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Abstract

Tour planning represents a challenging task for individuals visiting unfamiliar tourist
destinations, mainly due to the availability of numerous attractions (points of interest, POls)
and the complexity of metropolitan public transit networks. Several web and mobile tourist
city guides already support personalized tour recommendations. However, they exclusively
consider walking tours; namely, they fail in motivating tourists to use public transportation
for reaching far located important POls, thereby compromising the perceived overall
attractiveness of recommended tours. In this paper, we introduce eCOMPASS, a context-
aware web/mobile application which derives personalized multimodal tours via selected
urban attractions. eCOMPASS is the only available research or commercial tour planner that
assists the way arounds of tourists through public transit. Far beyond than just providing
navigational aid, eCOMPASS incorporates multimodality (i.e. time dependency) within its
routing logic aiming at deriving near-optimal sequencing of POls along recommended tours
so as to best utilize the time available for sightseeing and minimize waiting time at transit
stops. Further advancing the state of the art, eCOMPASS allows users to define arbitrary
start/end locations (e.g. the current location of a mobile user) rather than choosing among a
fixed set of locations. Last, e€COMPASS may assist in scheduling lunch breaks at affordable



restaurants, conveniently located along the recommended tours. The provision of the above
mentioned unique features of eCOMPASS is based on modeling and solving a complex
optimization problem which takes into account a long list of problem variables and
constraints. This paper describes the routing algorithm which comprises the core
functionality of eCOMPASS. Further, it discusses the implementation details of the web and
mobile eCOMPASS applications using the metropolitan areas of Athens (Greece) and Berlin
(Germany) as case studies. Evaluation results report positive user attitude as to the tour
planning output with respect to attractiveness, meaningfulness and the overall perceived
utility.

Keywords: Tourist Trip Design Problem; multimodal tour planning; urban transportation;
orienteering problem; time window; time dependent travel time; context awareness; web
service; mobile application.

1. Introduction

Tourists visiting urban destinations typically deal with the challenge of making a feasible plan
in order to visit the most interesting attractions (points of interest, POIs) in their available
time span. The filtering of most important POls (amongst the many available) and their time-
sequencing along the planned tourist itineraries is a particularly laborious task requiring
skilled interaction with a multitude of online resources (Brown & Chalmers, 2003; Souffriau
& Vansteenwegen, 2010).

The situation is further complicated when considering the complexity of metropolitan transit
networks commonly used by tourists to move from a POl to another, whenever walking is
not an option, due to distance constraints. Tourists are typically unfamiliar with and
intimidated by the nuances of the public transit systems in their destination areas, thereby
making transit transfers a cumbersome exercise. Tourists are especially reluctant in using
bus networks as they feel they do not have the acquired local knowledge to negotiate them
efficiently, while also running the risk of leaving the tourism space and entering a terra
incognita, should they use a wrong service or take a wrong direction (Lew & McKercher,
2006). An interesting aspect highlighted by field studies is that tourists seek to maximize
time spent at a place by minimizing transit time. Tourists typically opt for public
transportation when pedestrian walking is long enough to challenge their strength and
endurance. Even then, any delays incurred on stops (waiting to board on the next transiting
service) are highly undesirable, given the limited time budget spent on the tourist
destination (Lew & McKercher, 2006).

The above discussion underlines the need for ICT tools to assist the way arounds of tourist
transfers among POls, either walking or using public transit. Such tools typically appear in
the form of personalized tourist guides (PETs) which tackle a problem commonly termed as
Tourist Trip Design Problem (TTDP) (Gavalas et al., 2014b; Schaller & Elsweiler, 2014). TTDP
refers to a tour planning problem for tourists interested in visiting multiple POls. Solving the
TTDP entails deriving daily tourist tours comprising ordered sets of POls that match tourist
preferences, thereby maximizing tourist satisfaction (typically termed ‘profit’), while taking



into account a multitude of parameters and constraints (e.g., distances among POls, time
estimated for visiting each POI, POIs’ opening hours) and respecting the time available for
sightseeing on daily basis.

TTDP has been a subject of intensive research in the recent years. As a result, the city tour
planning tools (essentially, TTDP solvers) have proliferated, incorporating an array of useful
services (Borras, Moreno & Valls, 2014). However, existing tools still miss several practical
aspects, hence, compromising their utility in realistic tourist scenarios. Firstly, they
exclusively consider walking as the only option provided for tourist transfers. This is certainly
impractical when considering POls scattered throughout large metropolitan areas or when
tourists lodge in hotels far from main attraction areas. Secondly, tours generated by existing
tools exclusively comprise visits to attractions, allocating no time for lunch/rest breaks.
Lunch recommendations would probably be much appreciated by users overwhelmed by the
-too many- restaurant options typically offered in touristic regions. Thirdly, available tools
allow users to select the start/end points of their itineraries among a fixed set of lodging
and/or landmark locations. This is clearly restrictive as mobile users would likely be reluctant
to move to a specified location only to faithfully follow a recommended tour. Practical
scenarios could involve users requesting tours starting/ending at arbitrary locations (the
starting point would, most probably, be their location at query time).

Herein, we present eCOMPASS, a context-aware web/mobile application which addresses
the above described shortcomings of existing approaches to TTDP deriving personalized
multimodal daily tourist itineraries. A focal design objective of eCOMPASS has been to
support tourists moving around either walking or using public transit represents. Transit
timetables are considered so as to derive travel itineraries which involve the fastest transfer
option among walking and transit, taking into account delays incurred on transit stops.
Certainly, visits to POIs are ordered so as to make best use of transit services; namely to
minimize delays on transit stops and be able to accommodate more POI visits thereby
maximizing collected profit. Further, eCOMPASS caters for scheduling lunch breaks through
recommending affordable restaurants conveniently located along the tourist tour. Last, our
proposed tool allows users to define -different- arbitrary start/end locations for their daily
tours.

The core engine of eCOMPASS is based on a novel cluster-based heuristic approach, the
SlackRoutes. The main incentive behind our approach is to motivate visits to topology (i.e.
touristic) areas featuring high density of ‘good' (i.e. highly profitable) candidate vertices,
even if those are located relatively far. SlackRoutes takes into account time dependency (i.e.
multimodality) in calculating travel times from one vertex (i.e. POI) to another. The aim is to
derive high quality routes (i.e. maximizing the total collected profit) and minimize the time
delays incurred in transit stops, while not sacrificing the time efficiency required for online
applications. A preliminary version of SlackRoutes appears in (Gavalas et al., 2014c).

The remainder of this article is structured as follows: Section 2 reviews relevant approaches
both in the algorithmic domain and the tourist tour planning software tools. Section 3
presents the SlackRoutes tour planning algorithm. Section 4 overviews the architecture and
discusses the system implementation details of eCOMPASS. Section 5 presents user



evaluation results, while Section 6 concludes our work and suggests directions for future
research.

2. Related Work

TTDP has received considerable attention in the recent years with several -mainly heuristic-
algorithmic methods proposed to solve it (Gavalas et al., 2014b). Those methods approach
the problem from different angles, resulting in diverse problem models, which consider
different problem variables and constraints. A consolidated listing of input parameters
considered in proposed TTDP models follows:

e A set of candidate POls, each associated with a number of attributes (e.g. type, location,
opening days/hours, entrance fee, etc).

e The number of tours to be generated, based upon the period of stay of the user at the
tourist destination.

e The ‘profit’ of each POI, denoting its relevant importance.

e The anticipated visit duration of an average user at a POI.

o The 24x7 time-dependent travel times among POls, i.e. tourists are assumed to use all
modes of transport available at the tourist destination, including public transportation,
walking, car, bicycle, etc.

e The daily time budget B that a tourist wishes to spend on visiting sights; the overall daily
tour duration (i.e. the sum of visiting times plus the overall time spent for moving from a
POI to another) should be kept below B.

The objective in TTDP modeling is to derive a set of near-optimal daily, disjoint itineraries
(ordered visits to POIls), each comprising a subset of available (candidate) POls so as to
maximize tourist satisfaction (i.e. the overall collected profit); the derived tours should
respect user constraints / POI attributes and satisfy the daily time budget available for
sightseeing. Acknowledging that tourists have different attitudes or perceptions on the same
attractions (Han, Guan, & Jiaying Duan, 2014), several problem parameters (e.g. the profit
and the estimated visit duration of POIs) may be adjusted according to user preferences.

The baseline combinatorial optimization problem typically used for modeling TTDP is the
Orienteering Problem (OP) (Vansteenwegen, Souffriau, & Van Oudheusden, 2011). In the
OP, given a starting node s, a terminal node t and a positive time limit (budget) B, the goal is
to find a path from s to t (or tour if s = t) with length at most B such that the total profit of
the visited nodes is maximized. Clearly, the OP may be used to model the simplest version of
the TTDP wherein the goal is to find a single tour that maximizes the profit collected from
visited POls, within a given time budget (time allowed for sightseeing in a single day).

One of the earliest OP-based tour planning approaches (De Choudhury et al.,, 2010)
considered tours along POls mined from geo-tagged photos of Flickr; the photos’
timestamps have been used to estimate the visiting time at each POl as well as the transit
times among places. Using a variant of the OP, Gionis et al. (2014) categorized POls such that
recommended tours are constrained by a POI category visit order (e.g., first visit a museum,
then a park and then a beach). A similar approach has been followed by Bolzoni et al. (2014)



who addressed the max-n type constraint (Gavalas et al., 2014a), i.e., limiting the number of
visits at POls of certain categories. Likewise, a modified OP modeling has been proposed by
Lim (2015) to constrain tour planning by a mandatory POl category, which corresponds to
the POI category a user is mostly interested in.

Brilhante et al. (2015) presented TripBuilder’, a web tool which employs a two-step process
upon POI collections retrieved from the Wikipedia and albums of geo-referenced photos
from Flickr. Firstly, the step of deriving an optimal set of POls (based on POI popularity and
user preferences) is modeled as an instance of the Generalized Maximum Coverage problem
(Cohen & Katzir, 2008). Then, the selected POls are sequenced along a sightseeing itinerary
by a heuristic algorithm addressing an instance of the Traveling Salesman Problem. Kurata
and Hara (2014) presented CT-Planner4?, a web-based tourist tour relying on a genetic
algorithm which solves the Selective Traveling Salesman Problem (STSP) (Laporte & Martello,
1990). The solver starts with n random initial tours and ends up to a tour plan with the
highest utility score (i.e. profit) through iteratively performing a crossover/mutation
procedure. The algorithm’s parameters are tuned so that the computation completes within
a second.

Notably, all the aforementioned approaches only consider the case of single tour planning
and assume POls available to visit on a 24x7 basis. Several extensions of the OP have been
successfully applied to model more complex TTDP versions. Among them, the Team
Orienteering Problem with Time Windows (TOPTW) (Hu & Lim, 2014; Labadi et al., 2011;
Vansteenwegen et al., 2009) has been the most frequently studied. TOPTW extends OP to
multiple tours (hence, enabling planning across several daily tours) and considers visits to
locations within a predefined time window (this allows modeling opening and closing hours
of POIs). Among the alternative TOPTW algorithms, the iterated local search (ILS) algorithm
(Vansteenwegen et al., 2009) is considered most suitable for real-time TTDP applications as
it derives routes of reasonable quality (on average, less than 5% gap from the best known
solution) fairly fast (less than 7 sec for up to 200 POIs and m=4 daily tours). ILS (combined
with a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic proposed by Feo
and Resende (1989)) is known to comprise the core tour planning engine of CityTripPlanner?
(Vansteenwegen et al.,, 2011), a commercial web/mobile city tour planner. The
CityTripPlanner users are allowed to edit derived tours, remove unwanted POls and/or
adjust visiting time scheduled for particular POls (in all cases, edits trigger recalculation of
tours). The start/end locations may be selected among a fixed set of hotels (i.e. user’s
lodging) and landmarks.

Garcia et al. (Garcia et al., 2013) proposed algorithmic solutions for the Time-Dependent
TOPTW (TDTOPTW). TDTOPTW considers time dependency in the estimation of the time
required to move from one location to another and, therefore, it is suitable for modeling
multi-modal transports among POls. The authors presented two different approaches to
solve the TDTOPTW. The first approach involves a pre-calculation step, computing the
average travel times between all pairs of POls, allowing reducing the TDTOPTW to a regular

! http://tripbuilder.isti.cnr.it/
? http://ctplanner.jp/ctp4/index-e.html
? http://www.citytripplanner.com/




TOPTW, solved using the ILS. The second approach uses time-dependent travel times but it
based on the assumption of periodic service schedules; this assumption, clearly, does not
hold in realistic urban transportation networks, wherein arrival/departure frequencies
typically vary within the services operational periods while deviations from planned service
time schedules commonly occur due to non-predictable events.

Time-dependency has also been taken into account by Hasuike et al. (2014) for calculating
traveling times among POls; yet, under a different problem setting, wherein the set of POls
to be visited are predetermined. The problem has been formulated as a time expanded
network and an exact algorithm based on dynamic programming has been proposed to
derive appropriate sightseeing routes and time scheduling of visits. However, the authors
admit that their approach is not applicable to large scale networks, hence, it is not suitable
for real-time TTDP applications when considering realistic tourist destination instances.

In this article, we introduce the eCOMPASS tourist tour planner, which advances the current
state-of-the-art with respect to several aspects:

e eCOMPASS takes into account time-dependent travel times among POls; namely, in
addition to walking tours, it considers the option of using public transit for moving
around, making no assumption on periodic service schedules. Note that this is far more
than just providing navigational aid (i.e. transit route instructions) for moving from one
location to another. Instead, eCOMPASS incorporates multimodality within its routing
logic (the time needed to move from a POl to another depends on the departure time
and the utilized transportation mode) aiming at deriving near-optimal sequencing of
POls along recommended tours so as to best utilize the time available for sightseeing
and minimize waiting time at transit stops.

e Users typically seek stop overs at affordable and conveniently located restaurants along
their tours. Existing tour planning approaches overlook this requirement and derive
itineraries exclusively comprising visits to attractions. eCOMPASS allows users to
schedule lunch breaks through recommending restaurants based on both their price
range and their location so as not to require long detours away from attraction areas.

e Existing research and commercial prototypes restrict users to selecting the start/end
points of their daily itineraries among a fixed set of locations (typically a list of
accommodations and/or landmarks). This restriction is dictated by the fact that the
travel times among all possible location pairs should be computed offline to ensure fast
response to user queries. eCOMPASS follows a novel approach that overcomes this
restriction and allows users to define arbitrary start/end locations (e.g. their current
location).

3. The SlackRoutes Tour Planning Algorithm

SlackRoutes is a TDTOPTW solver which comprises the algorithmic core of eCOMPASS. The
algorithm is given a complete directed graph G = (V, E) where V denotes the set of locations
with N = |V[, a set P = {py,pz, ... p|p|} & V, denoting the set of POIs and derives m routes
(one for each day of staying at the destination) comprising an ordered set of POls in P; each



route is bounded by a time budget B. The starting and terminal locations of the r route are
denoted as s, and t,, respectively. Accordingly, st, and et, denote the starting, ending time,
respectively of the r'" route, r=1, 2, ... m.

The main attributes of each node p; € P are: the service or visiting time (v;), the profit gained
by visiting p; (profit;), and the time window for each day TW;, = [open;, close;]; r=1,2, .. m
(a POl may have different time windows per day).

The travel time tr;, ,, among locations u and v is time-dependent since a user may either walk
or move through a non-periodic transit service (we assume that the fastest option is
preferable). Essentially tr;, ,,(t), termed ‘multimodal travel time profile’ is a piecewise linear
function: tr, ,(t) = min {walking,, ,, delay, ,(t) + travtime,,(t)}, where walking,,
denotes the time for walking from u to v (constant), delay, ,,(t) is the time spent on a
transit stop (when leaving from u to v at time t) waiting for the next service to arrive and
travtime, ,,(t) is the total travel time spent after the initial boarding at u till arriving at v.
This time may include any delay spent at intermediate stops or time spent for walking
between two stops along the route. For our purposes, we require to know pairwise fastest
routes between POls for all departure times of the day. Namely, for each pair of POIs we
compute all the non-dominated pairs (dep,, ,, tr;, ,,) where dep,, ,,(t) is a departure time and
tr,»(t) is the corresponding travel time from u to v. We assume that a pair (dep, tr)
dominates a pair (dep’, tr') iff dep > dep’ dep’ + tr' < dep + tr.

Figure 1 illustrates the travel time profile for transfers from node u to node v. When a user
departs from u to v at time 4, it is preferable to walk since walking will take 2 time units
(tr,»(4) = 2) while the next transit (subway) service departs at 6 and takes 0.5 time units of
travelling time to arrive at v (namely, the user is expected to arrive at 6 when walking and at
6.5 when waiting for the subway). Subway becomes the preferable option when leaving u
between 4.5 and 6 time units.

tryy (1)
Walking delay,, (5)=1
3 f Bus
tryy (4) =2 i | /
=z \
—— Subway 5
tru,v (6) = 0.54 ;
F ’ i
A & 6 Departure time
fromutov

Figure 1. Traveling time from u to v as a function of the departure time from u (travel time profile of u
S>v).

Furthermore, for each POI p; in a route r, SlackRoutes utilizes the following variables:

wait; The waiting time at p; before its time window starts;



wait; = max {0, open; — arrive;}.
start; The starting time of the visit at p;; start; = arrive; + wait;.
leave; The departure time from p; leave; = start; + visit;.

The arrival time at p; arrive; = leaveprepiy + trprev(i) (l€aVepren(i))
arrive; where prev(i) is the previous node of p; in route r. We assume that

arriveg = st;..

The latest time the visit at p; can start without violating the time windows

of the nodes following p; maxStart; = min{close;, maX{t: t+

maxStart; tT mext(i) (£) < maxStartyexey} — visit;}, where next(i) is the node
following p; in r. We assume that maxStart, = et,.
How long the arrival at p; may be delayed without affecting the feasibility of
lack following visits; slack; = maxStart; — arrive;. Note that if the value of
slack;

slack; is close to 0, it is highly unlikely the insertion of a new POl between
Pprevii) @and p; to be feasible.

Note that the variables wait, start and arrive have been defined in (Vansteenwegen et al.,
2009). The leave, maxStart and slack variables are introduced in this work.

3.1. Execution phases of SlackRoutes

SlackRoutes comprises an offline (preprocessing) and an online phase (executed upon the
receipt of user queries); the latter involves three main execution routines. A pseudocode
implementation of SlackRoutes is shown in Algorithm 1.

Algorithm 1: SlackRoutes

1 Preprocessing phase: Cluster the POIls and construct the listOfClusters

2 while listOfClusters is not empty do

3 ClusterSet < listOfClusters.pop L

4. Routelnit (ClusterSet) } Route initialization

5 iterations < 0

6 while iterations < maxIterations do I

7 Repeat

8 Insert

9. until no further insertion is feasible

10. if currentSolution is the best found then ]
11. bestFoundSolution & currentSolution > Route creation
12. iterations < 0

13. end if

14. Shake

15 Iterations < Iterations + 1

16. end while _J

17. remove all POls visited in the currentSolution

18. end while

Preprocessing phase

The preprocessing phase contributes to the efficient handling of user queries. It takes as
input an initial topology, i.e. a set of POIs belonging to disjoint categories/sets (i.e.
monuments, museums, churches, squares, etc); in the example topology of Figure 2a,
geometric shapes indicate POI categories, while their size denote POls profit values. The



initial topology is partitioned into a number of clusters (listOfClusters) based on geographical
criteria, using the global k-means algorithm (Likas, Vlassis, & Verbeek, 2003).

The main incentives behind the clustering process are: (a) to force successive visits to POls
grouped in the same cluster in the online phase; this, firstly, reduces the solution space
saving execution time and, secondly, motivates walking instead of transit transfers (POls
grouped within the same cluster are likely to be within walking distance); (b) to indicate
areas featuring high density of ‘promising’ (i.e. highly profitable) POls.

Online execution phase

The online execution phase is triggered upon the receipt of user queries with preferences
upon specific POI categories (e.g. preference to visit archaeological sites rather than modern
art museums). Those preferences are used to adjust the profit values of POls (note that in
Figure 2b, the profit of rhombus and circular POls is increased while the profit of square and
polygon POls is reduced, compared to their original values).

From a high level perspective, the online phase tries out different route initializations (lines
3-4); starting with an initial solution, SlackRoutes executes an iterated local search
procedure inserting POls along the initial routes until no further insertion is feasible (lines 7-
9) and then it perturbs (shakes) derived solutions in hope of escaping local optima and
achieving further improvement (line 13). The solution with the highest overall profit is
returned to the user.

Routes initialization (lines 3-4). A list of disjoint listOfClusters (derived from the
preprocessing phase) is considered, originally arranged in cluster quality (C,) order. The C,
metric is inspired by the h-index, that is, a cluster with C, = h should include at least h POls
with profit greater or equal to h. The intuition behind the C, ordering is to motivate visits to
clusters highly dense in POIs with high profit values, even if those POls are located relatively
far. The m clusters with the highest C, value are selected from listOfClusters. Then, one POI
from each of these clusters is inserted into each of the originally empty m routes (below, we
explain the criterion used to select the initial POI for each route).

Routes creation (lines 6-16). Routes creation involves an insertion step (lines 7-9), which
performs consecutive POl insertions and a shake step (line 13) which attempts to improve
the originally derived solutions.

When considering a route r, an Insert routine is iteratively executed, provided that POls are
visited within their time windows and the daily time budget in not exceeded, until no further
improvement is possible. The Insert routine considers the insertion of all candidate POls p;
after each POI pik". For each feasible position, it calculates the weight wlf‘of pi:

YX_y slack;, + slack; + L slack;,

n +2

wk = profit; - A¥; AF =

The quantity A{f denotes the average slack value among all POls on r, after the insertion of p;
after the k™ POl along r (the route will then include n’ + 1 visits). Note that the

*f k=0, the POl i is placed first of all POIs of the route.



slackin,+1corresponds to the slack of the final leg of the trip between the last POl p; , and

the final destination t,.. Notice also that a large value of A{-‘ implies that after the insertion
of p;, there will be many possibilities left for inserting new POls along each leg of the trip
(that is, prior and after visiting p;). Eventually, the POl with the highest weight w;, where
w; = max(wik), is inserted into the position k. Notably, unlike most existing iterated local
search procedures, e.g. the ILS algorithm (Vansteenwegen et al., 2009), SlackRoutes involves
a global rather than a local decision perspective regarding possible insertion positions as it
considers the effect of POls insertion along the whole route.

SlackRoutes does not allow a route to visit a cluster more than once: a POl insertion can take
place before or after a POI of its containing cluster, if such a POI exists, otherwise the
insertion can take place only between POls of different clusters. This restriction saves
execution time by restricting the solution space and reduces the transit transfers, since
transfers between POls of the same cluster are typically done by walking.

The Shake routine comprises a solution perturbation step, wherein a number of consecutive
POls are removed from each route; the insertion procedure is then executed attempting to
escape local optima. An example output derived by SlackRoutes is illustrated in Figure 2b.
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Figure 2: lllustration of SlackRoutes execution phases: (a) initial topology (geometric shapes indicate
POI categories, while their size denote POls profit values) clustered based on geographic criteria
(preprocessing phase); (b) adjustment of POI profit values based on user profile (i.e. user preferences
upon POl categories indicated through user queries) and example output (tours) derived by
SlackRoutes.

3.2. Example execution of SlackRoutes

Figure 3 illustrates the details of a feasible route, i.e. a route that conforms to the time
windows of inserted nodes and the total available time budget. The route starts from
location 1, ends at location N and involves a visit to POl p, 2 time units later on (the traveling
time is try ;,(0) = 2). The visit at p can take place between 3 and 5 (TW, = [3,5]), hence it
starts after waiting for 1 time unit at p (wait, = 1). The visit at p lasts for 1 time unit (v, =1).
The tourist then leaves from p and arrives at the end location N, 6 time units after the
beginning of the route (trp,N(4) = 2, as shown in Figure 1, for p = u and N = v), hence,
leaving 4 time units of spare time (B = 10 time units). The maxStart values are calculated
starting from the end location and iterating backwards along the route: maxStarty = 10 = B,



maxStart, = 5 (since close, = 5), etc. The slack variable values are calculated accordingly, e.g.
slacky = maxStarty — arrivey = 10 — 6 = 4, etc.

_ tr = =
rp (0) =2 o (4) =2 -?W l_o [3 5]
. — p - 1
wait, = 1 )
leave; =0 start,= 3 arrivey= 6
leave,=4
arrive; wait; start; leave; tr; next) (leave;) | maxStart; slack;
1 - - - 0 2 3 3
p 2 1 3 4 2 5 3
N 6 - - - - 10 4

Figure 3. (a) The initial route 1-p-N.

Two unused nodes (POls), k and /, with the same profit are subsequently examined as
candidates for the next insertion along the route. Figure 4 examines the option of inserting k
before p (inserting k after p would be infeasible due to the time window of k, TW, = [1,2]).
Note that tr,y (5) # tr,n (4): when leaving from p at 4, it takes shorter time to walk (2 time
units), while when leaving from p at 5, it is preferable to use the subway (one time unit
waiting at the subway station and another half unit for the actual transfer). Based on the

tabular data of Figure 4, the insertion of k before p would have average slack equal to
_ 14141435 _ 65

A, = 7 "
Uon (8)= 1.5 B=10
TW,=[1,2
/’;’ 2 2 arrive, = 4 TWk - %3 5}
) wait, = 0 ) P
leave, =0 start, = 4 arrivey=6.5 Vk=Vp=1
leave,=5
arrive, =1
wait, =0 0
start,= 1
leave, =2
arrive; wait; start; leave; tr; nextsi) (l€ave; maxStart; slack;
i,next(i)
1 - - - 0 1 1 1
k 1 0 1 2 2 2 1
p 4 0 4 5 1.5 5 1
N 6.5 - - - - 10 3.5

Figure 4. Details of the route after inserting POI k.

Figure 5 examines the option of inserting / after p (/ could not be inserted prior to p due to
its time window (TW;, = [6,8]) which cannot be served prior to visiting p (TW, = [3,5]). Based

on the calculated maxStart/slack variable values, the average slack associated with this
. . . 3+3+242 10 . . . .
insertion will be 4; = % = > Aj. Having larger average slack and identical profit

value, the insertion of | is more preferable than that of k (that is, the insertion of / leaves
more room for additional visits along the route), hence / is inserted in the route (after p).




tr, =2 B=10
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Figure 5. Details of the route after inserting POI /.

3.3. Incorporating lunch breaks

Tourists commonly chose restaurants on the basis of hard/soft constraints, preferences (e.g.
price range, cuisine, etc) and their location as they prefer not to considerably deviate from
their sightseeing routes. Given the numerous restaurant options, the selection of a suitable
restaurant may be even more cumbersome than scheduling POI visits. However, existing
tourist tour planners exclusively consider visits to POls ignoring the need for lunch/rest
breaks.

eCOMPASS addresses this issue scheduling lunch breaks in affordable restaurants located
near the tourist tour. From a tour planning point of view, restaurants may be considered as a
separate set of POIs with identical profit; among these POls it is compulsory to visit only one.
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Figure 6. Process of incorporating lunch breaks.

The route creation process starts with inserting a ‘dummy’ node (Figure 6a) with its time
window and visiting time properties provided by the user (the user indicates her/his



preferred time span and duration of lunch break). Then, SlackRoutes executes as normal,
inserting visits to POls prior/after the visit to the restaurant (Figure 6b). It is noted that the
travel cost between the dummy node and a POl is set equal to the shortest time dependent
travel cost between the POl and a restaurant. Next, all available restaurants within the
specified budget are considered (Figure 6c). The one requiring the shortest time to reach is
chosen to visit at the same position held by the dummy node (Figure 6d). In the case that
the derived route is infeasible, POIs of the route are iteratively removed (in profit ascending
order) until route feasibility is attained.

3.4. Support for arbitrary start/end itinerary locations

(TD)TOPTW modeling involves an asymmetric distance matrix storing travel times among all
nodes. The distance matrix should be precomputed to ensure fast response to user queries.
The offline calculation becomes more crucial when considering time dependent travel times
which are far more costly to compute. Due to the above considerations, available tourist
tour planners restrict choices for itineraries start/end locations among a fixed set of selected
hotels and/or landmarks (those locations are included in the set of locations V). This
restriction, though, counters the reasonable expectation to define arbitrary start/end route
locations (e.g. the current location of the user), which will only be known at query time. In
the sequel we present an algorithm that addresses this issue.
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Figure 7. Consideration of arbitrary start/end locations: (a) Preprocessing phase; (b,c,d) online phase.



The preprocessing phase described in Section 3.1 is extended so as to further perform a
partitioning of the tourist area into small square regions (e.g. 500m x 500m), covering the
whole geographical area where POls are located in. Within each region R; a central location
Cg, is chosen. For instance, in Figure 7a, the area is partitioned in nine areas, where the
green dots denote the centers. Consider the complete directed graph G = (V,E), where V
consists of all the POIs and centers. Then for each pair of locations (i, j) in V, the travel profile
is calculated. Next, the online phase of the algorithm proceeds as follows:

e For each route r, i = 1, .., m, (i) find the centers s; and t; of the regions where the
arbitrary end points s; and t; belong to. (ii) Compute the walking travel times tg.and ¢;,
between (s;, s;) and (t;, t;), respectively. Note that due to the small size of the regions,
it is fast to compute the walking distances, while walking is probably faster than public
transportation. (iii) Fix the start/end time of the route to be the arrival times at s; and t;
(st; + ts;, and et; — t;, , respectively).

e Run the SlackRoutes and connect (s;, s;) and (¢;, t;) as first/last route legs (Figure 7b,
where solid and dashed lines denote walking and transit transfers, respectively).

e Restore the original start/end locations and times and connect s; and t; with the first
and last POl in the designed route, respectively (Figure 7c).

e Repair the route inserting new POls, if possible (Figure 7d).

4. eCOMPASS system implementation

This Section focuses on the implementation details of the eCOMPASS tour planner
prototype.

4.1. Content database

We have compiled two location collections from the urban areas of Athens (Greece) and
Berlin (Germany); each collection comprises region centers, attractions (POls), hotels,
restaurants and cafes (see Table 1).

Athens Berlin
Regions 144 (=12x12) km’ 256 (=16x16) km’
POIs 113 185
Locations Hotels 100 105
Restaurants 100 103
Cafes 100 84
Clusters 11 18
Transportation Athens Urban Berliner Verkehrsbetriebe (U-
authority Transport Organization Bahn, Tram, Bus) / Deutsche
Transit Bahn (S-Bahn)
. 9 lines U-Bahn, 15 lines S-
network Transit services 3 subway lines, 3 tram Bahn, 22 tram lines and 147
(GTFS) data lines and 287 bus lines ! .
bus lines
Transit 7825 3213
network stops
Memory size for storing travel 333 576

profiles (GB)




Average query 1 tour 350 400
execution tl'me 2 tours 600 650
(msec) for time 3 750 1000
budget 10:00- tours

18:00 4 tours 1100 1650

Table 1. Compiled locations, transit network data, memory & execution time requirements for the
Athens and Berlin instances.

POls are classified in the following categories: museums & art galleries, nature (parks, lakes),
archaeological sites, neighborhoods & squares (pedestrian streets, markets, squares,
scenic/historic walking areas), churches & religious heritage, monuments & landmarks
(palaces, historical monuments, sculptures), marines & ports. The metadata stored for each
POI include: title; geo-coordinates (latitude, longitude); category; profit; visiting time;
opening/closing hours for each week day; indication of whether it is ‘open air’ (i.e.
unsuitable to visit in rainy or hot days) or not; entrance fee; indication of accessibility
facilities; short description; photograph(s); address; telephone; official website URL;
Wikipedia entry URL; average user rating, overall number of uploaded user ratings.

The POIs have been compiled from various tourist portals® and web services offering open
APIs®. Profits have been set in a 1-100 scale and visiting times vary from 5 minute (e.g. for
some outdoor statues) to 2 hours (e.g. for some not-miss museums and wide-area
archaeological sites). About half of the POIs are outdoors and always visitable (24h time
windows) while the remainder are associated with relatively wide, largely overlapped time

windows (typically around 8h). POls are grouped in l J disjoint clusters. Most of selected

hotels, restaurants and cafes are situated around main attraction areas.
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4.2. User profile & trip data

> http://www.tripadvisor.com/, http://index.pois.gr/
® https://developers.google.com/places/documentation/




The eCOMPASS client applications provide user-friendly dialogs to allow the user designate
the trip details/constraints as well as his/her user profile (trip preferences). In particular, trip
details include the number of days to be spent at the destination, the arrival date, the
start/end time and location for daily trips.

Moreover, the user rates his/her preferences on POI categories (in 0-10 scale). The originally
set POI profits and visiting times are then adjusted accordingly to match the user profile. The
adjustment of profit values also takes into account the average rating score ur,, received by

other mobile users for each POI p; as to the average rating score avg,,,- among all POls:

) 7.
p;i - (ratingcaep;) — 5) N p; - (Ury,—avgy,) - min {1, l pl/l()J} _
y 1=

1..N
10 avGur

pi=pi+

where, ratingcq¢(p;) denotes the rating assigned by the user to the category which POI p;

Ty,
belongs to. The factor min {1, l p‘/wJ} ensures that ratings provided by others users are

taken into account only when the number of ratings 7, received for p; are more than 10 so

that statistical validity is guaranteed.

The user also customizes ‘advanced’ settings with respect to: visit pace (relaxed, medium,
intense), which determines the walking speed; whether s/he wishes weather forecast to be
taken into account (if yes, no visits to ‘open air’ attractions will be scheduled on rainy/hot
days); preference on walking rather than using public transit (public transportation will be
recommended only for overly long transfers); whether lunch breaks should be scheduled (if
yes, the preferred time span and maximum lunch budget are also specified).

4.3. Calculation of multimodal travel time profiles

In our implementation, we have used the GTFS’ data of the transit networks deployed in the
metropolitan areas of Athens and Berlin (see Table 1). Using the method of Dibbelt et al.
(2012), we compute offline pairwise full (24h range) multimodal time-dependent travel time
profiles among all locations stored in the content database (POls, region centers, hotels,
restaurants, cafes). We also maintain the walking time among pairs of POls, provided that
this is up to 50% longer than using the transit network at any departure time within the day.
Note that the current implementation does not consider bike transfers as access/egress
modes to public transit. The overall travel time information is stored in a three-dimensional
array of size N x N x 1440, where N is the number of specified locations/POls and 1440
(=24x60) the time steps/minutes per day. This memory structure ensures instant access to
time-dependent travel times, given a specified pair of POls (u, v), upon receiving a user
query. The memory size needed to store travel profiles is reported in Table 1.

4.4. eCOMPASS architecture and application workflow

7 The General Transit Feed Specification (GTFS -

https://developers.google.com/transit/gtfs/reference) defines a common format for public
transportation schedules and associated geographic information (locations of stops, description of
routes, timetables of individual trips and other schedule data). Such information is necessary for any
multimodal route planning service to calculate the time required to travel from a location to
another via public transit.




eCOMPASS adopts a coarse-grained service-oriented architecture (SOA) approach, wherein
the business logic is composed of loosely coupled web services, combined together to
deliver personalized services either through traditional web interfaces or thin mobile clients.
The web client application (http://ecompass.aegean.gr/) is implemented in HTML5 and

jQuery. The mobile client application (https://www.youtube.com/watch?v=BVT mWQo0s0)

has been developed on the Android 4.4 platform; the tour planner for Berlin may be
downloaded from http://ecompass.aegean.gr/eCompass.apk.
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Figure 9. eCOMPASS system overview.

Figure 9 provides a high-level overview of the eCOMPASS architecture as well as the steps
followed upon receiving user queries. In particular, the application workflow within
eCOMPASS comprises the following phases/steps:

Offline phase:

1. The pairwise full multimodal travel time profiles among all locations stored in the
content database are computed based on timetable (GTFS) data (see Section 4.3). Also,
POls are grouped in disjoint clusters based on geographical criteria.

2. POIs metadata (see Section 4.1) and travel profiles among POls (see Section 4.3) are
stored in memory structures on the server side.

Online phase:

3. User queries are sent along with the user profile and the trip details (see Section 4.2).

4. A weather web service (Yahoo! weather®) is contacted to deliver a weather forecast for
the trip dates (in case that the user wishes weather information to be taken into account
in the tour planning logic).

5. In case that arbitrary start/end tour locations are defined, a multimodal route planning
service is contacted to estimate the walking travel time from the start/end locations to
the nearest region center (see Section 3.4).

® https://developer.yahoo.com/weather/




6. The tour planning web service derives the personalized daily tourist tours.
7. The tours are returned (in JSON format) to the requesting client application; the tour
description is rendered and visualized on a map or list-based graphical interface.

Figure 10 exhibits representative screens captured by the eCOMPASS mobile client
application. The main application features are highlighted in the menu of Figure 10a; those
include listings of attractions, hotels, restaurant and cafes (sortable by name, price, rating or
distance - see Figure 10b) further to the main tour planning functionality.

The next five screens present the user settings used to personalize the derived tourist tours.
The user specifies the start and end location of each itinerary (see Figure 10c), allowed to
choose among available hotels, selected city landmarks (e.g. central squares), arbitrary
locations (pointed on a map interface) and current location (yield through GPS fix). The user
also indicates his/her scheduled arrival date, the number of days to be spent at the
destination (this information is required to retrieve the opening hours of POls and transit
travel profiles for those days as well as the weather forecast) and the preferred walking pace
(to adjust the estimated walking travel times). Optionally, the user may: modify the default
start/end time for each daily itinerary (see Figure 10d); indicate willingness to take weather
conditions into account and preference to walk rather than taking short transit rides (see
Figure 10e); plan lunch breaks on restaurants of certain budget at specific time (see Figure
10f). Last, the user indicates preference on separate POl categories, thereby adjusting
default POI profit values accordingly, as explained in Section 4.2 (see Figure 10g).

Recommended tours may be visualized in both list (see Figure 10h) and map (see Figure 10i)
views. The list view illustrates the visiting order of recommended POls along with their title,
category, rating, estimated arrival/departure time and visiting duration. A walking/transit
icon placed on each list item may be tapped to yield walk or time-dependent transit
directions from the previous POl towards the current one (see Figure 10j). The dual view
shown in Figure 10k combines a slide show (image gallery) of recommended POIs with a map
view of the itinerary (upon tapping a POl’s picture, the map zooms at the selected POIl’s
location). Restaurants recommended for lunch breaks are designated with different
background color and marker in the list and map view, respectively (see Figure 10h and
Figure 10I).

The user may retrieve further information for selected POls, including address, telephone,
entrance fee, accessibility facilities, short description (see Figure 10m). Special icons may be
tapped to load the POl’s official website or the respective Wikipedia page within the
application space (see Figure 10n). Each POI screen also shows a distance estimate among
the user’s current position and the POl’s location as well as a compass indicator icon
pointing towards the POl’s location. The user may also retrieve a map with markers
indicating his/her current location and the POI’s location. Last, the user may upload ratings
for visited POls (see Figure 100); those ratings are fed back to the POls database, eventually
affecting the profit values assigned to POls (see Section 4.2).

The users may remove any POI from the proposed tours; removed POIls may be restored
later on. Furthermore, the start/end point and time of a specific daily itinerary may be



edited without affecting the start/end points/times for the remaining itineraries. On the
incident of modifying any user setting, the tour planning web service is reinvoked and the
itineraries are recalculated. The last recommended daily tours are stored locally to enable
fast reloading and avoid unnecessary server invocations.
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Figure 10. Screenshots taken from the eCOMPASS mobile (Android) client application.
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4.5. Web services implementation

The web services utilized within the eCOMPASS system (i.e. the tourist tour planning web
service and the multimodal route planning web service) are based on the RESTful
architectural style. A front-end and a back-end part have been implemented for each
service. The front-end is written in Ruby using the Sinatra framework. It accepts user input in
the form of a URI and is responsible for sanitizing the input before passing it to the back-end.
Then, it dispatches the input to the correct back-end process, and parses its output. Finally,
it converts the output to JSON format. The back-end is written in C++ and is highly optimized
for both online and offline speed, so as to minimize both the query response time and the
recovery time in case of a fault. A different executable is spawned per city (i.e. Athens and
Berlin) so that fault tolerance and resilience can be guaranteed, while each process can run
without the complexity of handling different data sets on its memory. The multimodal route
planning web service implementation is based on the method of Dibbelt et al. (2012).

The average query service times for the Athens and Berlin instances are reported in Table 1.
(time values are averaged over ten executions on a sQEMU Virtual CPU version 1.7.1
clocked at 2.1 GHz, with 4 GB RAM). The execution times surely depend on the instance size
and the number of tours to be designed. In all cases the web service derives tour
recommendations in less than 1.7 sec, which definitely meets the real time application
requirements.

5. User Evaluation

The tourist tour planner prototype has undergone through official evaluation trials held in
September 2014, in Berlin (Germany), in the context of the EU FP7 eCOMPASS project pilot



activities. Overall, 47 participants (mostly students and permanent residents of Berlin,
hence, largely familiar with the attractions and transit network of the city), have been
recruited to participate into the evaluation. The primary purpose of the pilot study has been
to evaluate the core functionality of the application, while the main usability & UX
evaluation has been conducted by means of an expert review focusing on compliance to
usability norms. In particular, the test comprised two phases:

e A heuristic evaluation, based on the DIN EN ISO 9241-11-110°, aiming at testing the
application’s compliance with respect to several dimensions (self-descriptiveness;
suitability for the task; controllability; conformity to user expectations; suitability for
learning; error tolerance; suitability for individualization).

e A ‘scenario walkthrough’, focusing on assessing the usability of the application and the
meaningfulness of the recommended tours; in that phase, users have been requested to
carry out specific tasks; user feedback has been extracted based on a variety of methods
(live observation, thinking aloud transcripts and short interviews).

The heuristic evaluation revealed that the prototype application can already be used in an
efficient, effective and “satisfying” way. As regards the actual user evaluation, the
participants have been asked to plan tours for hypothetical half-day and three-day visits to
Berlin, entering their real preferences on POI categories. The look-and-feel, usability and
responsiveness (i.e. performance) of the application have been well received by all users, in
agreement with the findings of the heuristic evaluation conducted prior to live testing.
Furthermore, participants’ feedback for the recommended tours has been positive with
respect to: quality and attractiveness (POls included); feasibility (POIs sequencing along
itineraries, soundness of multimodal routing directions among POls); POls relevance with
the users’ personal preferences; overall perceived utility of the application in unfamiliar
tourist destinations.

Users have also suggested several features to further improve the functionality of the
prototype: identification of POls already visited so that would be excluded in future tour
updates/recommendations; designation of POls that should definitely be incorporated in the
recommended tours; bookmarking and/or specifying favorite POls; map-based visualization
of POls in vicinity to the user’s current location. A short (public) version of the eCOMPASS
pilot results consolidation report has been published by Marte, Litzenberg and Krietsch
(2014).

6. Conclusion and Future Research

Expert and intelligent systems inherently require the solution of hard optimization problems
to enable intelligent decision making. The problem tackled in this paper is the TTDP, an NP-
hard combinatorial optimization problem (Gavalas et al., 2014b). Time-dependency (i.e. the
consideration of multimodal transfers) represents a realistic condition in the urban tourist
tour planning problem, which further increases the complexity of the TTDP due to
significantly expanding the problem space. Exact solution approaches, e.g. integer

° The 1SO 9241-11-110 focuses on the ergonomics and usability of human-system interaction.



programming, are not appropriate as they would require substantial computational
resources and long execution times. For these reasons, alike most expert and intelligent
systems, we have proposed a metaheuristic as a solution method. Specifically, a local search
heuristic, the SlackRoutes, is employed for solving TTDP, where the main criterion at each
insertion step is the selection of the candidate POl which promises to accommodate the
most POI insertions along derived tours in future iterations. Unlike the most relevant
approach in multimodal tourist tour planning (Garcia et al., 2013), SlackRoutes is not based
on the unrealistic assumption of periodic service schedules. SlackRoutes comprises the
algorithmic engine of eCOMPASS achieving a fair compromise among deriving high quality
solutions (i.e. attractive tours) and responding fairly fast to address the requirements of real-
time TTDP applications (Gavalas, 2014c). Although more advanced metaheuristics could be
used for solving TTDP (such as evolutionary algorithms), we opted for a simpler local search
heuristic in order to meet the real-time performance objective. It is also worth mentioning
that the SlackRoutes could be applied in a more general setting, e.g., for solving variants of
the vehicle routing problem.

To the best of our knowledge, eCOMPASS is the only available research or commercial
personalized tour planner that assists the way arounds of tourists through public transit.
Further advancing the state of the art of analogous tools, eCOMPASS is the only allowing
users to define arbitrary start/end locations for their daily tours, taking into account weather
forecast in tour planning and scheduling lunch breaks at appropriate restaurants. The
publicly available eCOMPASS web and mobile tools already support tour planning for Athens
and Berlin metropolitan areas, showcasing the utility of the system.

In the future we plan to investigate multi-constraint variants of TDTOPTW to capture further
constraints dealt with in realistic scenarios, e.g. to allow modeling a maximum budget to be
spent while on travel (for both entrance fees and transit fares). We also plan to study an
alternative TTDP modeling approach, wherein profits are also assigned to arcs (in addition to
nodes) so as to incorporate routes of scenic value within recommended tours; the mixed
orienteering problem (Gavalas et al., 2015) could serve as a baseline problem to address this
requirement. Last, we will investigate machine learning approaches to account for
uncertainty dealt with in transit services schedules; this will enable robust tour planning,
which represents a critical consideration, especially when considering late hours and/or
infrequent services.
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