deser/tion Ser/Des

Migration phase

@ TCP - compressed B TCP - non-compressed O UDP - compressed 0 UDP - non-compressed

(a)
300.00
250.00 H
~ 200.00 I
(5]
(9]
1%2]
E 15000 -
[}
£
~ 100.00 H
50.00 H
000 =T roerT | B e T e = L
MA Creation Manager MAS MAS Ser/tion Manager Overall Transfer Time Overall Time
Ser/tion Deser/tion Deser/tion Ser/Der

Migration phase

‘ O TCP - compressed B TCP - non-compressed [0 UDP - compressed 0 UDP - non-compressed ‘

(b)

Figure C.1. Comparison of the delays experienced within the individual migration phases of an
MA with (a) moderate or (b) large state size, depending on the transport protocol and on whether
the serialised state is compressed prior to its transfer

The distribution of the overall response time among the phases that compose the migration
process are graphically illustrated for both the types of MAs used in these experiments, i.e.
with moderate (Figure C.1a) or large state size (Figure C.1b). It is interesting to observe the
way that compression affects the response time as a function of the volume of compressed
data. In particular, regardless of the utilised transport protocol (TCP or UDP), MA’s state
compression always causes reduction of transfer time (the volume of transmitted data is
decreased) and increment of the overall serialisation/se-serialisation time (compression/de-
compression is regarded as part of the serialisation/se-serialisation process). However, the
effect of compression on the overall response time largely depends on the MA’s state size. For
serialised state of moderate size, compression increases the overall time. Conversely, when the
migration of MAs with larger state sizes is considered, compression results in a reduction of
the response time. Therefore, compression reduces the latency of the migration process in case

that the original size of the serialised state and the compression ratio is such so as to justify the

256

Appendix C: Mobile Agent Migration Timing Experiments

time penalty involved in the compression process. To illustrate, in our first type of MA,
compression saves only 678-476 = 202 bytes from being transferred through the network
(29.8% of the original data volume), while in the second type the saving becomes 3970 - 1152
= 2818 (71% of the original data volume).

Another interesting aspect of the MA migration time measurements is the alterations that
state size causes on the distribution of the overall response time among the individual
migration phases. The ‘pie’ diagrams shown in Figure C.2 confirm that increasing the MA’s
state size results in shifting response time “centre of mass” from transfer to the serialisation/de-
serialisation process. For instance, the transfer latency of an MA with moderate state size
covers the 66.7% of the overall response time, with the sum of the individual serialisation/de-
serialisation times comprising the 26.1%. In contrast, when dealing with the MA with large
state size, these percentages become 25.4% and 72.1% respectively.

66.7%

7.3% 3.9% 18% 319%

6.2%

6.4%

2.8%

@ MA Creation I Manager Serialisation 0O MAS Deserialisation @ MA Creation @ Manager Serialisation 0 MAS Deserialisation
O MAS Serialisation W Manager Deserialisation @ MA Transfer 0O MAS Serialisation W Manager Deserialisation @ MA Transfer
(@) (b)

Figure C.2. Distribution (percentage of the overall response time) of the delays incurred within
the individual migration phases for MAs with either (a) moderate or (b) fairly large state size (the
serialised state is compressed)

Interestingly, de-serialisation process is proved more time consuming than its inverse
process of serialisation. In addition, a significant portion of the response time is covered by the
MA'’s state de-serialisation, which takes place at the MAS server side (see Figure C.2b). This
is due to the fact that MAS entities use the customised ClassLoader (MACL) described in
Section 4.4.3, which is slower than the default JVM ClassLoader used by the manager
application. The serialisation process taking place at the MAS server is significantly faster than
the de-serialisation, since it uses the MA class definition that has been already loaded by the
MACL during the serialisation phase.

In general, the response time difference observed between the two types of MAs is mainly
due to the difference in the overall serialisation/de-serialisation time, as shown in Figure C.3.
Certainly, the transfer time also increases in the case of the MA with larger state size; however,
this is not the decisive factor.

257

Appendix C: Mobile Agent Migration Timing Experiments

A possible optimisation would be to save the time needed to create (instantiate) the MA
object, as suggested in Appendix B. That could be realised through creating the MA
beforehand, that is, before the actual management operation commences. Such an optimisation
would result in performance gain, especially in the case of MAs with small state size, when

MA creation represents a considerable proportion of the overall time (7.3%).

300.00

250.00

200.00

150.00

Time (msec)

100.00

50.00

0.00 ,<|:—=|:I_,_|:-

MA Creation Ser/tion-Des/tion MA Transfer Overall Time

‘ O TCP - small state size B UDP - small state size O TCP - large state size O UDP - large state size

Figure C.3. Comparison of the individual migration phases delays for MAs with moderate vs.
large state size (the serialised state is compressed prior to its transmission)

258

