
Efficient mobile sink-based data gathering in wireless
sensor networks with guaranteed delay

Charalampos
Konstantopoulos

Department of Informatics
University of Piraeus, Greece

konstant@unipi.gr

Grammati Pantziou
Department of Informatics
Technological Educational

Institution of Athens, Greece
pantziou@teiath.gr

Nikolaos Vathis
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

nvathis@softlab.ntua.gr

Vasileios Nakos
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

billynak@gmail.com

Damianos Gavalas
Department of Cultural

Technology and
Communication

University of the Aegean,
Greece

dgavalas@aegean.gr

ABSTRACT
In this paper, we present a rendezvous-based data gather-
ing protocol for wireless sensor networks employing a mo-
bile sink. For satisfying timely delivery of sensory data to
the mobile sink, the mobile sink is forced to visit only an
appropriate number of rendezvous nodes while the remain-
ing nodes send their data through multi-hop communica-
tion toward the rendezvous nodes. The proposed technique
achieves prolonged network lifetime by selecting energy rich
paths for this multi-hop communication. Specifically, first
the network is partitioned into a number of clusters and then
the cluster heads of an appropriate number of energy rich
clusters are selected as rendezvous nodes in such a way that
(i) the rendezvous nodes are appropriately distributed across
the network area to ensure energy efficient data gathering
from the other sensor nodes to the rendezvous nodes and (ii)
the length of the mobile sink trajectory is below a certain
limit. Then, by exploiting the clustering structure, energy
efficient routes are determined for all sensor nodes of the
network toward the mobile sink trajectory. Experimental
results confirm the effectiveness of our approach compared
with other competitive approaches from the literature.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design ]: Distributed
Networks; Network Communications; Wireless Communica-
tion

General Terms
Algorithms; Experimentation; Performance

1. INTRODUCTION
Most typical applications of wireless sensor networks (WSNs)
involve the collection of sensory data at a base station (sink)
often under certain data gathering delay constraints. A fun-
damental challenge for these networks is to support timely
data gathering with minimum energy consumption at the
sensor nodes (SNs). The energy requirements due to wireless
data transmission, can be reduced by employing a mobile
sink (MS) that roams in the network and collects data from
the SNs. A number of different approaches exploiting sink
mobility for data collection in WSNs have been proposed in
the literature. The MS may visit each SN and gather its
data via single-hop communication [10, 9] or may visit only
some locations of the WSN and SNs send their data to MS
through multi-hop communication [2, 5]. In the first ap-
proach only single-hop communication is required, therefore
energy consumption is minimized, however, at the expense
of long data delivery delay. In the second approach, this
delay is short but the energy consumption due to multi-hop
communication is rather high. Also, SNs should constantly
learn the MS’s current location thereby creating consider-
able routing overhead. A solution in between is to have a
number of nodes (rendezvous nodes) acting as caching points
for data from other SNs. The data stored in the rendezvous
nodes (RNs) are sent to the MS when it is within their trans-
mission range [13, 14, 1, 8, 6].

In this article we study the problem of rendezvous-based
data gathering defined as follows. We are given a WSN,
a MS and a data gathering delay limit. The problem is
to determine an appropriate number of RNs, organise the
WSN into routing trees each rooted at a RN, and compute
a trajectory for the MS to visit the RNs and gather the
buffered data. The objective is to maximize the network
lifetime defined as the time to the first SN failure due to
energy exhaustion, provided that the data gathering delay
is lower than the given limit. We formulate the problem as
a Mixed Integer Linear Programming (MILP) problem, we
prove that it is NP-complete and then we present a novel



heuristic approach for giving a solution to the problem.

The proposed protocol first builds a multi-hop clustering
structure over the WSN. Then, a technique is employed to
compute the MS trajectory by selecting a subset of the set
of CHs as RNs. Since the RNs as well as their neighboring
nodes are prone to fast energy depletion due to their data
relay overhead, the RNs are selected to be CHs of energy
rich clusters which at the same time are appropriately dis-
tributed across the network field to ensure energy efficient
data gathering from the other SNs i.e. routing trees that
minimize the distance from each SN to the corresponding
RN. Thus, the MS trajectory is designed to ensure prolonged
network lifetime and at the same time its length is kept un-
der the imposed input constraint, guaranteeing timely data
delivery. Note that although several rendezvous-based data
gathering protocols have been proposed [13, 14, 1, 8, 6], they
do not consider SNs residual energy when they build the MS
trajectory. As a result, the MS may pass through low energy
regions and due to high data traffic observed near the MS
trajectory, the RNs or the nodes in their neighborhood may
suffer rapid energy exhaustion. The rest of the paper is or-
ganised as follows. Section 2 presents the related work and
Section 3 provides a MILP formulation of the problem. Sec-
tion 4 presents the proposed protocol while Section 5 gives
the experimental results.

2. RELATED WORK
As mentioned in the introduction, several works exploit sink
mobility for data collection in WSNs. In this section we
briefly review approaches most relevant to our proposal. In
these approaches, the SNs send their data to the RNs which
buffer the received data and send them to the MS when MS
is within their transmission range [13, 14, 1, 8, 6]. Also,
a constraint on the length of the MS trajectory is imposed
and the objective is to maximize the network lifetime or
minimize the total energy consumption.

In [13], rendezvous-based solutions are presented for fixed
MS trajectories and for scenarios where the trajectory is
controllable. In the second scenario, which is more relevant
to our work, full aggregation is assumed, i.e. at each node
all incoming messages are aggregated to a single outgoing
message. Also, the objective is to minimize the total energy
consumption in the network while respecting the trajectory
length constraint. This trajectory is built based on a Steiner
tree rooted at a fixed point which connects all source nodes
of the network. Specifically, after a pre-order traversal of
the tree, a tour on the traversed nodes is determined. This
procedure is repeated, increasing the current length bound
by a certain amount each time until the imposed length con-
straint is reached. Then, the subtrees having not been tra-
versed are the trees along which data are routed toward ren-
dezvous nodes. In [14], rendezvous-based solutions are pro-
posed for two scenarios, depending on whether the sink tra-
jectory is constrained or not. For unconstrained trajectory,
a Steiner tree rooted at fixed point is built again and then
a tour initially empty is incrementally formed. Specifically,
at each step, a new node is inserted in the tour which con-
siderably shortens the routing paths from nodes not in the
tour to the nearest RNs and also increases the tour length
after its insertion by the least amount. The objective in [14]
is to minimize the total energy consumption while obeying

the tour length constraint. Also, there is no aggregation and
thus each node relays the receiving messages intact.

In [1], the objective is to select RNs which minimize the
distance of network nodes from the RNs while obeying the
length constraint again. Notice that this objective also min-
imizes the total energy consumption in the network when
there is no data aggregation at nodes. The proposed solution
repeatedly creates a specific number of clusters in the net-
work. At each iteration, the shortest tour passing through
all the clusters is determined and then, if the tour length
is below the length limit, the number of clusters to be con-
structed in the next iteration is increased by a binary-search
like method. After the longest sink tour obeying the length
constraint has been determined, it is fine-tuned in order to
get closer to the length limit. In [8], the proposed solution
maximizes the network lifetime and follows a simple greedy
approach for finding the MS trajectory and the routing trees
rooted at the RNs. At each step, a tentative MS trajectory
is determined and then shortest path trees for each RN is
then found. The weight of each node is the number of de-
scendants of this node in the routing tree it belongs to times
the number of hops separating this node from its RN. Ini-
tially, the trajectory includes only the initial position of the
MS and a shortest path tree rooted at MS is built all over
the network. Then, in the following steps, the MS trajectory
is extended by one node at time, namely by the node with
maximum weight over all other nodes not in the trajectory.
Before inserting the new node in the trajectory, the algo-
rithm checks if the TSP route passing over the new node
and all nodes of the existing trajectory exceeds the length
constraint. In that case, the insertion is canceled and the
algorithm considers the node with the next higher weight.

In [6], a minimum spanning tree is built on the network and
then the median of the tree is found. This node has the low-
est sum of distances over all tree nodes and is a good starting
point for finding a length-constrained trajectory such that
sensory data can be gathered at RNs with low energy con-
sumption. Starting from an empty tour, at each step a tree
traversal is directed toward the subtree with highest number
of nodes which also has not been yet traversed. Then, a tour
on the nodes already traversed is built and if its length is
still below the length limit, the traversal starts over toward
the heaviest non-traversed subtree.

A common feature of the above rendezvous-based solutions
is that they do not consider node energies in their approaches.
As a result, the MS may pass through low energy regions and
therefore, the RNs or the nodes in their neighborhood may
suffer rapid energy exhaustion. In contrast, in our work,
node energies are considered and the whole data gathering
structure including sink trajectory is determined so that only
energy-rich nodes are used for relaying data traffic.

3. PROBLEM FORMULATION
The proposed protocol employs a MS which visits the ren-
dezvous nodes of the WSN and gathers all buffered data
previously sent by the other SNs. The nodes of the network
will be partitioned into a number of groups each correspond-
ing to a different RN. Then, the data from nodes of each
group are gathered to the corresponding RN through a tree
rooted at that RN which also includes only nodes of this



group. The primary objective in our work is the maximum
network lifetime provided that the data gathering delay is
lower than a certain limit. In what follows, we formulate the
problem at hand as a Mixed Integer Linear Programming
(MILP) problem. Let G(V,E) be the directed graph where
{v1, v2, . . . , vn} are the nodes of the network and eij ∈ E
iff vj is within the transmission range of node vi. Let also
Eij be the energy consumption at node vi for transmitting
one data unit over the edge eij . Let Ercv denote the en-
ergy consumption for receiving one data unit, and f the
data units generated at each sampling period at each node.
Let also Ei be the available energy at node vi and dij the
euclidean distance between two nodes vi, vj . We also con-
sider a fictitious node vn+1 which corresponds to the MS,
and the edges ei,n+1 (i = 1, . . . , n). Finally, we assume that
Ei,n+1, i = 1, . . . , n, is the energy consumed for sending one
data unit from node vi to MS which has just arrived at vi,
(i = 1, . . . , n.). The problem of the maximum lifetime can
now be formulated as follows:

maxT (1)
n∑

i,j=1,i 6=j

dijzij ≤ L (2)

xkk = yk, k = 1, . . . , n (3)

xki ≤ yk, i, k = 1, . . . , n, i 6= k (4)
n∑

k=1

xki = 1, i = 1, . . . , n (5)

xkij ≤
xki + xkj

2
, i, j, k = 1, . . . , n, i 6= j (6)

xki,n+1 ≤
xki + yi

2
≤ 1

2
+

1

2
xki,n+1, i, k = 1, . . . , n (7)

n∑
k=1

n+1∑
j=1,j 6=i

xkij = 1, i, k = 1, . . . , n (8)

fk
ij ≤ xkijM, i, k = 1, . . . , n, j = 1, . . . , n+ 1, i 6= j

and M is a very large positive constant
(9)

n∑
j=1,j 6=i

fk
ji + f =

n+1∑
j=1,j 6=i

fk
ij , i = 1, . . . , n and k = 1, . . . , n (10)

T (Ercv

n∑
j=1,j 6=i

fk
ji +

n+1∑
j=1,j 6=i

Eijf
k
ij) ≤ Ei, i = 1, . . . , n (11)

n∑
j=1,j 6=i

zij = yi, i = 1, . . . , n (12)

n∑
j=1,j 6=i

zji = yi, i = 1, . . . , n (13)

2(1− δ′i) ≤
i∑

j=1

yj ≤ δ′i + n(1− δ′i), i = 1, . . . , n (14)

yi + δ′i
2

− 1

2
≤ δ′i ≤

yi + δ′i
2

+
1

4
, i = 1, . . . , n (15)

ui − uj + n(zij − δi) ≤ n− 1, i, j = 1, . . . , n, i 6= j (16)

xki , x
k
ij , yi, δ

′
i, δi ∈ {0, 1}

i, k = 1, . . . , n, j = 1, . . . , n+ 1, j 6= i
(17)

zij ∈ {0, 1}, ui ∈ R, i, j = 1, . . . , n, T ∈ N (18)

fk
ij ≥ 0, i, k = 1, . . . , n, j = 1, . . . , n+ 1, j 6= i (19)

In the formulation above, the variables yi indicate the RNs,
the variables xki indicate the fact that the node vi sends its
data to the RN vk and the variables xkij are equal to 1 iff the
edge eij exists, and also this edge belongs to the tree whose
root is the node vk. Finally, the variables zij indicate that
the nodes vi, vj are consecutive along the sink trajectory.
The objective is to maximize the network lifetime T while
the data gathering delay is kept under a certain limit. Notice
that the length of the TSP tour over the RNs of the network
is a measure of data gathering delay (assuming a constant
MS speed) and thus in (2), the length of this tour cannot be
larger than the input parameter L.

The constraints (3)-(11) describe feasible rendezvous-based
solutions, whereas the constraints (12)-(16) determine a sin-
gle tour which includes all the elected RNs. Specifically, (3)
ensures that each RN vk should belong to the tree rooted at
the same node vk; (4) ensures that the SN vi cannot belong
to a tree of non existent RN; (5) guarantees that each SN
should belong to exactly one tree rooted at a RN; (6) ensures
that if xkij = 1 then xki = 1 and xkj = 1 , that is, an edge
eij cannot be a part of a tree if the corresponding vertices
vi and vj do not belong to this tree; (7) combined with (3)
guarantees that xki,n+1 = 1 iff i = k and vk is a RN, that is,
only RNs can communicate with the MS; (8) ensures that
each SN has only one parent in the tree of a RN while RNs
can only send their gathered data to the MS; (9) ensures
that each SN can send data only along valid edges defined
in the previous constraints; (10) is the flow conservation con-
straint at each node while (11) states that the total energy
consumption for receiving and sending data at each SN for
T rounds should be lower than the initial residual energy of
the SN. Note also that (10) with (8) and (9) ensures that
the routing structure rooted at each RN is actually a tree
and that no routing cycles exist over the tree nodes.

Regarding the TSP problem, (12) and (13) ensure that there
exists exactly one outgoing and ingoing edge at each RN
along the tour. The constraints (14),(15),(16) eliminate any
possible subtours and guarantee that only a single tour in-
cluding all RNs is built. Specifically, we follow the well-
known MTZ technique [7] for subtour elimination. How-
ever, unlike in our setting, the above technique assumes
that the goal is to find the TSP tour over all the nodes of
the input graph. Then, a vertex is singled out, usually the
lowest-indexed (e.g. v1 in our input graph), and a constraint
similar to (16) ensures that every tour should contain that
vertex. This combined with constraints similar to (12) and
(13) guarantees that only a single tour can be constructed
including all the nodes of the graph. In our problem, the
TSP tour passes only through a subset of nodes and thus
the above special vertex cannot be selected in advance. Ac-
tually, the constraints (14),(15) help in selecting a vertex
from the set of RNs. Specifically, if {vi1 , vi2 , . . . , vip} is the
set of elected RNs with ik < ik+1 (k = 1, . . . , p − 1), RN
vi1 is selected as the special node of the subtour elimination
technique. For this node, it holds that

∑i1
j=1 yj ≤ 1 and

yi1 = 1 and thus constraints (14),(15) ensure that δi = 1 iff
i = i1. Then, using the variables δi, node vi1 is specially
treated in the subtour elimination constraint (16), following
similar reasoning as in the original MTZ technique. Note
also for any feasible tour vj1 → vj2 → . . . vjp → vj1 where
j1 is the lowest index among jk (k = 1, . . . , p) we can always



find a valid assignment for ui (i = 1, . . . , n), for instance,
uj1 = p, ujk = k−1 (k = 2, . . . , p) and ui = 1 for any i 6= jk
(k = 1, . . . , p). In the following lemma, we prove that MILP
problem (1)-(19) is an NP-complete problem by a reduction
from the TSP problem.

Lemma 1. The mixed integer linear programming prob-
lem (1)-(19) is a NP-complete problem.

Proof. We prove the Lemma through a reduction from
the TSP problem. First, we assume that energies Eij and
Ercv are all infinite while energies Ei,n+1 are all of the same
finite value. Thus, the lifetime T is non-zero iff the MS visits
each node with the length of the MS route not exceeding the
bound L. However, this is exactly the decision version of the
TSP problem.

4. THE PROTOCOL
In this section we describe our MS-based data gathering pro-
tocol that aims at maximizing the network lifetime defined
as the time to the first SN failure due to energy exhaustion,
provided that the data gathering delay is below a certain
limit. The protocol (Algorithm 7) consists of two stages: a
network organization or setup stage (Algorithms 1-5) and an
operational data gathering stage (Algorithm 6). In the setup
stage, the WSN is appropriately organized i.e. an appropri-
ate number of SNs are chosen as RNs, a routing structure
for data collection from all nodes to RNs is built, and a tra-
jectory is computed along which the MS visits the elected
RNs. Then the data gathering stage follows where the MS
periodically visits the RNs and gathers all data buffered at
these nodes. To ensure a fair load balance among SNs, to
prevent fast energy depletion of the RNs and their neighbors
and hence prolong the network lifetime, the network orga-
nization stage is periodically invoked to compute a new set
of RNs and rebuild the data gathering structure.

The network organization stage comprises three phases. First,
a multi-hop clustering structure is built over the WSN. Then,
the CHs of an appropriate number of energy rich clusters are
selected as RNs in such a way that (i) the selected RNs are
appropriately distributed across the network area to ensure
energy efficient data gathering from the other SNs to the
RNs and (ii) the length of the trajectory followed by the
sink for visiting the RNs and gathering the buffered data
is below a certain limit. Finally, in the third phase, data
gathering trees rooted at the RNs are determined with the
objective of maximizing the network lifetime. In what fol-
lows, we describe the three phases in more detail.

Phase 1: Clustering. In this phase, a clustering structure
is built over the WSN employing the multi-hop distributed
clustering algorithm in [4]. Note also that the energy rich
regions around each CH are ideal stops for a MS to gather
data coming from the members of the corresponding clus-
ter. For the shake of completeness of the presentation of
our protocol we give the basic steps of the Clustering algo-
rithm (Algorithm 1); for the detailed description the reader
is referred to [4]. Initially, each node u broadcasts at a fixed
power level a message announcing its residual energy Eu.
Then each node u waits until it receives all the messages sent
by its neighboring nodes and builds the sets GE and EQ of

neighbors that have more or equal residual energy to u, re-
spectively. Next, u is attached to an appropriate neighbor v
and considers v as its parent in the clustering structure, as
follows. If the set GE of u is nonempty then u is attached
to its neighbour v that maximizes the ratio Ev−Eu

duv
. Thus,

it is ensured that the sensory data of u will be forwarded
toward its CH through an energy rich neighbor and at the
same time the one-hop communication with the neighbor is
relatively cheap. If the set GE and EQ of u is empty and
non-empty respectively, then u is attached to the node v in
EQ that minimizes duv. In the case that both sets GE and
EQ are empty, u has the largest residual energy from all
its neighbors and becomes a CH. Therefore, it broadcasts a
CH announcement message (u, u) to its neighbors announc-
ing its decision to become a CH. When a node u receives a
CH announcement message (p, h)) from the node p, if p is
its parent node then it sets h as its CH and forwards the
CH announcing message (u, h) to its neighbors. Note that
a node becomes a CH if it has the highest residual energy
in its neighborhood (a local energy-maximum, resulting to
empty GE and EQ sets). The CH announcing messages
travel along decreasing energy paths and the nodes of each
path are associated with the CH at the head of the path.
Therefore, the CH has the highest residual energy among
all nodes in its cluster.

Algorithm 1: Clustering()

begin /* runs at SNs */

foreach node u do
u broadcasts Eu to neighbours;
GE ←− ∅;
EQ←− ∅;
while a predefined timer has not elapsed do
/* wait for its neighbors */

on u receiving (v,Ev) do
if Ev > Eu then

GE ←− GE ∪ {v}
else

if Ev = Eu and v > u then
EQ←− EQ ∪ {v}

if GE = ∅ and EQ = ∅ then
u broadcasts CH announcement (u, u);

else
if GE 6= ∅ then

parent←− argmaxv∈GE
Ev−Eu

duv

else
parent←− argminv∈EQduv

on u receiving CH announcement (p, h) do
if parent = p then

CHu ←− h;
broadcast CH announcement (u, h) ;

After the clustering, the sink should learn the IDs and the
positions of the CHs, as well as the neighboring clusters.
Two clusters C and C′ are considered as neighbors if there
are at least two nodes v ∈ C and v′ ∈ C′ that are within the
transmission range of one another. The above information



will prove useful in the following Phases 2 and 3. For gath-
ering this information, the MS makes an initial walk across
the whole network deployment area following a predefined
route. Depending on the speed of the MS, the coverage of
the WSN area may take relatively long time, however, it
takes place only once i.e. after the first completion of the
clustering phase.

Phase 2: MS Trajectory Estimation. Based on the
known CHs locations, a trajectory can be computed by the
MS for visiting the energy rich regions around each CH and
collecting data coming from the members of the correspond-
ing cluster. Unfortunately, such an approach is not always
working because the trajectory length may exceed the limit
imposed by the need for a guaranteed data gathering delay.
Therefore, a technique is needed to restrict the number of
stops of the MS by selecting a subset of the set of CHs as
rendezvous CHs (RCHs). Since the selected RCHs as well
as their neighboring nodes are prone to fast energy deple-
tion due to their data relay overhead, they must be the CHs
of energy rich clusters which at the same time are appro-
priately distributed across the network field to ensure en-
ergy efficient data gathering from the other SNs i.e. routing
trees that minimize the distance from each SN to the cor-
responding RCH. Thus, if the sink trajectory is designed to
pass through energy rich clusters appropriately distributed
across the network area and at the same time the total tra-
jectory length is kept under the imposed input constraint,
we can guarantee timely data delivery while also ensuring
prolonged network lifetime.

The problem at hand resembles the orienteering problem
(OP) [11], an NP-hard problem formulated as follows: Given
an edge-weighted graph with profits on its nodes, a depot
node s and a time limit B, the goal is to find a tour starting
and ending at s with length at most B such that the total
profit of the visited nodes is maximized. We may formulate
our problem as a variant of the OP by considering the CHs
as the nodes of the graph, the depot node as the base sta-
tion location where the MS starts and ends its trajectory,
and the time budget equal to the given data gathering delay
D. The profit Profitu of each CH u is defined as a func-
tion of the average energy of the corresponding cluster and
the location of the CH in the network field. In the sequel
we present the MS Trajectory Estimation algorithm (Algo-
rithm 3) for computing the MS trajectory, inspired by the
Iterated Local Search (ILS) heuristic which provides near
optimal solution almost in real time to the Team Orienteer-
ing Problem with Time Windows [12], the extension of OP
to multiple tours where each node is also associated with a
service time window. The ILS defines an “insertion” and a
“shake”step. The insertion step adds, one by one, new nodes
in a tour, ensuring that all nodes after the insertion point
remain feasible to visit and the time budget is not violated.
The shake step is used to escape from local optima. Dur-
ing this step, one or more nodes are removed in each tour
looking for non-included nodes that may either decrease the
tour time length or increase the overall collected profit.

The modeling of the MS Trajectory Estimation algorithm
involves two variables for each CH u: (a) Profitu defined as
the average energy of the cluster whose CH is u, normalized
to have a maximum value of 100, and (b) DistCu defined as

the distance between the CH u and the circle with center the
center of the WSN field (the point where the diagonals meet)
and radius equal to 1/4 of the diagonal of the field. Actually,
this distance is equal to the difference of the distance of
u from the circle center and the radius of the circle. Let
R = v1, v2, ..., vl, v1 = vl, be the tour of the current solution
and u a CH not included in R. Let Lengthu

j (R) be the total
length of the solution after inserting the CH u after node vj
in R i.e.,

Lengthu
j (R) =

j−1∑
i=1

dvivi+1 + dvju + duvj+1 +

l−1∑
i=j+1

dvivi+1

Let also DistSumu(R) =
∑l

i=1 duvi , i.e. DistSumu(R) is
equal to the sum of the distances of the candidate node u
from each node in the current solution R. The insertion step
(Algorithm 2) proceeds as follows: For each CH u not in-
cluded in the current solution R (candidate node), u’s best
possible insert position is determined by computing the least
total length Lengthu(R) = minj∈{1,...,l−1}Length

u
j (R) over

all possible insert positions in R. If Lengthu(R) ≤ L where
L the trajectory length constraint imposed by the data gath-
ering delay D, the algorithm calculates the ratio

ratiou =
Energyu ∗DistSumu(R)

Lengthu(R) ∗DistCu

which represents a measure of how profitable in terms of en-
ergy is to insert u and how this insertion contributes towards
an appropriate distribution of the nodes in the network area
versus the total length of the tour after the insertion, and
the distance of u from the circle with center the center of
the field and radius equal to 1/4 of the diagonal of the field.
Among all candidate nodes, the heuristic selects for insertion
the one with the highest ratio.

Algorithm 2: Insert Step(R)

begin
Candidates←− the set of CHs not included in the
current solution R;
maxRatio←− −∞;
foreach u ∈ Candidates do

posu ←− position of u in R that gives the
Lengthu(R);
if Lengthu(R) < L then

ratiou ←− Energyu∗DistSumu(R)
Lengthu(R)∗DistCu

;

if ratiou > maxRatio then
bestCandidate←− u;
maxRatio←− ratiou;
Pos←− posu;

if maxRatio > −∞ then
Insert bestCandidate at Pos in R;
return the new route R;

else
local optimum←− true ;

The MS Trajectory Estimation algorithm defines the value
of a solution R = v1, v2, ..., vl, v1 = vl as the ratio

TotalEnergy(R) ∗ TotalDist(R)

TotalDistC(R) ∗ Size(R)



where TotalEnergy(R) =
∑l−1

i=1Energyvi is the total en-

ergy of all nodes in R, TotalDist(R) =
∑l−1

i=1

∑l−1
j=1 dvivj/2

is the sum over all i of the distances from node vi in R
to all other nodes in R, TotalDistC(R) =

∑l−1
i=1DistCvi

is the sum of the distances from all nodes in R to the cir-
cle with center the center of the field and radius equal to
1/4 of the diagonal of the field, and Size(R) is the number
of the nodes in R. Note that the algorithm favors solu-
tions consisting of high energy CHs that are far away from
each other to span the whole network, and are locating close
to the circle with center the center of the field and radius
equal to 1/4 of the diagonal of the field to avoid solutions
whose nodes are close to the borders of the network field.
The locations of the elected RCHs and their distribution in
the network field facilitate Phase 3 of the protocol to con-
struct routing trees with low distance paths from each SN
to its corresponding RCH. This eventually leads to low-hop
communication between SNs and RCHs therefore to reduced
energy consumption.

The MS Trajectory Estimation algorithm (Algorithm 3) loops
up to a specified number of times as long as the value of the
best solution is not improved. Inside the loop, the inser-
tion step is applied until a local optimum is reached. If the
current solution’s value is larger than that of the best so
far solution, the current solution is kept as the best solu-
tion. In the sequel, the shake step is applied, where the
algorithm tries to escape from a local optimum by removing
a number of nodes from the current solution, in search of
non-included nodes that improve the value of the value of
the solution. The shake step takes as input two integers: (a)
RNum that determines the number of the consecutive nodes
to be removed from the current solution and (b) SNum that
indicates where to start removing nodes on the tour of the
current solution. If, throughout this process, the base sta-
tion is reached, then the removal continues with the nodes
following the base station. After the application of the shake
step, the values of its parameters are adapted as follows: the
value of SNum is increased by the value of RNum and the
value of RNum is increased by one. If SNum is greater
than l to the size of the current solution, then SNum is de-

creased by this size. If RNum equals to |C|
3k

where C is the
set of all CHs elected at Phase 1, then it is reset to one.

Phase 3: Estimation of routing paths toward RCHs
After Phase 2, the subset of RCHs residing on the MS tra-
jectory has been determined. All other SNs should send
their data over multi-hop paths toward these CHs which,
then, will relay the buffered data when MS will be within
their transmission range. The proposed approach for cre-
ating these paths runs in two stages. The first stage takes
place in the MS, and it uses the clusters created in the first
stage. Specifically an overlay graph is created GC(VC , EC)
where VC is the set of CHs and EC is the set of edges be-
tween CHs. Two CHs are linked by an edge when their cor-
responding clusters are neighboring in the sense described
above. Moreover, each edge eij is associated with a distance
dij which is the euclidean distance between CHs i and j.
On this overlay graph, MS runs the Cluster Tree Building
algorithm (Algorithm 4) which creates a number of routing
trees, one per each RCH. The algorithm is similar to Dijk-
stra’s or Prim’s algorithm and starts by first “compressing”
all RCHs into one fictitious node. At each step, the algo-

Algorithm 3: Trajectory Estimation(maxIterations)

begin /* runs at the MS */

V alBestSol←− 0;
R←− ∅;
NotImproved←− 0;
SNum←− 1;
RNum←− 1;
local optimum ←− false;
while NotImproved < maxIterations do

while not local optimum do
Insert Step(R);

if TotalEnergy(R)∗TotalDist(R)
TotalDistC(R)∗Size

> V alBestSol then

Sol←− R;

V alBestSol←− TotalEnergy(R)∗TotalDist(R)
TotalDistC(R)∗Size(R)

;

RNum←− 1;
NotImproved←− 0;

else
NotImproved←− NotImproved+ 1;

Shake Step with parameters RNum,SNum ;
SNum←− SNum+RNum;
RNum←− RNum+ 1;
if SNum > Size(R) then

SNum←− SNum− Size(R)

if RNum > |C|
3

then
RNum←− 1;

return Sol;

rithm fixates the routing path of an additional node. Let di
denote the sum of edge distances along the routing path of
CH i which the algorithm has already decided about. Note
that for nodes not yet processed, the value of that parame-
ter is infinite from the initialization of the algorithm. Now,
the next node whose route is going to be fixated, is the node
j which is connected to the so far constructed routing tree
via an edge (i, j) such that the ratio Ei

(di+dij)2
is the min-

imum over all other nodes which are not in the tree. The
rational behind this criterion is to minimize the distance of
each CH toward the MS trajectory. This is expected to lead
to reduced energy consumption since the packets from this
cluster will likely be relayed through relatively low number
of hops. On the other hand, in order to ensure long net-
work lifetime, the relay nodes along the paths toward the
MS trajectory should have sufficient energy for successfully
handling the increased data volume coming from upstream
nodes. So, apart from minimizing the distance to the MS
trajectory, the energy of the immediate relay node (node i)
of the node j should have plenty of energy and this factor is
considered when selecting the next node to insert into the
routing tree.

After the first stage, MS has a synoptic view of how data are
routed across the network. Specifically, for each cluster, it
has been determined which neighboring clusters will receive
the data from this cluster on the way to the MS trajectory.
This set includes not only the parent of the cluster in the
output tree of the Cluster Tree Building algorithm but also
all neighboring clusters located at levels of the tree higher
than that of this cluster. Consequently, the traffic coming



Algorithm 4: Cluster Tree Building

Input: the cluster overlay graph GC = (VC , EC)
Output: T = (VT , ET ): spanning forest of GC with trees

rooted at Rendezvous CHs
begin /* runs at the MS */

VT ←− ∅;
ET ←− ∅;
for u ∈ VC do

if u is a RCH then
VT ←− VT ∪ {u} ;
du ←− 0;

else
du ←−∞

while |VT | < n do
(u, v)←− argmaxu∈VT ,v∈VC−VT

Eu
(du+duv)2

;

VT ←− VT ∪ {v} ;
ET ←− ET ∪ {(u, v)};
dv ←− du + duv

from a cluster is dispersed to more than one relay clusters
and this leads to better balanced energy consumption across
the network. Notice also that by selecting relay clusters for
a cluster always from tree levels higher than that of this
cluster, we ensure that no rooting loops are created and
the traffic from this cluster will reach the MS trajectory
eventually.

Algorithm 5: Intra Cluster Route Finding

begin /* runs at SNs */

foreach node u do
CHu = the CH of u;
parent←− nil;
if u is a gateway or a RCH then

minD ←− 0;
minE ←− Eu;
u broadcasts (u,CHu,minD,minE) to its
neighbors;

else
minD ←− +∞;
minE ←− −∞;
on u receiving (w,CHw,minD′,minE′) do

if CHu = CHw then
if minE′ > minE or minE′ = minE
and minD′ < minD then

parent←− w;
minD ←− minD′ + dwu;
minE ←− min{minE′, Eu};
u broadcasts (u,CHu,minD,minE)
to its neighbors;

Since, the relay cluster information is important for each CH
in the network, MS disseminates this information by visiting
the CHs up close. This second walk of the MS across the
field is much shorter than the first one since now the MS
visits only the CHs. Then, each CH broadcasts the relay
information to their members. The cluster members with

neighbors in the relay clusters will serve as gateways and
forward all data from the other cluster members to these
neighbors (relay nodes). Now, all remaining nodes of each
cluster should determine intra-cluster routing paths toward
one of these gateway nodes. To this end, the gateways initi-
ate a local distance-vector protocol (Algorithm 5) and each
node determines the most energy efficient path for sending
its data to a gateway. Specifically, the cost of a path in
this protocol is defined as the minimum node energy found
along the path and the protocol finds the path maximizing
this minimum. For avoiding routing loops, in case of two
paths with the same cost, the path with shorter total length
is preferred.

The above discussion completes the description of the net-
work organization (setup) stage of the protocol. Now, during
the operational data gathering stage of the protocol (Algo-
rithm 6), the gateways of each cluster send the incoming
traffic to their relay nodes alternatively according to a cer-
tain probability. Specifically, each relay node is selected with
a probability proportional to its current energy. Thus, data
are always forwarded through energy rich neighbors thereby
avoiding rapid energy exhaustion in the local area. Also, the
relay nodes send their energy level periodically to gateways
so that the above traffic sharing is according to the current
local energy distribution.

Algorithm 6: Data Gathering

begin /* runs at SNs */

foreach node u do
on u sensing or receiving a new message do

if u is a RN then
u sends buffered data when MS in range;

else if u is a gateway then
RlNu = the set of relay nodes of u;
u sends its buffered data to node w ∈ RlNu

with probability pw where pw = Ew∑
v∈RlNu

Ev
;

else /* ordinary cluster member */

u sends buffered data to its single parent ;

In addition, our algorithm runs re-clustering periodically
and then build again the MS trajectory and all routing struc-
tures for data gathering at RNs (Algorithm 7). The aim
of this periodic rebuilding is to relieve the nodes at higher
tree levels from the heavy data traffic, which rapidly re-
duces their residual energy. These nodes are moved lower
in the trees and replaced with nodes with higher residual
energy. Once again, MS should learn the new CHs after
re-clustering and then, after the cluster tree building, MS
should also inform CHs about their relays. In order to speed
up this information transfer among MS and CHs, the exist-
ing routing infrastructure is employed. Specifically, the MS
trajectory, the RNs and the remaining routing structure are
kept throughout the new rebuilding and they are disposed
only after the end of the on-going rebuilding. Specifically,
the new CHs after re-clustering send their IDs and their
neighborhood to their old RCHs using the old trees. Thus,
MS need only visit the CHs along its old trajectory to find
this information. Then, after the completion of the Cluster
Tree Building Algorithm, MS uses again the old RCHs along



Algorithm 7: Proposed Protocol

begin
foreach node u do

Eu = the current energy of u ;

Clustering();
MS visits all nodes to find the new CHs ;
MS Trajectory Estimation();
Cluster Tree Building();
MS visits and gives each CH its Relay Clusters;
foreach CH u do

u sends Relay Cluster information to its members;

Intra Cluster Route Finding();
while true do

Data Gathering() ; /* normal network operation

till the next rebuilding is triggered */

foreach node u do
Eu = the predicted energy of u just after the
current rebuilding;

Clustering();
foreach CH u do

u sends its ID and neigboring clusters to its old
RCH;

MS collect the above information from the old
RCHs;
MS Trajectory Estimation();
Cluster Tree Building();
MS gives the Cluster Tree Building output to old
RCHs;
foreach old RCH u do

u sends all new CHs in its tree their relay
clusters; /* New CHs learn through the old

routing tree */

Intra Cluster Route Finding();

the old trajectory to disseminate the relay information for
each new CH. Each old RCH knows which of the new CHs
are its descendants in the old trees and forward the received
relay information to these CHs.

Due to these two relatively slow update rounds, rebuilding
may not be a short procedure. However, the normal oper-
ation of the network (i.e. sensory data gathering) can be
seamlessly extended during the rebuilding phase, since the
old routing structure still exists until rebuilding ends. Es-
sentially, rebuilding is run in the background while the net-
work continues its data gathering operation. But now, due
to the duration of rebuilding and the parallel data gather-
ing operation of the network, the node energies at the end
of rebuilding may differ a lot from those when rebuilding
started. Thus, the newly constructed routing structure may
not be the best-suited for the energy distribution across the
network as there exists at the end of rebuilding. For solv-
ing this issue, re-clustering and all other steps of rebuilding
should work with predicted node energies, namely with those
at the end of rebuilding. For a precise prediction, each SN
should know the duration of rebuilding and should also esti-
mate its energy consumption rate since the last rebuilding.
Each SN can find the rebuilding duration by simply esti-
mating the time required for MS to traverse its trajectory

twice, since this time largely determines the whole rebuild-
ing time. This travel time can be easily found since the old
MS trajectory is still followed during the on-going rebuild-
ing. For the energy consumption rate, again the old routing
structure is used for sensory data gathering and as each SN
receives and sends a constant number of packets (assuming a
low number of retransmissions) along this routing structure
since the last rebuilding, the consumption rate is expected
to be constant on average and thus can be approximated
by the formula (current SN energy - SN energy after last
rebuilding)/ (current time - time of last rebuilding).

5. EXPERIMENTAL RESULTS
We have carried out a number of simulations tests (Figures
1-4) on the Castalia simulator [3] where our protocol has
been compared against the protocol of Salarian et al. [8].
We selected this work because it is very recent and appears
to be the best among other competitive approaches in many
respects. In simulation tests, we assume 600 SNs spread
over a terrain of 500m×500m. We have also set the radio
bandwidth at 20 MHz, and the transmission power at one
of the following levels 0, -1, -3, -5, -7, -10, -15, -25 dbm
depending on the distance of the intended recipient. We
have run experiments where the initial battery power of each
SN is uniformly selected from 50 to 100 joules as well as
experiments with the same initial battery, namely set at 75
joules. We also assume that each SN sends one packet per
10 seconds and each experiment runs on a different random
topology. In addition, we considered different frequencies for
the periodic rebuilding, specifically every 10000, 7500, and
5000 secs. The speed of the MS was set at 1 m/s and the
length limit L at 600m in Figures 1-3. It is worth mentioning
that the curves in Figures 1-3 are drawn up to certain time
moment which may be different for each curve. These time
moments is the time when the first SN dies, that is the
network lifetime which differs for each simulated scenario.

Figure 1 illustrates the average residual energy of SNs over
the time. [8] achieves higher residual energy at each SN
on average than our algorithm. However, this should be
expected because the objective in [8] is to minimize the total
energy consumption across the network which in turn leads
to higher average node energy. However, despite the higher
average energy levels of [8], balanced energy consumption
over all SNs and hence long lifetime may not be attainable.
It may be the case that many SNs distant from the MS
trajectory have plenty of energy while a relatively smaller
number of SNs near the trajectory have very low energy. In
this scenario, the network lifetime is very short despite the
higher average energy over all SNs. This will be confirmed in
Figures 2 and 3. Another interesting conclusion drawn from
Fig. 1 is that the average energy in our protocol is virtually
not affected by the rebuilding frequency, which implies that
this phase can be executed with relatively low energy cost.

Figure 2 shows the deviation of the residual node energy
over time for the two protocols. With different initial node
energies, our protocol achieves lower deviation levels than
[8], while for equal energies, when rebuilding is relatively
frequent, our algorithm excels after a while. The better per-
formance of our algorithm for different initial node energies
should be expected since the full potential of our approach
is attained in this setting. Notice also that a low deviation



(a) Same initial node energies

(b) Different initial node energies

Figure 1: Average node residual energy

level clearly indicates balanced energy consumption across
the network which in turn leads to prolonged network life-
time. Figure 2 also reveals an interesting pattern for the
energy deviation. Specifically, after each rebuilding, the de-
viation falls as the last rebuilding drives packets through
energy-rich SNs. Thus, the high energy level of these SNs
is gradually decreasing and hence their difference from the
nodes of lower energy. Thus, the deviation decreases until
the energy of the formerly energy rich nodes falls under the
average energy level across the network. After that point,
the deviation starts to increase again. Clearly, the right mo-
ment for the next rebuilding is at the start of the deviation
increase. However, this cannot be easily predicted and thus
rebuilding is done periodically in our scheme.

Figure 3 shows the energy of the most energy deprived node
of the network over time. This SN may not be the same
all the time especially after rebuilding. This can be easily
seen by looking at how the gradient of the curve of our al-
gorithm is varying. If there was one node (actually not too
many nodes) that constantly had lower energy than all the
others, the curve would be a straight line, as in [8]. How-
ever, the fact that the curve in our scheme is not linear
clearly indicates that the SN with minimum available en-
ergy is changing over time. Notice also that the time when
this minimum node energy is zeroed out always signifies the

(a) Same initial node energies

(b) Different initial node energies

Figure 2: Deviation of node residual energy

network lifetime. Regarding the relative performance of the
two protocols, it can be clearly seen that for the case of the
same initial node energies, rebuilding every 5000 seconds
keeps the minimum node energy at higher levels than [8].
For different initial node energies, regardless of rebuilding
frequency, our scheme outdoes [8], which is expected since
node energy is an important parameter in our algorithm and
is taken into account during RN selection and route build-
ing. In contrast, in [8], node energies are not considered.
Figure 4 illustrates the network lifetime of the network as a
function of the maximum length of the route L. Again we
see that our algorithm performs better in almost all cases
for both the same and different initial node energies. As is
expected, the performance gap between our algorithm and
the algorithm in [8] is wider in the case of different initial
node energies and our algorithm outperforms [8] regardless
of the rebuilding frequency in that case.

Acknowledgments. This research has been co-financed
by the EU and Greek national funds through the NSRF
Research Funding Program: Archimedes III.

6. REFERENCES
[1] K. Almi’ani, A. Viglas, and L. Libman.

Energy-efficient data gathering with tour
length-constrained mobile elements in wireless sensor



(a) Same initial node energies

(b) Different initial node energies

Figure 3: Minimum node residual energy

networks. In 35th IEEE Conf. on Local Computer
Networks (LCN), pages 582–589. IEEE, 2010.

[2] S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli,
and Z. M. Wang. Controlled sink mobility for
prolonging wireless sensor networks lifetime. Wireless
Networks, 14(6):831–858, 2008.

[3] Castalia. https://castalia.forge.nicta.com.au.

[4] C. Konstantopoulos, B. Mamalis, G. Pantziou, and
V. Thanasias. Watershed-based clustering for energy
efficient data gathering in wireless sensor networks
with mobile collector. In Euro-Par 2012 Parallel
Processing, pages 754–766. Springer, 2012.

[5] J. Luo and J.-P. Hubaux. Joint mobility and routing
for lifetime elongation in wireless sensor networks. In
INFOCOM 2005. 24th Conference of the IEEE
computer and communications societies. Proc. IEEE,
volume 3, pages 1735–1746. IEEE, 2005.

[6] L. Mai, L. Shangguan, C. Lang, J. Du, H. Liu, and
Z. Li. Load balanced rendezvous data collection in
wireless sensor networks. In 8th IEEE Intl.l
Conference on Mobile Adhoc and Sensor Systems
(MASS), pages 282–291. IEEE, 2011.

[7] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer
programming formulation of traveling salesman
problems. Journal of the ACM, 7(4):326–329, 1960.

[8] H. Salarian, K. Chin, and F. Naghdy. An energy

(a) Same initial node energies

(b) Different initial node energies

Figure 4: Network lifetime

efficient mobile sink path selection strategy for
wireless sensor networks. IEEE Transactions on
Vehicular Technology, PP(99):1–1, 2013.

[9] R. Sugihara and R. Gupta. Improving the data
delivery latency in sensor networks with controlled
mobility. In IEEE Intl. Conf. DCOSS, volume 5067 of
LNCS, pages 386–399. Springer, 2008.

[10] R. Sugihara and R. K. Gupta. Optimal speed control
of mobile node for data collection in sensor networks.
IEEE Trans. Mobile Computing, 9(1):127–139, 2010.

[11] T. Tsiligirides. Heuristic methods applied to
orienteering. Journal of the Operational Research
Society, pages 797–809, 1984.

[12] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe,
and D. Van Oudheusden. Iterated local search for the
team orienteering problem with time windows.
Computers & Operations Research, 36(12):3281–3290,
2009.

[13] G. Xing, T. Wang, W. Jia, and M. Li. Rendezvous
design algorithms for wireless sensor networks with a
mobile base station. In 9th ACM Intl. Symp.
MOBIHOC’ 2008, pages 231–240. ACM, 2008.

[14] G. Xing, T. Wang, Z. Xie, and W. Jia. Rendezvous
planning in wireless sensor networks with mobile
elements. IEEE Transactions on Mobile Computing,
7(12):1430–1443, 2008.


