
PacMap: Transferring PacMan to the Physical Realm

Thomas Chatzidimitris, Damianos Gavalas and Vlasios Kasapakis

Department of Cultural Technology and Communication University of the Aegean
Mytilene, Greece

{tchatz, dgavalas, v.kasapakis}@aegean.gr

Abstract. This paper discusses the implementation of the pervasive game
PacMap. Openness and portability have been the main design objectives for
PacMap. We elaborate on programming techniques which may be applicable to
a broad range of location-based games that involve the movement of virtual
characters over map interfaces. In particular, we present techniques to execute
shortest path algorithms on spatial environments bypassing the restrictions
imposed by commercial mapping services. Last, we present ways to improve
the movement and enhance the intelligence of virtual characters taking into
consideration the actions and position of players in location-based games.

Keywords: PacMap, Pacman, pervasive games, location-based games, shortest
path, Dijkstra.

1 Introduction

Pervasive gaming is an emerging gaming genre that transfers gameplay from the
virtual world to the real environment, leading to the spatial, temporal and social
expansion of the magic circle [1]. The key element in these games is the awareness
and incorporation of user context: depending on the location, environmental or social
context the game’s scenario and the gameplay are adjusted accordingly.

When this genre of games appeared, the use of wearable devices (like sensors and
GPS) was deemed necessary to capture user and environmental context, although the
use of such equipment has been reported to affect the user’s immersion during the
gameplay. The advent of smartphones with their advanced processing, networking
and sensory capabilities overturned the abovementioned restrictions of wearable
equipment and provided pervasive games developers the means for implementing
computationally intensive, context-aware applications commonly incorporating
augmented reality.

This paper introduces PacMap, a pervasive variant of the classical game PacMan.
PacMap has been largely inspired by Human PacMan [2], a milestone pervasive game
project released in 2004. From the technology perspective, PacMap makes use of
infrastructure and resources still unavailable at the time that Human PacMan was
protoyped: it uses widely available equipment (like smartphones), 3G or WiFi
networks, GPS and sensors. Furthermore, our prototype incorporates programming

2 Thomas Chatzidimitris, Damianos Gavalas and Vlasios Kasapakis

techniques and principles applicable to a wide range of location-based hunting/chase
games. In particular, the implementation of PacMap aims at creating appealing and
engaging game spaces, allowing anytime/anywhere gameplay, without any need for
orchestration. The game stage is set around the actual location of the user and
considers the actual surrounding road segments as game action ‘corridors’. Moreover,
we propose an implementation that utilizes the high level information granularity
inherent in open map platforms and breaks the dependency on commercial map
providers who set daily/monthly limits on the number of web service invocations.
Finally, this paper suggests techniques for the smooth movement of virtual characters
on map-based interfaces, which should adapt real-time on the actual player movement
within the game space.

2 Related work

Location-based games claim a major share in pervasive games market. Many research
prototypes [2] [3] [4] [5] [6] as well as some commercial games, like Ingress1 and
Zombies Run2, use location-aware services to support their scenario, having the user’s
location as point of reference.

Human Pacman has been a milestone pervasive game (notably, one of the first to
transfer the experience of an arcade game out to the physical world), which largely
inspired the design of PacMap. Using a slightly modified game plot of the traditional
Pacman, players are enrolled as pacmen, helpers and ghosts. The interaction, as well
as the movement of players within the game space, requires the use of devices, like
sensors and wireless LAN Cards, which are stored in a backpack. The players also
carry head-mounted displays, whereon information about the plot of the game and
augmented reality content are projected. The use of equipment, the need for
orchestration (helpers) and the difficulty to set the game space at any location,
seriously limits the portability and openness of the game.

The evolution of mobile computing (most notably, the emergence of mobile
devices like smartphones, tablets, smart watches, etc), has radically changed the
design and development of pervasive games. The incorporation of technologies, like
GPS, sensors (accelerometer, gyroscope, proximity, compass, barometer, gesture,
heart rate, etc) and built-in cameras provided game designers and developers the
looked-for machinery to build location-based games with complex and appealing
scenarios, and limited the requirement for specialized supplementary equipment.
Notably, latest research prototypes commonly consume mapping services [5], like
Google Maps, as well as relevant web services (e.g. directions for walking and transit
transfers, points of interest, elevation, traffic and geocoding), which are provided by
the service providers via specialized Application Programming Interfaces (APIs).

The use of several among the above mentioned services (e.g. the directions service)
is subject to commercial usage. In practice, this limits the number of monthly
invocations under a certain development license. This restriction raises a major

1 https://play.google.com/store/apps/details?id=com.nianticproject.ingress
2 https://play.google.com/store/apps/details?id=com.sixtostart.zombiesrun

PacMap: Transferring PacMan to the Physical Realm 3

challenge in the design of location-based games which involve heavy use of mapping
services (e.g. chase/hunt games), especially those enrolling intelligent virtual
characters and require execution of path finding algorithms for virtual hunters.

3 Game scenario

The game scenario of PacMap adheres as much as possible to that of the classic
arcade game Pacman. It is a location-based game, which requires Internet connection
and enabled GPS receiver in the device. The game space is determined at startup,
considering the actual road segments around the user’s position as possible walking
corridors for the pacman player. The user is supposed to collect all the cookies
positioned across the streets. Unlike the pacman which us acted by a human player,
the enemies (i.e. the ghosts) are virtual characters handled by the game engine.
Similarly to the original arcade game, the ghosts are supposed to catch pacman, each
following a different mobility pattern moving on the map, around the user’s area. The
purple, orange and blue ghosts execute random movements in the game space. The
red ghost follows the user as the latter moves within the gamespace. Figure 1
illustrates a snapshot of the PacMap’s gameplay.

Figure 1. PacMap gameplay screenshots.

4 Game engine architecture

PacMap’s system’s architecture adopts a typical client-server model. The server
side part undertakes the fabrication of the game space, whereas the client side
visualizes the game space and enables the interaction among the player and the game
engine.

As illustrated in Figure 2, the client sends out his location information to the game
server in order to create the appropriate game space. The latter is confined by a circle
around the user’s location, with a radius of 200 meters. The game server uses the
geolocation information to contact a map server and retrieve the nodes and POIs lying
within this imaginary circle (the communication is handled by the OpenStreetMap
API3).

3 OpenStreetMap is an open-source mapping service, providing developers with useful

crowdsourced topographical information. Data contributors may register geospatial elements

4 Thomas Chatzidimitris, Damianos Gavalas and Vlasios Kasapakis

Figure 2. PacMap system architecture.

The arrangement of game components within the game space (e.g. the placement
of cookies) is carried out through utilizing the area nodes information. To ensure even
distribution of cookies, the game engine firstly measures the distance between two
nodes applying the Vincenty’s formulae [7]. The latter is based upon two iterative
methods, which are used in the field of Geodesy to measure the distance among two
points on a spherical surface. Subsequently, the road sections are segmented, so that
the cookies can be placed in equal distances.

In addition to nodes, POI information is also utilized in PacMap scenario, as the
user can earn life credits, by reaching some of these POIs (like pharmacies and
hospitals), or get “trapped” (e.g. in bar/nightlife areas) wherein the map visibility is
reduced on the device’s screen.

5 PacMap implementation

The arcade game Pacman involves ghosts which chase the pacman, with their
movement promptly adapting to that of pacman. In order to transfer such functionality
to a map-based interface each ghost needs to receive a series of road segments to be
traversed. Provided a start and an end location (e.g. the current location of the ghost
and the player, respectively) a reasonable action for the ghost following the user is to
invoke a ‘direction’ web service typically offered by commercial map data providers
(e.g. the Directions service of the Google Maps API) and then faithfully follow the
shortest path walking directions recommended by the service. However, if the user
location changes too often, direction service invocations (passing the updated
ghost/player location parameters) will increase accordingly and soon exceed the
invocations limit set by commercial providers.

such as nodes and POIs along the street network. Among others, the OpenStreetMap web
services allow exporting the vertices of rectilinear parts, comprising a road network.

PacMap	

server

Map	
 server

Nodes/POIs
Cookies	
 placement

Game	

engine

GPS	
 fix

Network	

graph

Movement	
 directions
User	
 device

Shortest	
 path	

calculation	
 component

PacMap: Transferring PacMan to the Physical Realm 5

Enemies (i.e. ghosts) movement patterns fall into two types. Orange, blue and
purple ghosts repeatedly execute a random movement around the map. To implement
these movements, we derive two random pairs of coordinates over the arc of the
imaginary circle centered at the user’s current position. These two pairs of coordinates
(representing the start/end nodes of each successive ghost movement) are submitted to
the Directions API service of the map server, thus generating the actual path to be
followed by each ghost. From the games research viewpoint, the movement of the red
ghost is more challenging as it presumably applicable to many alike map/location-
based chase games, since (according to the PacMap scenario) it is supposed to follow
the user as s/he moves within the game space.

Ghosts movement respects the game space topography, namely the nodes exported
from the game server during the game space generation phase (see Figure 3a).
Considering a graph transformation of the game space (connecting adjacent nodes
which are connected through a road segment on the actual setting and calculating the
distances among them), it is then straightforward to execute a shortest path algorithm
to compute the path to be followed by the user (see Figure 3b). PacMap’s directions
service implements the Dijkstra’s algorithm4, wherein edge costs equal the physical
distance among their connected end nodes. For example, the red ghost considers the
node nearest to the ghost’s current location as start node and the node the user
currently heads to as end node (e.g. node B in Figure 3a).

Shortest paths are derived whenever the user reaches a new edge or turns to
another direction. To ensure prompt adaptation of ghost’s movement to the player’s
movement, the device determines the nodes among which the user is currently located
whenever his location (i.e. GPS fix) is updated.

Figure 3. (a) An example game space illustrating the extracted topology nodes; (b) shortest path
derived by a directions service executing Dijkstra’s algorithm upon a graph transformation of
the game space.

The sole goal of the ghost is to “catch” pacman, i.e to reach its currently assigned
end node, having gone through the edge currently traversed by the user. In case that
the ghost arrives at its end node without passing via the player’s edge, the algorithm is
re-executed, with the other end point of that edge set as the new end point for the
requested directions.

It is noted that the shortest path algorithm is executed on the client side to
eliminate the effect of network latency inherent in client-server interactions. On an

4 Dijkstra's algorithm is a graph search algorithm that solves the single-source shortest path

problem for a graph with non-negative edge path costs, producing a shortest path tree.

6 Thomas Chatzidimitris, Damianos Gavalas and Vlasios Kasapakis

average game space considering 420 nodes, the algorithm takes 95 msec to yield the
shortest path when executed on a Samsung Galaxy S4 device (processor: ARMv7 –
1.8 GHz x 4 cores / ram:1.8 GB),

6 Conclusion

We introduced the prototype pervasive game PacMap, one of the few attempts to
migrate a classical arcade game onto the physical realm. We have proposed
programming techniques largely applicable to nearly any map-based chase game
scenario, the main objective being to ensure openness and portability. We have also
discussed implementation techniques for path-finding on real urban settings which
bypass the restrictions imposed by commercial Direction APIs. The use of those
techniques enables programmers and designers to develop location/map-based games,
with flexible scenarios that involve intelligent virtual characters dynamically adapting
on players movement behavior during the game.

References

[1] M. Montola, “Exploring the edge of the magic circle: Defining pervasive games,”
Proceedings of DAC, p. 103, 2005.

[2] A. D. Cheok, K. H. Goh, W. Liu, F. Farbiz, S. W. Fong, S. L. Teo, Y. Li, and X.
Yang, “Human Pacman: a mobile, wide-area entertainment system based on physical,
social, and ubiquitous computing,” Pers Ubiquit Comput, vol. 8, no. 2, pp. 71–81,
May 2004.

[3] K. P. Jantke, O. Arnold, and S. Spundflasch, “Aliens on the Bus: A family of
pervasive games,” Proceedings of 2nd Global Conference on Consumer Electronics
(GCCE), pp. 387–391, 2013.

[4] L. Chen, G. Chen, and S. Benford, “Your Way Your Missions: A Location-Aware
Pervasive Game Exploiting the Routes of Players,” International Journal of Human-
Computer Interaction, vol. 29, no. 2, pp. 110–128, Jan. 2013.

[5] V. Kasapakis, D. Gavalas, and N. Bubaris, “Addressing openness and portability in
outdoor pervasive role-playing games,” Proceedings of the 3rd International
Conference on Communications and Information Technology (ICCIT’2013), pp. 93–
97, 2013.

[6] A. de Souza e Silva, “Alien revolt (2005-2007): A case study of the first location-
based mobile game in Brazil,” Technology and Society Magazine, IEEE, vol. 27, no. 1,
pp. 18–28, 2008.

[7] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations,” Survey review, vol. 23, no. 176, pp. 88–93, 1975.

