
Efficient Heuristics for the Time Dependent

Team Orienteering Problem with Time

Windows?

Damianos Gavalas1,6, Charalampos Konstantopoulos2,6, Konstantinos
Mastakas3,6, Grammati Pantziou4,6, and Nikolaos Vathis5,6

1 Department of Cultural Technology and Communication, University of the Aegean,
Mytilene, Greece, dgavalas@aegean.gr

2 Department of Informatics, University of Piraeus, Piraeus, Greece,
konstant@unipi.gr

3 Department of Mathematics, University of Athens, Athens, Greece,
kmast@math.uoa.gr

4 Department of Informatics, Technological Educational Institution of Athens,
Athens, Greece, pantziou@teiath.gr

5 School of Electrical and Computer Engineering, National Technical University of
Athens, Athens, Greece, nvathis@softlab.ntua.gr

6 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece

Abstract. The Time Dependent Team Orienteering Problem with Time
Windows (TDTOPTW) can be used to model several real life problems.
Among them, the route planning problem for tourists interested in visit-
ing multiple points of interest (POIs) using public transport. The main
objective of this problem is to select POIs that match tourist prefer-
ences, while taking into account a multitude of parameters and con-
straints and respecting the time available for sightseeing in a daily basis.
TDTOPTW is NP-hard while almost the whole body of the related lit-
erature addresses the non time dependent version of the problem. The
only TDTOPTW heuristic proposed so far is based on the assumption of
periodic service schedules. Herein, we propose two efficient cluster-based
heuristics for the TDTOPTW which yield high quality solutions, take
into account time dependency in calculating travel times between POIs
and make no assumption on periodic service schedules. The validation
scenario for our prototyped algorithms included the metropolitan transit
network and real POI sets compiled from Athens (Greece).

1 Introduction

The aim of the Team Orienteering Problem with Time Windows (TOPTW) is to
maximize the total profit collected by visiting a set of locations, each of which has
a profit, a service time and a time window. The number of routes is limited, and
each location can be visited at most once. The TOPTW has numerous real-life

? This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart
Cities and Sustainability), under grant agreement no. 288094 (project eCOMPASS).

applications. In this paper, we consider the route planning application for tourists
interested in visiting multiple POIs. The main objective is to select POIs that
match tourist preferences, while taking into account a multitude of parameters
and constraints (distances among POIs, visiting time required for each POI,
POIs’ opening hours) and respecting the time available for sightseeing in a daily
basis. The problem is further complicated when considering the complexity of
metropolitan transit networks commonly used by tourists to move from a POI
to another. In this case, the tourist route planning problem can be modeled
as a TDTOPTW. To our knowledge, the first TDTOPTW heuristic has been
recently proposed by Garcia et al. [1]. However, the proposed algorithm is based
on the simplified assumption of periodic service schedules which clearly, is not
valid in realistic transportation networks, wherein arrival/departure frequencies
typically vary within the services operational periods.

Herein, we propose two novel heuristic approaches, the Time Dependent
CSCRoutes (TDCSCRoutes) and the SlackCSCRoutes, which address the above
described shortcoming of the existing approach to TDTOPTW. The main in-
centive behind our approaches is to motivate visits to topology areas featuring
high density of highly profitable candidate POIs, while taking into account time
dependency (i.e. multimodality) in calculating travel times from one POI to an-
other; the aim is to derive high quality routes (i.e. maximizing the total collected
profit) while not sacrificing the time efficiency required for online applications.
Our prototyped algorithms have been tested in terms of various performance
parameters (solutions quality, execution time, number of transit transfers, etc)
upon real test instances compiled from the wider area of Athens, Greece; the
calculation of time dependent travel times has been carried out over the Athens
metropolitan transit network. The performance of our algorithms has been com-
pared against two variants that use precalculated average travel times (among
the individual time dependent, real travel times) between POIs.

The remainder of this article is organized as follows: Section 2 overviews the
related work while Section 3 presents our novel cluster-based heuristics. Section
4 discusses the experimental results and finally Section 5 concludes our work.

2 Related work

The TOPTW is an extension of the orienteering problem (OP) Vansteenwegen
et al. [2]. In the OP, several locations with an associated score have to be visited
within a given time limit. Each location may be visited only once, while the aim
is to maximize the overall score collected on a single tour. The team orienteering
problem (TOP) extends the OP considering multiple routes while the TOP with
time windows (TOPTW) considers visits to locations within a predefined time
window. TOPTW is NP-hard (e.g. see [3]). Hence, exact solutions for TOPTW
are feasible for instances with very restricted number of locations. As a result,
the main body of TOPTW literature exclusively involves heuristic algorithms
([4], [5], [6], [7], [8], [9], [10]). ACS [8], Enhanced ACS [4] and the approach of
Tricoire et al. [9] are known to yield the highest quality solutions. The most

efficient known heuristic is based on Iterated Local Search (ILS) [10], offering
a fair compromise with respect to execution time versus deriving routes of rea-
sonable quality [2]. However, ILS treats each POI separately, thereby commonly
overlooking highly profitable areas of POIs situated far from current location
considering them too time-expensive to visit. In [11] two cluster-based exten-
sions to ILS have been proposed to address the aforementioned weakness by
grouping POIs on disjoint clusters, thereby making visits to such POIs more
attractive.

Time Dependent OP (TDOP) was introduced by Formin and Lingas [12].
TDOP is MAX-SNP-hard since a special case of TDOP, time-depenent max-
imum scheduling problem is MAX-SNP-hard [13]. Fomin and Lingas [12] give
a (2 + ε) approximation algorithm for rooted and unrooted TDOP. Abbaspour
et al. [14] investigated a variant of Time Dependent OP with Time Windows
(TDOPTW) in urban areas, and proposed a genetic algorithm for solving the
problem. The work of Garcia et al. [1] is the first to address algorithmically
the TDTOPTW. The authors presented two different approaches to solve TD-
TOPTW, both applied on real urban test instances (POIs and bus network of
San Sebastian, Spain). The first approach involves a pre-calculation step, com-
puting the average travel times between all pairs of POIs, allowing reducing the
TDTOPTW to a regular TOPTW, solved using the insertion phase part of ILS.
In case that the derived TOPTW solution is infeasible (due to violating the time
windows of nodes included in the solution), a number of visits are removed. The
second approach uses time-dependent travel times but it based on the simpli-
fied assumption of periodic service schedules; this assumption, clearly, does not
hold in realistic urban transportation networks, especially on non fixed-rail ser-
vices (e.g. buses). Herein, we propose an algorithmic approach that relaxes this
assumption and is applicable to realistic transit networks.

3 The proposed TDTOPTW heuristics

TDTOPTW is an extension of TOPTW integrating public transportation, i.e.,
time dependent travel costs among nodes. In TOPTW we are given a complete
directed graph G = (V,E) where V denotes the set of locations with N = |V |; a
set P = {p1, p2, . . . , pNp

} ⊆ V denoting the set of POIs; an integer m denoting
the number of days the trip shall last, and a time budget B. The main attributes
of each node pi ∈ P are: the service or visiting time (visiti), the profit gained by
visiting pi (profiti), and each day’s time window [openir, closeir], r = 1, 2, . . . ,m,
(a POI may have different time windows per day). Every link (u, v) ∈ E denotes
the transportation link from u to v and is assigned a travel time. The objective is
to find m disjoint routes each starting from a starting location s ∈ V and ending
at a location t ∈ V , each with overall duration limited by the time budget B, that
maximize the overall profit collected by visited POIs in all routes. TDTOPTW
is an extension of TOPTW where the travel time from a location u ∈ V to a
location v ∈ V (as well as the arrival time at v) depends on the leave time from
u and the chosen transportation mode (e.g on foot or public transportation).

In TDTOPTW we assume that the starting and ending locations may be
different for different routes. Therefore, sr, tr ∈ V denote the starting, terminal
location respectively of the r−th route, and str, etr denote the starting, ending
time respectively of the r−th route, r = 1, 2, . . . ,m.

The proposed TDCSCRoutes and SlackCSCRoutes algorithms modify the
CSCRoutes algorithm for TOPTW [11] to handle time dependent travel times
among different locations/POIs. CSCRoutes is a cluster-based heuristic that
achieves best performance results with respect to execution time compared to
the best known so far real-time TOPTW algorithm, ILS [10].

The algorithms introduced in this section, employ an insertion step which
takes into account the fact that for each pair of locations u and v the travel time
from u to v may vary (a tourist can choose between walking and using public
transport), and the waiting time for public transport depends on the time the
tourist arrives at u. In Subsection 3.1 we present the feasibility criterion for
inserting a POI p in a route r in the case of time dependent travel costs.

3.1 Time dependent insertion feasibility

In order to have the time dependent travel cost between all pairs of locations,
for each (u, v), u, v ∈ V we precalculate the walking time from u to v (might be
∞, when too far to walk) and a set Suv containing schedule information of the
public transportation system connecting u and v. Specifically, Suv contains all
the non-dominated pairs (depuvi , travuvi), i = 1, 2, . . . , |Suv| in ascending order of
depuvi , where depuv

i is a departure time and travuvi is the corresponding travel
time of a service of public transport connecting u and v. We consider that a pair
(depuvi , travuvi) dominates a pair (depuvj , travuvj) if depuvi + travuvi ≤ depuvj +
travuvj and depuvi > depuvj . Note that departing from u at time t where depuv

i <
t ≤ depuvi+1, will result in arriving at v either at the same time as if departing
at depuvi+1, or at time t plus the walking time from u to v. More specifically, the
arrival time at v will be equal to the earliest of the times depuvi+1 + travuvi+1 and
t+walkingu,v, where walkingu,v is the walking time from u to v.

For a specified time t, the departure time from u to v at t using public
transport, deptimeu,v(t), is defined as the earliest possible departure time from
u to v, i.e.,

deptimeu,v(t) = min
i
{depuvi |(depuvi , travuvi) ∈ Suv and t ≤ depuvi } (1)

Then, the travel time from u to v at t using public transport, travtimeu,v(t), is
such that (deptimeu,v(t), travtimeu,v(t)) ∈ Suv, and the departure delay at time
t due to the use of public transport, is delayu,v(t) = deptimeu,v(t)− t. Therefore,
the total travelling cost from u to v at a specified time t, travellingu,v(t), is

travellingu,v(t) = min{walkingu,v, delayu,v(t) + travtimeu,v(t)} (2)

For a POI pi in a route r the following variables are defined:

– waiti, denoting the waiting time at pi before its time window starts; waiti =
max(0, openir − arrivei).

– starti, denoting the starting time of the visit at pi; starti = arrivei +waiti.
– leavei, denoting the time the visit at pi completes, i.e., the departure time

from pi; leavei = starti + visiti.
– arrivei, denoting the arrival time at pi; arrivei = leaveprev(i)+

travellingprev(i),i(leaveprev(i)), where leaveprev(i) is the departure time from
the previous node of pi in route r (prev(i)). We assume that arrivesr = str.

– maxStarti, denoting the latest time the visit at pi can start without violating
the time windows of the nodes following pi; maxStarti = min(closeir,max{t :
t + travellingi,next(i)(t) ≤ maxStartnext(i)} − visiti), where next(i) is the
node following pi in r. We assume that maxStarttr = etr.

A POI pk can be inserted in route r between POIs pi and pj if the arrival time
at pk does not violate pk’s time window and the arrival at pj does not violate
the time window of pj as well as the time windows of the nodes following pj in

r. The total time cost for pk’s insertion is defined as shiftijk (insertion cost) and

is equal to the time the arrival at pj will be delayed. In particular shiftijk equals
to the time required to travel from pi to pj having visited pk in between minus
the time taken for travelling directly from pi to pj .

shiftijk = (travellingi,k(leavei) + waitk + visitk + travellingk,j(leavek))− travellingi,j(leavei)

(3)
Figure 1 illustrates an example of inserting pk, between pi and pj shifting the
visit at pj later on time (in this figure, waitvu denotes the waiting at u following
a visit at v).

Fig. 1. Illustration of pk insertion between pi and pj .

Note that the insertion of pk between pi and pj in route r is feasible when

arrivek ≤ closekr and shiftijk ≤ maxStartj − arrivej (4)

A pseudo code implementation of the function shift(k, i, j, r) which calculates
the insertion cost shiftijk in route r, in given in [15]. The function returns ∞ if
the insertion of pk is infeasible.

3.2 The Time Dependent CSCRoutes (TDCSCRoutes) algorithm

TDCSCRoutes algorithm modifies the insertion step CSCRoutes Insert of
CSCRoutes algorithm to handle time dependent travel times among different
locations/POIs. CSCRoutes uses the notion of Cluster Route (CR) defined as
follows: Given a route r of a TOPTW solution, any maximal sub-route in r
comprising a sequence of nodes within the same cluster C is called a Cluster
Route (CR) of r associated with cluster C and denoted as CRr

C . CSCRoutes
algorithm is designed to construct routes that visit each cluster at most once,
i.e. if a cluster C has been visited in a route r it cannot be revisited in the same
route and therefore, for each cluster C there is only one cluster route in any
route r associated with C. The only exception allowed is when the start and the
terminal nodes of a route r belong to the same cluster C′. In this case, a route
r may start and end with nodes of cluster C′, i.e. C′ may be visited twice in the
route r and therefore, for a route r there might be two cluster routes CRr

C′ . The
insertion step CSCRoutes Insert of CSCRoutes does not allow the insertion
of a POI pk in a route r, if this insertion creates more than one cluster routes
CRr

C for some cluster C. Therefore, a POI cannot be inserted at any position in
the route r [11].

In the sequel, the description of the insertion step of TDCSCRoutes (TDCS
Routes Insert) is given. It comprises a modification of CSCRoutes Insert
which takes into consideration the time dependent travel times among loca-
tions/POIs. Given a route r let CRr

f be the first cluster route (starting at sr)
in r, and CRr

l be the last cluster route (ends at tr) in r. Let also clustersIn(r)
be a set containing any cluster C for which there is a nonempty CRr

C , and
cluster(p) be the cluster where p belongs to. Given a candidate for insertion POI
pk TDCSCRoutes Insert distinguishes among the following cases:

– cluster(sr) = cluster(tr)

• if clustersIn(r) = {cluster(sr)} then pk can be inserted anywhere in the
route.

• if clustersIn(r) 6= {cluster(sr)} and cluster(pk) = cluster(sr) then pk
can be inserted in CRr

f and CRr
l

• if clustersIn(r) 6= {cluster(sr)} and cluster(pk) 6= cluster(sr) and
cluster(pk) /∈ clustersIn(r) then pk can be inserted after every end of a
CR except for CRr

l

• if clustersIn(r) 6= {cluster(sr)} and
cluster(pk) 6= cluster(sr) and cluster(pk) ∈ clustersIn(r) then pk can be
inserted anywhere in CRr

cluster(pk)

– cluster(sr) 6= cluster(tr)
• if cluster(pk) = cluster(sr) then pk can be inserted everywhere in CRr

f

• if cluster(pk) = cluster(tr) then pk can be inserted everywhere in CRr
l

• if cluster(pk) ∈ clustersIn(r) and cluster(pk) is different from cluster(sr)
and cluster(tr), then pk can be inserted everywhere in CRr

cluster(p)
• if cluster(pk) /∈ clustersIn(r) then pk can be inserted at the end of any
CR in r except for CRr

l

For each POI pk not included in a route, among all feasible insert positions
(between POIs pi, pj) we select the one with the highest ratio

ratioijk =
profit2k

shiftijk
(1 + a ·

Dij
k + 1

Dij
k + 2

+ (1− a) · f(shiftijk ,waitj + delayj)) (5)

where f(x, y) = 1 if x ≤ y and 0 otherwise, and Dij
k = delayi,k(leavei)+waitk+

delayk,j(leavek) + waitj where a takes the values of 1, 12 and 0, depending on

the number of iterations executed by CSCRoutes. In particular, for the first 1
3

iterations a is equal to 1, it decreases to 1
2 in the second 1

3 iterations and becomes

0 in the final iterations [11]. The incentive behind (5) is the following:
profit2

k

shiftijk
denotes preference for important (i.e. highly profitable) POIs associated with

relatively short time to visit. In the first iterations (a=1), the operand
D

ij

k
+1

D
ij

k
+2

dominates giving preference to insertion of POIs among pairs (pi, pj) creating
prolonged ‘empty’ time periods (i.e. long aggregate waiting times and delays)
to be utilized on later insertions. In the last iterations (a=0), f(shiftijk ,waitj +
delayj) dominates favoring insertion of POIs that best take advantage of any
left unexploited time (i.e. waiting and delays) remaining throughout the routes.
Among all candidate POIs, TDCSCRoutes algorithm selects for insertion the
one associated with the highest ratio.

Once a POI pk is inserted between pi and pj in a route r, the variable values
of all POIs in r need to be updated. Note that for each POI after pk, the variables
arrive, wait, start and leave should be updated while variable maxStart remains
the same. For each POI pl before pk the value of maxStartl is the only one that
should be updated . The pseudo code of TDCSCRoutes Insert is given in
[15].

3.3 The SlackCSCRoutes algorithm

SlackCSCRoutes modifies the insertion step of TDCSCRoutes i.e., it follows a
different approach for determining the POI pk that will be selected for insertion
in a route r. Specifically, while TDCSCRoutes algorithm’s criterion for selecting
a POI pk in a route r is based on the insertion cost, SlackCSCRoutes involves a
more global criterion as it takes into consideration the effect of this insertion in
the whole route r.

SlackCSCRoutes uses an additional variable slacki defined for each node pi
in a tourist route r as follows:

slacki = maxStarti − arrivei (6)

Note that if the value of slacki is close to 0 then there is little hope in finding
new POIs that can be inserted between POIs pprev(i) and pi.

Let p1, p2, . . . , pn be the successive POIs of a route r with p1 = sr and
pn = tr. Let pk be a candidate POI for insertion between POIs pi and pi+1 of r.

The insertion of the pk will likely shift further the arrival time at pj (arrivej),
for j = i + 1, . . . , n. That depends on the waiting time before the visit of each
POI and the time dependent travelling time for moving between successive nodes
along the route. Let arrivekj be the new arrival time at POI pj after the insertion
of pk, for j = i+1, . . . , n, . The above insertion may shift the maximum time the
visit at pj can start (maxStartj) ahead for j = 1, . . . , i. Let maxStartkj be the
new latest time the visit at pj can start after the insertion of pk, for j = 1, . . . , i.

Let also slackkj = maxStartj − arrivekj , for j = i + 1, . . . , n, and slackkj =

maxStartkj − arrivej , for j = 1, . . . , i, be the corresponding values of the “slack”

variables. We define the quantity Ai
k as follows:

Ai
k =

∑i

j=1 slack
k
j + slackk +

∑n

j=i+1 slack
k
j

n+ 1

Note that a large value of Ai
k implies that even after the insertion of pk, there

are many possibilities left for inserting new POIs along each leg of trip (that is,
prior and after visiting pk).

Then for each POI pk, the maximum possible Ai
k is determined, i.e. the

best possible insert position. Let the maximum value Ai
k over all possible insert

positions be Ak. Then, in order to determine the POI that will be selected for
insertion, the slackWeight for each POI pk is calculated as

slackWeightk = profitk
2 ∗Ak

and the POI with the highest slackWeight is inserted.
The main issue with the above derivations is that for each POI pk and for

each possible insert position i within a route r we need to calculate Ai
k which

involves the updated values of the maxStart and arrive variables for all POIs in r.
This involves a global rather than a local decision perspective regarding possible
insertion positions along the whole route. In order to develop a fast heuristic, a
quick calculation of Ai

k is necessary. We may have a quick calculation of a good
approximation of Ai

k, by making the assumption that the time windows at the
POIs are fairly long spanning the most part of the day and therefore the waiting
time before each POI is typically zero (Details will be given in the full version
of the paper). Note this assumption is realistic for most tourist sites.

4 Experimental Results

4.1 Test Instances

While many different datasets exist for testing (T)OP(TW) problems, this is
not the case for their time-dependent counterparts. Hence, relevant algorithmic
solutions should unavoidably be tested upon real transit network data. In our
experiments, we have used the GTFS (General Transit Feed Specification) data
of the transit network deployed on the metropolitan area of Athens, Greece,
provided by the Athens Urban Transport Organization. The network comprises

3 subway lines, 3 tram lines and 287 bus lines with an overall of 7825 transit
stops. For our purposes, we require to know the pairwise quickest routes full (24h
range) multimodal travel times between POIs, for all possible departure times
of the day. This precomputation has been performed using the the algorithm of
Dibbelt et al. [16] upon the Athens transit network. The overall shortest time
dependent travel time information (either through transit or walking) is stored
in a three-dimensional array of size N × N × 1440, where N is the number of
specified locations/POIs and 1440 (= 24× 60) the time steps/minutes per day.
This memory structure ensures instant access to time dependent travel times,
given a specified pair of POIs (u, v), upon receiving a user query. We have also
used a set of predefined start/end locations (100 hotels).

The POIs dataset used in our experiments features 113 sites (museums, ar-
chaeological sites, landmarks, streets & squares, neighborhoods, religious her-
itage, parks) mostly situated around Athens downtown and Piraeus areas. Prof-
its have been set in a 1-100 scale and visiting times vary from 1 minute (e.g. for
some outdoor statues) to 2 hours (e.g. for some not-miss museums and wide-area
archaeological sites). The POIs have been grouped in

⌊

N
10

⌋

= 11 disjoint clusters.
The above described POIs dataset has been used to create three different

‘topologies’. The real POIs coordinates have been maintained in all cases, how-
ever, their respective profits, visiting times and opening hours (i.e. time windows)
have been ‘shuffled’, to remove any potential bias of a single topology.

Our algorithms have been tested using 100 different ‘user preference’ inputs
per number of routes, each applied to all the three abovementioned topolo-
gies. Each ‘preference’ input is associated with a different start/end location,
corresponding to a potential accommodation (hotel) option. Furthermore, for
each ‘preference’ input a certain percentage of POIs is disregarded to ‘sim-
ulate’ preferences provided by real visitors, such as no interest on religious
sites. The total time budget available for sightseeing in daily basis (Br) has
been set to 5 hours (10:00-15:00) in all experiments. All test instances-related
files are accessible from: http://www2.aegean.gr/dgavalas/public/tdtoptw_
instances/index.html

4.2 Results

We have implemented the following four algorithms: (a) TDCSCRoutes (see
Section 3.2), (b) SlackCSCRoutes (see Section 3.3), (c) AvgCSCRoutes, and
(d) Average ILS (AvgILS).

AvgILS refers to the average travel time approach proposed by Garcia et al.
[1], wherein TDTOPTW is practically reduced to TOPTW and the standard
ILS algorithm [10] is used to construct routes based on pre-computed average
travel times. AvgILS exercises a repair procedure, introducing the real travel
times between the POIs of the final TOPTW solution. If this causes a visit to
become infeasible, the latter is removed from the route and the remainder of the
route is shifted forward. Similarly to AvgILS, AvgCSCRoutes uses CSCRoutes to
construct routes based on pre-computed average travel times. AvgCSCRoutes
employs a repair step similar to AvgILS, followed by a ‘gap filling’ step the

latter inserts new POIs into the routes, if feasible, thereby further improving the
solution’s quality (Details will be given in the full version of the paper).

All algorithms have been employed upon the test instances described in the
previous subsection, deriving k daily personalized routes, k = 1 . . . 4, each for
every day of stay at the destination. All routes start and end at the tourist’s
accommodation location. Note that all the algorithms have been programmed in
C++ and executed on a PC Intel Core i5, clocked at 2.80GHz, with 4GB RAM.

We use the standard profit criterion in our experimental results , i.e. we
consider as best-found solution the one with the highest aggregate profit. Table
1 offers a comparative view on the performance of the four implemented algo-
rithms. The analytical results may be found in [15]. The results shown are: the
overall collected profit (over all routes); the execution time (in ms); the num-
ber of visited POIs; the overall number of public transit transfers (PT) over all
routes; All the above results are averaged over all (= 100) the execution runs
and the three ’shuffled’ topologies. High quality solutions are those featuring
high aggregate profit and relatively small number of transit transfers, derived in
short execution time. Note that we normalize the actual performance parame-
ter values assigning a value 100 to the highest recorded value and adapting the
rest accordingly (this allows illustrating relative performance gaps among tested
algorithms). Performance values shown in bold designate the best performing
algorithm with respect to each performance parameter.

As shown in Table 1, AvgCSCRoutes executes considerably faster, since it
disregards time dependency on the insertion decision, while also using a smaller
memory structure to hold travel time information (hence, required travel times
are retrieved more efficiently). Despite using precomputed average travel time
values, AvgILS executes (on average) slower than the other three algorithms as
it explores a larger search space on each POI insertion. It should be noted though
that execution times are well beyond a second in all cases for all algorithms for
the 113 POIs of Athens.

Interestingly, AvgCSCRoutes and AvgILS are competitive in terms of profit,
with AvgCSCRoutes performing better than AvgILS, mainly due to the extra
‘gap filling’ step, which considerably improves the quality of its solutions and
corrects potential suboptimal node insertion decisions made during the insertion
phase. Nevertheless, we argue that the results obtained by AvgCSCRoutes and
AvgILS could be worse when considering either less frequent transit services or
timetables where transit frequencies changes considerably along the day or even
when considering tourist visits in off-peak hours. In such scenarios, using the
average travel time would not serve as a good approximation.

TDCSCRoutes performs marginally better than the three other algorithms
with respect to the overall profit, while deriving solutions in comparable time
with SlackCSCRoutes.

On the other hand, TDCSCRoutes performs worse in terms of public transit
transfers, mainly due to its initialization phase which favors visits to clusters
far located from the user’s accommodation, hence, often requiring public transit
rides to arrive there. AvgILS obtains best results with respect to that perfor-

mance metric. Last, SlackCSCRoutes achieves higher number of POI visits (in-
tuitively, due to its insertion criterion, the algorithm best exploits the available
time budget, accommodating more POI visits).

Table 1. Comparative view on the performance of the implemented algorithms

Routes Profit Time Visits Public Transport

1

TDCSCRoutes 100 89.88 97.57 100
SlackCSCRoutes 99.99 100 100 92.92
AvgCSCRoutes 98.38 55.98 96.41 88.78

AvgILS 96.68 79.64 92.72 85.84

2

TDCSCRoutes 100 87.21 98.09 100
SlackCSCRoutes 99.18 93.75 100 95.42
AvgCSCRoutes 98.82 51.07 97.73 88.13

AvgILS 97.64 100 95.14 85

3

TDCSCRoutes 100 92.05 97.1 100
SlackCSCRoutes 98.15 89.01 100 90.48
AvgCSCRoutes 99.05 50.39 97.39 80.26

AvgILS 98.05 100 95.03 78.77

4

TDCSCRoutes 100 100 96.32 100
SlackCSCRoutes 97.88 87.11 100 93.81
AvgCSCRoutes 99.23 52.34 96.42 82.71

AvgILS 98.21 88.72 94.03 82.38

5 Conclusions and Future Work

We introduced TDCSCRoutes and SlackCSCroutes, two new cluster-based heuris-
tics for solving the TDTOPTW. The main design objectives of the two algo-
rithms are to derive high quality TDTOPTW solutions (maximizing tourist sat-
isfaction), while minimizing the number of transit transfers and executing fast
enough to support online web and mobile applications.

With respect to the overall collected profit, TDCSCRoutes has been shown to
perform marginally better. On the other hand, SlackCSCRoutes achieves a fair
compromise among all the performance aspects. In practical applications, com-
prising very large datasets, AvgCSCRoutes could be the most suitable choice as
it efficiently derives solutions of reasonably good quality (this conclusion agrees
with that reported in [1], wherein a TDTOPTW algorithm has been evaluated
against AvgILS). Nevertheless, its suitability largely depends on the high fre-
quency of public transit services, so that average travel times represent a good
guess.

In the future, we plan to test our algorithms on additional real datasets to
remove potential bias introduced by the particularities of the Athens dataset
and transit network. Besides, testing our algorithms over larger POI datasets
will verify their scalability in terms of the required execution time. Along the

same line, we plan to produce realistic synthesized multimodal timetabled data
to serve as additional test benchmarks.

References

1. Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaza, M.T.: Inte-
grating public transportation in personalised electronic tourist guides. Computers
& Operations Research 40(3) (2013) 758 – 774

2. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
A survey. European Journal of Operational Research 209(1) (2011) 1 – 10

3. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete
Applied Mathematics 26(2-3) (1990) 193 – 207

4. Gambardella, L., Montemanni, R., Weyland, D.: Coupling ant colony systems with
strong local searches. European Journal of Operational Research 220(3) (2012)
831 – 843

5. Labadi, N., Melechovský, J., Wolfler Calvo, R.: Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. Journal of
Heuristics 17 (2011) 729–753

6. Labadi, N., Mansini, R., Melechovský, J., Wolfler Calvo, R.: The team orienteering
problem with time windows: An lp-based granular variable neighborhood search.
European Journal of Operational Research 220(1) (2012) 15 – 27

7. Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research 217(1)
(2012) 94 – 107

8. Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering
problems with time windows. Foundations of Computing and Decision Sciences
34(4) (2009) 287–306

9. Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-
period orienteering problem with multiple time windows. Computers & Operations
Research 37(2) (2010) 351 – 367

10. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iter-
ated local search for the team orienteering problem with time windows. Computers
& Operations Research 36 (2009) 3281–3290

11. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Tasoulas, Y.:
Cluster-based heuristics for the team orienteering problem with time windows.
In: Proceedings of 12th International Symposium on Experimental Algorithms
(SEA’13). (2013) 390–401

12. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteer-
ing. Information Processing Letters 83(2) (2002) 57 – 62

13. Spieksma, F.C.R.: On the approximability of an interval scheduling problem. Jour-
nal of Scheduling 2 (1999) 215–227

14. Abbaspour, R.A., Samadzadegan, F.: Time-dependent personal tour planning and
scheduling in metropolises. Expert Systems and Applications 38 (2011) 12439–
12452

15. Gavalas, D., et al.: Appendix. http://www2.aegean.gr/dgavalas/public/

tdtoptw_instances/icaa_appendix.pdf

16. Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multi-modal route planning.
In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12). (2012) 118 – 129

