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ABSTRACT 
Tourists become increasingly dependent on mobile city guides to 
locate tourist services and retrieve information about nearby 
points of interest (POIs) when visiting unknown destinations. 
Although several city guides support the provision of personalized 
tour recommendations to assist tourists visiting the most 
interesting attractions, existing tour planners only consider 
walking tours. Herein, we introduce eCOMPASS, a context-aware 
mobile application which also considers the option of using public 
transit for moving around. Far beyond than just providing 
navigational aid, eCOMPASS incorporates multimodality (i.e. 
time dependency) within its routing logic aiming at deriving near-
optimal sequencing of POIs along recommended tours so as to 
best utilize time available for sightseeing and minimize waiting 
time at transit stops. Further advancing the state of the art, 
eCOMPASS allows users to define arbitrary start/end locations 
(e.g. the current location of a mobile user) rather than choosing 
among a fixed set of locations. This paper describes the routing 
algorithm which comprises the core functionality of eCOMPASS 
and discusses the implementation details of the mobile application 
using the metropolitan area of Berlin (Germany) as case study. 
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1. INTRODUCTION 
Tourists visiting urban destinations typically deal with the 
challenge of making a feasible plan in order to visit the most 
interesting attractions (points of interest, POIs) in their available 
time span. The filtering of most important POIs (amongst the 
many available) and their time-sequencing along the planned 
tourist itineraries is a particularly laborious task requiring skilled 
interaction with a multitude of online resources [1]. The situation 
is further complicated when considering the complexity of 
metropolitan transit networks commonly used by tourists to move 
from a POI to another, whenever walking is not an option, due to 
distance constraints. Tourists are typically unfamiliar with the 
public transit systems, thereby making transit transfers a 
cumbersome exercise [7]. 

The above discussion underlines the need for ICT tools to assist 
the way arounds of tourist transfers among POIs, either walking 
or using public transit.  Such tools typically appear in the form of 
personalized tourist guides (PETs) which tackle a problem 
commonly termed as Tourist Trip Design Problem (TTDP) [4]. 
TTDP refers to a tour planning problem for tourists interested in 
visiting multiple POIs. Solving the TTDP entails deriving daily 
tourist tours comprising ordered sets of POIs that match tourist 
preferences, thereby maximizing tourist satisfaction (typically 
termed ‘profit’), while taking into account a multitude of 
parameters and constraints (e.g., distances among POIs, time 
estimated for visiting each POI, POIs’ opening hours) and 
respecting the time available for sightseeing on daily basis. 
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Notably, most algorithmic approaches addressing TTDP assume 
constant travel times among POIs, i.e. they consider exclusively 
walking transfers. Such approaches overlook the real aspects of 
tourist movement patterns which entail the use of public 
transportation to cover overly long distances within tourist areas 
[7]. 

Herein, we propose a novel cluster-based heuristic approach, 
the SlackRoutes, which addresses the above described 
shortcomings of existing approaches to TTDP. The main incentive 
behind our approach is to motivate visits to topology (i.e. 
touristic) areas featuring high density of `good' (i.e. highly 
profitable) candidate vertices, even if those are located relatively 
far. SlackRoutes also takes into account time dependency (i.e. 
multimodality) in calculating travel times from one vertex (i.e. 
POI) to another. The aim is to derive high quality routes (i.e. 
maximizing the total collected profit) and minimize the time 
delays incurred in transit stops, while not sacrificing the time 
efficiency required for online applications. A preliminary version 
of SlackRoutes appears in [5]. 

SlackRoutes comprises the core functionality of eCOMPASS, a 
context-aware mobile application deriving personalized daily 
tourist itineraries. eCOMPASS advances the state of the art 
(among all known research prototypes and commercial tools) with 
respect to several aspects: 
 While existing tourist itinerary planners only consider 

walking tours, eCOMPASS takes into account time-
dependent travel times among POIs, namely it considers the 
option of using public transit for moving around. Note that 
this is far more than just providing navigational aid (i.e. 
transit route instructions) for moving from one location to 
another. Instead, eCOMPASS incorporates multimodality 
within its routing logic (the time needed to move from a POI 
to another depends on the departure time and the utilized 
transportation mode) aiming at deriving near-optimal 
sequencing of POIs along recommended tours so as to best 
utilize time available for sightseeing and minimize waiting 
time at transit stops. 

 To ensure fast response to user queries, existing tools restrict 
users to select the start/end points of their daily itineraries 
among a fixed set of locations (typically a list of 
accommodations and/or landmarks). eCOMPASS follows a 
novel approach that overcomes this restriction and allows 
users to define arbitrary start/end locations (e.g. mobile users 
may choose to start their itinerary from their current location 
and end it anywhere else). 

The remainder of this article is structured as follows:  Section 2 
reviews relevant approaches both in the algorithmic domain and 
the tourist tour planning software tools. Section 3 presents the 
SlackRoutes tour planning algorithm. Section 4 overviews the 
architecture and discusses the system implementation details of 
eCOMPASS. Section 5 concludes our work and suggests 
directions for future research. 

2. RELATED WORK 
2.1 Algorithmic approaches to TTDP 
TTDP has received considerable attention in the recent years with 
several -mainly heuristic- algorithmic methods proposed to solve 
it [4]. Those methods approach the problem from different angles, 
resulting in diverse problem models, which consider different 
problem variables and constraints. A consolidated listing of input 
parameters considered in proposed TTDP models follows: 

 A set of candidate POIs, each associated with a number of 
attributes (e.g. type, location, opening days/hours, entrance 
fee, etc). 

 The number of tours to be generated, based upon the period 
of stay of the user at the tourist destination. 

 The ‘profit’ of each POI, denoting its relevant importance. 
 The anticipated visit duration of an average user at a POI. 
 The 24x7 time-dependent travel times among POIs, i.e. 

tourists are assumed to use all modes of transport available at 
the tourist destination, including public transportation, 
walking, car, bicycle, etc. 

 The daily time budget B that a tourist wishes to spend on 
visiting sights; the overall daily tour duration (i.e. the sum of 
visiting times plus the overall time spent for moving from a 
POI to another) should be kept below B. 

The objective in TTDP modeling is to derive a set of near-optimal 
daily, disjoint itineraries (ordered visits to POIs), each comprising 
a subset of available (candidate) POIs so as to maximize tourist 
satisfaction (i.e. the overall collected profit); the derived tours 
should respect user constraints / POI attributes and satisfy the 
daily time budget available for sightseeing. The baseline 
combinatorial optimization problem for TTDP is the Orienteering 
Problem (OP) [11]. In the OP, given a starting node s, a terminal 
node t and a positive time limit (budget) B, the goal is to find a 
path from s to t (or tour if s	≡	t) with length at most B such that 
the total profit of the visited nodes is maximized. 

 
Figure 1: Illustration of a tourist path (blue dashed line) from 

s to t via POIs pi, pj and pk. Green dashed arrows indicate 
available multimodal transfer options among POIs. 

Clearly, the OP may be used to model the simplest version of the 
TTDP wherein the POIs are associated with a profit (i.e. user 
satisfaction) and the goal is to find a single tour that maximizes 
the profit collected within a given time budget (time allowed for 
sightseeing in a single day). Extensions of the OP have been 
successfully applied to model more complex versions of the single 
tour TTDP. The team orienteering problem (TOP) represents the 
extension of the OP to multiple tours. The TOP with time 
windows (TOPTW) considers visits to locations within a 
predefined time window (this allows modeling opening and 
closing hours of POIs). The time-dependent TOPTW 
(TDTOPTW) considers time dependency in the estimation of time 
required to move from one location to another and, therefore, it is 
suitable for modeling multi-modal transports among POIs. Figure 
1 illustrates the example output of a TDTOPTW solver (for a 
single tourist path). 

TOPTW has been mostly commonly studied among the 
aforementioned OP variants [4], since it is useful for modeling 
several real-life optimization problems. Among existing TOPTW 
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solvers, the iterated local search (ILS) algorithm [10] represents a 
fair compromise in terms of speed (less than 7 sec for up to 200 
POIs and k=4 daily tours) versus deriving routes of reasonable 
quality (on average, less than 5% gap from the best known 
solution). As a result, ILS is considered most suitable for real-time 
TTDP applications among alternative TOPTW algorithms. On the 
downside, ILS treats each POI separately, thereby commonly 
overlooking highly profitable areas of POIs situated far from 
current location considering them too time-expensive to visit. ILS 
is also often trapped in areas with isolated high-profit POIs, 
possibly leaving considerable amount of the overall time budget 
unused [5]. 

The work of Garcia et al. [3] is the first to address the TDTOPTW 
algorithmically. The authors presented two different approaches to 
solve TD-TOPTW, both applied on real urban test instances (POIs 
and bus network of San Sebastian). The first approach involves a 
pre-calculation step, computing the average travel times between 
all pairs of POIs, allowing reducing the TDTOPTW to a regular 
TOPTW, solved using the insertion phase part of ILS. In case that 
the derived TOPTW solution is infeasible (due to violating the 
time windows of nodes included in the solution), a number of 
visits are removed. The second approach uses time-dependent 
travel times but it based on the simplified assumption of periodic 
service schedules; this assumption does not hold in realistic urban 
transportation networks. Herein, we propose SlackRoutes, an 
algorithmic approach that relaxes this assumption and is 
applicable to realistic transit networks. 

2.2 Web and mobile TTDP solvers 
Among the many available mobile tourist guides, three 
web/mobile tools are the only ones known to offer tour planning 
services: CT-Planner41, CityTripPlanner2 and mtrip3. These tools, 
essentially TTDP solvers, automate the creation of a single or 
multiple tours via a set of POIs taking into account their 
respective profit, visiting time and opening hours as well as the 
walking travel times among POIs and the trip details (visiting 
days, start/end times). The derived tours are personalized, i.e. they 
are tuned according to user-defined preferences. 

CT-Planner4 [6] is a web-based tourist tour planner for seven (7) 
Japanese cities. Recommended tours are personalized with respect 
to: (a) user focus and taste, which adjust POI profits, and (b) 
preferred moving speed and reluctance to walk, which adjust 
walking travel times. The tour planning engine of CT-Planner4 
relies on a genetic algorithm which solves the Selective Traveling 
Salesman Problem (STSP), i.e. it derives a single tourist itinerary. 
The algorithm’s parameters are tuned so that the computation 
completes within a second. 

CityTripPlanner [12] is a web/mobile city tour planner which 
already covers 76 destinations in all continents. An Android/iOS 
mobile application may be downloaded for free, which contains 
the core functionality; the actual city tour is generated, 
downloaded and purchased from the website. Recommended tours 
are displayed on a map and list view. The user is allowed to edit 
derived tours, remove unwanted POIs and/or adjusting visiting 
time scheduled for particular POIs (in all cases, edits trigger 
recalculation of tours). The start/end locations may be selected 
among a fixed set of hotels (i.e. user’s lodging) and landmarks. 

                                                                 
1 http://ctplanner.jp/ctp4/index-e.html 
2 http://www.citytripplanner.com/ 
3 http://www.mtrip.com/ 

CityTripPlanner is known to utilize the ILS TOPTW algorithm 
[10] as its core tour planning engine. 

mtrip is a mobile app that currently covers 28 destinations in 
Europe, Asia and America. Ιt is the only mobile tour planner 
offering augmented reality views of POIs (namely, it 
superimposes POI markers upon the smartphone’s camera views). 
mtrip is also the only tour planning tool known to function offline, 
namely map data are incorporated within the purchased, 
standalone Android/iOS mobile application. Being a commercial 
prototype, no technical details are provided regarding the 
algorithmic machinery used to derive personalized tours for mtrip.  

The aforementioned city tour planning software tools already 
incorporate an array of useful services. However, they still miss 
several practical aspects, hence, compromising their utility in 
realistic tourist scenarios. Firstly, they exclusively consider 
walking as the only option provided for tourist transfers. This is 
certainly impractical when considering POIs scattered throughout 
large metropolitan areas or when tourists lodge in hotels far from 
main attraction areas. Secondly, the reviewed tools allow users to 
select the start/end points of their itineraries among a fixed set of 
lodging and/or landmark locations. Rather, practical scenarios 
would likely involve users requesting tours starting/ending at 
arbitrary locations (the starting point would most probably be 
their location at query time). 

Our proposed tourist tour planner addresses all the above 
mentioned challenges. In particular, the support of tourists moving 
around either walking or using public transit represents a focal 
design objective of eCOMPASS tour planning engine. Certainly, 
visits to POIs are ordered so as to make best use of transit 
services; namely to minimize delays on transit stops and be able 
to accommodate more POI visits thereby maximizing collected 
profit. Further, our proposed tool allows users to define -different- 
arbitrary start/end locations for their daily tours. 

3. THE SLACKROUTES TOUR PLANNING 
ALGORITHM 

SlackRoutes is a TDTOPTW solver which comprises the 
algorithmic core of eCOMPASS. SlackRoutes is given a complete 
directed graph G = (V, E) where V denotes the set of locations 
with N = |V|; a set P = { , , … | |} ⊆ V, denoting the set of 
POIs. The algorithm derives m routes (one for each day of staying 
at the destination) comprising an ordered set of POIs in P; each 
route is bounded by a time budget B. The starting and terminal 
locations of the rth route are denoted as sr and tr, respectively. 
Accordingly, str and etr denote the starting, ending time, 
respectively of the rth route, r = 1, 2, … m. 

The main attributes of each node pi  ∈ P are: the service or 
visiting time (vi), the profit gained by visiting pi (profiti), and the 
time window for each day TWir = [openir, closeir]; r = 1, 2, … m 
(a POI may have different time windows per day). 

The travel time ,  among locations u and v is time-dependent 
since a user may either walk or move through a non-periodic 
transit service (we assume that the fastest option is preferable). 
Essentially , , termed ‘multimodal travel time profile’ is a 
piecewise linear function: 

, min 	 , , 	 , , . 
The attribute ,  denotes the time required to walk from u 
to v (constant);	 ,  is the time spent on a transit stop 
(when leaving from u to v at time t) waiting for the next service to 
arrive; ,  is the total travel time spent after the initial 



boarding at u till arriving at v. This time may include any delay 
spent at intermediate stops or time spent for walking between two 
stops along the route. For our purposes, we require to know 
pairwise fastest routes between POIs for all departure times of the 
day. Namely, for each pair of POIs we compute , which 
contains all the non- pairs ( , , , ); i = 1, 2, … | |, in 
ascending dominated order of , , where ,  is a 
departure time and , is the corresponding travel time from u 
to v. We consider that a departure travel time pair from node u to 
node v ,  dominates a pair ( ,  iff  

   + . 

 
Figure 2. Traveling time from u to v as a function of the departure 

time from u (travel time profile of u → v). 

Figure 2 illustrates the travel time profile for transfers from 
node u to node v. When a user departs from u to v at time 4, it is 
preferable to walk since walking will take 2 time units ( , 4
2) while the next transit (subway) service departs at 6 and takes 
0.5 time units of travelling time to arrive at v (namely, the user is 
expected to arrive at 6 when walking and at 6.5 when waiting for 
the subway). Subway becomes the preferable option when leaving 
u between 4.5 and 6 time units. 

Furthermore, for each POI pi in a route r, SlackRoutes utilizes 
the following variables: 

 
The waiting time at pi before its time window 
starts; max	 0, . 

 
The starting time of the visit at pi; 

. 

 
The time the visit at pi completes, i.e., the departure 
time from pi; . 

 

The arrival time at pi; 

,  where is the 
departure time from the previous node of pi in route 
r (prev(i)). We assume that arrive . 

 

The latest time the visit at pi can start without 
violating the time windows of the nodes following 
pi; , max :

, , where 
next(i) is the node following pi in r. We assume that 
maxStart . 

 

How long the arrival at pi may be delayed without 
affecting the feasibility of following visits, i.e. the 
time available for inserting a new POI before pi; 

. Note that if the 
value of  is close to 0, it is highly unlikely 
the insertion of a new POI between pprev(i) and pi to 

be feasible 

It is noted that the variables wait, start and arrive have been 
defined in the context of ILS algorithm [10]. The leave, maxStart 
and slack variables are introduced in this work.  

3.1 Execution phases of SlackRoutes 
SlackRoutes comprises an offline (preprocessing) and an online 

phase (executed upon the receipt of user queries); the latter 
involves three main execution routines. A pseudocode 
implementation of SlackRoutes is shown in Algorithm 1. 

Algorithm 1: SlackRoutes 

1. 
Preprocessing phase: Cluster the POIs and construct the 

listOfClusters 

2. while listOfClusters is not empty do 

3. ClusterSet  ← listOfClusters.pop  

4. RouteInit (ClusterSet) 

5 iterations ← 0 

6. while iterations < maxIterations do 

7. Repeat 

8. Insert 

9. until no further insertion is feasible 

10. if currentSolution is the best found then  

11. bestFoundSolution ← currentSolution 

12. iterations ← 0 

13. end if 

14. Shake 

15 Iterations ← Iterations + 1 

16. end while 

17. remove all POIs visited in the currentSolution 

18. end while 

 
Preprocessing phase 

The preprocessing phase contributes to the efficient handling of 
user queries, thereby meeting real-time application requirements. 
It takes as input an initial topology, i.e. a set of POIs belonging to 
disjoint categories/sets (i.e. monuments, museums, churches, 
squares, etc); in the example topology of Figure 3a, geometric 
shapes indicate POI categories, while their size denote POIs profit 
values. The initial topology is partitioned into a number of 
clusters (listOfClusters) based on geographical criteria (see Figure 
3b), using the global k-means algorithm [8]. 

The main incentives behind the clustering process are: (a) to 
utilize the clustered topology in the online phase so as to mainly 
consider successive visits to POIs grouped in the same cluster; 
this, firstly, reduces the solution space saving execution time and, 
secondly, motivates walking instead of transit transfers (POIs 
grouped within the same cluster are likely to be within walking 
distance); (b) to indicate topology areas featuring high density of 
‘promising’ (i.e. highly profitable) POIs. 

Online execution phase 

The online execution phase is triggered upon the receipt of user 
queries which convey user preferences upon specific POI 
categories (e.g. preference to visit archaeological sites rather than 
modern art museums). Those preferences are used to adjust the 
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profit values of POIs (for instance, in Figure 3c, the profit of 
rhombus and circular POIs is increased while the profit of square 
and polygon POIs is reduced, compared to their original values). 

From a high level perspective, the online phase tries out 
different route initializations (lines 3-4); starting with an initial 
solution, SlackRoutes executes an iterated local search procedure 
inserting POIs along the initial routes until no further insertion is 
feasible (lines 7-9) and then it shakes derived solutions in hope of 
escaping local optima and achieving further improvement (line 
13). Among all solutions, the one with the highest overall profit is 
returned to the user. 
Routes initialization (lines 3-4). A list of disjoint listOfClusters 
(derived from the preprocessing phase) is considered, originally 
arranged in cluster quality (Cq) order. The Cq metric is inspired by 
the h-index, used to measure impact of the published work of 
scholars; for instance a cluster with Cq = 10 should include at least 
10 POIs with profit greater or equal to 10. The intuition behind 
the Cq ordering is to motivate visits to clusters highly dense in 
POIs with high profit values (i.e. clusters with large Cq), even if 
those POIs are located relatively far. A number of m clusters are 
popped from listOfClusters, starting with those with the highest 
Cq value. Then, one POI is inserted into each of the originally 
empty m routes with each of those POIs coming from a different 
cluster (below, we explain the criterion used to select the initial 
POI for each route). 
Routes creation (lines 6-16). Routes creation involves an 
insertion step (lines 7-9), which performs consecutive POI 
insertions and a shake step (line 13) which attempts to improve 
the originally derived solutions. 

When considering a route r, an Insert routine is iteratively 
executed, provided that the route feasibility criterion is satisfied 
(i.e. POIs are visited within their time windows and the daily time 
budget in not exceeded), until no further improvement is possible. 
The Insert routine considers the insertion of all candidate POIs pi 
at each feasible position k along r, that is after any POI 4. For 

each feasible position, it calculates the weight of pi: 

∙ , 

 

(1) 

∑ ∑

1
 

(2) 

The quantity  denotes the average slack value among all 
POIs on r, after the insertion of pi after the kth POI along r (the 
route will then include 1 visits). Note that the 

corresponds to the slack of the final leg of the trip 

between the last POI   and the final destination . It is also 

worth mentioning  that a large value of  implies that after the 
insertion of pi, there will be many possibilities left for inserting 
new POIs along each leg of trip (that is, prior and after visiting 

). Eventually, the POI with the highest insertion weight , 

                                                                 
4  If k=0, the POI i is placed first of all POIs of the route. A POI 

may be inserted at any location that ensures that any cluster is 
visited only once within any particular route. Hence, a POI 
can be inserted prior or after a POI of its own cluster, if such a 
POI exists, otherwise it can only be inserted between POIs of 
separate clusters. This restriction saves execution time by 
limiting the solution space and reduces transit transfers, since 
intra-cluster transfers are typically done by walking. 

where max , is inserted into the position k which 
maximizes its weight. Notably, unlike most existing iterated local 
search procedures, e.g. the ILS algorithm [10], SlackRoutes 
involves a global rather than a local decision perspective 
regarding possible insertion positions as it considers the effect of 
POIs insertion along the whole route. 

SlackRoutes does not allow a route to visit a cluster more than 
once: a POI insertion can take place before or after a POI of its 
containing cluster, if such a POI exists, otherwise the insertion can 
take place only between POIs of different clusters. This restriction 
saves execution time by restricting the solution space and reduces 
the transit transfers, since transfers between POIs of the same 
cluster are typically done by walking. 

(a) (b) 

 
(c) (d) 

Figure 3: Illustration of SlackRoutes execution phases: (a) initial 
topology (geometric shapes indicate POI categories, while their size 

denote POIs profit values); (b) clustering of POIs based on geographic 
criteria (preprocessing phase); (c) adjustment of POI profit values 

based on user profile (i.e. user preferences upon POI categories 
indicated through user queries); (d) example output (tours) derived 

by SlackRoutes. 

The Shake routine comprises a solution perturbation step, 
wherein a number of consecutive POIs are removed from each 
route; the insertion procedure is then executed attempting to 
escape local optima. An example output derived by SlackRoutes 
is illustrated in Figure 3d. 

3.2 Support for arbitrary start/end itinerary 
locations 

(TD)TOPTW modeling involves an asymmetric distance 
matrix which stores travel times among all nodes. The distance 
matrix should be precomputed to ensure fast response (tour 
creation) to user queries. The offline calculation becomes more 
crucial when considering time dependent travel times (i.e. full 
travel time profiles similar to that shown in Figure 2), which are 
far more costly to compute. Due to the above considerations, 
available tourist tour planners restrict choices for itineraries 
start/end locations among a fixed set of selected hotels and/or 
landmarks (those locations are included in the set of locations V). 
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This restriction, though, counters the reasonable expectation to 
define arbitrary start/end route locations (e.g. the current location 
of the user), which will only be known at query time. In the sequel 
we present an algorithm that addresses this issue. 

 
Figure 4. Consideration of arbitrary start/end locations; solid and 

lines denote walking and dashed lines transit transfers. 

The preprocessing phase described in Section 3.1 is extended 
so as to further perform a partitioning of the tourist area into small 
square regions (e.g. 500m x 500m), covering the whole 
geographical area where POIs are located in. Within each region 
Ri a central location is chosen, called region center	 . For 

instance, in Figure 4, the area is partitioned in nine areas, where 
the green dots denote the centers. Consider the complete directed 
graph G = (V,E), where V consists of all the POIs and centers. 
Then for each pair of locations (i, j) in V, the travel profile is 
calculated. 

Then, the online phase of the algorithm proceeds as follows: 
 For each route ri, i = 1, .., m, (i) find the centers  and  of 

the regions where the arbitrary end points  and   belong 
to. (ii) Compute the walking travel times and  between 

( , ) and ( , ), respectively. Note that due to the small 
size of the regions, it is fairly fast to compute the walking 
distances, while walking is highly likely to be faster than 
public transportation. (iii) Fix the start/end time of the route 
to be the arrival times at  and  ( 	 	  , 

respectively). 
 Execute the SlackRoutes algorithm and connect ( , ) and 

( , ) as first/last route legs. 
 Restore the original start/end locations and times and connect 

 and  with the first and last POI in the designed route, 
respectively. 

 Repair the route inserting new POIs, if possible. 

4. eCOMPASS system implementation 
This Section focuses on the implementation details of 

eCOMPASS. Section 4.1 describes the structure of the tourist 
content database. Section 4.2 explains how multimodal travel 
profiles are calculated. Section 4.3 presents the system 
architecture and describes the workflow within the eCOMPASS 
framework. Section 4.4 discusses implementation details for the 
web services executed within the eCOMPASS system. 

4.1 Content database 
We have compiled a collection from the urban area of Berlin 

(Germany), which comprises 144 (=12x12 km2) region centers, 
113 attractions (POIs) and 100 hotels. POIs are classified in the 
following categories: museums & art galleries, nature, 
archaeological sites, neighborhoods & squares, churches & 
religious heritage, monuments & landmarks. The metadata stored 
for each POI include: title; geo-coordinates (latitude, longitude); 
category; profit; visiting time; opening/closing hours for each 
week day; indication whether it is ‘open air’ (i.e. unsuitable to 
visit in rainy or heat wave days) or not; entrance fee for adults and 
children; indication for accessibility facilities; short description; 
photograph(s); address; telephone; official website URL; 
Wikipedia entry URL; average user rating, overall number of 
uploaded user ratings. 

Profits have been set in a 1-100 scale and visiting times vary 
from 5 minute (e.g. for some outdoor statues) to 2 hours (e.g. for 
some not-miss museums and wide-area archaeological sites). 
About half of the POIs are outdoors and always visitable (24h 
time windows) while the remainder are associated with relatively 
wide, largely overlapped time windows (typically around 8h). 
Most of selected hotels are situated around main attraction areas, 
while some hotels are situated in city suburbs. 

4.2 Calculation of multimodal travel time profiles 
In our implementation, we have used the GTFS5 (General 

Transit Feed Specification) transit network data of the Berlin 
metropolitan area; the transit network includes 3213 stops, 9 lines 
U-Bahn, 15 lines S-Bahn, 22 tram lines and 147 bus lines. Using 
the method of Dibbelt et al. [2], we compute offline pairwise full 
(24h range) multimodal time-dependent travel time profiles 
among all locations stored in the content database (POIs, region 
centers, hotels, restaurants, cafes). The overall shortest time 
dependent travel time information is pre-calculated and stored in a 
three-dimensional array of size N x N x 1440, where N is the 
number of specified locations/POIs and 1440 (=24x60) the time 
steps/minutes per day. This memory structure ensures instant 
access to time dependent travel times, given a specified pair of 
POIs (u, v), upon receiving a user query. The memory size needed 
to store travel profiles is 5.76 GB. 

4.3 eCOMPASS architecture and application 
workflow 

eCOMPASS adopts a service-oriented architecture (SOA) 
approach, wherein the business logic is composed of loosely 
coupled web services, combined together to deliver personalized 
services either through traditional web interfaces or thin mobile 
clients. The mobile client application 
(https://www.youtube.com/watch?v=BVT__mWOoso) has been 
developed on the Android platform and is available from 
http://ecompass.aegean.gr/eCompass.apk. 

Figure 5 provides a high-level overview of the eCOMPASS 
architecture as well as the procedural steps taking place upon 
receiving user queries. In particular, the application workflow 
within eCOMPASS comprises the following phases/steps: 

Offline phase: 

1. The pairwise full multimodal travel time profiles among all 
locations stored in the content database are computed based 
on timetable (GTFS) data (see Section 4.2). Also, POIs are 

                                                                 
5 https://developers.google.com/transit/gtfs/reference 



grouped in disjoint clusters based on geographical criteria. 
2. POIs metadata (see Section 4.1) and travel profiles among 

POIs (see Section 4.2) are stored in memory structures on the 
server side. 

Online phase: 

3. User queries are sent along with the user profile (preferences 
among individual POI categories) and trip detail. 

4. A weather web service (Yahoo! weather6) is contacted to 
deliver a weather forecast for the trip dates (in case that the 
user wishes weather information to be taken into account in 
the tour planning logic). 

5. In case that arbitrary start/end tour locations are defined, a 
multimodal route planning service is contacted to estimate 
the walking travel time from the start/end locations to the 
nearest region center (see Section 3.2). 

6. The tour planning web service derives the personalized daily 
tourist tours. 

7. The tours are returned (in JSON format) to the requesting 
client application; the tour description is rendered and 
visualized on a map or list-based graphical interface. 

 

Figure 5. eCOMPASS system overview. 

Figure 6 exhibits representative screens captured by the 
eCOMPASS mobile client application. The main application 
features are highlighted in the menu of Figure 6a; those include 
listings of attractions, hotels, restaurant and cafes further to the 
main tour planning functionality. 

The next screen presents the user settings used to personalize 
the derived tourist tours (see Figure 6b). The user specifies the 
start and end location of each itinerary, allowed to choose among 
available hotels (since most itineraries are expected to start and 
end at the user’s accommodation), selected city landmarks (e.g. 
central squares), arbitrary locations (pointed on a map interface) 
and current location (yield through GPS fix). The user also 
indicates his/her scheduled arrival date, the number of days to be 
spent at the destination and the preferred walking pace (to adjust 
the estimated walking travel times). 

 

                                                                 
6 https://developer.yahoo.com/weather/ 

(a) (b) 

(c) (d) 

(f) (g) 

Figure 6. Screenshots taken from the eCOMPASS mobile (Android) 
client application. 
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Recommended tours may be visualized in both list (see Figure 
6c) and map (see Figure 6d) views. The list view illustrates the 
visiting order of recommended POIs along with their title, 
category, rating, estimated arrival/departure time and visiting 
duration. A walking/transit icon placed on each list item may be 
tapped to yield walk or time-dependent transit directions from the 
previous POI towards the current one (see Figure 6e). The user 
may retrieve further information for selected POIs, including 
address, telephone, entrance fee, accessibility facilities, short 
description (see Figure 6f). Each POI screen also shows a distance 
estimate among the user’s current position and the POI’s location 
as well as a compass indicator icon pointing towards the POI’s 
location. 

The users may remove any POI from the proposed tours; 
removed POIs may be restored later on. Furthermore, the start/end 
point and time of a specific daily itinerary may be edited without 
affecting the start/end points/times for the rest of them. On the 
incident of modifying any user setting, the tour planning web 
service is reinvoked and the itineraries are recalculated. 

4.4 Web services implementation 
The web services utilized within the eCOMPASS system (i.e. 

the tourist tour planning web service and the multimodal route 
planning web service) are based on the RESTful architectural 
style. The core tourist tour planning service is invoked through a 
HTTP GET request formatted as follows: 

/tours/json/?[{date}{start_lon}{start_lat}{end_lon} 

{end_lat}{start_time}{end_time}{[excluded_POIs]} 

{[userprefs]}] 

In particular, for each daily tour the tour planning service 
receives the following parameters: 
 start_lon: longitude of the tour start location; 
 start_lat: latitude of the tour start location; 
 end_lon: longitude of the tour end location; 
 end_lat: latitude of the tour end location; 
 start_time: the tour start time (in min) 
 end_time: the tour end time (in min); 
 excluded_POIs: array of POIs not to be considered (either 

explicitly excluded by the user or due to unsuitable weather 
conditions); 

 userprefs=array of ratings for each POI category (in 1-10 
scale). 

The average query service times for Berlin instances vary from 
400 msec (1 tour) to 1,65 sec (4 tours); time values are averaged 
over ten executions on a  sQEMU Virtual CPU version 1.7.1 
clocked at 2.1 GHz, with 4 GB RAM. 

5. CONCLUSIONS 
In this paper, we introduced eCOMPASS, a context-aware 

mobile application which derives personalized multimodal tours 
via selected urban attractions. To the best of our knowledge, 
eCOMPASS is the only available research or commercial tour 
planner that assists the way arounds of tourists through public 
transit. The algorithmic core of eCOMPASS is SlackRoutes, an 
efficient TTDP solver, which takes into account time dependency 
in estimating travel times between urban locations and derives 
near-optimal tours so as to best utilize time available for 
sightseeing and minimize the time spent at transit stops. 
Compared to analogous tools, eCOMPASS is the only allowing 

users to define arbitrary start/end locations for their daily tours 
and taking into account weather forecast in tour planning. The 
publicly available eCOMPASS mobile tool supports tour planning 
for Berlin metropolitan area, showcasing the utility of the system. 
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