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Abstract

Vehicle (bike or car) sharing represents an emerging transportation scheme which may comprise an
important link in the green mobility chain of smart city environments. This chapter offers a
comprehensive review of algorithmic approaches for the design and management of vehicle sharing
systems. Our focus is on one-way vehicle sharing systems (wherein customers are allowed to pick-up
a vehicle at any location and return it to any other station) which best suits typical urban journey
requirements. Along this line, we present methods dealing with the so-called asymmetric demand-
offer problem (i.e. the unbalanced offer and demand of vehicles) typically experienced in one-way
sharing systems which severely affects their economic viability as it implies that considerable human
(and financial) resources should be engaged in relocating vehicles to satisfy customer demand. The
chapter covers all planning aspects that affect the effectiveness and viability of vehicle sharing
systems: the actual system design (e.g. number and location of vehicle station facilities, vehicle fleet
size, vehicles distribution among stations); customer incentivisation schemes to motivate customer-
based distribution of bicycles/cars (such schemes offer meaningful incentives to users so as to leave
their vehicle to a station different to that originally intended and satisfy future user demand); cost-
effective solutions to schedule operator-based repositioning of bicycles/cars (by employees explicitly
enrolled in vehicle relocation) based on the current and future (predicted) demand patterns
(operator-based and customer-based relocation may be thought as complementary methods to
achieve the intended distribution of vehicles among stations).

Keywords: Vehicle Sharing System; bike sharing; car sharing; smart cities; green mobility;
incentivisation scheme; vehicle operational repositioning; strategic design; demand pattern.

1. Introduction

Sustainable principles in urban mobility urge the consideration of emerging transportation
schemes including vehicle sharing as well as the use of electro-mobility and the combination
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of vehicle transfers with greener modes of transport, including walking, cycling and public

transportation.

Bike-sharing programs have received increasing attention in recent years aiming at
improving the first/last mile connection to other modes of transit and lessen the
environmental impact of transport [1]. Bike-sharing programs are networks of public use
bicycles distributed around a city for use at low cost. The programs comprise short-term
urban bicycle-rental schemes that enable bicycles to be picked up at any bicycle station and
returned to any other bicycle station, which makes bicycle-sharing ideal for point-to-point
trips. The principle of bicycle sharing is simple: individuals use bicycles on an “as-needed"
basis without the costs and responsibilities of bicycle ownership [2]. The earliest well-known

community bicycle programme is launched in 1965 in Amsterdam, the Netherlands.

Current bike-sharing systems deploy bikes picked up and returned at specific locations
(docking stations) and typically employ some sort of customer authentication/tracking
(through the use of an electronic subscriber card) to avoid theft incidents [3]. Recent
developments pave the way for next-generation bike sharing known as the “demand-
responsive multimodal system” [2]. Such systems will emphasize on flexible docking stations
(relocated according to usage patterns and user demands), incentivize user-based
redistribution (by using demand-based pricing wherein users receive a price reduction or
credit for delivering bicycles at empty dockings), enable integration of bike-sharing with
public transportation and car-sharing locations (via smartcards, which support numerous
transportation modes on a single card) and GPS-based tracking. Online services like Social
Bicycles (SoBi) [4] allows users to locate, reserve, and unlock a bike with a smartphone app,
while also employing a rewarding scheme to motivate cyclists to return bikes to central

stations/hubs.

Similarly to bike sharing, car sharing is a model of short-term car rental, particularly
attractive to customers who make only occasional use of a vehicle, enabling the benefits of
private cars without the costs and responsibilities of ownership [5]. Car sharing first
appeared in North America around 1994. Replacing private automobiles with shared ones
directly reduces demand for parking spaces and decreases traffic congestion at peak times,
thereby supporting the vision of sustainable transportation. Car sharing operators typically
allow cars to be picked up from designated stations (depots) with customers required to
return vehicles to their original pick up locations (such schemes are referred to as two-way
car sharing systems). Most operators have been reluctant in introducing innovative features

(e.g., one-way rentals, ridesharing) due to added management complexities [6].

These complexities were responsible for the failure of Honda’s Diracc system in Singapore,
one of the best-known one-way car sharing experiments in the world, after 6 years of

operation (the system has been discontinued in 2008). Diracc failed mainly because it
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proved unable to maintain the quality of service (i.e. car availability) required by customers
due to one-way trips leaving the system with significant imbalance in vehicle stocks. Indeed,
during a typical day, the number of cars throughout a network shifts toward certain
destinations; for instance, drivers commuting from the suburbs to downtown offices
generate surplus of cars at certain stations, while depleting fleets at other stations.
Nevertheless, some recent car sharing initiatives -notably, Daimler’s Car2Go! and BMW’s
DriveNow? -offer the option of one-way car-sharing, as long as the customer drops off the

car at any available public parking space within a designated operating area.

The design and management of a car sharing system raise several optimization problems.
First, optimal fleet sizes along with the location of the parking stations should be determined
[7]. Further on that, operators allowing one-way rides need to develop strategies to
reallocate the vehicles and restore an optimal fleet distribution among stations. Such a
distribution could respond to the short-term needs at a particular station or be based on an
historical prediction (i.e. estimating future demand to proactively schedule relocations) [73].
While bike sharing operators typically employ dedicated vehicles for relocating bunches of
bicycles to depots with depleted stock, vehicle relocation in car sharing programs is more
demanding. In particular, the activities of vehicle relocation can be carried out by the user
itself or by the operator. In the first case, the user is incentivized to car pool or to choose
another location or reservation time; in the second case, which is currently more common,

the vehicles are physically transported using dedicated trucks or personnel.

A recent development in vehicle sharing systems has been the employment of fully electric
vehicles (EVs) as a means of lowering the environmental footprint of urban mobility. Further
complicating things, the design of EV-sharing systems needs to consider two additional
constraints: the availability of charging facilities on parking stations and the design of

relocation strategies which take into account vehicles residual energy [8].

The above detailed challenges call for intelligent algorithmic solutions to support the long-
term viability of vehicle sharing systems. Such algorithmic approaches should aim at the
highest possible quality of service for customers and reduced capital investment for
operators with respect to both system deployment and operating expenditures. To achieve
these objectives, the whole range of deployment and operational parameters inherent in
vehicle sharing systems should be carefully addressed: long-term strategic planning of
systems, tactical decisions to enable user-based regulation to the benefit of the systems and

operational issues.

This chapter offers insights on research tackling the above main issues related to the design

and operation of public bicycle/car sharing systems. The focus is on mathematical models

L https://www.car2go.com/
2 https://de.drive-now.com/en/



and algorithmic solutions developed so far, especially those that address cost and pricing
models, depot location optimization, mobility and demand modeling, ways of balancing
vehicle stocks across stations (i.e. relocation strategies) in one-way vehicle sharing systems.
The objective is to identify the state-of-the-art along with possible paths for future

developments in this field.

The remainder of the chapter is structured as follows. Section 2 elaborates further on the
challenges and objectives relevant to the design of vehicle sharing systems. Section 3
overviews models and algorithmic approaches for the design, operation and management of
vehicle sharing systems. Section 4 presents algorithmic approaches for ride sharing. Finally,
Section 5 provides insights on open issues and research challenges in the field while Section

6 concludes the paper.

2. Challenges and objectives in the design of vehicle sharing systems

Recent research analyzed the factors affecting the success of bike-sharing programs [9], [10].
These factors range from the built environment (infrastructures, facilities at work, etc.) to
factors related to the natural environment (topography, seasons and climate or weather),
socio-economic and psychological factors (attitudes and social norms, ecological beliefs,
habits, etc.), and other factors related to utility theory (cost, travel time, effort and safety).
Factors gaining growing interest involve bike station location, cycling network infrastructure
(bike paths) and the operation of bicycle redistribution system [11]. The stations must be
located in close proximity to one another and to major transit hubs and be placed in both
residential (origin) and commercial or manufacturing (destination) neighborhoods, which
makes bike-shares ideal as a commuter transportation system [12], [1]. Existing examples
show that the bike stations should not be located more than 300-500m from important
traffic origins and destinations. Given the complexity of bicycle facility planning and the
importance of station distribution for operating bike-sharing programs, formal approaches
are needed to model the problem variables and derive optimal solutions with respect to
minimizing investment cost and maximizing utility for the users. Among others, optimal
solutions should determine the number, location and capacity (in bikes and docks) of the

stations as well as the bicycle lanes needed to be setup.

On the other hand, equally important for bike-sharing systems success is to guarantee
bicycle availability. Each rental station must carry enough bicycles to increase the possibility
that each user can find a bicycle when needed. Therefore, measures of service quality in the
system include both the availability rate (i.e., the proportion of pick-up requests at a bike
station that are met by the bicycle stock on hand) and the coverage level (the fraction of
total demand at both origins and destinations that is within some specified time or distance

from the nearest rental station). Due to the one-way rental policy, bikes are likely to get
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stuck in areas of lower individual mobility demand (cold spots) while needed in zones of
higher demand (hot spots). To make the system more efficient and more profitable, this
imbalance of supply and demand could be adjusted by applying different intervention (i.e.

relocation) strategies [13].

The need to ensure vehicle availability in high-demand areas is also acknowledged for car-
sharing systems [14]. However, relocation of cars is more troublesome than that of bicycles
(up to 60 bicycles can be transported altogether to hot spots on a bicycle carrier,
contributing to cost and effort savings [15]). Some studies suggest the use of road vehicles
(car carriers) with fully automated driving capabilities (typically moving along dedicated
tracks), coordinated by centralized management systems, able to autonomously relocate to
satisfy user demands [16]. Redistribution of vehicles may also be provided by a fleet of
limited capacity tow-trucks located at various network depots; using such an approach the
problem can be conveniently modeled as pickup and delivery problem [8]. However,
dedicated transport trucks are of little use in most urban settings due to stations not easily
reachable by heavy-duty trucks and the time consuming vehicle loading/unloading
operations [17]. Thus, the scheme most commonly encountered in practice engages teams
of employed drivers who undertake the relocation of vehicles thereby significantly

increasing operational cost.

Recently, the decreased manufacturing cost of EVs along with their eco-friendly
characteristics (fuel economy and lowered greenhouse gas emissions) has attracted the
attention of car-sharing companies®. So far, the main body of EVs-relevant algorithmic
research focuses on novel energy-efficient routing algorithms motivated by the unique
characteristics of EVs (limited cruising range, long recharge times and the ability to

recuperate energy during deceleration or when going downbhill) [18], [19].

EV-sharing systems are also unique with respect to their design and operational

requirements. Specifically,

(1) Sufficient battery availability at pick-up time should be ensured so as to travel reliably to
user’s destination [20].
(2) Vehicle relocation policies should take into account the energy availability of vehicles at

stations, in addition to physical availability [21].

3 Among other operators, Car2Go has launched (as of November 2011) an EV car-sharing network
currently covering San Diego and Amsterdam. Through a user-friendly web interface, users
interested in driving a shared EV, Car2Go members are be able to view the exact location of
available EV along with their batteries state of charge and proceed to online reservations. If the
battery performance sinks below 20%, the driver must end his/her trip at a charging station (found
through an in-built navigation system
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(3) Pick-up/drop-off locations are determined by the existence of charging stations (for
instance, the 300 Car2Go vehicles and other EVs in Amsterdam have access to 320
charging stations in the city area).

(4) The anticipated transformation of urban parking stations to charge-park stations in
support to EV power demands is expected to create considerable load on the power
grid, hence, intelligent approaches are in need to flatten the load peak, thereby

deferring investments in grid enhancement [22].

3. Models and algorithmic approaches for optimizing vehicle sharing systems

Bicycle and car sharing systems are complex dynamical systems with stochastic demand
whose modeling and performance analysis is very important for their implementation and
performance as well as for ensuring an effective regulation of vehicle traffic flows. Different
approaches and methodologies have been proposed in the literature for modeling and
studying design, operational and management issues of bicycle/car sharing systems. Such
approaches include mixed integer programming approaches (e.g. [30], [28]), stochastic
programming approaches ([29]), simulation methodologies (e.g. [73], [74], [75]). Although
Petri nets have been a tool used rather successfully in the literature for modeling and
evaluating the performance of dynamic and complex systems in various domains (e.g., traffic
control of urban transportation systems [39], [40], [41], [42] and planning [43], [44], [45]),
very limited research work exists in Petri net models for modeling and performance analysis

of bicycle and car sharing systems ([25] and [46]).

Besides OR approaches (using either mathematical programming or Petri nets and closed
queuing networks) that support decision making in the design and management of bicycle
and car sharing systems, data mining techniques have also received attention in the
literature. Data mining is particularly suitable to analyze and predict the dynamics of such
systems. The analysis of the temporal human mobility data in an urban area (using the
amount of available bicycles/cars residing in the stations of vehicle sharing systems) may
offer insights on the system structure and operation; therefore, statistical and prediction
models can be developed for the tactical and operational management of these systems.
Some of the research works focusing on using data mining to analyze bicycle sharing systems

are the following:

e In [47] Froehlich et al. provide a spatio-temporal analysis of data collected for the
number of available bikes and vacant bike stands from Barcelona’s bicycle sharing
system. Stations are clustered according to the number of available bikes and an activity
score assigned in the course of day. Then, visualization is used to identify shared
behaviors across stations and show how these behaviors relate to location,

neighborhood and time of day. The authors show that fairly simple predictive models
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are able to predict station usage with an average error of only two bicycles and can
classify station state (i.e., full, empty, or in-between) with 80% accuracy up to two hours
into the future.

In [24] Kaltenbrunner et al. detect bike usage patterns in data from Barcelona’s bicycle
sharing system. Their results are similar to those of Froehlich et al [47]. They present a
statistical model that predicts the number of free bikes and vacant bike stands at
stations some minutes ahead in time.

Borgnat et al. [48] use data mining to analyze the dynamics of bike movements in Lyon’s
bike sharing system. Temporal patterns in the system-wide bike usage are examined.
Weekdays show usage peaks in the morning, at noon and late afternoon, whereas usage
is concentrated in the afternoon on weekend days. A statistical model for the prediction
of the number of rentals on a daily and hourly basis is proposed. Furthermore, spatial
patterns are examined by clustering bike flows between stations. Spatial and temporal

dependencies exist between stations of clusters interchanging many bicycles.

¢ Parking facilities
* Fleet size
* Vehicles allocation to stations

Strategic (long-term)
network design

Tactical (medium-  EESr Tl

= ) N VSR (o8 o Ride sharing, ride splitting, choose another
users drop-off location or reservation time

Operational issues * Use of road vehicles with fully automated
driving capabilities
¢ Fleets of limited capacity tow-trucks

(operator-based
relocation strategies |8 Teams of employed drivers

Figure 1: Main issues related to the design, management and operation of vehicle sharing systems.

Vogel et al. [23] identify three main issues related to the design, management and operation

of bicycle/car sharing systems. The proposed design and management measures (aiming at

alleviating imbalances in the availability of bicycles/cars) are distinguished into three

separate planning horizons (see Figure 1):

(1) Strategic (long-term) network design comprising decisions about the location and the

number of stations as well as the vehicle stock at each station.

(2) Tactical (mid-term) incentives for customer-based distribution of bicycles/cars i.e.,

incentives given to users so as to leave their vehicle to a station different to that

originally intended (this may be regulated through pricing schemes adaptable to the
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system state). For example, Figure 2 illustrates two possible options offered to the user
willing to move from a location A to a location B: The A > S;-> S; > B option (i.e., the
user leaves the vehicle at the station S; and walks to the destination location B) is the
shortest time one, while the A - S;-> S, > B option (i.e., the user leaves the vehicle at

the station S, and walks to the destination location B) is associated with the incentivized

scheme.

Figure 2. lllustration of the different options offered to a user moving from A to B

(3) Operational (short-term operator-based) repositioning of bicycles/cars based on the
current state of the stations as well as aggregate statistics of the stations’ usage
patterns. For example, Figure 3 illustrates a relocation plan for a vehicle sharing system,

based on the system data shown in Table 1.

Relocation plan
vector:

(S4r S3r 4)
(51,55 3)
(S4) S5, 2)
(Sa) S3, 1)

Figure 3. Illustration of a relocation plan. Circles filled with black color represent parked cars while
empty circles represent empty parking spaces.



Stations S1 Sz S3 Sa Ss
Capacity 5 3+ 3 5 4
Current occupancy 3 0 0 5 1
Targeted occupancy 2 1 2 2 2
Surplus/ Deficit +1 -1 -2 +3 -1

Table 1. Example snapshot showing the capacity, current/targeted occupancy and surplus/deficit in
vehicles.

In the sequel of this Section, we overview algorithmic solutions proposed for the strategic
design of vehicle sharing systems (Subsection 3.1), present modeling approaches supporting
pricing schemes and incentives for customer-based distribution of vehicles (Subsection 3.2)
and summarize algorithmic approaches for the problem of operational repositioning of

vehicles (Subsection 3.3).

3.1 Algorithmic approaches on the strategic design of vehicle sharing systems

Integer programming based approaches. Lin and Yang [26] have been the first to
investigate the problem of strategic design of bicycle sharing systems. The problem
investigated is the following: given a set of origins, destinations, candidate sites of bike
stations and the stochastic travel demands from origin to destination, the problem’s output
comprises the location of bike stations, the bicycle lanes needed to be setup and the paths
to be used by users from each origin to each destination, the objective being to minimize the
overall system cost. The authors take an integrated view of the system cost, considering
both the user’s and the investor’s point of view. In particular, the investor’s cost comprises
the facility costs of bike stations, the setup costs of bicycle lanes, bicycle stock and safety
stock (for serving the demand at peak hours) costs. The level of service provided to the user
is measured by the demand coverage level (defining penalty costs for uncovered demands)
and travel costs (for both walking and cycling). The problem has been formulated as an

integer nonlinear program.

Martinez et al. [27] formulated a mixed integer linear program (MILP) aiming to optimize the
location of shared biking stations and the fleet dimension. This study also considered bike
relocation operations among docking stations (the relocation operations cost is considered
as an additional system cost factor, yet not explicitly included as a decision variable in the
MILP formulation). A general model framework has been proposed, which computes several
days of operation, maintaining the dimensioning data from previous iterations, re-
computing the hour operation MILP model and updating the system design, until the
configuration reaches a net revenue equilibrium, producing a stable and optimal system

configuration.




Correia and Antunes [28] addressed the optimization problem of selecting sites for locating
depots in order to maximize the profits of a one-way car sharing organization. Revenues are
generated from renting the vehicles against some price rate while several types of expenses
are considered (maintenance costs for vehicles and depots, vehicle depreciation costs and
vehicle relocation costs). Relocation operations are only considered at the end of the day,
unlike previous studies wherein the main emphasis was on optimizing such operations [29,
30]. Three mixed integer programs (MIP) have been modeled which determine the optimal
number, location, and capacity for the depots, each one corresponding to a different trip
selection policy. According to the first policy, the operator is free to accept or reject trips in
the period they are requested according to the profit-maximization objective; the second
policy assumes that all trips requested by clients are approved; the third policy allows a trip
request to be rejected in the case that there are no vehicles available at the pick-up depot.
The optimization models have been tested in a case study involving the municipality of

Lisbon, Portugal.

Boyaci et al. [31] proposed a generic model for supporting the strategic (number and
location of required stations) and tactical (optimum fleet size) decisions of one-way car-
sharing systems by taking into account operational decisions (i.e. relocation of vehicles). The
authors formulated a mathematical model (integer program) and conducted sensitivity
analysis for different parameters. The objective function seeks to maximize the overall profit
which considers the revenue generated from vehicle rentals in addition to user costs
(proportional to the time required to reach the origin station from the start location and the
end location from the destination station) and system costs (unserved customer cost,
vehicle operating cost, station opening cost and relocation cost). The proposed model has
been applied for planning and operating a station-based EV-sharing system in the city of

Nice, France.

Heuristics. Recognizing the complexity of the bicycle sharing system design optimization
which precludes exact solutions for instances of realistic size, Lin et al. [32] approached the
system’s design as a hub location inventory problem?* [33] that takes the coverage level into
consideration and proposed a greedy algorithm for solving it efficiently. The greedy-drop
heuristic iterates between locating bicycle stations given a collection of bicycle lanes, and
locating bicycle lanes given a set of bicycle stations. In particular, all candidate stations and
the bicycle lanes connecting them are initially marked as “open”. The algorithm then

iteratively removes the currently open station, which if closed, would result in the largest

4 The hub location problem has been one of the important classic facility location problems. Hub
facilities concentrate flows to achieve economies of scale. Flows between origins/ destinations and
hubs and between pairs of hubs are consolidated into a smaller set of links rather than serving
demand with direct links. The hub location problem involves determining the hub facilities and
determining the links to connect origins, destinations and hubs.
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total cost reduction, until no further cost reduction is possible. Likewise, bicycle lanes are
removed, as long as their removal results in cost reduction. The overall solutions cost is
calculated utilizing the mathematical cost model introduced in an earlier study [26]. When
testing the algorithm in test instances for which enumeration is possible, the heuristic

solution has been found within a 2% gap from the optimal.

Kumar and Bierlaire [34] developed an optimization model to identify the most appropriate
locations for establishing car-sharing stations such that the overall system performance is
maximized (the main measure of stations performance is the average number of rides per
day). The model considers car-sharing systems exclusively allowing round-trips. The model
balances between the estimated attractiveness of key demand drivers in a locality and the
locality’s proximity to an existing station. The authors first build a linear regression model
(applied on historical data of the Auto Bleue EV-sharing operator, in Nice, France) to identify
the key demand factors that affect stations performance®. Then they formulate a mixed-
integer quadratic (higher-order) program. The objective of the mathematical model is to
maximize the combined performance of all selected stations (n stations are selected among
k candidates; candidate stations are assumed to be located at the centroid of pre-specified
city localities). The main trade-off decision made by the model involves locating more
stations in “highly attractive" localities versus locating new stations in “less attractive” but
untapped localities (establishing too many stations at attractive locations does not increase
the overall system performance as they tend to cannibalize each other’s performance). Last,
a heuristic is proposed to solve the problem. The heuristic first estimates the “best
performing stations” based on all parameters except distance and public transport ridership.
In the first iteration, all k stations are assumed to be operational; the contribution of public
transportation and distance is then computed. In the next step, the n best locations are
picked to place the stations. Now the public transportation and distance contribution is
recomputed assuming that only these n proposed stations are operational. Based on the
changes in the objective function, the n best locations to place the stations are again

selected. This process is repeated until the selected set of n stations remains unchanged.

The problem of determining the fleet dimension (size) and the distribution of vehicles
among the stations of a car-sharing system was studied in relation to electrically powered
one-person vehicles (Personal Intelligent City Accessible Vehicles, PICAVs), which enable
accessibility for all in urban pedestrian zones [35]. This system allows one-way trips among

stations (parking lots that offer vehicle recharging services) located at inter-modal transfer

5 Stations performance have been found to increase with the share of high income/education
population (in the locality), the share of public transport ridership, the share of car usage to reach
workplace, the presence of mobility attractors (mainly commercial centers, hotels and colleges), the
population density, the presence of transit hubs; on the contrary, distance from customers
residence decreases the performance of stations.
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points and near major attraction sites within the pedestrian area. The number, the location,
and the capacity of the stations are not determined by the model. To cope with the
imbalanced accumulation of the one-way system, this model enrolls a human supervisor.
The task of the supervisor is to direct users that are flexible in returning the car to
alternative stations, as to achieve a balanced operation and fulfil a maximum waiting time
constraint. The cost minimization problem has been solved using a simulated annealing-
based approach (the cost function takes into account both the transport system
management and the customer cost, i.e. the cost of vehicles and the total customer waiting

time, respectively).

GIS-based approaches. Geographic Information Systems (GIS) represent a highly useful tool
for determining bike station locations. Larsen et al. [36] presented a GIS-based grid-cell
model to identify and prioritize cycling infrastructure investments using the example of
Montreal, Canada. The main result is a grid-cell layer of the study region wherein high-
priority grid-cells represent those areas most appropriate for bicycle infrastructure
interventions (i.e. the areas where new cycling facilities would provide the maximum benefit
to both existing and potential cyclists). Rybarczyk and Wu [37] used GIS-based multi-criteria
decision analysis both to evaluate the quality of bicycle facilities utilizing supply and
demand-based objectives. Analyses were conducted at two levels: network (bicycle facility)
level and neighborhood level. Network level analysis can address site specific issues and
provide detailed information for further improvements. By contrast, neighborhood level
analysis provides a strategic view of bicycle facilities in an urban area, and facilitates policy

development and implementations.

Garcia-Palomares et al. [38] proposed a GIS-based method to calculate the spatial
distribution of the potential demand for trips, locate stations using location-allocation
models, determine station capacity and define the characteristics of the demand for
stations. The authors follow a four-step approach: First the distribution of the potential user
demand is assessed (the number of trips generated and attracted for each transport zone is
calculated based on the population and employment associated with each building). The
location-allocation models (p-median and maximum coverage®) are then applied defining
obligatory bike-stations, candidate locations, the number of stations to be located and the
type of solution chosen. Once bike-station locations and potential demand upon stations are
obtained, the stations capacity (number of bicycles and docks) is calculated; also, the
stations are characterized (as trip generators or attractors) making it possible to vary the
number of bicycles according to the time of day, leading to more efficient bicycle
redistribution systems. The final step is the analysis of stations in terms of accessibility (a

measure of usefulness, which considers the volume of demand allocated to the station and

6 In the maximum coverage location-allocation model, the stations are located such that as many
demand points as possible are allocated to solution facilities within the impedance cutoff (200m).
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its distance to the potential origin/destination stations of the users); this way, it is possible
to prioritize stations within the bike-sharing program (eliminating those with poor

accessibility).

Data mining - based approach. Vogel et al. [23] use geographical information technology
and data mining methods to gain insight into bicycle stations operations and try to
incorporate this knowledge in the design of bicycle sharing systems (strategic and
operational planning). In a case study, collected data related to the activity of the bike
stations are provided as input to a data mining phase where cluster analysis is used to group
stations according to their pickup and return activity patterns. The analysis reveals spatio-
temporal dependencies of pickup and return activities at stations which support the
hypothesis of Vogel et al. that usage patterns at bike stations and the type of customers
using certain stations depend on the stations’ location. Note that if the hypothesis holds,
then usage patterns for already existing stations can be mapped to potential stations based
on their locations. Therefore, strategic decisions about the bicycle sharing system can be

supported.

The previous algorithmic approaches are summarized in Table 2 where a classification is also

given according to whether they concern bicycle or car sharing systems.

Bike sharing systems

Car sharing systems

Integer programming

based approaches

Lin and Yang [26]

Martinez et al. [27]

Correia and Antunes [28]

Boyaci et al. [31]

Heuristic approaches

Lin et al. [32]

Kumar and Bierlaire [34]

Cepolina and Farina [35]

GIS-based approaches

Larsen et al. [36]
Rybarczyk and Wu [37]

Garcia-Palomares et al. [38]

Data mining based

approach

Vogel et al. [23]

Table 2. Algorithmic approaches on the strategic design of vehicle sharing systems

3.2. Tactical incentives for bicycles/cars distribution

In [49], a bike sharing system is modeled as a stochastic network and its steady state
performance is analyzed using the mean field theory. Specifically, in this model, there are N
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bike stations, each of which can keep at most K bikes. Initially, there are s bikes in each
station and therefore the total number of bikes in the system is sN. It is also assumed that
the arrival rate at each station is A (symmetric case) and the travel time between any two
stations follows the exponential distribution with parameter u. The authors determine the
proportion of problematic stations (empty or saturated) at steady state. Specifically, they
prove that the proportion of problematic stations at steady state is minimal when s = K/2+
Au and the minimum is equal to 2/(K + 1). This is not an encouraging result, since for
achieving low proportion of problematic stations, large capacities in the stations are needed,
which is not always feasible due to space constraints and construction costs. The authors
also show that the situation does not improve even when the users are aware of the
problematic stations and they always pick one of the remaining stations for getting and
leaving a bike. The performance of the system is greatly improved if simple incentives for the
users are adopted. Specifically, the authors test the case when the user selects a station at
random for leaving its bike and then s/he finally selects the least loaded. The analysis and
the simulation results clearly show that the proportion of problematic stations is now much
lower. This also holds in the case that only a fraction of users accept to follow that policy.
Then, the authors study the asymmetric case where there are two clusters of stations and
the customer arrival rate at the stations of one cluster is higher than at the second cluster. In
this case, the performance of the system is much worse than in the symmetric case when
there is no regulation mechanism for the bike distribution across the stations. Even the
above incentive of two choices is not that effective in this case. So, the authors propose bike
repositioning using a number of tracks. Indeed, the simulation results demonstrate much
higher performance in the steady state if the trucks regularly redistribute the bikes across

the stations.

In [50], a bike sharing system is presented where periodic redistribution of bikes across the
stations is carried out by using a number of trucks and also incentives are given to the users
to leave their bike to a different than the originally intended station. Incentives are regulated
through a pricing scheme which is changing online according to the current state of the
system. First, the authors use historic data for building user demand statistics of the bike
sharing system. Specifically, they determine the average arrival and departure rate of
customers at each station for a number of time intervals on each day differentiating
between working days and weekends. Then, periodically, each time for a fixed planning
horizon, they determine the truck routes for optimal redistribution of bikes across the
stations. For the problem formulation, the authors assume deterministic flows in the
network and also define a utility function at each station which determines the benefit of
removing or adding bikes at the station at the current time with respect to the increase of
the percentage of users whose requests will be satisfied at this station in the near future.

Then, they study the problem of finding the best route for the case when only one truck is
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used. They also assume that during each trip, the single truck can visit at most a small
constant number of stations. Then, they use a greedy approach and they build a tree
emanating always from a specific spot (hamed maintenance depot in the paper); a number
of stations are added iteratively to the tree so that the increase in the utility function over
the additional cost incurred for reaching the station is relatively high. Having constructed the
tree, a separate optimization problem is solved for each different route starting from the
root of the tree and ending at the tree leaves. This optimization problem which is in the
form of a quadratic program, refines the truck loading actions across each route leading to a
more effective solution. Then, the authors generalize their solution for the case of multiple
trucks in the system. Essentially, they follow a sequential approach fixing the route of trucks
one after another. Finally, the authors study the problem of determining the pricing scheme
which will have the lowest monetary cost while keeping the bike distribution across the
stations at an optimal level. The basic assumption in their approach is that the users are
rational thinkers and when the system proposes to them an alternative nearby station to
leave their bikes, the users weigh the monetary reward they are going to receive for this
choice against the monetary cost of travelling additional distance. For determining the best
pricing policy, the problem is formulated as a problem of Model Predictive Control. More
precisely, the best prices are determined for each different time step within a finite time
horizon and then only the prices concerning the current time step are finally adopted. At the
next time step, the problem is resolved since the system state may have changed in the

meantime.

In [7], a vehicle sharing system is modeled as closed queuing network. The authors make the
simplifying assumptions that the users always find parking space at the destination station
and also when they do not find a vehicle at the origin station, they simply leave the system.
By regarding the vehicles as the customers of the closed queuing network system, each
parking station is viewed as a single server node with FIFO service policy and the service
time is equal to the inter-arrival time of users at that station. The user arrival at each station
is modeled as a Poisson process. It is also assumed that the network of parking stations is
complete and thus there is a direct link for each pair of parking stations. Each vehicle at the
origin station leaves that station along a certain outgoing link with a specific probability. The
travelling time between two stations i and j is exponentially distributed with parameter 1/u;.
Each link (ij) of the station network is modeled as a node with infinite number of servers
and with total service rate equal to nu; where n is the number of vehicles travelling along
that link. The main objective in their analysis is to determine the optimal number of vehicles
(fleet size) in the system such as the overall profit is maximized. In estimating this profit, the
authors consider the revenue per unit time obtained from a vehicle rent by a user. They also
take into account a maintenance cost per vehicle and an unavailability penalty when a

customer cannot find vehicles available at a station. Then, they prove that the profit
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function is a concave function and its optimization derives two solutions at most. Next, they

use mean-value analysis, for estimating these solutions.

In [51], the authors analyze a pricing scheme by modeling a vehicle sharing as a closed
gueuing network, basically following the approach in [7]. However, now, each station is
assumed to have finite capacity and also the demand for each out-link of a station is elastic
influenced by the price that should be paid for travelling along this link. It is also assumed
that when a user picks a car at the origin station, the system ensures that there will be free
parking space at the destination station by making reservation in advance. For determining
the best pricing scheme, the time is partitioned into a number of time slots whose duration
follows a certain distribution. In addition, the authors assume that the system has periodic
behavior and the prices for each link should be determined only for the time slots within a
single period of the system. Essentially, the whole problem is reduced to a Markov decision
process wherein the set of actions applied at each moment should be determined.
Apparently, this set of actions is the prices set for each link, which in turn affects the use of
this link by the users of the system. Due to the huge state space of this process, the problem
of obtaining the best pricing scheme cannot be solved in reasonable time. For this reason,
the authors propose an approximation based on the fluid model where the stochastic
demands are replaced by continuous flows with deterministic rate. Then, the problem is
reduced to a continuous linear problem whose solution maximizes the sum of demands at

each link of the station network.

In [52], the authors assume a vehicle sharing system where stations have unlimited capacity
and the travel time between any two stations is negligible. These two assumptions simplify
the modeling of the vehicle sharing system as a closed queuing network. Similarly to the
previously discussed approaches, each station is a node of the closed queuing network
where the jobs to be served are the cars at this station. The service rate of the server is
equal to the rate of the customer arrival at that station which is modeled as a Poisson
process. For each pair of stations there is a demand rate for the link connecting the
corresponding nodes; this demand is leveraged by the price set for making a trip along this
link. However, no method is proposed for adjusting these prices to maximize profit. Actually,
the authors study the problem of finding the link demands which maximize the number of
trips sold. Also, for each link, there is a separate upper bound for the demand passing
through that link. This bound is implicitly determined by the lowest price that the system
operator will set for the corresponding link. Then, the authors solve the maximum
circulation problem on a flow network which results from the queuing network by viewing
the upper bounds on the link demands as the edge capacities on this flow network. Note
that in the maximum circulation problem, there is no source and sink node, and the
objective is to maximize the circulated flow in the network without violating the capacity

constraints. As the solution of this problem may yield zero flows for some links, the resulting
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flow network may be disconnected with a number of strongly connected components. Then,
for each strongly connected component, the availability of each station at that component is
determined, that is the probability that a new customer will find a vehicle at that station.
Apparently, this probability is a function of the number of vehicles and the number of
stations at the component. Given a specific distribution of vehicles across the different
strongly connected components, the expected number of trips taking place in the system
can now be calculated from the solution of the maximum circulation problem and the
previously estimated station availabilities. Next, the authors give a greedy algorithm for
determining the distribution of the vehicles across the strongly connected components
mentioned above, which maximizes the expected number of trips sold. They also prove that
this greedy approach is actually optimal based on the fact that the expected number of trips
is a concave function of the number of vehicles within each strongly connected component.
Finally, they present some preliminary results about the approximation ratio of their
approach. Specifically, they claim, without a complete proof, that the proposed policy is a
tight N/(N+M-1) approximation on both static and dynamic optimal policies where N is the

total number of vehicles and M is that number of stations of the vehicle sharing system.

The deterministic version of the above problem is also studied in [53]. In this setting, the
trips planned to take place in a fixed horizon are known in advance. Similarly to the above
approach, each link is associated with a fixed price to pay for following that link. In addition,
for each trip, users set a maximum price they are willing to pay. A trip is cancelled, if the
price of this trip’s link is higher than the maximum price for that trip. The optimization
problem in this scenario is to determine the prices at each link so that the total system
revenue is maximized. The authors prove that this problem as well as a number of variants

are all NP-hard problems.

In [46] a user-based solution for the vehicle relocation problem in car sharing systems is
proposed. In particular, an approach of using rental pricing incentives is presented and
assessed. Incentives are intended to influence the travel behavior of the users according to
the system conditions, monitored in real time. The proposed solution is based on a model of
an electric-car sharing system developed in a Timed Petri Net (TPN) framework. Note that
TPNs use graphical and mathematical descriptions to represent both the static and the
dynamic aspects of the modeled system; the graphical representation enables a concise way
to design and verify the model, while the mathematical description allows simulating the
system in software environments, by considering different dynamic conditions [46]. The
proposed vehicle relocation strategies have been applied to the real case of the electric-car
sharing system of Pordenone, Italy. The simulation results show that a system which ignores
the operative conditions of the service suggesting always to its customers to return the
vehicles as soon as possible, does not lead to the rebalancing of the number of vehicles

parked in each station. On the other hand, giving incentives to the users which depend on
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the real time monitoring of the system, can increase the number of served customers and,
therefore, improve the overall system performance. The results also show that the
effectiveness of the proposed solution decreases as the congestion level of the system grows

highlighting the limits of such an approach.

In [76] the authors present a crowdsourcing mechanism that incentivizes the users in the
bike repositioning process by providing them with alternate bike pick up or drop off
locations in exchange for monetary incentives. The main component of the system is the
Incentives Deployment Schema (IDS) that handles the user’s request through a Smartphone
App. The IDS communicates with the bike sharing system infrastructure to evaluate the
current and predicted status of the stations, and decides whether to offer on not incentives
to the user. In order to maximize the efficiency under given budget constraints, the authors
design a dynamic pricing mechanism using the approach of regret minimization in online
learning that can learn over time about the optimal pricing policies. The users are considered
as strategic agents who may untruthfully report information about their personal cost and
location to maximize their profit. The pricing mechanism DBP-UCB (Dynamic Budgeted
Procurement using Upper Confidence Bounds), is a dynamic variant of BP-UCB presented in
[77]. The proposed system is evaluated through simulations using historical and user survey
data. Finally, the system was deployed on a real-world bike sharing system for a period of 30
days in a city of Europe, in collaboration with a large scale bike sharing company. According
to the authors this is the first dynamic incentives system for bikes repositioning ever

deployed in a real-world bike sharing system.

The previous algorithmic approaches are summarized in Table 3 where a classification is also

given according to whether they concern bicycle or car sharing systems.

Bike sharing systems Car sharing systems

Stochastic network Fricker and Gast [49]

modeling approach

Model Predictive Pfrommer et al. [50]

Control approach

Closed queuing George and Xia [7]

network modeling Waserhole and Jost [51], [52]

approach
Waserhole et al. [53]
Briest and Raupach [66]
Timed Petri Net Clemente et al. [46]
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modeling approach

Regret Minimization Singla et al. [76]

approach

Table 3. Algorithmic approaches on tactical incentives for bicycles/cars distribution

3.3. Operational repositioning of bicycles/cars

In a bike-sharing system, there is a set of stations providing bicycles for rent, each with a
specified capacity of allowed bicycles. A customer may rent a bicycle at a station, use it for a
period of time and then leave it to another station. Since, the stations have a specified
capacity and the number of bicycles available for rent is restricted, shortage events may
occur. A shortage event occurs when a customer tries to rent a bicycle from an empty
station or tries to return a bicycle in a full station [61]. To eliminate shortage events, hence
customers’ dissatisfaction, it is necessary to reposition bicycles using a fleet of dedicated
vehicles. The repositioning can either be static [61] i.e., it can take place during the night
when no customer asks for bicycles or dynamic [62] i.e., occur during the day in order to
remove bicycles from full stations and transfer them to stations with lack of bicycles. Two
main factors are considered in a repositioning process, the number of vehicles
removed/transferred to a station to meet the customers’ need and the operational cost of
the fleet of vehicles performing the repositioning. In several applications the latter factor
may be considered insignificant compared to the impact of a dissatisfied user and hence it

may be disregarded.

Chemla et al. [63] study the static rebalancing problem in bike sharing systems. The authors
formulate the problem as a Single Vehicle One commodity Capacitated Pickup and Delivery
Problem. In this formulation a single capacitated vehicle balances the stations transferring
bikes from stations with excess of bikes to stations with shortage. The relocation is assumed
to be static i.e., taking place during the night when there is no demand for bikes. The
problem aims at producing a minimum cost vehicle route accompanied with
loading/unloading number of bikes at each station. At route completion time all stations
have to contain a predefined target number of bikes. The authors propose an intractable
exact model for the problem. Then, the model is relaxed, obtaining an integer program with
exponential number of constraints. This program is solved using a branch-and-cut algorithm,
producing a lower bound for the solution. Apart from this approach, a tabu search heuristic
is proposed to produce feasible solutions. The tabu search algorithm incorporates four
different neighborhood structures. The tabu list contains a number of arcs previously
removed during the execution of local search steps. Two different approaches are

considered for the construction of the initial solution of the heuristic algorithm. In the first, a

-19-



solution is constructed using a greedy heuristic procedure. In the second, an initial solution
is obtained based on the solution of the integer program. The executed algorithms are the
branch-and-cut algorithm for the integer program as well as the two versions (according to
the construction of the initial solution) of the tabu search heuristic. The test instances used
for evaluating the algorithms are based on the work in [64]. The experimental results
indicated that tabu search incorporating the solution of the integer program produces
higher quality solutions i.e., solutions with lower cost than the greedy initialization heuristic
while the latter approach executes faster. Furthermore, the results indicate that the tabu
search heuristic obtains, in general, solutions with cost close to optimal, achieving on

average at most 5% gap.

Raviv et al. [61] study the static repositioning problem of bicycles performed during the
night using a fleet of vehicles. The problem aims at producing vehicle routes for bicycle
repositioning in order to minimize a cost function. The cost function considered is a
weighted combination of a convex penalty function based on the expected number of
shortage events per station of the next day and the travel cost of the vehicle routes. Two
Mixed Integer Linear Programming formulations of the problem are proposed, namely an
arc-indexed formulation and a time-indexed formulation, each with different underlying
assumptions. In the arc-indexed formulation a vehicle cannot visit a station twice, while no
waiting is allowed at a station. These assumptions significantly reduce the number of
decision variables and, hence, make the approach efficiently solvable. In the time-indexed
formulation, the time period is discretized into small time periods and the decision variables
taken into account extend the decision variables of the former formulation adding one more
index, the time index. Furthermore, the restrictions of the arc-indexed formulation do not
apply anymore. In this way the solution space of the latter formulation extends the solution
space of the former. Since solving these programs would take a lot of computational time, a
two-phase heuristic approach is considered. In the first phase the program relaxes the
restriction of integer number of bicycles removed and transferred to stations, hence
concentrating on the design of the vehicle routes. In the second phase, the program is
solved with the integral restriction to the number of bicycles, with the decision variables
concerning the vehicle routes treated as constants based on the solution obtained from the
first phase. The algorithms have been tested on data from Paris (Velib system) consisting of
at most 60 stations and two vehicles and Washington DC (Capital Bikeshare) consisting of
104 stations and two vehicles. The results indicated that the arc-indexed formulation
combined with the two-phase heuristic approach was the most efficient approach yielding

higher quality results in the allowed two hours execution time.

Weikl et al. [15] study the relocation problem of cars in free-floating car sharing systems.
The relocation strategies are categorized as user-based and operator-based. In the former,

the relocation is performed by the customers. Incentives and bonuses are offered to the
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users to either change their destination, leaving the rented car in a station with shortage of
cars or share a car with other customers with similar trips. In the latter, the relocation is
performed by the employees of the system, transferring cars from stations with excess to
stations with shortage. The first approach is very profitable for the system, since no cost for
car transferring is added, however customers may refuse to changer their trip or share a car.
The second approach adds cost to the system, requiring employees’ actions and car
movement. Nevertheless, it is more reliable. Then a user-based algorithm of Di Febbraro et
al. [65] and an operator-based algorithm of Kek et al. [30] are described to illustrate the
different approaches. Finally, a two-step algorithm for car relocation in car sharing systems
is introduced. In the first, offline step, a set of demand scenarios is produced based on real
collected data. For each scenario, the optimum number of cars per station is computed and
a set of relocation strategies is produced. In the second, online step, the number of vehicles
currently placed in stations is compared to the optimum, computed in the current demand
scenario. If these quantities differ, the appropriate relocation strategy produced in the

previous step is applied.

The modeling of a car-sharing system as a closed queuing network is followed in [66],
similarly to the works surveyed in Section 3.2. Again, the cars are considered as the pending
jobs of the system and each parking station is viewed as a single server with the available
cars at the station waiting in a queue for the next customer to come. Once more, the service
rate of a server is essentially the inter-arrival rate of the customer arrival Poisson process at
that server/station. The authors also assume that a customer picking a car at a station may
drive to any other station with a certain probability. In addition, a redistribution policy is
implemented wherein the staff of car-sharing company relocates cars so as to achieve
maximum total profit. Specifically, a reward is credited when a customer uses a car for
travelling between two stations, with the reward being proportional to the travelled
distance. Similarly, a cost applies when a car is relocated by the company staff for achieving
balanced car distribution across the stations. Again, this cost is proportional to the distance
travelled for this relocation. It is also assumed that the reward value is higher than the
relocation cost for the same travelled distance. Now, the overall objective is to determine
the relocation policy which maximizes the total profit of the system. The problem is
formulated as a linear programming problem and the optimal solution determines the
average number of cars moving between each pair of stations due to customer requests and
due to relocation which yields the highest net profit. Based on the optimal solution of this
problem, a relocation policy is then determined. Namely, after a car arrives at a new station
after completing a customer trip, the car is immediately relocated to a random target station
according to a certain probability distribution. Specifically, the probability p., of relocating a
car from a station u to a station v is equal to m,./y, where m,, is the average number of cars

relocated from v and v and and y, is the average number of cars at node v after a customer
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request has been served at that station. The values of these two parameters derive from the
optimal solution of the linear program discussed above. Now, the authors prove that this
relocation policy yields profit within a factor of 2 of the optimal policy’s profit. They also
prove, via a reduction from the Set Packing Problem, that finding the optimal relocation
policy in the car sharing problem is an APX-hard problem, in general. Finally, they provide
some preliminary results for the discrete-time version of the car sharing problem where
customers are not arriving according to a Poisson process but simultaneously at all nodes at
regular intervals. Also, after each round of customer requests, a relocation policy may
relocate all cars regardless of whether they were moved due to a customer request. Then,
the authors study the problem assuming that the distance between any two stations is 1 and
that a customer at a station will select the destination station uniformly. In this case, the
optimal policy is proved to be not performing any car relocation. Then, the average fraction
of non-empty queues in the system is determined and this is also the approximation ratio

with regards to the optimal policy.

Gendreau et al. [67] tackle the problem of dynamically relocating emergency vehicles in
order to cover the most possible population. For example, when a vehicle leaves its location
for a service, the remaining vehicles are relocated to be able to cover as much population as
possible. The problem is formulated as a Maximal Expected Coverage Relocation Problem
(MECRP). The input of the MECRP consists of n vehicles, a directed edge-weighted graph G =
(V, A), with V partitioned into two subsets, namely V,, that represents the locations the
vehicles may wait, and Vg, that represents the locations a service may occur. A vehicle in V,,
covers a vertex in Vy if the vehicle can reach the vertex within a specified travel time. Each
vertex u € Vy is associated with a demand that represents a measure of necessity for a
vehicle covering the vertex. The objective is for each k < n to assign k vehicles in vertices of
V., fulfilling a side constraint on the maximum allowed number of relocated vehicles, in
order to obtain the maximum expected coverage. The calculation of all k < n assignments of
vehicles to vertices in V,, is used in order to have all possible relocations known a priori i.e.,
when a vehicle leaves its position for a service the relocation of the remaining vehicles is
already known. The expected coverage is the Y7, px ¢x Where pi denotes the probability
exactly k vehicles to be available and ¢, denotes the coverage obtained from the k vehicles.
The problem is formulated as an integer linear programming problem. The approach was
tested in real data from Montreal’s medical services, with a small number of vehicles3 <n <
6 and the solution was calculated by an integer programming solver. The results indicate
that the average response time would not exceed 10 minutes even in the case of only three
vehicles. A drawback of the approach of Gendreau et al. is that although they calculate every
possible assignment of k < n vertices to V., they do not generate the actual routes to be

assigned to vehicles when one of them leaves or becomes available. Furthermore, this
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approach cannot be used for large values of n, since the solution of the integer programming

problem takes exponential time.

Contardo et al. [62] introduce the dynamic public bike-sharing balancing problem. The
problem deals with the dynamic relocation of bicycles, i.e. the relocation of bicycles during
the day, when the demand for bicycles is not negligible. The aim is to derive vehicle routes
for dynamically relocating bicycles in order to minimize the number of occurring shortages,
i.e. incidents wherein a customer requires a bicycle from an empty station or attempts to
leave a bicycle in a full station. The time is discretized into periods and a space-time network
is introduced. A node of the network denotes a station of the bike-sharing system at a
specified time period, while an arc represents transition of a station at a specified time
period to another station the expected time period. Regarding the number of bicycles
loaded on a vehicle (during an arc traversal) as flow, a Mixed Integer Linear Programming
(MILP) formulation is proposed. Since, the solution of the previous formulation would be
computationally hard, a heuristic approach that produces lower bounds and feasible
solutions is also proposed. In the latter two decompositions of the problem are applied.
Namely, Dantzig-Wolfe decomposition [68] is applied and the linear relaxation of the
formulation is solved, creating a lower bound for an instance. Then a new formulation of the
problem is proposed applying Benders decomposition [69]. Taking into account the process
applied in the Dantzig-Wolfe decomposition, a feasible solution is obtained. Since no
instances for the dynamic relocation of bicycles exist, Contardo et al. [62] created 120 test
instances to test their approaches. The instances contained 25, 50 or 100 stations, the time
span was set to 2 hours, each time period was set to 5 or 2 minutes and the number of
vehicles available for the relocation was considered to be 5. The MILP has been compared
against the heuristic approach combining the two decomposition schemes. The former is
solved using a commercial solver allowing 30 min execution time. The heuristic approach has
been shown to clearly outperform the MILP approach in all test instances apart from the
smallest ones. The lower bound produced by the heuristic is higher than the MILP solution,
the solution obtained corresponds to lower cost, while the heuristic’s execution time does
not exceed on average the 6 min, even in the largest instances. On the downside, the
problem formulation does not take into account the time spent for loading and unloading
bicycles in stations. Since this time is not negligible in relation to the time length of routes
and is usually proportional to the number of loaded/unloaded bicycles [61], future work
could focus in deriving new formulations of dynamic bicycle relocations incorporating

loading/unloading times.

In [25] a bike sharing system consists of a set S = {5,,5,,...,Sx} of N stations, where each
station S; has capacity C; (i.e. it is equipped with C; bicycle stands). The system employs
redistribution to transport bicycles from stations in excess of bicycles to stations that may

run out of bicycles. The objective of the control system is for each station S;, to maintain an
-23-



(appropriate for this station) number of R; bicycles ensuring that there are always bicycles
available for pick up and also G - R; vacant stands available for bicycle drop off. The
proposed Petri net model (initially defined only for three stations and generalized to any
number of stations in the sequel) consists of three subnets (modules) representing three

Ill

different functions: (1) the “station control” subnet, representing the control function of the
stations to ensure availability of bicycles for pick up and vacant berths for bicycle drop off at
every station; (2) the “bicycle flows” subnet representing the bicycle traffic flows between
the different stations of the network; and (3) the “redistribution circuit” subnet representing
the path to be followed by the redistribution vehicle in order to visit the different stations of
the network. The proposed modular and dynamic Petri net model is validated through
several simulations made for different interesting system configurations. Labadi et al. argue
that Petri nets-based modeling is particularly useful to planners and decision makers in

determining how to implement and operate successfully bicycle sharing systems.

Krumke et al. [70] have studied the dynamic relocation problem in car-sharing systems. A
customer may pick-up a car from a non-empty station and deliver it to another - not full -
station. Similarly to bike-sharing systems, car relocations is necessary to counter the effect
of stations with unbalanced vehicle stock. The relocation is assumed to take place using
convoys, able to transfer a number of cars between the stations. For each relocation the car
system is charged with a cost depending on the number of convoys and the number of cars
transferred as well as the distance covered. In the setting of this article a customer reserves
in advance, i.e. s/he requests a car rental from a specified station at a certain time to be
returned to another specified station at a given time. Furthermore, each request is
associated with a profit earned by the system. Based on the previous assumptions two
variants of the relocation problem are tackled. In the first, all requests must be serviced and
the goal is to minimize the cost of the relocation operations to meet all customers’ demand.
In the second, the goal is to decide which requests to service as well as to schedule the
relocation tours of convoys to maximize the system’s profit. An integer linear program is
introduced for each of these variants. The solution approach incorporates a time-expanded
network. The network consists of nodes representing stations at specified times. Network
arcs represent feasible transitions of convoys with cars between station-time pairs. Arcs also
model requests information i.e., a transition of a rent car from a station to another. Two
kinds of flows are introduced. A flow representing the number of cars transferred between
stations and a flow representing the number of convoys moved between stations. These two
flows are related to each other, by introducing a constraint on the maximum number of cars
transferred with a specified number of convoys, based on the capacity of the convoys. Based
on these flow considerations, two integer linear programming formulations are proposed for
the investigated problems. Notably, solving the proposed integer programs is highly

inefficient, yet, no efficient algorithm is proposed by the authors to meet the requirements
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of the dynamic relocation scenario. Furthermore, the use of convoys for transferring cars
may not be feasible in many urban settings and, hence, employed drivers may be restricted

to transfer at most one car at a time.

Lee et al. [71] have studied the static relocation problem in EV-sharing systems. The authors
assume concurrent relocation of EVs (i.e. employed drivers are assumed to be at the stations
where cars to be relocated reside at the time that relocation starts) without taking into
account their residual energy. The relocation policy aims to restore a certain availability of
vehicles at each station. They consider both even relocation schemes (stations end up
having equal number of cars) and utilization-based relocation schemes (EVs are assigned to
stations according to the demand ratio of each station, known a priori). Depending on the
chosen relocation scheme a relocation vector is determined, namely, the desired number of
vehicles in each station after the completion of the relocation process. A heuristic algorithm
is executed thereupon, deciding the destination of each vehicle through matching EVs from
overflow stations to underflow stations so as to minimize the relocation cost, i.e. the overall
moving distance. For an EV, the preference to underflow stations depends on the distance to
be travelled. Each EV to be reallocated has an index to its preference list of underflow
stations, with the index initialized to the first (i.e. nearest one). In addition, each underflow
station is aware of its required number of EVs and maintains an allocation list (i.e. list of EVs
residing elsewhere and currently assigned to it). EV-station matching begins from the first EV
(among the ones scheduled to be relocated). The EV examines the option of relocating to
the station marked by its local index within its preferences list. If the station currently holds
within its allocation list less EVs than the required number e, the EV is added to the
allocation list. Otherwise, if the allocation list is full, the EV which is farthest away from the
station is removed. The removed EV then examines the next station, shifting ahead the
index in its preference list. Having completed this iterative process, the allocation lists of
underflow stations should be finalized. Such allocation, represented by (EV, station) pairs,

should have the minimum relocation distance.

In a follow-up work, Lee and Park [72] designed a team-based relocation scheme for EV-
sharing systems and proposed a genetic algorithm-based solution to obtain a reasonable
quality relocation plan within a limited time bound. Each relocation plan, namely, the set of
relocation pairs of EV from overflow to underflow stations, is represented by an integer-
valued vector to run the genetic operators such as crossover, selection, reproduction, and
mutation. Drivers performing vehicle relocations are assumed to move in teams of m
members, wherein one of them drives a car following a route through a series of overflow
stations. Upon arriving at a station, the rest of the team members drive m-1 EVs to the
(same) planned underflow station, while the driver of the relocation vehicle follows them.

This process is repeated until the relocation procedure completes. The experimental results
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have demonstrated that each addition of a service staff may significantly decrease the

relocation distance.

The previous algorithmic approaches are summarized in Table 4 where a classification is also

given according to whether they are static or dynamic, bicycle or car repositioning

techniques.
Static bike Static car Dynamic bike Dynamic car
repositioning repositioning repositioning repositioning

One commodity Chemla et al.

capacitated pick up and [63]

delivery formulation +

Heuristic approach

MILP formulation + Raviv et al. | Keketal.[30] Contardo et

Heuristic approaches [61] al. [62]

Maximal Expected Gendreau et al.

Coverage Relocation [67]

Problem /

ILP approach

Petri net modeling Labadi et al.

approach [25]

ILP approaches Briest and
Raupach [66]
Krumke et al.
[70]

Heuristic approaches Lee et al. [71]

Lee and Park [72]

Table 4. Algorithmic approaches on the operational repositioning of bicycles/cars

4. Algorithms for Ride Sharing

Ride sharing is promoted as a way to better exploit unused car capacity, thus lowering fuel

usage and transport costs. In the context of a vehicle sharing system, ride sharing can be

used to maximize the profit of the system by further optimizing cars usage and minimizing

the number of unsatisfied customer requests in the case that there are no available cars in
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certain pickup stations and/or parking slots in drop-off stations. In this Section we
summarize algorithmic approaches that deal with challenges arising in the domain of ride
sharing, in particular the proper assignment of driver’s offers and requests in ride sharing

applications. All techniques aim at fast running times to allow real-time applications.

In [54] Geisberger et al. provide practical algorithms to compute detours in the context of
ride sharing. They consider the scenario where queries of users wishing to get from an origin
s to a destination t should be matched to offers from riders going from s’ to . Two types of
possible matches are distinguished. In case of a perfect fit, the sources s, s’ and destinations
t, t' of driver and rider, respectively, are identical. In a reasonable fit, small detours and
additional stops are allowed. The goal is to find the offer for which the detour is minimized.
Formally, the goal is to minimize d(s’, s) + d(s, t) + d(t, t') — d(s’, t'). The authors present an
algorithmic approach to find reasonable fits for a set of offers and a single incoming request
by using Dijkstra’s algorithm [55] to compute the detour for each offer, and return the offer

with minimum detour.

Using a well-known speed-up technique called Contraction Hierarchies [56], Geisberger et al.
are able to achieve query times that are faster than the straightforward approach described
above. This alternative approach exploits the structure of search spaces in Contraction
Hierarchies. The search space consists of two independent parts, namely the forward and
the backward search space. More specifically, assuming that there are k offers, for every
incoming s-t request, k queries from t to t/ need to be run (one for each offer t/). However,
all these queries have exactly the same forward search space, so the forward search space
only needs to be computed once. In addition to that, the results of backward searches can
be precomputed for each offer t/. Each vertex in the backward search space of t/ gets a
bucket assigned to store the corresponding distances. Experiments show that using these
techniques allows to answer incoming queries several orders of magnitude faster than the

straightforward Dijkstra-based approach.

In [57] Abraham et al. present a fast algorithm, HLDB, to compute shortest path distances
using preprocessed data based on hub labels [58]. Hub labels are sets of “important”
vertices of a graph G = (V, E). Each vertex v€ V has a forward label Lgv) and a backward label
Lp(v). For each hub vertex h € Li{v), they precompute and store the distance d(v, h) from v to
h. An s-t distance query then checks for a hub h € Lg(s) n Ly(t) that minimizes the distance
d(s, h) + d(h, t). To preserve correctness, the labels must fulfill the cover-property, that is, for
any pair s, t € V, Lfs) n Lp(t) must contain a vertex on a shortest path from s to t.
Precomputing labels that fulfill these properties can be accomplished using a technique
based on Contraction Hierarchies [56]. Several heuristics are added to improve the

performance of the algorithm.
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One special property of the technique presented in [57] is that it works entirely with a
database, using SQL queries. Although their basic case considers peer-to-peer shortest path
queries, they consider several extended scenarios, such as POI-queries and ride sharing. The
scenario mentioned above is examined, where queries and offers are to be matched. Again,
the goal is to find an offer for which the detour is minimized, i.e., that minimizes d(s’, s) +
d(s, t)+d(t t')-d(s’, t'). Using the HLDB approach, the authors show how to solve this
problem efficiently with simple database operations. To answer queries, a table offers is
created containing the four columns id, source, target, and distance. A second table
offers_labels contains the four columns id, hub_forward, hub_backward, and distance. For
every offer (s’, t’), each combination (h, h’) stores an offer ID in id, h’ in hub_forward, h in
hub_backward and the distance d(s’, h) + d(h’, t') - d(s’, t') in distance. Computing the

minimum distance can now be done with loops over all possible combinations.

In order to allow for more flexible scenarios, Drews and Luxen [59] introduce multi-hop
scenarios, where users can even transfer between cars of different drivers. Such transfers
occur at designated stations S € V (e.g., parking lots). Their scenario extends the previous
approaches by adding time-dependency. Offers and requests are given as triples (s, t, 1),
where s and t are vertices, and Tt is a departure time. Given all stations s; at which transfers

occur and possible waiting times wn(s;) for a match m, the total duration of a journey equals

d(m) = Zf:o (Wm(si) + d(si, Sir1))

One way to model the resulting time-dependent scenario is to use time-dependent graphs
[60]. The authors extend this model by introducing the so-called “Slotted Time-Expanded
Graphs”. Here, the continuous time divided into equal-sized time slots, and departures are
assumed only to happen at the end of such slots. This results in a directed acyclic graph,
where finding the best fit for a certain request is done by running Dijkstra’s algorithm. An A=
variant is used to achieve speedup by about two orders of magnitude. The experimental
study also evaluates the quality of their solutions and shows that request and offers are well

matched by the proposed techniques.

5. Research Challenges and Future Prospects

The viability of bicycle/car sharing systems largely depends on their effective strategic
design, management and operation. Along this line, three separate planning aspects are
identified: (i) strategic (long-term) network design comprising decisions about the location
and the number of stations as well as the vehicle stock at each station; (ii) tactical (mid-
term) incentives for customer-based distribution of bicycles/cars, i.e. incentives given to
users so as to leave their vehicle to a station different to that originally intended (this may

be regulated through pricing schemes adaptable to the system state); (iii) operational
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(short-term) operator-based repositioning of bicycles/cars based on the current state of the

stations as well as aggregate statistics of the stations’ usage patterns.

However, each of the abovementioned planning aspects raises considerable research

challenges:

e Strategic design should balance among the system’s intended quality of service and
investor cost. On one hand, the investor’s cost includes the facility costs of bike
docks or dedicated parking stations, acquisition and maintenance costs for vehicles,
vehicle depreciation costs and routine relocation costs. On the other hand, the level
of service provided by the system mainly depends on vehicles’ availability to satisfy
user demand distribution in space and time.

e Incentives should be carefully designed so as to align the travel behavior of the users
with the system’s pursuit, which dynamically adapts to real time demand patterns.
In particular, the incentivisation scheme should aim at increasing the number of
served customers, offer meaningful and attractive alternatives to incentivized
customers and minimize the revenue losses for the operator.

e The operational repositioning of vehicles differs considerable among bike and car-
sharing systems. In the former, bikes are carried in bunches by dedicated vehicles
whereas in the latter cars are relocated by groups of drivers. Both represent tough
optimization problems, wherein the objective is to minimize relocation cost while
satisfying user demand. Furthermore, the effectiveness of vehicle relocation
schemes should ideally consider future demand so as to proactively ensure the

availability of vehicles areas in which demand is expected to rise.

In the sequel of this Section open research issues relevant to the abovementioned issues are

identified.

Strategic design of bicycle sharing systems. The design of bicycle sharing systems is a
particularly tough exercise as it involves several design decisions: the location and capacities
of bike stations; the vehicles fleet size; the creation of bicycle lanes connecting bike stations.
These design decisions should ensure sufficient coverage (i.e. satisfy user demand with
appropriate quality of service), while minimizing investment and maintenance costs. Despite
the growing body of relevant literature, algorithmic approaches tackling this issue are very
few. Given the problem’s complexity and the metropolitan scale of realistic instances,
heuristics represent a suitable method for efficiently deriving near-optimal solutions.
Existing algorithmic approaches on hub location problems, maximal covering models and
joint location inventory problems are expected to provide a suitable starting point for
optimizing the design of bicycle sharing systems. Along the same line, the mathematical
modeling of bicycle sharing systems should be refined so as to capture several system

variables and constraints overlooked by existing models:
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e Travel demands may largely vary over a day (e.g. residential areas typically act as
trip generators early in the morning and attractors late in the afternoon). It would
therefore be helpful to develop a formal model incorporating demand variation and
to evaluate the influence of demand variation on the system design and routing
choices.

e Decisions on the establishment of new bicycle lanes between bike stations should
take into consideration the existing street network structure (unlike existing models
which simplistically consider direct links between stations [26]). Clearly, existing
bicycle lanes infrastructure should be exploited in order to reduce facilities cost.
Moreover, new lanes should be setup taking into account the attractiveness of
alternative options with respect to distance, bicycle friendliness (e.g. road segments
with high motor traffic are less friendly to bikers than pedestrian zones), flatness,
etc. Notably, OpenTripPlanner (OTP’), the leading open source platform for
multimodal trip itinerary planning, already supports the provision of such
information?.

e The reallocation of bicycle stock is commonly practiced by shared bicycle system
operators to enable balanced distributions among stations and allow coverage of
anticipated demand. Given that bicycle reallocation largely contributes to
maintenance cost, model formulations should consider this cost factor so as to

influence the overall system design.

Mobility on Demand combined with dynamic incentives. It seems that incentives-based
mechanisms represent the most promising way to deal with the major problem of car
sharing systems, that is, the fleet redistribution issue or asymmetric demand/offer. In effect,
incentives motivate fleet redistribution and tackle the demand/offer asymmetry problem.
This mechanism is based on real time bi-univocal information between the user and the
system, allowing to modify, not only the drop off and pick up station, but also other trip
parameters such as the routing options for moving from a location A to a location B the
time for picking up or dropping off the car, suggest trip sharing with another user going
along the same route, etc. Thus, it might occur that moving from a location A to a location B
has different prices depending on the incentives or penalties offered and accepted by the
user. Incentives must be managed in real time and the system should be adaptive and

possess some kind of intelligence to infer/plan each user behaviors/tendencies, so that, it is

7 http://opentripplanner.com/

8 OpenTripPlanner relies on General Transit Feed Specification (GTFS)
(https://developers.google.com/transit/gtfs/) data to describe public transportation schedules and
routes. It can use OpenStreetMap (http://www.openstreetmap.org/) or commercial data sources
for data on sidewalks, bicycling infrastructure and streets. It allows users to plan a trip that can
combine multiple modes of transportation, such as cycling or walking to reach public transportation,
while it can also incorporate several popular bike-sharing systems
(http://wiki.openstreetmap.org/wiki/OpenTripPlanner).
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able to offer a particular user the “right” incentive (i.e. attractive enough for the user to
modify his/her initial plan but adjusted enough to maximize the benefit of the fleet
manager). Incentives may be offered in two forms: in kind or in price. “In kind” incentives
refer to discount vouchers or special offers for services -directly or indirectly- relevant to
mobility. For example, it could be a 15% discount on a restaurant, or free laundry service or
allowance to top price range vehicles in the system. Of course, there should be previous
agreement among cooperating establishments (offering these “in kind” incentives) and the
fleet management authority. Price incentives refer to discounts on actual or future trip fares
and exclusively involve fleet management services. Finally, taking the incentives scheme to
the extreme, there could be a way to make it explicit to the users. When the asymmetric
demand problem deteriorates, the fleet manager could “offer” to users - deliberately
subscribed for this purpose - an attractive incentive to drive a vehicle from A to B. The user
answering positively would earn future discounts or even monetary rewards for driving the
car from A (place with low demand) to B (place with high demand). This option could be
seen as a contractor-based redistribution system. However, the use of this incentive tactic
should be implemented in severe asymmetry situations because of the high “redistribution”

trip costs incurred by the fleet manager.

Vehicle relocation and effective reward schemes. Car relocation is deemed as a necessary
instrument to restore the desirable allocation of vehicles among stations in car-sharing
systems. Having to adapt to user demand dynamics, car relocation activities are typically
needed several times on the course of a day; hence, relocation decisions are bound to time
constraints. Given the complexity of the problem, heuristics represent a reasonable
algorithmic tool to meet the strict time requirements. However, the algorithmic state of the
art in dynamic vehicle relocation in car-sharing systems leaves a lot to be desired. For
instance, the results obtained by the greedy approach of Lee et al. [71] could be significantly
improved by approaching car relocation as a k-server problem (regarding the employed
drivers of the car sharing operator as servers that handle relocation requests). Moreover,
the problem of optimally assigning employed drivers to cars to be relocated and transferring
the drivers to the stations where those cars reside has not been studied, although being an
essential part of the relocation process. The provision of incentives to customers has also
been recognized as a cost-effective means of tackling the problem of unbalanced car
distribution among stations in car sharing systems. The benefit of incentive provision models
has been evidenced by several simulation studies (see Subsection 3.2). In real-world
systems, though, users indicating willingness to take advantage of a reward scheme would
expect meaningful alternatives. For instance, a customer would consider delivering a car to a
station further than that originally planned, under the condition that s/he could transfer to a
transit service and reach his actual destination location with reasonably small delay.

Furthermore, such meaningful recommendations should maximize the utility for the system
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(e.g. incentivize the customer to undertake the most urgent, among pending, relocation) and
should be derived in real time. Last, rewards (i.e. rental discount) need to be adjusted so as
to compensate the user enough for delaying his/her arrival time (or even having to pay for a
transit service ticket), while minimizing revenue cost for the operator. To the best of our
knowledge, no algorithmic methods have been proposed so far deriving concrete
alternatives so as to effectively incentivize customers. Hence, this represents a particularly

promising research topic.

Proactive vehicle relocation based on predicted demand. Contemporary vehicle sharing
systems take a reactive approach to handling user demand, wherein vehicles are relocated
from station with surplus to those with shortage of vehicle stock, as soon as uneven vehicle
distribution is detected. Given the highly dynamic nature of user demand, such relocations
are likely to prove ineffective, e.g. relocate vehicles to stations with relatively low stock and
yet to remain unused. The use of historical data and demand prediction models may,
however, give effect to more effective relocation strategies. For instance, a vehicle depot
located nearby office premises with a few parked cars may be reasonable to supply before
the end of the business hours. This relocation may be undertaken either by operator
employees (relocators) or incentivized customers. In the special case of EV-sharing systems,
demand prediction may be used to identify which vehicles (among those parked at a specific
depot) should be relocated; for instance, vehicles with high battery level may be more
appropriate to relocate to a station at a time that relatively long rides are expected to be
requested. Furthermore, the limited range and the long charging of EVs give reasons to
innovative incentivized schemes. For instance, in the event of a request issued at 20pm for a
25km ride towards a suburb where high user demand is not expected before 7am, the
customer could be incentivized to use a vehicle with battery status providing 35km

autonomy, which requires 8 hours to be fully charged.

6. Conclusions

Vehicle sharing represents an emerging transportation scheme which may comprise an
important link in the green urban mobility chain. One-way vehicle sharing systems employ a
flexible rental model (customers are allowed to pick-up a vehicle at any station and return it
to any other station) which best suits typical urban journey requirements. However, the so-
called demand-offer asymmetric problem (i.e. the unbalanced offer and demand of vehicles)
typically experienced in one-way sharing systems severely affects their economic viability as
it implies that considerable human (and financial) resources should be engaged in relocating

vehicles to satisfy customer demand.

The design and management measures aiming at alleviating imbalances in the availability of

bicycles/cars, are distinguished into three separate planning horizons [23]: (i) Strategic
-32-



network design comprising decisions about the location and the number of stations as well
as the fleet size at each station, (ii) tactical incentives for customer-based distribution of
bicycles/cars and (iii) operational (operator-based) repositioning of bicycles/cars based on
the current state of the stations as well as aggregate statistics of the stations’ usage
patterns. This chapter presents an extensive literature survey on models and algorithmic
techniques for the design, operation and management of vehicle sharing systems. Different
approaches applied either to bike or to car sharing systems, are described and classified
according to the involved solution method. Also, open research problems relevant to the
abovementioned issues are identified highlighting important research issues that need to be

addressed in the future.
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