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Abstract

The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW)
can be used to model several real life problems. Among them, the route planning problem for
tourists interested in visiting multiple points of interest (POIs) using public transportation.
The main objective of this problem is to select POIs that match tourist preferences, taking
into account a multitude of parameters and constraints while respecting the time available
for sightseeing in a daily basis and integrating public transportation to travel between POIs
(Tourist Trip Design Problem, TTDP). TDTOPTW is NP-hard while almost the whole
body of the related literature addresses the non time dependent version of the problem. The
only TDTOPTW heuristic proposed so far is based on the assumption of periodic transit
service schedules. Herein, we propose efficient cluster-based heuristics for the TDTOPTW
which yield high quality solutions, take into account time dependency in calculating travel
times between POIs and make no assumption on periodic service schedules. The validation
scenario for our prototyped algorithms involved the transit network and real POI datasets
compiled from the metropolitan area of Athens (Greece). Our TTDP algorithms handle
arbitrary (i.e. determined at query time) rather than fixed start/end locations for derived
tourist itineraries.

Keywords: Time Dependent Team Orienteering Problem with Time Windows, Tourist Trip
Design Problem, Iterated Local Search, Clustering.
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1 Introduction

In the Team Orienteering Problem with Time Windows (TOPTW) [25] we are given a set of
nodes each associated with a profit, a visiting time and a time window, as well as a travel time
between each pair of nodes; the objective is to find a fixed number of disjoint routes from a
starting node to a destination node, each not exceeding a given time limit, that maximize the
overall profit collected by visiting the nodes in all routes without violating their time windows.
The TOPTW applies to several real-life problems. In this paper, we focus on the Tourist Trip
Design Problem (TTDP) [28] which refers to a route-planning problem for tourists interested
in visiting multiple points of interest (POIs). Solving the TTDP we derive daily tourist tours
comprising ordered sets of POIs that match tourist preferences, thereby maximizing tourist
satisfaction, while taking into account a multitude of parameters and constraints (e.g., distances
among POIs, time estimated for visiting each POI, POIs’ opening hours) and respecting the time
available for sightseeing in daily basis. The problem is further complicated when considering the
complexity of metropolitan transit networks commonly used by tourists to move from a POI to
another. In this case, the required travel time depends on the departure time from the origin
POI; hence, the TTDP can be modeled as a Time Dependent TOPTW (TDTOPTW) i.e. as a
TOPTW with time dependent travel time between each pair of nodes.

The TOPTW and the TDTOPTW are NP-hard. While a significant number of heuristic
approaches have been proposed in the literature for tackling the TOPTW (for a survey see
[10],[26]), to the best of our knowledge, the only TDTOPTW heuristic has been recently proposed
by Garcia et al. [9]. The algorithm of Garcia et al. is based on the assumption of periodic service
schedules which is clearly not valid in realistic transportation networks, wherein arrival/departure
frequencies typically vary within the service’s operational periods.

Herein, we propose two novel randomized metaheuristic approaches based on the technique of
iterated local search [18], the Time Dependent CSCRoutes (TD CSCR) and the Time Dependent
Slack CSCRoutes (TD S`CSCR) algorithms which address the above described shortcoming of
the existing TDTOPTW approach. The main incentive behind our approaches is to motivate
visits to topology areas featuring high density of ‘promising’ (i.e. highly profitable) candidate
vertices, while taking into account time dependency (i.e. multimodality) in calculating travel
times from one vertex to another; the aim is to derive high quality routes (i.e. maximizing the
total collected profit) and minimize the time delays incurred in transit stops, while not sacrificing
the time efficiency required for online applications. The two algorithms favor solutions with
increased number of walking over public transit transfers (the latter are considered costly and
typically less attractive to tourists than short walking transfers). Both algorithms are extended
to tackle the case which involves arbitrary (i.e. determined at query time) rather than fixed
starting/destination locations for derived tourist itineraries.

In addition to the TD CSCR and TD S`CSCR algorithms, we have also implemented the
Average travel times CSCRoutes (AvgCSCR) algorithm which uses average (rather than time
dependent) travel times between POIs. In effect, the AvgCSCR algorithm reduces the TD-
TOPTW to TOPTW. Having obtained a TOPTW solution, AvgCSCR employs two additional
steps to ensure route feasibility and further improve the solution’s quality.

Our prototyped algorithms have been tested in terms of various performance parameters
(solutions’ quality, execution time, percentage of transit transfers over total transfers, etc) upon
real test instances (i.e. set of POIs and accommodation facilities) compiled from the wider
area of Athens, Greece; the calculation of time dependent travel times has been carried out
over the Athens metropolitan transit network. The performance of the TD CSCR, TD S`CSCR
and AvgCSCR algorithms has been compared against a time dependent extension of the most
efficient known TOPTW heuristic (Vansteenwegen et al. [27]) as well as the approach proposed
by Garcia et al. [9] using precalculated average travel times between POIs.

The remainder of this article is organized as follows: Section 2 overviews the related work
while in Section 3 our novel cluster-based heuristics for the TDTOPTW are presented. An
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algorithmic solution for the TTDP is presented in Section 4. The experimental results are
discussed in Section 5 while Section 6 concludes our work.

2 Related work

The TOPTW is an extension of the Orienteering Problem (OP) [24, 26] also known as the
Maximum Collection Problem. In the OP, several locations with an associated profit have to
be visited within a given time limit. The goal of the problem is to maximize the overall score
collected on a single tour starting from and ending at a depot node. The OP is NP-hard [12, 15].
The team orienteering problem (TOP) [3] extends the OP considering multiple routes while the
TOP with time windows (TOPTW) [25] considers visits to locations within a predefined time
window. The TOPTW is NP-hard, since it extends OP, hence exact solutions for the TOPTW
can be applied only to instances with a limited number of nodes. As a result, the main body
of the TOPTW literature exclusively involves heuristic algorithms ([8], [14], [13], [17], [19], [23],
[27]). ACS [19], Enhanced ACS [8] and the approach of Tricoire et al. [23] are known to yield the
highest quality solutions. The most efficient known heuristic is based on Iterated Local Search
(ILS) [27], offering a fair compromise with respect to execution time versus deriving routes of
reasonable quality [26]. However, the ILS approach treats each POI separately, thereby commonly
overlooking highly profitable areas of POIs situated far from current location considering them
too time-expensive to visit. In [11] CSCRatio and CSCRoutes, two cluster-based extensions to
ILS, have been proposed to address the aforementioned weakness. The main incentive behind
these approaches is to favor visits to topology areas featuring high density of good candidate
nodes. This is achieved through a clustering phase which groups nodes based on geographical
criteria, and encouraging visiting topology areas, even distant ones.

Erkut and Zhang in [6] considered the Maximum Collection Problem with Time Dependent
Rewards (MCPTDR) where each node’s profit decreases linearly over time, and the objective is
to maximize the sum of the rewards collected in a single tour. The problem may find applications
in cases where there is a time-dependent penalty for delays in service. The authors proposed a
mixed integer programming formulation, and a penalty-based greedy heuristic algorithm and an
exact branch-and-bound algorithm for solving the MCPTDR. In [22] the problem of scheduling
technicians for planned maintenance of geographically distributed equipment is formulated as a
Multiple Tour Maximum Collection Problem with Time-Dependent rewards (MTMCPTD). In
the MTMCPTD, the rewards are assigned to the tasks based on the “urgency” for completing
a task on a given day and the objective is to determine a set of tours, each corresponding
to a technician’s schedule on a particular day, such that the total reward collected during the
scheduling horizon is maximized. The authors introduced a tabu-based search heuristic for
solving the MTMCPTD. The Orienteering Problem with Variable Profits was introduced by
Erdogan and Laporte [5] as a variant of the OP in which the percentage of the collected profit
at each node depends either on the number of discrete passes or in an alternative model, on the
continuous amount of time spent at the node. Yu et al. recently [30] presented a mixed integer
programming approach for solving a more general problem that allows multiple starting nodes
(depots) and the profit collected at each node is characterized by some non-decreasing function
over the time spent at this node. Their method is extended to the case of multiple tours.

The previous paragraph referred to variants of the OP and TOP with time dependent rewards.
The Time Dependent OP (TDOP) considering time dependent travel costs, was first introduced
by Formin and Lingas in [7]. TDOP is MAX-SNP-hard since a special case of the TDOP, the
time-dependent maximum scheduling problem is MAX-SNP-hard [21]. Fomin and Lingas [7] give
a (2+ ε) approximation algorithm for rooted and unrooted TDOP. Verbeeck et al. [29] suggested
a mathematical formulation of the TDOP and proposed a fast local search based metaheuristic to
tackle the problem. This algorithm is inspired by an ant colony system (ACS) and utilizes a speed-
up time-dependent local search procedure equipped with a local evaluation metric. Abbaspour
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et al. [1] investigated a variant of the Time Dependent OP with Time Windows (TDOPTW) in
urban areas, and proposed a genetic algorithm for solving the problem. The work of Garcia et al.
[9] is the first to address algorithmically the TDTOPTW. The authors presented two different
approaches to solve TDTOPTW, both applied on real urban test instances (POIs and bus network
of San Sebastian, Spain). The first approach involves a pre-calculation step, computing the
average travel times between all pairs of POIs, allowing reducing the TDTOPTW to a regular
TOPTW, solved using the insertion phase part of ILS. In case that the derived TOPTW solution
is infeasible (due to violating the time windows of nodes included in the solution), a number of
visits are removed. The second approach uses time-dependent travel times but it is based on
the simplified assumption of periodic service schedules; this assumption, clearly, does not hold in
realistic urban transportation networks, especially on non fixed-rail services (e.g. buses). Herein,
we propose an algorithmic approach that relaxes this assumption and is applicable to realistic
transit networks.

3 The proposed TDTOPTW heuristics

The TDTOPTW extends TOPTW considering time dependent travel costs among nodes i.e.,
travel costs using public transportation. In the TOPTW we are given a complete directed graph
G = (V,E) where V denotes the set of locations with N = |V |; a set P = {p1, p2, . . . , pNp

} ⊆ V
denoting the set of POIs; an integer m denoting the number of days the trip shall last, and
a time budget B. The main attributes of each node pi ∈ P are: the service or visiting time
(visiti), the profit gained by visiting pi (profiti), and each day’s time window [openir, closeir], r =
1, 2, . . . ,m, (a POI may have different time windows per day). Every link (u, v) ∈ E denotes the
transportation link from u to v and is assigned a travel time. The objective is to find m disjoint
routes each starting from a starting location s ∈ V and ending at a location t ∈ V , each with
overall duration limited by the time budget B, that maximize the overall profit collected by the
visited POIs in all routes. The TDTOPTW is the extension of TOPTW where the travel time
from a location u ∈ V to a location v ∈ V (as well as the arrival time at v) depends on the time
leaving from u and the chosen transportation mode (e.g on foot or public transportation).

In the TDTOPTW we assume that the starting and ending locations may be different for
different routes. Therefore, sr, tr ∈ V denote the starting, terminal location respectively, of
the r−th route, and str, etr denote the starting, ending time respectively, of the r−th route,
r = 1, 2, . . . ,m. Note that sr, tr denote locations which may coincide with POIs. Suppose that
the terminal location tr coincides with POI p and that p is also considered as a candidate for
inclusion; in that case, the travel cost from p to tr equals zero. Therefore, the starting and
terminal locations are not associated with visiting times and/or time windows and the time
budget B for each route r is B = etr − str, r = 1, 2, . . . ,m.

Figure 1 depicts a typical tourist route from a start location sr to an end location tr via
POIs pi, pj and pk, each associated with a time window and a required time to visit. Each
transit transfer among two locations is subject to a delay (e.g. t3 - t2 when leaving from pi to
pj). Such delays do not occur when taking the walking transfer option (e.g. transfer from pk
to tr). Each visit is also likely to be delayed if the tourist arrives at a POI before its opening
hour (e.g. waiting of t5 - t4 prior to start visiting pj). A TDTOPTW solver should minimize
the overall delays incident along the routes and exploit the time saved in order to accommodate
visits to additional POIs.

Figure 2 illustrates the arrival time at a POI pj for a tourist that has previously visited
pi. Delays incurred to embark on the next service may vary, i.e. we make no assumption of
periodic service schedules. Also, when considering certain departure times (e.g. between t0 and
t1) walking might be a faster option than waiting for the next transit service.

The solution strategy employed by the proposed TDTOPTW algorithms is based on the
CSCRoutes algorithm for the TOPTW presented in [11]. CSCRoutes is an iterated local search-
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Figure 1: Illustration of a tourist route (blue dashed line) from sr to tr via POIs pi, pj and pk.
Green dashed arrows indicate available multimodal transfer options among POIs.

Figure 2: Arrival time walking and using public transportation
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based [18] heuristic which employs the global k-means clustering algorithm [2, 16] to organize the
POIs into an appropriate number of clusters. Once the clusters of POIs have been formed, a list
(listOfClusterSets) containing a specific number of different sets of m clusters, is constructed.
CSCRoutes executes a loop for a number of times equal to the size of the listOfClusterSets.
Within this loop, firstly, all POIs in the current solution’s routes are removed and the route
initialization phase RouteInitPhase is executed. RouteInitPhase takes as an argument a set of
m clusters from the listOfClusterSet and proceeds as follows: For each cluster in the set, it finds
the POI with the highest ratio of profit squared over insertion cost and inserts it into one of the
empty routes. Note that each of the m inserted POIs comes from a different cluster. In this way
the algorithm encourages searching different topology areas and avoids getting trapped at specific
high-scored nodes. After the RouteInitPhase ends, the algorithm executes an inner loop combin-
ing a local search procedure and a shake step to escape from a local optimum. The local search
procedure iteratively applies an insertion step. At each insertion step (CSCRoutes Insert) a
node is inserted in a route, ensuring that all following nodes along the route remain feasible to
visit, i.e. the visit at each node starts within its time window and the length of each route re-
mains at most B. At the shake step (Shake) a specified number of successive nodes in each route
is removed. The intuition of this step is to escape from the current local optimum decreasing
each route’s length in order to reach a better local optimum in the next local search procedure.
Note that before the inner loop starts, the parameters removeNumber (indicating the number
of the consecutive nodes to be removed from each route) and startNumber (indicating where to
start removing nodes on each route of the current solution) of the Shake step are initialized to
1. Then the loop is executed for a specific number of times (maxIterations) while the profit of
the best solution is not improved. For the sake of completeness, the pseudo code of CSCRoutes
Algorithm is given below (Algorithm 1)(details may be found in [11]).

Algorithm 1 CSCRoutes(numberOfClusters, maxIterations)
run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
while listOfClusterSets is not empty do

remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

while not local optimum do
CSCRoutes Insert

end while
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > currentSolution.sizeOfLargestTour

2
then

removeNumber ← 1
end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

Unlike CSCRoutes, the algorithms introduced in this article, handle time dependent travel
times among different locations/POIs. Therefore, they employ different insertion steps than
CSCRoutes. Namely, the insertion steps take into account the time dependency of the travel
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time between each pair of locations, i.e. the travel time from location u to location v may vary
between different departure times, and the waiting time for public transport depends on the
arrival time at u. Apart from the insertion step, another local search step is also applied, the
Replace step. In the Replace step, a node included in the solution is replaced by a non-included
node with a higher profit as long as this replace retains the route feasible, i.e. time windows
and route travel budget are not violated, and furthermore the replace respects the cluster routes.
In Subsection 3.1 we present the feasibility criterion for inserting a new POI in a route and
replacing a visited node by a non included node in the case of time dependent travel costs while
in the following three subsections the algorithmic approaches for solving the TDTOPTW are
described. Namely, the TD CSCR algorithm, the TD S`CSCR algorithm and the AvgCSCR
algorithm are described in detail.

3.1 Time dependent insertion feasibility

In order to have the pairwise time dependent travel cost among all locations, for each (u, v),
u, v ∈ V , we precalculate the walking time from u to v (might be∞, when too far to walk) and a
set Suv of transit transfer travel times based on the timetable information of the transit network.
Specifically, Suv contains all the non-dominated departure-travel time pairs (depuv

i , travuv
i ), i =

1, 2, . . . , |Suv|, in ascending order of depuv
i , where depuv

i is a departure time and travuv
i is the

corresponding travel time of a transit service connecting u and v. We consider that a departure-
travel time pair from node u to node v (dep1, trav1) dominates a pair (dep2, trav2) if dep1 +
trav1 ≤ dep2 + trav2 and dep1 > dep2. Note that departing from u at time t with depuv

i < t ≤
depuv

i+1, actually means either departing from u at depuv
i+1 using public transportation, or start

at time t walking from u to v. More specifically, the arrival time at v will be equal to the earliest
of the times depuv

i+1 + travuv
i+1 and t+ walkingu,v, where walkingu,v is the walking time from u to

v. To determine all the non-dominated pairs in Suv we employ the algorithm of Dibbelt et al.
[4].

For a specified time t, the departure time from u to v at t using public transport, deptimeu,v(t),
is defined as the earliest possible departure time from u to v, i.e.,

deptimeu,v(t) = min
i
{depuv

i |(depuv
i , travuv

i ) ∈ Suv and t ≤ depuv
i } (1)

Then, the travel time from u to v at t using public transport, travtimeu,v(t), is such that
(deptimeu,v(t), travtimeu,v(t)) ∈ Suv, and the departure delay at time t due to the use of public
transport, is delayu,v(t) = deptimeu,v(t)− t. For instance, in Figure 3, deptimeu,v(t1) = depuv

1 .
Therefore, the total traveling cost from u to v at a specified time t, travelingu,v(t), is

travelingu,v(t) = min{walkingu,v,delayu,v(t) + travtimeu,v(t)} (2)

For a POI pi in a route r the following variables are defined:

• waiti, denoting the waiting time at pi before its time window starts; waiti = max(0, openir−
arrivei).

• starti, denoting the starting time of the visit at pi; starti = arrivei + waiti.

• leavei, denoting the time the visit at pi completes, i.e., the departure time from pi; leavei =
starti + visiti.

• arrivei, denoting the arrival time at pi; arrivei = leaveprev(i) +travelingprev(i),i(leaveprev(i)),
where leaveprev(i) is the departure time from the previous node of pi in route r (prev(i)).
We assume that arrivesr = str.
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Figure 3: traveling time from u to v as a function of the departure time from u

• maxStarti, denoting the latest time the visit at pi can start without violating the time win-
dows of the nodes following pi; maxStarti = min(closeir,max{t : t + travelingi,next(i)(t) ≤
maxStartnext(i)} − visiti), where next(i) is the node following pi in r. We assume that
maxStarttr = etr.

A POI pk can be inserted in route r between POIs pi and pj if the arrival time at pk does not
violate pk’s time window and the arrival at pj does not violate the time window of pj as well as
the time windows of the nodes following pj in r. The total time cost for pk’s insertion is defined

as shiftijk (insertion cost) and is equal to the time the arrival at pj will be delayed. In particular

shiftijk equals to the time required to travel from pi to pj having visited pk in between minus the
time taken for traveling directly from pi to pj .

shiftijk = (travelingi,k(leavei) + waitik + visitk + travelingk,j(leavek))− travelingi,j(leavei) (3)

where waitik denotes the waiting time at POI pk following a visit at pi. Figure 4 illustrates an
example of inserting pk, between pi and pj shifting the visit at pj later on time.

Figure 4: Illustration of pk insertion between pi and pj .

Note that the insertion of pk between pi and pj is feasible when

arrivek ≤ closekr and shiftijk ≤ maxStartj − arrivej (4)
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A pseudo code implementation of the function shift(k, i, j, r) follows 2, which calculates the
insertion cost shiftijk in route r. The function returns ∞ if the insertion of pk is infeasible.

Algorithm 2 shift(k, i, j, r)
result ←∞
arrivek ← leavei + travelingi,k(leavei)
if arrivek ≤ closekr then

waitik ← max(0, openkr − arrivek)
leavek ← arrivek + waitk + visitk
costAfterInsert ← travelingi,k(leavei) + waitk + visitk + travelingk,j(leavek)

shiftijk ← costAfterInsert −travelingi,j(leavei)

if shiftijk ≤ maxStartj − arrivej then

result ← shiftijk
end if

end if
return result

Apart from inserting a new POI in a route, our algorithms encourage replacing an already
included POI by a higher profit POI. Considering that in route r, the POIs pi, pl, pj are con-
secutive and pk is not included in the solution, pk can replace pl if the arrival at pk takes place
within its time window and the time windows of pj and the POIs following pj are not violated.

Extending the terminology introduced previously, let shiftijk,l be the difference in the insertion
cost from replacing POI pl by pk. Then,

shiftijk,l = (travelingi,k(leavei) + waitik + visitk + travelingk,j(leavek))

− (travelingi,l(leavei) + waitl + visitl + travelingl,j(leavel))
(5)

Note that replacing pl by pk is feasible if

arrivek ≤ closekr and shiftijk,l ≤ maxStartj − arrivej (6)

3.2 The Time Dependent CSCRoutes (TD CSCR) algorithm

The TD CSCR algorithm extends CSCRoutes in order to handle time dependent travel times
among different locations/POIs. The insertion step (TD CSCR Insert) modifies the insertion
step of CSCRoutes (CSCRoutes Insert) taking into account the time dependency in travel
costs and additionally incorporating a factor of randomness to add diversification in the solution
search. Apart from the insertion step another local search step is also applied, namely a Replace
step. In the Replace step a visited POI is replaced by a higher profit POI in order to improve
solution’s quality.

CSCRoutes uses the notion of Cluster Route (CR) defined as follows: Given a route r of a
TOPTW solution, any maximal sub-route in r comprising a sequence of nodes within the same
cluster C is called a Cluster Route (CR) of r associated with cluster C and denoted as CRr

C .
The CSCRoutes algorithm is designed to construct routes that visit each cluster at most once,
i.e. if a cluster C has been visited in a route r it cannot be revisited in the same route and
therefore, for each cluster C there is only one cluster route in any route r associated with C.
The only exception allowed is when the start and the terminal nodes of a route r belong to the
same cluster C ′. In this case, a route r may start and end with nodes of cluster C ′, i.e. C ′ may
be visited twice in the route r and therefore, for a route r there might be two cluster routes
CRr

C′ . The insertion step of CSCRoutes does not allow the insertion of a POI pk in a route r,
if this insertion creates more than one cluster routes CRr

C for some cluster C. Therefore, a POI
cannot be inserted at any position in the route r [11].
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The TD CSCR Insert comprises a modification of CSCRoutes Insert taking into con-
sideration the time dependency of travel times among locations/POIs, while enhancing random-
ization. Given a route r let CRr

f be the first cluster route (starting at sr) in r, and CRr
l be

the last cluster route (ends at tr) in r. Let also clustersIn(r) be a set containing any cluster C
visited in r, and cluster(p) be the cluster containing p. Given a candidate for insertion POI pk
and a route r TD CSCR Insert distinguishes among the following cases:

• cluster(sr) = cluster(tr)

– if clustersIn(r) = {cluster(sr)} then pk can be inserted anywhere in the route.

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) = cluster(sr) then pk can be inserted
in CRr

f and CRr
l

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) 6= cluster(sr) and cluster(pk) /∈
clustersIn(r) then pk can be inserted after every end of a CR except for CRr

l

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) 6= cluster(sr) and cluster(pk) ∈
clustersIn(r) then pk can be inserted anywhere in CRr

cluster(pk)

• cluster(sr) 6= cluster(tr)

– if cluster(pk) = cluster(sr) then pk can be inserted everywhere in CRr
f

– if cluster(pk) = cluster(tr) then pk can be inserted everywhere in CRr
l

– if cluster(pk) ∈ clustersIn(r)\{cluster(sr), cluster(tr)}, then pk can be inserted every-
where in CRr

cluster(p)

– if cluster(pk) /∈ clustersIn(r) then pk can be inserted after the end of any CR in r
except for CRr

l

For each POI pk not included in a route r, the position with the minimum time consumption
(shift) is considered, i.e. the insertion between POIs pi, pj . Then, the POI selected for insertion
is the one with the highest ratio:

ratioijk =
profit2

k

shiftijk
(1 + α · f(shiftijk ,waitij + delayj,next(j))) · rand (7)

where f(x, y) = 1 if x ≤ y and 0 otherwise, and α takes the values of 0, 1
2 and 1, depending on

the number of iterations executed by the algorithm. In particular, for the first 1
3 iterations α

is equal to 0, it increases to 1
2 in the second 1

3 iterations and becomes 1 in the final iterations.
The last factor of the ratio (rand), is a number randomly generated from a specified interval
[1,maxFactor], where maxFactor is a predefined constant. To see the incentive behind (7) notice

that
profit2k
shiftijk

denotes preference for important (i.e. highly profitable) POIs associated with rela-

tively small insertion cost, while function f takes the value of 1 when shiftijk ≤ waitj + delayj ,
i.e. the cost of inserting k between i and j is less than the waiting time plus the delay time at j
and, therefore, k’s insertion does not affect the arrival time at the node following j. In the first
iterations (α = 0) the algorithm gives preference to the insertion of POIs with high profit and
relatively small insertion cost while in the last iterations (α = 1) favors insertion of POIs that
not only have high profit and relatively small insertion cost but also best take advantage of any
left unexploited time (i.e. waiting and delays) remaining throughout the routes. Furthermore,
the randomization factor of the ratio, makes the search of the solution space more effective, not
allowing the solution to get trapped in the same local optimum over and over again and thus
more diversity is obtained. Among all candidate POIs, TD CSCR algorithm selects for insertion
the one associated with the highest ratio.
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Another feature of the TD CSCR algorithm’s insertion step (TD CSCR Insert) is that it
gives preference to the insertion of POIs that belong to high “quality” clusters i.e. to clusters
having several “high” profit POIs not yet included into a route. This is done by using for each
-candidate for insertion- POI pk a modified value of its profit in the calculation of ratiokij . We
first define the notion of the “quality” of a cluster. Let PROFIT be the highest profit of a POI
in P . We say that a cluster has i-quality if it has at least i POIs (not yet inserted in a route)
each with profit at least (i− 1) ∗PROFIT/10 + 1. Then, the quality of a cluster C is defined as
the maximum i such that C has i-quality. The i-quality metric has been inspired by the h-index,
which measures the productivity and impact of the published work of a scientist or scholar. To
illustrate, if PROFIT = 100 then a cluster C has 2-quality if it has at least 2 POIs with profit in
the range [11,100] while it has 5-quality if it has at least 5 POIs with profit in the range [41,100].
If C does not include at least 6 POIs with profit in the range [51,100] then the quality of C is 5.
The profit profitk of a POI k is modified according to the quality of the cluster it belongs to by
as follows: If the quality of the cluster is i then the value of the profit of k is considered to be
equal to (1 + 0, 02 · i)·profitk. This new value is used for the calculation of the ratiokij .

Once a POI pk is inserted between pi and pj in a route r, the variable values of all POIs in
r need to be updated. The variables of pk are updated as follows:

arrivek = leavei + travelingi,k(leavei)

waitik = max(0, openkr − arrivek)
startk = arrivek + waitik
leavek = arrivek + waitik + visitk
maxStartk = min(closekr,max{t : t+ travelingk,j(t) ≤ maxStartj} − visitk)

Note that for each POI after pk, the variables arrive, wait, start and leave should be updated in
a similar way with pk while variable maxStart remains unchanged. For each POI pl before pk
the value of maxStartl is the only one that should be updated, recursively computed as follows:

maxStartl = min(closelr,max{t : t+ travelingl,next(l)(t) ≤ maxStartnext(l)} − visitl) (8)

The pseudocode of TD CSCR Insert is given below (Algorithm 3).
The TD CSCR algorithm iteratively applies the insertion step followed by another local

search step namely, the Replace step. The Replace is also applied with a given probability
(probReplace) within the first local search procedure (with the insert neighborhood) to add diver-
sification and further increase the solution’s profit. The replace step tries to improve a solution’s
profit by replacing an included POI v by another non-included POI u. The pair of POIs (u,v)
selected will have the highest possible difference in the profit (profitu − profitv), while the re-
placement must not violate the time window as well as the cluster route constraints. Taking into
account the cluster route constraints, a non-included POI cannot replace any POI included in
the solution. For each non-included POI pk and a route r of the solution, let replacableSet(pk, r)
be the set of nodes visited in r that can be replaced by pk without violating the cluster route
constraints. Then the set replacableSet(pk, r) is constructed by distinguishing among cases de-
pending on whether or not the cluster of pk belongs to the set clustersIn(r) as follows:

• if cluster(pk) /∈ clustersIn(r), then replacableSet(pk, r) consists of the first node of each
cluster route in r apart from CRr

f , and the last node of each cluster route in r apart from
CRr

l ;

• if cluster(pk) ∈ clustersIn(r)\{cluster(sr), cluster(tr)}, then replacableSet(pk, r) consists of
each node in the cluster route associated with cluster(pk) as well as the node preceding the
start of the cluster route (if it is not sr) and the node following the end of the cluster route
(if it is not tr).

• if cluster(pk)=cluster(sr)6=cluster(tr), then replacableSet(pk, r) consists of each node in
CRr

f except for sr, as well as the node following the end of CRr
f (if it is not tr).
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Algorithm 3 TD CSCR Insert
for each candidate POI pk do

for each route r do
if cluster(sr)= cluster(tr) then

if clustersIn(r)= {cluster(sr)} then
Search all positions in r for the highest ratio

else// clustersIn(r)6= {cluster(sr)}
clusterID←cluster(pk)
if clusterID=cluster(sr) then

Search all positions in CRt
f and CRt

l for the highest ratio

else// clusterID 6=cluster(sr)
if clusterID /∈ clustersIn(r) then

Search all positions in r that are the end of a CR, for the highest ratio
else// clusterID ∈ clustersIn(r)

Search all positions in CRr
clusterID for the highest ratio

end if
end if

end if
else// cluster(sr)6= cluster(tr)

clusterID←cluster(pk)
if clusterID = cluster(sr) then

Search all positions in CRr
f for the highest ratio

else// clusterID 6= cluster(sr)
if clusterID = cluster(tr) then

Search all positions in CRr
l for the highest ratio

else//clusterID 6= cluster(tr)
if clusterID /∈ clustersIn(r) then

Search all positions in r that are the end of a CR, for the highest ratio
else// clusterID ∈ clustersIn(r)

Search all positions in CRr
clusterID for the highest ratio

end if
end if

end if
end if

end for
end for
Insert the POI pl with the highest ratio.
Update the variables of each POI in r and the set of cluster members for each cluster.
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• if cluster(pk)=cluster(tr) 6=cluster(sr), then replacableSet(pk, r) consists of each node in
CRr

l apart from tr and additionally the node preceeding the start of its cluster route (as
long as it is not sr).

• if cluster(pk)=cluster(sr)=cluster(tr) and clustersIn(r) = {cluster(sr)}, replacableSet(pk, r)
consists of each node in r except for the start and the end of the route.

• if cluster(pk)=cluster(sr)=cluster(tr) and clustersIn(r) contains at least two clusters, then
replacableSet(pk, r) consists of each node in CRr

f except for sr, the node following the end
of CRr

f , each node in CRr
l except for tr as well as the node preceeding the start of CRr

l .

The replace step proceeds as follows: First, for each non-inserted POI pk and for each route
r in the current solution the set replacableSet(pk, r) is constructed as described above. Then
for each node v in replacableSet(pk, r), it is checked (using ( 6)) whether replacing v by pk is
feasible. If pk can replace v, it is checked whether the difference between the profits of pk and
v is the maximum found so far. If this is the case, pk and v are stored in variables bestIn and
bestOut respectively. At the end of the replace step the pair of nodes with the highest difference
of profit (bestIn, bestOut) is found and bestIn replaces bestOut. Finally, the variable values
of all POIs in the route r where the replacement is taking place are updated in a similar way
with the update followed in the insertion step. In the sequel the pseudocode of the Replace
(Algorithm 4)is given.

Algorithm 4 Replace
bestDif ← 0
for each non-included POI pk do

for each route r do
construct replacableSet(pk, r)
for each node v ∈ replacableSet(pk, r) do

if it is feasible to replace v by pk then
if profitpk−profitv > bestDif then

bestIn ← pk, bestOut ← v, bestDif ← profitpk−profitv
end if

end if
end for

end for
end for
Replace bestOut by bestIn.
Update the variables of each POI in r containing bestIn and the set of cluster members for each cluster.

At each iteration of the TD CSCR algorithm the insertion step is applied followed by the
replace step until a local optimum is reached. Then the shake step follows to escape from the
local optimum. During the shake step removeNumber consecutive POIs are removed from each
route staring from the position startNumber; if, during the removal process, the route’s terminal
location is reached then the removal continues after the starting location. Note that due to
different route sizes, the values of removeNumber and startNumber are different for each route.
In each route r, after the removal, all POIs following the removed ones are shifted towards the
beginning of the route. Therefore, the variables of each POI in r as well as the cluster members
of each cluster are updated accordingly. Specifically, suppose that the nodes pi+1, pi+2, ...pi+k

are removed from the route r = (sr, ..., pi, pi+1, pi+2, ...pi+k, pj , ..., tr) . Then the variables of pj
are updated as follows:

arrivej = leavei + travelingi,j(leavei)

waitij = max(0, openjr − arrivej)

startj = arrivej + waitij
leavej = arrivej + waitij + visitj
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Note that the value of pj ’s maxStart variable remains unchanged. For each POI after pj , the
variables arrive, wait, start and leave are also updated in a similar way with pj , while maxStart
variable remains unchanged. The value of pi’s maxStart variable is updated as follows:

maxStarti = min(closeir,max{t : t+ travelingi,j(t) ≤ maxStartj} − visiti)

while all other variables of pi remain unchanged. For each POI pl before pi, only the value of
maxStartl variable is updated using equation 8.

Now, consider the case that the removal continues after the terminal location of r i.e., the
nodes pi+1, pi+2, ...pi+k to removed, are located in r in the following way:
r = (sr, pi+l+1, ..., pi+k, pj , ..., pi, pi+1, pi+2, ..., pi+l, tr. Then, the value of pi’s maxStart variable
is set to

maxStarti = min(closeir,max{t : t+ travelingi,tr (t) ≤ etr} − visiti)

while the values of the maxStart variable of the other remaining POIs in r are updated using
equation 8. The other variables of pj are updated as follows:

arrivej = leavesr + travelingsr,j(str)
waitsrj = max(0, openjr − arrivej)
startj = arrivej + waitsrj
leavej = arrivej + waitsrj + visitj

while for each POI after pj , the variables arrive, wait, start and leave are also updated similarly to
pj . In the sequel the pseudocodes of the Shake (Algorithm 5), and the TD CSCR (Algorithm
6) are given.

Algorithm 5 TD CSCR Shake(removeNumber, startNumber)
for each route r in the solution do . route’s starting and ending locations are excluded

if startNumber = 0 or startNumber = r.size then
startNumber ← 1

end if
index ← startNumber mod r.size
removeNumber ← removeNumber mod r.size
for removeNumber times do

if index = r.size then
index ← 1

end if
remove POI at position index from route . first POI is at position 1
index ← index + 1

end for
update the variables of each POI remaining in r and the set of cluster members for each cluster

end for

3.3 The Time Dependent Slack CSCRoutes (TD S`CSCR) algorithm

The TD S`CSCR algorithm modifies the insertion step of TD CSCR i.e., it takes an alter-
native approach for determining the POI pk that will be selected for insertion in a route r.
Specifically, while TD CSCR algorithm’s criterion for selecting the inserted POI in a route is
based on the insertion cost, TD S`CSCR involves a more global criterion taking into considera-
tion the effect of this insertion in the whole route.

The TD S`CSCR uses an additional variable slacki (see Figure 5) defined for each node pi in
a tourist route r as follows:

slacki = maxStarti − arrivei (9)

Note that if the value of slacki is close to 0, it is highly unlikely the insertion of a new POI
between pprev(i) and pi to be feasible.
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Algorithm 6 TD CSCR(numberOfClusters, maxIterations)
run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
while listOfClusterSets is not empty do

remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

repeat
TD CSCR Insert
With probability probReplace apply Replace step

until no insertion could be performed in the Insert step
repeat

Replace
until no replace could be performed in the Replace step
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > min{ currentSolution.sizeOfLargestTour

2
, N
3k
} then

removeNumber ← 1
end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

Figure 5: Illustration of slack’s duration for POI pi

Let p1, p2, . . . , pn′ be the successive POIs of a route r with p1 = sr and pn′ = tr. Let pk
be a candidate POI for insertion between POIs pi and pi+1 of r. The insertion of pk will likely
shift further the arrival time at pj (arrivej), for j = i + 1, . . . , n′. That depends on the waiting
time before the visit of each POI and the time dependent travel time between successive nodes
along the route. Let arrivekj be the new arrival time at POI pj after the insertion of pk, for
j = i + 1, . . . , n′, . The above insertion may shift the latest time the visit at pj can start

(maxStartj) earlier for j = 1, . . . , i. Let maxStartkj be the new latest time the visit at pj can
start after the insertion of pk, for j = 1, . . . , i.

Let also slackk
j = maxStartj−arrivekj , for j = i+1, . . . , n′, and slackk

j = maxStartkj −arrivej ,

for j = 1, . . . , i, be the corresponding values of the “slack” variables. We define the quantity Ai
k

as follows:

Ai
k =

∑i
j=1 slackk

j + slackk +
∑n′

j=i+1 slackk
j

n′ + 1

Note that a large value of Ai
k implies that even after the insertion of pk, there are many
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possibilities left for inserting new POIs along each leg of trip (that is, prior and after visiting
pk).

Then for each POI pk, the maximum possible Ai
k is determined, i.e. the best possible insert

position. Let the maximum value Ai
k over all possible insert positions be Ak. Then, in order

to determine the POI that will be selected for insertion, the slackWeight for each POI pk is
calculated as

slackWeightk = profitk
2 ·Ak · rand

where rand is a number randomly generated in a specified interval, in a similar way with
TD CSCR. The POI with the highest slackWeight is inserted.

The main idea of the above derivations is that for each POI pk and for each possible insert
position (node pi) within a route r we need to calculate Ai

k which involves the updated values of
the maxStart and arrive variables for all POIs along r. This involves a global rather than a local
decision perspective regarding possible insertion positions along the whole route. In order to
develop a fast heuristic, a quick calculation of Ai

k is necessary. We may have a quick calculation
of a good approximation of Ai

k, by making two assumptions, fairly reasonable in practice. The
first one is that the time windows at the POIs are fairly long spanning the most part of the
day and therefore the waiting time (waitj) before visiting each POI pj (j = 1 . . . n′) is typically
zero. This clearly holds for most tourist sites. We also assume that travelingj,j+1(leavej) ≈
travelingj,j+1(leavekj ), j = i+ 1, . . . n′, where leavekj is the new leave time of all nodes following
the newly inserted node pk along the route. The rational behind this approximation is that the
additional delay caused by the new detour for visiting node pk is expected to be relatively short
and so a tourist arrives and then departs from each POI subsequent to the insertion point during
the same part of the day as that before the insertion. As a result, the transit service frequencies
remain unchanged and so the traveling time between two successive nodes on the route can be
considered the same as it was before the insertion. Note that for a particular leg of the route,
walking may be faster than taking a transport means. Due to the unchanged frequencies of
transit services, we also assume that walking is still beneficial if it was before the insertion and
so the traveling time remains the unaffected in that case. Also, although travelingj,j+1 depends
on the departure delay at each POI for getting the next service as well, we have ignored this
factor. Considering that the POIs along a route are selected by the proposed heuristics according
to the preferences of a random user who does not faithfully adhere to the estimated POIs visiting
time, in practice, at each leg of the route after the insertion point,the departure delay may as
well be increased or decreased. For getting a handy approximation of Ai

k, we now assume that
these delay fluctuations are canceling out when summed along the route and thus since the ratio
Ai

k is going to be calculated incrementally from expressions concerning the route before that
insertion, we can disregard these delays.

Thus, we can consider that

arrivekj − arrivej ≈ shift
i(i+1)
k , j = i+ 1 . . . n′

.
and for reasons similar to those mentioned previously, we also consider that

maxStartj −maxStartkj ≈ maxStarti −maxStartki , j = 1 . . . i

In that case, if L slacki =
∑i

j=1 slackj and R slacki =
∑n′

j=i+1 slackj (that is the sum of slack
parameters for the part of the trip from POI p1 up to POI pi and pi+1 up to POI pn, respectively),
as has been estimated in previous global iteration, the new Ai

k for inserting POI pk will be

Ai
k =

L slacki + i · (maxStartki −maxStarti) + slackk +R slacki − (n′ − i) · shift
i(i+1)
k

n′ + 1
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and since L slacki +R slacki =
∑i

j=1 slackj +
∑n′

j=i+1 slackj =
∑n′

j=1 slackj is equal to the sum
of slacks of route r, then by storing this sum in a route’s variable (sumSlack(r)) and updating
this variable after every insertion, replace and shake step, the quantity Ai

k is calculated as

Ai
k =

sumSlack(r) + i · (maxStartki −maxStarti) + slackk − (n′ − i) · shift
i(i+1)
k

n′ + 1

3.4 The Average Travel Times CSCRoutes (AvgCSCR) algorithm

In this subsection we discuss the AvgCSCR algorithm. Similarly to the approach proposed by
Garcia et al. [9], AvgCSCR is based on average travel times to handle time dependent travel
costs among locations and integrate public transportation. For each pair of locations u, v ∈ V
the average travel cost (avTravelu,v) is precalculated using the time dependent traveling costs
with time steps of one minute (24 · 60 = 1440 time steps per day).

avTravelu,v =

7∑
r=1

1439∑
t=0

travelingru,v(t)

7 · 1440

where r represents the day of the week, and travelingru,v(t) is the traveling cost from u to v at

time t on the rth day of the week. Then, for each POI pi in a route r, the values of variables
waiti, starti, leavei and arrivei are determined using the average travel costs among locations,
while the value of maxStarti is calculated as follows:

maxStarti = min(closeir,maxStartnext(i) − avTraveli,next(i) − visiti)

Note that once the average travel times are available, the problem can be solved using
a TOPTW algorithm, thereby removing time dependency. AvgCSCR algorithm invokes the
CSCRoutes TOPTW algorithm modified as follows: (a) a randomization factor is added in the
definition of the variable ratio of the insertion step of the CSCRoutes algorithm to add diversifi-
cation and make the search of the solution space more effective in a way similar to the rand factor
of the TD CSCR Insert algorithm; (b) a replace step is added similar to the replace step of
the TD CSCR algorithm. Certainly, the routes created by this modified CSCRoutes algorithm
will not take into account the real time dependent travel times between successive POIs. For
this reason, AvgCSCR applies the following update procedure upon the TOPTW solution, to
update the travel costs appropriately:

1. For each route r = p1, p2, . . . , pl, starting from the pair (p1, p2) and for each following
pair (pi, pi+1) in r, i = 2, . . . , l− 1, the time dependent travel time travelingri,i+1(leavei) is
calculated using the set of non-dominated pairs Spipi+1

.

2. If the time dependent travel time from pi to pj is shorter than the average one, then the
visit at pj starts earlier. In the opposite case, the visit at pj (and, most probably, at some
nodes following pj) starts later. In both cases the variables of each POI in r are updated
appropriately. Note that the above steps may violate the feasibility of one or more visits
along a route r; in such case, the whole route r becomes infeasible.

3. In the case that one or more routes are infeasible, the following repair step is applied: While
a route r is infeasible, the first, according to the visiting order, POI pk in r with starting
time (calculated based on the time dependent travel costs) greater than the starting time
(calculated based on the average travel cost) is removed from r; the POIs following pk in r
are time shifted backwards and their arrival times are then updated. If pk coincides with
the end of the route, then the previous POI is removed.
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4. At this point of the procedure, all routes in the solution are feasible, but there might exist
“gaps” between POIs, allowing possible insertions of new POIs along the routes. Since
the routes are almost “full”, it seems that a good criterion for an insertion is to insert the
highest profit POI in a position with the least shift (calculated based on the time dependent
travel times). Thus, the last step of the procedure is the following: Sort the POIs that do
not belong to the routes of the solution in descending order of profit. Let L be the sorted
list of POIs. Starting from the highest profit POI pi and until the list L is empty do the
following: if there exists one or more feasible insert position for pi find one with the lowest
shift over all routes and insert pi; delete pi from L and repeat.

4 Handling Arbitrary Start/Terminal Locations in the Tourist
Trip Design Problem

By solving the TTDP we expect to derive k routes with a specified allowed length, that maximize
the overall collected profit. Each route may start and end at the tourist’s accommodation
location, or alternatively, at different user-defined starting and ending locations. TTDP may
be formulated and solved as a TDTOPTW, where the POIs as well as the route starting and
ending locations are formulated as nodes of the graph G (see Section 3). In the sequel, we
consider also the case where the starting and the ending locations of a route may be any location
in the destination city, i.e., they are both determined at runtime. This is in accordance with
the typical envisaged usage scenario, whereby the TTDP solver will be queried by a mobile
client; the tourist’s starting location will be typically fixed to his current position and the ending
location will be also defined arbitrarily by the user at query time. Clearly, the formulation
of the TDTOPTW problem using precalculated travel costs among a fixed set of predefined
locations/nodes (e.g. POIs and hotels) cannot support the above described dynamic usage
scenario. Therefore, the dynamic setting of the TTDP cannot be solved by the TDTOPTW
algorithms presented in Section 3, and we need to further elaborate on an approach for its
solution.

In the sequel we present an algorithm for handling the previously described TTDP scenario.
The algorithm comprises a preprocessing phase and an on-line phase. The preprocessing phase
comprises the following steps: First the global k-means clustering algorithm is applied on the
set of POIs of the destination city and a set of clusters of POIs is constructed. Then the city
is partitioned into small square regions (e.g. 500m × 500m), covering the whole geographical
area where POIs are located in. Within each region Ri a central location is chosen as the
location that represents Ri, called region representative repi. Consider the complete directed
graph G = (V,E), where V consists of all the POIs and all region representatives. Then for each
pair of locations (i, j) in V , the set Sij of non-dominated pairs of departure and travel times is
calculated (see Subsection 3.1). Finally, for each representative repi of a region i, consider that
repi belongs to the nearest cluster based on the geometric distance of the mean of the POIs (i.e.
centroid) of the cluster.

In the on-line phase of the algorithm, we assume that we are given a set of pairs (si, ti),
i = 1, .., k, denoting the starting and terminal locations of the ith route, and a set of pairs
(sti, eti), i = 1, .., k, denoting the starting and ending times of the ith route. Then, the on-line
phase of the algorithm proceeds as follows:

1. For each route ri, i = 1, ..,m, (i) find the representatives s′i and t′i of the regions where si
and ti belong to. (ii) Compute the walking distances ds = dist(si, s

′
i) and dt = dist(ti, t

′
i)

and the walking travel times tds
and tdt

respectively. Note that due to the small size of the
regions, it is fairly fast to compute the walking distances and also walking is highly likely
to be faster than public transportation. (iii) Set st′i = sti + tds

and et′i = eti − tdt
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2. Execute the TD CSCR algorithm with input the new attributes s′i, t
′
i, st

′
i, et

′
i, for i =

1, . . . , k.

3. For each route ri = (s′i, bi = pi1, pi2, . . . , pik = li, t
′
i) obtained by TD CSCR, replace s′i by

si, st
′
i by sti, t

′
i by ti and et′i by eti. In the case that the actual travel time from si to bi is

shorter than the walking time from si to s′i plus the traveling time from s′i to bi, the visit
to bi may start earlier. Therefore, the calculation of the actual travel time from si to bi
has to be performed followed by an update of the arrival, wait, start and leave variables
of all nodes apart from the arrival at ti. Also, the actual travel time from li to ti may
be shorter than the traveling time from li to t′i plus the walking time from t′i to ti. Then
an appropriate subset of Sliti has to be calculated containing the non-dominated pairs

(depliti
j , travliti

j ) with depliti
j ≥ leaveli and depliti

j +travli,ti
j ≤ eti. Then, the arrival time

at ti is calculated using Sliti and the maxStart variables of each POI in ri are appropriately
updated.

4. Note that after step 3, time “gaps” may appear between POIs along ri. To fill these gaps
and improve solution’s quality, another step is applied as follows: Sort the POIs that do
not belong to any route ri, i = 1, .., k, in descending order of profit. Let L be the sorted
list of POIs. Starting from the highest profit POI uj and until the list L is empty do
the following: if there exists one or more feasible insert position for uj in any route ri,
i = 1, ..., k between POIs bi and li find the one with the lowest shift over all routes and
insert uj ; delete uj from L and repeat.

The pseudo code of the algorithm for solving the TTDP (handling arbitrary start/terminal
locations) follows (Algorithm 7).

Algorithm 7 TTDP Algorithm

Preprocessing Phase
Cluster the POIs using global k-means
Partition the city into square regions. For each region Ri, choose a representative repi. Consider as locations
the representatives of the regions and the POIs
For each region representative repi consider that repi belongs to the nearest cluster
Calculate the time dependent travel times between all locations

On− line Phase
for each pair si, ti do

Find the representatives of si and ti, s
′
i and t′i, respectively.

Compute the walking distances ds = d(si, s
′
i) and dt = d(ti, t

′
i)

set st′i = sti + tds
set et′i = eti − tdt

end for
Execute the TD CSCR with the new attributes (s′i, t

′
i, st
′
i, et
′
i), i = 1, . . . , k

for each route ri, ri = (s′i, bi = pi1, pi2, . . . , pik = li, t
′
i) obtained by TD CSCR do

Replace s′i by si, st
′
i by sti, t

′
i by ti and et′i by eti

Compute the actual travel time from si to bi
Update the arrival, wait, start and leave times of each node in ri except for ti
Calculate the appropriate subset of Sliti
Update the arrival time of ti and the maxStart value of all nodes in ri

end for
Sort the POIs that do not belong to any route ri, i = 1, .., k, in descending order of profit; let u1, ..., um be the
sorted list
for j = 1 to m do

if there exists one (or more) feasible insert position for uj in any route ri, i = 1, ..., k between bi and li
then

Find the position with the lowest shift over all routes and insert uj

end if
end for
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A typical solution to the TTDP is illustrated in Figure 6. The tourist destination area is
partitioned in nine square regions and a central location (representative) is calculated for each
region (indicated by green circles). The start/end locations of the route (s1 and t1, respectively)
are determined at the user query time and are indicated by the black squares. The representatives
s′1 (of the area where s1 belongs to) and t′1 (of the area where t1 belongs to) are visited in the
beginning and in the end of the trip, respectively. POIs p11, p12, p13 and p14 are visited in
between. Solid and dashed lines denote walking and transit transfers, respectively.

Figure 6: Illustration of a solution to the TTDP.

5 Experimental Results

5.1 Test Instances

While several datasets exist for testing (T)OP(TW) problems, this is not the case for their time-
dependent counterparts. To some extent, this is because only a limited body of literature focuses
on the time dependent variants of OP; most importantly though, it is due to the difficulty in
producing realistic synthetic multimodal timetabled data (respecting the FIFO property and the
triangular inequality, among others). Hence, relevant algorithmic solutions should unavoidably
be tested upon real transit network data (for instance, Garcia et al. [9] used timetabled data of
the San Sebastian bus network, provided by the local transportation authority), to validate their
solutions. Fortunately, the wider adoption of the GTFS 1 (General Transit Feed Specification)
standard, used by major transportation authorities worldwide to describe and publish their
timetabled data, has made access to such data easier than in the past.

In our experiments, we have used the GTFS data of the transit network deployed on the
metropolitan area of Athens, Greece, provided by the OASA (Athens Urban Transport Organi-
zation). The network comprises 3 subway lines, 3 tram lines and 287 bus lines, 7 825 transit stops,
26 192 trips and 1 003 188 daily departure events; in the time-dependent route model graph [20]
this results in 29 055 vertices and 63 424 arcs. The walking network consists of 287 003 vertices
and 685 850 arcs. For our purposes, we require to know pairwise fastest routes between POIs, for
all departure times of the day. Using the method of Dibbelt et al. [4], we compute offline pairwise
full (24h range) multimodal time-dependent travel time profiles. Namely, for each pair of POIs
we compute Suv, which contains all the non-dominated pairs (depuv

i , travuv
i ), i = 1, 2, . . . , |Suv|,

in ascending order of depuv
i , where depuv

i is a departure time and travuv
i is the corresponding

1https://developers.google.com/transit/gtfs/reference
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travel time of a service of public transport connecting u and v. We also maintain the walking
time among u and v, provided that this is shorter than using the transit network at any depar-
ture time within the day (otherwise, walking time is set to infinite). The overall shortest time
dependent travel time information is pre-calculated and stored in a three-dimensional array of
size N × N × 1440, where N is the number of specified locations/POIs and 1440(= 24 × 60)
the time steps/minutes per day. This memory structure (of size 3.5 GB in our implementation)
ensures instant access to time dependent travel times, given a specified pair of POIs (u, v), upon
receiving a user query.

The POIs dataset used in our experiments features 113 sites (museums and art galleries,
archaeological sites, monuments & landmarks, streets & squares, neighbourhoods, churches &
religious heritage, parks) mostly situated around Athens downtown and Piraeus areas (see Figure
7a). The POIs have been compiled from various tourist portals 2 and web services offering open
APIs 3. Profits have been set in a 1-100 scale and visiting times vary from 1 minute (e.g. for some
outdoor statues) to 2 hours (e.g. for some do-not-miss museums and wide-area archaeological
sites). The POIs have been grouped in

⌊
N
10

⌋
= 11 disjoint clusters.

The above described POIs dataset has been used to generate 20 different ‘topologies’. The
real POIs coordinates have been maintained in all cases (in order to maintain the utility of
the realistic time dependent travel times calculated offline); however, their respective profits,
visiting times and opening hours (i.e. time windows) have been randomized. The incentive of
the randomization has been to ensure a fair validation of the evaluated algorithms mitigating the
potential bias of individual topologies. In particular, on each topology we consider three equal
subsets of POIs: (a) admission-free POIs (e.g. squares, parks, statuses, etc, with 24x7 opening
hours) with relatively low profits and short visiting times, (b) do-no-miss POIs (major museums,
archaeological sites and neighbourhoods), with large profit values and long visiting times, daily
open 9am-5pm, (c) relatively less-important visitable sites, open 9am-5pm on working days and
closed on weekends with moderate profit values and visiting times.

Our algorithms have been tested using 100 different ‘user preference’ inputs, each applied
to all the 20 abovementioned topologies. Each ‘preference’ input is associated with a different
start/end location, corresponding to a potential accommodation (hotel) option. In particular,
we have used a set of 100 hotels scattered around the city, but mostly situated nearby POIs (see
Figure 7b). Furthermore, for each ‘preference’ input (a) a POI is disregarded on all routes with
a 10% probability (this ‘simulates’ preferences provided by real visitors, such as no interest on
religious sites, which enables the algorithms to disregard a subset of available POIs), and (b) each
of the remaining POIs is removed from a specific route with a 10% probability (this caters for
the possibility of unsuitable weather conditions; for instance, a TTDP solver should disqualify
a visit to an open-air POI in a rainy day 4). The total time budget available for sightseeing in
daily basis (Br) has been set to 5 hours (10:00-15:00) in all experiments.

All test instances-related files are accessible from: http://dgavalas.ct.aegean.gr/public/
tdtoptw_instances/index.html.. Further, a prototyped web-based TTDP solver is accessible
from: http://ecompass.aegean.gr/

5.2 Results

We have implemented the following five algorithms: (a) TD CSCR (see Section 3.2), (b)
TD S`CSCR (see Section 3.3), (c) Time Dependent ILS (TD ILS - in effect, this is an extension
of the standard ILS TOPTW algorithm [27], wherein we take into account time dependent,
rather than constant, travel times in the insertion of nodes into routes), (d) AvgCSCR (see
Section 3.4), and (e) Average ILS (AvgILS).

2http://www.tripadvisor.com/, http://index.pois.gr/
3https://developers.google.com/places/documentation/
4Weather forecast information may be easily retrieved from freely available web services like Yahoo Weather

(http://weather.yahoo.com/) and fed into the TTDP solver.
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(a) (b)

Figure 7: (a) POIs locations and (b) hotels locations, in the Athens metropolitan area.

The AvgILS refers to the average travel time approach proposed by Garcia et al. [9], wherein
the standard ILS algorithm [27] is used to construct routes based on pre-computed average travel
times. AvgILS exercises a repair procedure, introducing the real travel times between the POIs
of the final TOPTW solution. If this causes a visit to become infeasible, the latter is removed
from the route and the remainder of the route is shifted forward. AvgCSCR employs a similar
repair step and then a ‘gap filling’ step (see steps No 3 and 4 in Section 3.4); the latter inserts
new POIs into the routes, if feasible, thereby further improving the solution’s quality.

Note that in both AvgCSCR and AvgILS, the travel times to move from one location to an-
other are constant (average values of time-dependent transfer times, where both algorithms aver-
age 24x60 transfer times). The implementation of AvgCSCR and AvgILS is based on CSCRoutes
and ILS, respectively (the two best known TOPTW algorithms for TTDP applications [11]),
further implementing repair steps. Due to considering constant travel times, these algorithms
practically reduce TDTOPTW to TOPTW, wherein AvgCSCR degenerates to CSCRoutes and
AvgILS degenerates to ILS.

All algorithms have been employed upon all different topologies and user preferences as
described in the previous subsection, deriving k daily personalized routes, k = 1..4, each for
every day of stay at the destination. Since all our proposed algorithms are randomized, they
have been executed 5 times on each topology. For all our algorithms, the maximum value of
the number randomly generated in the insert step equals to 1.1, while the value of probReplace
equals to 0.05. Further, we have considered all 100 available hotels as possible start/end locations
for each route. That accounts for 20 · 5 · 100 = 10, 000 execution runs for our algorithms. On the
other hand, TD ILS and AvgILS, being deterministic, have had 20 · 100 = 2, 000 runs. Figure 8
illustrates a typical tourist route visualized on a map.

Note that all algorithms have been programmed in C++ and executed on a PC Intel Core i5,
clocked at 2.80GHz, with 4GB RAM. Table 1 demonstrates the experimental results compiled for
the five implemented algorithms when employing the standard profit criterion, i.e. we consider
as best-found solution the one with the highest aggregate profit. The table includes results
averaged over the number of execution runs indicated in the previous subsection (hence, the
decimal numbers), for 1-4 daily tourist routes. The results shown are the overall collected profit
(over all routes), the total number of POIs (over all routes), and the execution time (in msec).
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Figure 8: Illustration of a tourist route starting/ending at a hotel; solid lines indicate walking
transfers while dashed lines indicate public transit transfers.

High quality solutions are those featuring high aggregate profit, derived in short execution time.
Note that the maximization of POI visits has not been an optimization criterion and is not
considered to be a quality indicator. In addition to the absolute profit/time values, Table 1 also
illustrates normalized performance values assigning a value 100 to AvgILS (which serves as a
reference point) and adapting the rest accordingly (this allows illustrating relative performance
gaps among tested algorithms). Performance values shown in bold designate the best performing
algorithm with respect to each performance parameter.

Table 1: Experimental results when employing the standard profit criterion.
Algorithm 1 routes 2 routes

profit (gap %) POIs time (gap %) profit (gap %) POIs time (gap %)
AvgILS 298.53 (100.00) 3.80 16.32 (100.00) 561.92 (100.00) 7.87 60.86 (100.00)
TD ILS 326.28 (109.30) 4.14 21.90 (134.22) 641.39 (114.14) 8.98 85.45 (140.40)

AvgCSCR 332.01 (111.21) 4.86 32.05 (196.45) 643.25 (114.47) 9.78 66.10 (108.61)
TDS`CSCR 342.06 (114.58) 5.85 46.97 (287.89) 657.88 (117.08) 11.57 109.08 (179.24)
TD CSCR 337.78 (113.15) 4.94 38.69 (237.15) 654.30 (116.44) 9.87 85.04 (139.74)

3 routes 4 routes
AvgILS 819.73 (100.00) 12.27 149.91 (100.00) 1078.68 (100.00) 16.53 264.18 (100.00)
TD ILS 939.84 (114.65) 13.93 217.16 (144.86) 1219.23 (113.03) 18.77 383.27 (145.08)

AvgCSCR 933.73 (113.91) 14.54 119.87 (79.96) 1209.30 (112.11) 19.14 195.64 (74.06)
TDS`CSCR 946.50 (115.46) 16.96 198.82 (132.63) 1219.05 (113.01) 22.15 323.92 (122.61)
TD CSCR 948.09 (115.66) 14.60 158.06 (105.44) 1225.51 (113.61) 19.26 260.06 (98.44)

As a general remark applied to all algorithms, the increase of the overall collected profit
with the increase of the number of routes is sublinear, since the average POI profits is higher
when considering low numbers of routes (i.e. for short stays, tourists tend to visit the do-not-
miss POIs). Furthermore, all implemented algorithms perform remarkably well with respect to
execution time since they derive solutions in less than 0.5 sec in all cases (considering topologies
of 113 POIs and up to four routes).

As expected, the algorithms working with average travel times (i.e. AvgCSCR and AvgILS)
execute considerably faster than their time dependent counterparts (up to 45% gap among
AvgILS and TD ILS, up to 91% gap among AvgCSCR and TD CSCR / TD S`CSCR) at the ex-
pense of lower quality solutions (up to 14% gap among TD ILS and AvgILS and up to 3,4% gap
among TD CSCR / TD S`CSCR and AvgCSCR). This is because AvgCSCR and AvgILS disre-
gard time dependency on the insertion decision. Hence they derive TOPTW solutions which are
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only improved to a limited extend by the repair procedure. On the other hand, they use smaller
memory structures to hold travel time information (i.e., the required travel times are retrieved
more efficiently), hence they execute faster. Nevertheless, we argue that the results obtained by
AvgCSCR and AvgILS could be worse when considering either less frequent transit services or
timetables where transit frequencies changes considerably along the day (e.g. frequent services
in peak hours and infrequent services in off-peak hours) or even when considering tourist visits
in off-peak hours (e.g. afternoon to night time budgets). In such scenarios, using the average
travel time would not serve as a good approximation.

The AvgCSCR derives solutions of considerably higher quality than the AvgILS (≥ 11.21%).
This is mainly due to the advantages of the modified CSCRoutes algorithm over ILS (because of
the clustering phase, the randomization introduced, and the replace step) as well as the extra ‘gap
filling’ step applied by AvgCSCR, which considerably improves the quality of its solutions and
corrects potential suboptimal node insertion decisions made during the main execution (insertion)
phase. As regards the TDTOPTW algorithms, TD CSCR and TD S`CSCR maintain a clear lead
over TD ILS. The performance gap is higher for smaller number of routes (=1 or 2) and becomes
as high as 5.28% among TD S`CSCR and TD ILS for a single tour. This is because our proposed
algorithms prove more effective in escaping local optima, as a result of the randomized insertion
step. Apart from the randomization, the replace step, iteratively applied when insert step can no
more be applied, improves the solution’s quality significantly. Furthermore, due to the RouteInit
phase our algorithms consider visits to relatively distant clusters. On the other hand, ILS is
commonly trapped in isolated areas with few high profit nodes, failing to explore remote areas
with considerable numbers of fairly profited candidate nodes. When considering higher number
of daily routes (=3 or 4), all algorithms tend to include all important (i.e. high profit) POIs,
hence, differences on the overall profit are smoothed out. Interestingly, TD S`CSCR marginally
prevails over TD CSCR for small number of routes. This is due to the fact that POI insertions
increasingly reduce the waiting time of each POI in comparison to the case of higher number of
routes. Thus, an accidental local insert step of TD CSCR will affect other parts along the route
since the relatively short waiting time cannot absorb the extra cost resulting by the inserted POI.
In contrast, TD S`CSCR fares better in this case since its insert step is based on a criterion that
takes into account the impact of a new insertion on all parts of the route. In contrast, TD CSCR
marginally prevails for in the case of larger number of routes.

The AvgILS executes a lot faster than the AvgCSCR for small number of routes while the gap
reverses for larger number of routes (when the execution time becomes more noticeable to the
user). This is explained by the fact that for each solution improvement ILS employs a maximum
of 150 extra iterations while CSCRoutes employs additional 400

|listOfClusterSets| ·
k+1
2·k steps, where

k denotes the number of routes. Clearly, this favors ILS for small number of routes wherein the
number of solutions improvements is low as opposed to scenarios considering higher number of
routes.

Table 2 compares our three proposed algorithms against their non-cluster-based counterparts.
The table clearly demonstrates a trade-off among solution quality end execution efficiency. This
is mainly attributed to the focal design objective of the cluster-based approaches to prioritize the
insertion of successive nodes which belong to the same cluster. This evidently reduces the search
space, hence the execution time. This gain comes at the expense of solutions quality as those
approaches are not left free to consider candidate nodes irrespective of their cluster association.
However, our cluster-based algorithms are most preferable since they achieve time savings up to
30%, while their solutions quality is only compromised up to 0.16%.

Table 3 compares TD CSCR and TD S`CSCR algorithms against their counterparts which
do not incorporate the i-quality metric of each cluster at their insertion step (recall that the
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Table 2: Comparison of cluster-based vs. non-cluster-based approaches.
Algorithm 1 routes 2 routes

profit (gap %) time (gap %) profit (gap %) time (gap %)
AvgCSCR nonclust 332.43 (100.00) 35.73 (100.00) 644.11 (100.00) 75.28 (100.00)

AvgCSCR 332.01 (99.87) 32.05 (89.70) 643.25 (99.87) 66.10 (87.81)
TDS`CSCR nonclust 342.50 (100.00) 66.69 (100.00) 658.54 (100.00) 155.30 (100.00)

TDS`CSCR 342.06 (99.87) 46.97 (70.43) 657.88 (99.90) 109.08 (70.24)
TD CSCR nonclust 338.30 (100.00) 46.25 (100.00) 655.09 (100.00) 102.39 (100.00)

TD CSCR 337.78 (99.85) 38.69 (83.65) 654.30 (99.88) 85.04 (83.05)

3 routes 4 routes
AvgCSCR nonclust 934.48 (100.00) 137.41 (100.00) 1210.56 (100.00) 223.64 (100.00)

AvgCSCR 933.73 (99.92) 119.87 (87.24) 1209.30 (99.90) 195.64 (87.48)
TDS`CSCR nonclust 947.49 (100.00) 286.13 (100.00) 1220.19 (100.00) 463.10 (100.00)

TDS`CSCR 946.50 (99.90) 198.82 (69.49) 1219.05 (99.91) 323.92 (69.95)
TD CSCR nonclust 949.09 (100.00) 193.09 (100.00) 1226.55 (100.00) 319.88 (100.00)

TD CSCR 948.09 (99.89) 158.06 (81.86) 1225.51 (99.92) 260.06 (81.30)

Table 3: Improvement from including the i-quality metric
Algorithm 1 route 2 routes 3 routes 4 routes

profit (gap %) profit (gap %) profit (gap %) profit (gap %)
TDS`CSCR no quality 341.07 (100.00) 657.37 (100.00) 946.08 (100.00) 1218.16 (100.00)

TDS`CSCR 342.06 (100.29) 657.88 (100.08) 946.50 (100.04) 1219.05 (100.07)
TD CSCR no quality 336.67 (100.00) 654.17 (100.00) 947.00 (100.00) 1223.11 (100.00)

TD CSCR 337.78 (100.32) 654.30 (100.02) 948.09 (100.12) 1225.51 (100.20)

i-quality metric favors the insertion of POIs which belong to clusters with several high-profit
POIs, not yet included into a route). Although the table reports only marginal improvement
in the case of using the i-quality metric, this is mostly due to the particular characteristics of
the utilized datasets. In particular, the POI clusters of the metropolitan area of Athens are
crowded in a relatively restricted geographical area, which allows to easily accessing (by foot or
public transit) the most highly profitable POIs one after the other, irrespective of their cluster
assignment. This results in deriving almost identical solutions when not incorporating the i-
quality metric, especially for relatively short time budgets. The effect of the i-quality metric is
expected to become more evident in scenarios featuring relatively distant clusters and prolonged
time budgets.

Table 4: Comparison of results for profit vs. walk motivation insertion criterion.
Algorithm 1 routes 2 routes

profit (gap %) trans (gap %) profit (gap %) trans (gap %)
TD CSCR 337.78 (100.00) 1.92 (100.00) 654.30 (100.00) 3.77 (100.00)

TD CSCR walk motiv 330.47 (97.84) 0.76 (39.67) 642.79 (98.24) 1.83 (48.67)
TDS`CSCR 342.06 (100.00) 1.80 (100.00) 657.88 (100.00) 3.63 (100.00)

TDS`CSCR walk motiv 334.39 (97.76) 0.58 (32.34) 647.74 (98.46) 1.40 (38.57)

3 routes 4 routes
TD CSCR 948.09 (100.00) 5.55 (100.00) 1225.51 (100.00) 7.35 (100.00)

TD CSCR walk motiv 933.44 (98.46) 2.98 (53.61) 1208.80 (98.64) 4.17 (56.72)
TDS`CSCR 946.50 (100.00) 5.44 (100.00) 1219.05 (100.00) 7.27 (100.00)

TDS`CSCR walk motiv 932.63 (98.53) 2.24 (41.07) 1201.71 (98.58) 3.07 (42.28)

In the sequel we present experimental results compiled for our TDTOPTW algorithms, using
an alternative criterion for selecting the best found solution. Specifically, instead of selecting the
solution with the highest aggregate profit over all routes, we select as best found solution the one
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combining high profit along with a small number of transit transfers occuring along all routes,
favoring the insertion of POIs within walking distance from their preceding and following POIs.
Namely, we select the solution that maximizes profit(2 + 1

transit +1 ), where profit equals to the
aggregate profit over all routes and transit refers to the overall transit transfers occurring along
all routes.

The results (see Table 4) indicate a clear tradeoff between profit and number of transit
transfers. In particular, since profit is not the sole criterion used for picking the best solution,
the overall profit is reduced (up to 2,24%) compared to the results corresponding to the profit
criterion. On the other hand, the incorporation of the occurring transit transfers into the criterion
for finding best solutions has considerably reduced the overall number of transit transfers along
the derived routes (typically, each route features one transit transfer less than in the previous
result sets).

Interestingly, higher gap on transit transfers is achieved when applying the walk motivation
to TD S`CSCR. This is due to the objective of TD S`CSCR to maximize the available time
between successive visits for selecting slower transportation modes, such as walking. Thus, when
motivating walks, TD S`CSCR considerably reduces the transit transfers in favor of walking.

6 Conclusions

We introduced TD CSCR and TD S`CSCR, two new cluster-based heuristics for solving the
TDTOPTW. To the best of our knowledge, these are the first TDTOPTW approaches making
no assumption on the periodicity of transit services. The main design objectives of the two
algorithms are to derive high quality TDTOPTW solutions (maximizing tourist satisfaction),
while minimizing the number of transit transfers and executing fast enough to support online
web and mobile applications. We have also proposed extensions on our TTDP algorithms to
handle arbitrary (i.e. determined at query time) rather than fixed start/end locations for tourist
itineraries. Our algorithmic solutions have been tested on realstic datasets compiled from the
metropolitan area of Athens, Greece.

With respect to the overall collected profit, TD CSCR has been shown to perform marginally
better for large number of routes, while TD S`CSCR prevails for small number of routes. Both
our proposed TDTOPTW algorithms clearly outperform the time dependent extension of best
known TOPTW algorithm, suitable for online applications. In scenarios comprising very large
datasets, AvgCSCR could be the most suitable choice as it efficiently derives solutions of rea-
sonably good quality (this conclusion agrees with that reported in [9], wherein a TDTOPTW
algorithm has been evaluated against AvgILS). Nevertheless, its suitability largely depends on
the high frequency of public transit services, so that average travel times represent a good guess.
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