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Abstract

In this article we present approximation algorithms for the Arc Orienteering

Problem. Specifically, we give a O(log2m)−approximation algorithm in di-

rected graphs, where m is the number of arcs, while in undirected graphs, we

obtain a (6 + ε+ o(1))−approximation algorithm for the general case and a

(4 + ε)−approximation algorithm for instances with unit profits. Moreover,

we obtain approximation algorithms for the Mixed Orienteering Problem.
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1. Introduction1

The Arc Orienteering Problem (AOP) is a single route arc routing prob-2

lem with profits defined as follows [1]. Given a quadruple (G = (V,A), t, p, B)3

where G = (V,A) is a directed graph with V = {s = u1, u2, . . . , un = l} its4

set of nodes and A its set of arcs, t : A→ R+ i.e., each arc a ∈ A is associated5

with a nonnegative travel time ta, p : A→ R+ i.e., each arc is associated with6

a nonnegative profit pa, and a nonnegative time budget B, the goal is to find7

an s− l walk with length at most B with the maximum collected profit from8

the traversed arcs. Note that while the travel cost associated with an arc is9

paid each time the arc is traversed by the walk, its profit is collected only10

once. The AOP is the arc routing version of the Orienteering Problem (OP)11

[2], where the nodes (instead of the arcs) are associated with profits. The12

OP is NP-hard [2] and APX-hard [3]. The algorithmic research relevant to13

OP and its extensions is very extensive [4, 5]. Considering approximability,14

the best known approximation algorithms are the (2 + ε)-approximation and15

the O(log2 n)-approximation algorithms in undirected and directed graphs,16

respectively, proposed by Chekuri et al. [6] and the O( log2 n
log logn

)-approximation17

algorithm in asymmetric metric spaces proposed in [7].18

Contrary to the OP, very limited body of literature deals with the AOP19

and its extensions. A metaheuristic algorithm for the AOP was proposed20

by Souffriau et al. [1] and a branch-and-cut and a matheuristic approach21

for the extension of the AOP to multiple tours were proposed in [8] and22

[9], respectively. In this article we study the AOP in directed and undi-23

rected graphs. In Section 2 we prove that AOP is NP-hard and propose a24

O(log2m)−approximation algorithm for the AOP in directed graphs, where25
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m is the number of arcs of the graph, using the O(log2 n)−approximation26

algorithm for the OP in directed graphs proposed in [6]. In Section 3 we27

present a (6+ε+o(1))− approximation algorithm for the AOP in undirected28

graphs and a (4+ε)− approximation algorithm for the unweighted version of29

the problem, using the (2 + ε)− approximation algorithm for the unweighted30

version of the OP, also proposed in [6]. Moreover, we give approximation31

algorithms for the Mixed Orienteering Problem (MOP), the combination of32

OP and AOP, by reducing it to the AOP.33

2. The Arc Orienteering Problem34

In this section we prove that AOP is NP-hard and propose an approxima-35

tion algorithm for the problem by reducing it to the OP in directed graphs.36

Theorem 1. The AOP is NP-hard37

Proof. We reduce the Knapsack problem [10] to the AOP. A Knapsack in-38

stance contains a set of objects O = {o1, o2, . . . , on} such that each oi has a39

weight wi and a profit pi, a limit W in the total weight of objects that can be40

picked, and a target profit P . The Knapsack instance can be reduced to an41

AOP instance containing a star graph G with a central node s connected to42

each node oi representing an object, and vice versa. Both (s, oi) and (oi, s)43

have travel time (profit) equal to wi
2

(pi
2

) and the time budget is equal to W .44

Then, the Knapsack instance is a “yes” instance if and only if the solution45

of the AOP instance has profit at least P .46

Theorem 2. An f(n)−approximation algorithm for the OP in directed graphs,47

where n is the number of nodes, yields an f(m+2)−approximation algorithm48

for the AOP, where m is the number of arcs.49
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Proof. Given an instance of the AOP (G = (V,A), t, p, B), |A| = m, we con-50

struct an instance of the OP in the directed network N as follows: We51

first define N = (V ′, A′) such that V ′ = {s, l} ∪ {(u, v) : (u, v) ∈ A},52

|V ′| = n′ = m + 2, and A′ = {(s, (s, u)), ((u, l), l) : (s, u) and (u, l) ∈53

A} ∪ {((u, v), (v, w)) : (u, v), (v, w) ∈ A}. The travel times of the arcs54

in N are defined as follows: t′((u,v),(v,w)) =
t(u,v)+t(v,w)

2
, t′(s,(s,u)) =

t(s,u)
2

and55

t′((u,l),l) =
t(u,l)

2
. We also define the profit of each node (u, v) to be equal to56

p′(u,v) = p(u,v) and set the time budget of the instance as B′ = B. It is easy to57

see that a solution of the AOP instance yields a solution of the OP instance58

of equal total profit and length and vice versa.59

The theorem implies an approximation algorithm for the AOP. Using60

the O(log2 n)−approximation algorithm for the OP in directed graphs by61

Chekuri et al. [6] we obtain a O(log2m)−approximation algorithm for the62

AOP. If all the travel costs of the arcs are greater than zero, we obtain a63

O( log2m
log logm

)−approximation, by applying the metric closure in the constructed64

OP instance and use the algorithm by Nagarajan and Ravi [7].65

3. Approximation Algorithms for the AOP in Undirected Graphs66

In this section we study the AOP in undirected graphs. A similar reduc-67

tion to the one in Theorem 1 shows that the problem is NP-hard. We obtain68

a constant factor approximation algorithm for the problem by reducing it to69

the Unweighted OP (UOP), the restriction of the OP with unit profits over70

the nodes. First, we reduce the AOP to the special case with polynomially71

bounded positive integer profits using a similar technique with [6].72
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Lemma 3. A ρ−approximation algorithm for the AOP in undirected graphs73

with polynomially bounded positive integer profits yields a (ρ + o(1))− ap-74

proximation algorithm for the AOP in undirected graphs.75

Proof. Given an instance I = (G = (V,E), t, p, B) of the AOP, we shall con-76

struct an instance I ′ = (G′ = (V ′, E ′), t, p′, B) with polynomially bounded77

positive integer profits over its edges. First, we guess the edge of highest78

profit (pmax) in the optimal walk and remove all higher profit edges. Then,79

we set p′e = bn3pe
pmax
c + 1 for each edge e. Then a feasible walk W , consist-80

ing of the distinct edges e1, e2, . . . , ek has profit equal to profit(W ) =
k∑
j=1

pej81

in I and profit′(W ) =
k∑
j=1

p′ej >
n3profit(W)

pmax
in I ′. Hence, OPT′ > n3

pmax
OPT,82

where OPT(OPT′) is the optimum in I(I ′). On the other hand, profit′(W ) =83

k∑
j=1

p′ej ≤
k∑
j=1

(
n3pej
pmax

+ 1) =⇒ n3

pmax
profit(W ) ≥ profit′(W )−m ≥ profit′(W )−84

mOPT
pmax

, so profit(W ) ≥ pmax

n3 profit′(W ) − m
n3 OPT. Using a ρ−approximation85

algorithm for AOP in undirected graphs with polynomially bounded posi-86

tive integer profits, we obtain a walk W with profit profit′(W ) ≥ OPT′

ρ
, so87

profit(W ) ≥ 1
ρ
pmax

n3 OPT′ − m
n3 OPT > (1

ρ
− m

n3 )OPT.88

Theorem 4. A ρ−approximation algorithm for the UOP in undirected graphs89

yields a 3ρ−approximation algorithm for the AOP in undirected graphs with90

polynomially bounded positive integer profits.91

Proof. Given an instance of the AOP, each edge e for which the shortest92

path from s to l passing through e exceeds the time budget is removed93

from the graph. Then we construct an instance of UOP splitting each edge94

{u, v} into puv + 1 edges as follows: Each node of the AOP instance is a95

node of the UOP instance and for each edge {u, v} of the AOP instance,96
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the UOP instance includes the auxiliary nodes {u, v}1, {u, v}2, · · · , {u, v}puv97

and the edges {u, {u, v}1}, {{u, v}1, {u, v}2}, · · · , {{u, v}puv−1, {u, v}puv},98

{{u, v}puv , v}. The travel times of {u, {u, v}1} and {{u, v}puv , v} in the UOP99

instance are set
t{u,v}

2
, while the length of each edge {{u, v}i, {u, v}i+1}, i =100

1, 2, . . . , puv−1 is set zero. The time budget of the UOP instance is the same101

with the AOP instance.102

A solution of the AOP instance yields a solution of the UOP instance of103

the same length and at least the same profit, replacing any edge {u, v} by the104

sequence (u, {u, v}1, {u, v}2, · · · , {u, v}puv , v). Hence OPTAOP ≤OPTUOP.105

On the other hand, any solution of the constructed UOP instance yields106

a solution of the AOP instance with at least one third of its profit. We107

consider a sequence of nodes of the form (u, {u, v}1, {u, v}2, · · · , {u, v}puv , v)108

as an appropriate segment, i.e. a segment that represents the traversal109

of the edge {u, v} of the AOP instance, while we consider a sequence of110

the form (u, {u, v}1, · · · , {u, v}i−1, {u, v}i, {u, v}i−1 · · · , {u, v}1, u) as an in-111

appropriate segment, i.e. a segment that represents the partial traversal112

of the edge {u, v} of the AOP instance. For each inappropriate segment113

(u, {u, v}1, . . . , {u, v}i−1, {u, v}i, {u, v}i−1 · · · , {u, v}1, u) we may consider that114

i = puv, otherwise the segment can be extended to the equal length and higher115

profit segment with i = puv.116

In a UOP solution, let pAS the profit gained by the appropriate segments117

and pIS the profit gained by the inappropriate segments (the number of auxil-118

iary nodes visited in them), then the total profit of the solution pTOT equals119

to pAS + pIS. If all segments are appropriate, the re-transformation to an120

AOP solution is done by replacing the segments by their representing edges,121
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yielding a solution of at least half the profit of the UOP solution. If however122

inappropriate segments exist, we may replace some of them with their rep-123

resenting edge traversed in both directions. We will replace the inappropri-124

ate segment (u, {u, v}1, · · · , {u, v}puv−1, {u, v}puv , {u, v}puv−1, · · · , {u, v}1, u)125

with the sequence of nodes (u, v, u) in the AOP instance.126

Let IS= {s1, s2, · · · , sk} be the set of inappropriate segments of the UOP127

solution. Let also t1, t2, . . . , tk be the travel times spent on these segments128

and p1, p2, · · · , pk be the profits collected by traversing them (
k∑
i=1

pi = pIS).129

A subset of IS, RS= {sa1 , sa2 , . . . , sam},m ≤ k, with
m∑
j=1

2taj ≤
k∑
i=1

ti will be130

called a replacable subset. Then RS is a maximal replacable subset for the131

given time constraint, if the insertion of any other segment (am+1) into the132

set would violate the time budget i.e.
m+1∑
j=1

2taj >
k∑
i=1

ti. Consider a maximal133

replacable subset MRS of segments. We distinguish between the following134

cases: (i) pMRS ≥ pIS
3

, where pMRS is the total profit of MRS. Then a solution135

for the AOP is obtained consisting of the edges represented by the appropriate136

segments (contributing at least pAS

2
profit) and the sequences that replace the137

segments in MRS (contributing pMRS profit), hence at least a third of UOP138

solution’s profit. (ii) pMRS < pIS
3

. In this case the set IS\MRS = MRSc,139

has profit at least two thirds of the total profit of the IS. Then if MRSc140

has at least two elements, we remove the segment with the lowest profit,141

creating a replacable subset with profit at least a third of IS and we apply142

the procedure discussed previously. Otherwise, if MRSc has only one segment143

s1 = (u, {u, v}1, . . . , {u, v}puv , . . . , {u, v}1, u), then if p1 <
pTOT

3
we apply the144

same technique, since pAS + pMRS ≥ 2pTOT

3
. Otherwise (p1 ≥ pTOT

3
), obtaining145

the shortest path from s to l through edge {u, v} yields an AOP solution of146
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at least a third of UOP solution’s profit. Hence, the theorem is proved.147

Using Lemma 3, Theorem 4 and the (2 + ε)−approximation algorithm148

for the UOP by Chekuri et al. [6] we obtain a (6 + ε+ o(1))−approximation149

algorithm for the AOP in undirected graphs with execution time nO( 1
ε2

).150

The unweighted version of AOP (UAOP) in undirected graphs is the151

restriction of the problem where all edges have profit equal to 1. Similarly to152

Theorem 4, but picking the half shortest inappropriate segments to replace,153

a ρ−approximation algorithm for the UOP in undirected graphs yields a154

2ρ−approximation algorithm for the UAOP in undirected graphs. Using155

Chekuri et al.’s algorithm we obtain a (4 + ε)−approximation algorithm.156

The Mixed Orienteering Problem (MOP) [5, 11], is the combination of157

the OP and the AOP, where both nodes and arcs are associated with profits.158

MOP can be reduced to AOP as follows: For each node u, add a dummy159

node u′ and the arcs (u, u′), (u′, u) with zero travel cost and profit equal to pu
2

160

and then remove the profit from u. It is easy to see that any approximation161

algorithm for the AOP yields an approximation algorithm for the MOP.162
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