
Benchmarking Mobile Agent Itinerary Planning 
Algorithms for Data Aggregation on WSNs 

 

Ioannis E. Venetis, Grammati Pantziou 
Dept. of Informatics 

Technological Educational Institution of Athens 
Athens, Greece 

{ivenetis, pantziou}@teiath.gr 

Damianos Gavalas 
Dept. of Cultural Technology and Communication 

University of the Aegean 
Mytilene, Greece 

dgavalas@aegean.gr 

Charalampos Konstantopoulos 
Dept. of Informatics 
University of Piraeus 

Piraeus, Greece 
konstant@unipi.gr 

 
Abstract— Mobile agents (MAs) have been proposed as a 
distributed middleware approach suitable for autonomic 
data aggregation operations in Wireless Sensor Networks 
(WSN). Determining optimal itineraries for MAs traveling 
through WSN nodes is a non-trivial problem. Thus, several 
heuristics have been proposed to perform efficient 
itinerary planning for MAs. However, the evaluation of 
these heuristics is typically performed on the ground of 
different parameter spaces and assumptions about the 
underlying network and the capabilities of nodes. Herein, 
we implement, simulate and compare the most prominent 
itinerary planning algorithms upon a common parameter 
space, making realistic network-level assumptions. 

 

Keywords— WSN, Mobile Agent, Data Aggregation, Single-
Itinerary Planning, Multiple-Itinerary Planning. 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) consist of a set of 

sensor nodes (SNs), i.e., devices able to measure aspects of the 
surrounding environment. Such networks provide the 
possibility of collaborating processing [1], a feature that allows 
data to be processed at and combined from multiple sources. It 
is quite common for data originated from neighboring sensors 
to have spatiotemporal correlation. Therefore, it is possible to 
perform some kind of aggregation on each sensor, as data 
passes from one sensor to the next one, until they reach a 
destination node, known as the Processing Element (PE) or 
sink. This reduces the total amount of data that has to be 
transferred, which leads to faster collection of data as well as 
reduced use of energy and network resources that would be 
otherwise spent for transmitting larger amounts of data. 

Mobile Agents (MAs) have been proposed to implement 
data aggregating is WSNs. A MA is an autonomous program 
moving from node to node and acting on behalf of the users 
toward the completion of an assigned task. The software logic 

is carried with the MA to each SN and it determines the 
processing to be performed on each SN. The resulting data 
after the local data aggregation is then embedded within the 
MA’s state and carried to the next SN, where the MA resumes 
execution and performs aggregation upon the data retrieved 
thereon. 

The use of MAs for aggregation requires the definition of 
SNs visiting order, i.e., an itinerary has to be scheduled. The 
chosen itinerary largely affects the overall energy consumption 
and aggregation cost. As a result, a number of solutions have 
been proposed in order to minimize these costs. The literature 
includes algorithms that either dynamically determine the route 
of the MA by deciding on the fly the next SN to be visited or 
approximate statically the optimal MA route through heuristics. 
A dynamic approach is more suited for target tracking/ 
classification applications, wherein the trajectory of a moving 
object is initially unknown. Static itineraries are more suitable 
for data monitoring applications, where measurements of 
physical quantities (e.g., humidity, temperature, etc.) are 
periodically gathered and sent to the PE. 

Both approaches have advantages and disadvantages. A 
MA with a dynamic itinerary can respond to faults that might 
occur during its migration simply by changing its itinerary on 
the fly. However, the dynamic approach requires more time, 
since the decision about the next node is taken at each SN. It 
also consumes more energy on each SN and typically leads to 
larger MA sizes (the more intelligence integrated within the 
MA, the larger its size). Furthermore, an efficient routing 
protocol should be implemented in SNs so that MAs can 
determine their next hop as well as their return path to the sink. 
This is not needed when using static itineraries as each MA 
uses a predetermined itinerary that is calculated a priori at the 
PE. 

Static itinerary planning algorithms are classified in Single-
Itinerary Planning (SIP) and Multi-Itinerary Planning (MIP) 
algorithms [2], i.e., either a single MA is sent to collect the data 



or more MAs are sent in parallel, each to a subset of the nodes 
of the WSN. SIP performance is satisfactory for small WSNs 
but it deteriorates as network size grows. This is because both 
the MA’s roundtrip delay and the energy consumption increase 
fast with network size, as the traveling MA accumulates data 
from visited sensors. The growing MA’s size results in 
increased consumption of the wireless bandwidth and the 
limited energy of SNs. On the other hand, MIP algorithms 
aggregate data from smaller subsets of the SNs, mitigating the 
effects of the SIP algorithms. However, they are more difficult 
to design and complex to execute, as they require to first group 
SNs into subsets in a way that will create itineraries of 
approximately equal cost. 

Due to the considerable number of already proposed 
itinerary planning algorithms, it is rather difficult to compare 
the quality of their derived itineraries with respect to a set of 
metrics that determine the optimal behavior for a specific 
application. The situation is further complicated by the fact that 
performance evaluations for each algorithm are performed 
upon parameter sets, different than those used by others. As if 
this was not already enough, different assumptions are made 
about the capabilities of the SNs comprising the WSN. 

The contributions of this paper are (a) a detailed 
performance evaluation and benchmarking of most prominent 
itinerary planning algorithmic approaches with respect to 
several performance indicators based on the common ground of 
realistic aspects, like increasing MA size, migration cost 
dependent on number of intermediate hops and availability of 
different levels of transmission power, (b) simulation of 
compared algorithms on a WSN-tailored simulator 
(Castalia [13]) which provides detailed implementations of 
MAC layer protocols as well as realistic energy models (taking 
into account energy spending for transmitting, receiving, 
sensing and remaining standby), hence allowing precise 
estimation of performance parameters (energy consumption, 
transmission delay, etc). 

The paper is organized as follows: In Section II we briefly 
present the itinerary planning algorithms implemented along 
with their basic functional characteristics. In Section III we 
discuss the assumptions made and the common realistic 
parameters used in our benchmarks to fairly compare the 
examined algorithms. In Section IV we present and discuss the 
results of the performance evaluation. Finally, Section V 
concludes the paper. 

II. MOBILE AGENT ITINERARY PLANNING ALGORITHMS 
For the purposes of this paper, a total of eleven (11) 

algorithms have been implemented and evaluated on a common 
set of parameters in the Castalia simulator [14]. It is noted that 
all algorithms determine the itineraries of MAs statically. Out 
of these algorithms, 6 are SIP and 5 are MIP. In the rest of this 
section we briefly describe these algorithms. 

Qi and Wang [2] proposed two heuristics to optimize the 
itineraries of MAs performing data aggregation tasks. In the 
Local Closest First (LCF) algorithm, each MA starts its route 
from the PE and searches for the next destination with the 
shortest distance to its current location. In the Global Closest 
First (GCF) algorithm, MAs also start their itinerary from the 

PE and select the SN that has not yet been added to the 
itinerary and is closest to the center of the surveillance region 
as the next-hop destination. 

The output of LCF highly depends on the MA’s original 
location, while the SNs left to be visited last are typically 
associated with high migration cost. The reason for this is the 
next destination is greedily sought among the SNs adjacent to 
the MA’s current location, instead of looking at the “global” 
network distance matrix. On the other hand, GCF produces 
messier routes than LCF and repetitive MA oscillations around 
the region center, resulting in long route paths and 
unacceptably poor performance [2], [3]. 

The above algorithms assume a full aggregation model, i.e., 
feasibility to aggregate data into a single constant size packet. 
However, in most practical scenarios MAs grow heavy while 
moving along their itinerary; hence, it is important select low-
cost links (i.e. those requiring low transmission power) for the 
last part of the itinerary, when MAs have become larger. 
Failing to recognize this fact might result in much higher 
energy spending, especially on the last MA hops. In order to 
verify this conclusion, our implementation of the LCF and the 
GCF algorithms assumes partial data aggregation, making their 
comparison with the rest of the algorithms fairer. 

A slightly different approach is taken in the Mobile Agent-
based Direct-Diffusion (MADD) algorithm [4]. Although quite 
similar to LCF, MADD starts by selecting as the first SN in the 
itinerary the furthest one from the PE. From that point on, its 
selection strategy for the next SN in the itinerary is the same as 
in LCF. In contrast to LCF and GCF, MADD assumes a partial 
aggregation model. 

More recent variants of the LCF are the Itinerary Energy 
Minimum for First-source-selection (IEMF) algorithm and the 
Itinerary Energy Minimum Algorithm (IEMA), which is an 
iterative version of IEMF [5]. LCF is a greedy algorithm, at 
every SN selecting the closest, unused SN as the next stop in 
the itinerary. The quality of itineraries derived by LCF very 
much depends on the selection of the first visited node. To 
address this issue, IEMF considers all SNs as candidate first 
nodes and performs LCF thereafter, finally selecting the 
minimum cost itinerary. IEMA extends this idea by recursively 
selecting the first k nodes that minimize the cost of the 
itinerary. As shown in [5], when k becomes 20% of the total 
nodes, IEMA achieves a fairly good estimation of the 
minimum cost. Keeping k as low as possible reduces the total 
time required by the algorithm to plan the itinerary. For the 
implementation of IEMA herein, we have used the above 
percentage of the total number of nodes. 

Although not specifically tailored towards WSN 
applications, heuristics solving the Travelling Salesman 
Problem (TSP) can be used to formulate a solution for the 
itinerary planning problem. If every SN is thought of as a city, 
the distances between SNs can be used in well-known 
heuristics that solve the TSP. In the context of this paper, we 
used the Lin-Kernighan heuristic as described in [6] to create a 
single itinerary for a MA. It is noted that the TSP-based 
algorithm has not been proposed in the literature and has been 
implemented mainly to serve as a comparison reference point. 



Apart from the SIP algorithms described in the previous 
paragraphs, a number of MIP algorithms have also been 
implemented. The basic difference is that the total set of SNs is 
firstly grouped in disjoint clusters according to some heuristic; 
then, each cluster is assigned to an MA and a SIP algorithm is 
employed to determine the itinerary of each MA through its 
assigned nodes. 

The Visiting Central Location (VCL) algorithm [7] uses the 
notion of an impact factor to determine a set of SNs that will 
act as central points in each cluster. The impact factor is 
defined as a value that measures how much each SN is affected 
by the presence of other SNs. In the context of [7], a function 
similar to the calculation of gravitational forces among bodies 
is used. The SN with the highest impact factor is selected as the 
center of the next cluster. All SNs located within a specific 
distance are then attached to the cluster of that SN. The 
procedure repeats with the remaining SNs, until all SNs belong 
to a cluster. A parameter σ is used to determine how strong an 
SN impacts other SNs. As in [7], we set σ = 8 in this paper. 

Another MIP approach is the Balanced Minimum Spanning 
Tree (BST) algorithm [8]. Prim’s algorithm is executed to 
determine a spanning tree, rooted at the PE. Nodes of a single 
branch in the tree are considered to belong to the same cluster. 
A SIP algorithm is then executed to decide on the order in 
which cluster nodes will be visited. In our implementation, we 
used IEMA. Furthermore, a parameter α is used in BST to 
balance the weights calculated during Prim’s algorithm. The 
idea is to create more balanced branches, i.e., each branch 
should contain as many SNs as all other branches. In [8] it is 
shown that α = 0.6 is a good choice; therefore this is the value 
we use as well. 

The Directional Source Grouping (DSG) algorithm [9] uses 
a circle around the PE. The radius of the circle is set to the 
maximum transmission range of a single SN. Every SN that 
lies in the circle is used as the first node of an itinerary. 
Clusters are built by selecting SNs that lie within a circular 
sector and a SIP algorithm is used to decide the order of 
visiting each SN in the cluster. In our implementation, the size 
of each sector is determined by an angle θ, which in turn is 
calculated from the number of SNs that lie in the circle defined 
above (θ = 2·π / (Number of SNs in circle)). Furthermore, 
while defining the sectors, a methodology similar to the CL 
algorithm is followed. For this part of the DSG algorithm we 
use the same parameters as for VCL. 

The Near-Optimal Itinerary Design (NOID) algorithm [10] 
adapts a method originally designed for network design 
problems, namely the Esau-Williams heuristic [13] for the 
Constrained Minimum Spanning Tree (CMST) problem, in the 
specific requirements of WSNs. NOID recognizes that MAs 
aggregate data while visiting SNs without returning back to the 
PE to deliver their collected data. Therefore, NOID restricts the 
number of migrations performed by individual MAs, thereby 
promoting the parallel employment of multiple cooperating 
MAs, each visiting a subset of SNs. In particular, NOID 
iteratively adds SNs to separate subtrees, which progressively 
converge towards the PE. Each subtree is then assigned to a 
separate MA, which performs a post-order traversal of its 
subtree so as to visit first the SNs residing furthest from the PE. 

The Tree-Based Itinerary Design (TBID) algorithm [12] 
improves upon NOID by following a more direct approach to 
the problem of determining low-cost MA itineraries. 
Specifically, based on an accurate formula for the total energy 
consumed during MA migration, a greedy approach is followed 
for distributing SNs in multiple MA itineraries. Essentially, the 
algorithm determines a spanning forest of trees in the network, 
calculates efficient tree traversal orders (itineraries), and 
eventually, assigns these itineraries to individual MAs. Not 
only does TBID assume a general aggregation model, where 
data after aggregation does not necessarily have constant size, 
but it actually exploits this fact during decision making. As a 
result, TBID always selects low-cost links for the last hops of 
itineraries, where the energy consumption due to increased data 
traffic is expected to be high. Moreover, the partitioning of SNs 
in multiple itineraries reduces the maximum load each MA 
carries along its itinerary. This again leads to lower energy 
expenditure in the last itinerary legs. TBID is built around the 
idea of co-centric zones with the PE as the center. The first 
zone includes all SNs that are within a certain distance of the 
PE and a MA is assigned to each itinerary rooted at those SNs. 
In this paper the radius of the first zone is set to the maximum 
transmission range of a single SN. 

III. ASSUMPTIONS AND SIMULATION PARAMETERS USED 
FOR BENCHMARKING ITINERARY PLANNING ALGORITHMS 
From the discussion in the previous section, it becomes 

evident that the path design phase of most itinerary planning 
algorithms is based on a number of assumptions that are not 
always valid in real WSN deployments. The most noteworthy 
example is the fact that the decision on selecting next MA hops 
is typically based on geographical distance criterion. This 
implies that the nodes can communicate directly, with the MA 
migration cost increasing linearly with distance. However, in 
real environments two nodes can only communicate if they lie 
within a certain distance. Namely, most algorithms do not take 
into account the transmission range of nodes when taking route 
planning decisions. In real environments, this would lead to 
infeasible migrations, when considering long hops. To make 
migrations feasible, a number of intermediate nodes would 
have to be visited on the way from a source SN to another. It is 
noted, though, that the number of intermediate nodes is not 
necessarily equivalent to the distance among the end nodes, 
especially when considering sparse network topologies. The 
above is one of the reasons why most algorithms assume dense 
network topologies. 

In this article, we take into account all restrictions 
encountered in real settings, yet, without distorting the basic 
logic of examined algorithms. In particular, we allow each 
algorithm to decide ‘as usual’ about the next node to be 
included in a path. If, however, the next node is out of range, 
the path of the MA includes intermediate nodes, ensuring that 
nodes visited in sequence are within transmission range. 
Namely, we clearly distinguish among source and intermediate 
nodes, with the former being visited to retrieve sensory data 
and the latter serving as in-between stops while migrating from 
a source node to another. The intermediate path is the shortest 
path found among the two end nodes (constructed using 
Dijkstra’s algorithm); the cost of each edge along the path 



equals the transmission power level required for direct 
communication (edges only connect nodes which lie within 
transmission range). This approach allows all algorithms to act 
as if any two nodes in the network can communicate directly. 
Furthermore, all implemented algorithms have been enhanced 
to disregard clusters of nodes where every node in the cluster 
has no path to the PE. Hence, we relax the requirement for the 
algorithms to be applied on dense networks. Since a MA starts 
from the PE, only the nodes that can be accessed from a path 
that includes the PE are taken into account. 

Another element commonly found in the performance 
evaluation of investigated itinerary planning algorithms is the 
fact that the radio module of sensor nodes is oversimplified, 
disregarding several realistic restrictions. Firstly, transmission 
ranges are typically defined to be larger than real radio devices 
for WSN nodes can achieve. Secondly, most real radio 
modules feature a number of different transmission levels, with 
each level consuming different amounts of energy and 
transmitting to different ranges. In the context of this paper, we 
used the Castalia simulator which simulates real radio modules 
at a detailed level. Furthermore, whenever a transmission has to 
be performed between two nodes, the transmission level of the 
sending SN is set to the lowest possible level that will allow 
direct communication between the nodes. This allows more 
accurate estimation of the energy consumed during data 
aggregation operations, compared to using a single (highest) 
power level. 

Finally, a last reason that makes it difficult to compare 
existing itinerary planning algorithms is that they are typically 
tested using different parameters during simulations. These 
parameters concern the number of network nodes, the terrain 
size, the transmission range of nodes, the energy consumption 
for receiving and transmitting data, the energy consumptions to 
execute an MA, the size of data accumulated by MAs from 
each node, the execution time of MA at each node, etc. In this 
article, a common set of testing parameters is used, most 
corresponding to values taken from commercial radio modules. 
This makes the presented results more consistent and reliable. 

IV. RESULTS 
We have implemented 11 MA itinerary planning algorithms 

and evaluated their performance under the realistic assumptions 
detailed in the previous section and using a common parameter 
space. The implementations have been tested on the Castalia 
simulation platform. A number of sensor nodes have been 
randomly deployed on a 500m × 500m area. A total of 10 
deployments have been tested per network size (each algorithm 
has been simulated on the same 10 random deployments to 
ensure fairness). In the results discussed later on, we present 
the averages over all deployments. The PE is positioned at the 
center of the simulated terrain. 

Each sensor node is assumed to be equipped with a CC2420 
chip, a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF 
transceiver designed for low power and low voltage wireless 
applications. The Castalia simulator is in charge of simulating 
the radio module. TABLE I. presents the eight available 
transmission levels of the CC2420, along with the required 
power to transmit data at a specific level and the distance that 

can be covered during transmission. While transferring an MA 
from one node to another the lowest possible transmission level 
is used to cover the required distance. Further parameters 
related to energy consumption per node (e.g. while receiving 
data, switching states, etc) are handled by Castalia and are 
again common throughout all experiments. 

TABLE I.  THE AVAILABLE TRANSMISSION LEVELS OF THE CC2420 
RADIO MODULE, ALONG WITH THE POWER CONSUMED AND THE TRANSMISSION 

RANGE ACHIEVED AT EACH LEVEL. 

Transmission level 
(dBm) 0 -1 -3 -5 -7 -10 -15 -25 

Transmission power 
(mW) 57.42 55.18 50.69 46.20 42.24 36.30 32.67 29.04 

Transmission 
distance (m) 46.42 42.17 34.81 28.73 23.71 17.78 11.01 4.22 

TABLE II.  THE NUMBER OF NODES RANDOMLY DEPLAYED ON THE 
SIMUALTED AREA AND THE NUMBER OF SENSORS THAT REPORT THEIR 

POSITION TO THE PE. 

Nodes deployed 100 200 300 400 500 

Nodes reported 20 160 298 399 499 

 

We assume that each SN is aware of its exact location. At 
the beginning of each simulation test, each node tries to contact 
neighboring nodes and establish a path towards the PE (using 
its maximum transmission range) so that it sends to the PE its 
location information. The latter is needed to calculate the 
Euclidian distance, hence, the power level required for the 
communication among each pair of nodes. TABLE II. presents 
the number of nodes deployed in the area and how many 
manage to establish such a path. For topologies featuring 300 
nodes or more, practically all nodes report their position to the 
PE. At 200 nodes already a substantial 80% of the nodes report 
their position. Although with 100 deployed nodes the 
percentage of nodes that participate in each algorithm is very 
low, we included this case to demonstrate that our 
implementations do not require a dense network of sensors but 
can adapt their operation to the reachable nodes. 

TABLE III. presents some further parameters used for our 
simulations. The first two rows represent actual values for the 
 

TABLE III.  SIMULATION PARAMETERS USED THROUGHOUT ALL 
CONDUCTED EXPERIMENTS. 

Simulation Parameter Value 
Power consumed while receiving data 
(per second staying in Rx mode) 62 mW 

Network transfer rate 250 Kbps 

Initial node energy 18720 J 
(2 × AA Batteries) 

Energy consumed for MA execution 
(data aggregation) 5 nJ 

Mobile agent instantiation delay 10 ms 

Mobile agent processing delay 50 ms 

Code size of MA 1024 bytes 

Size of data collected at each node 200 bytes 

Data aggregation coefficient 1.0 



simulated CC2420 radio module. The values referring to MA-
specific parameters have been set based on real test results 
published in the relevant literature. The data aggregation 
coefficient has been set to 1.0, thus, implying full data 
aggregation. The same set of parameter values have been used 
through the whole range of simulated algorithms, making the 
comparison among them straightforward. 

Results of the simulated scenarios are presented in the 
figures that follow. Figure 1 illustrates the time required for an 
MA to visit all nodes which are part of the itinerary as 
calculated by each algorithm. This includes the time required to 
visit intermediate nodes. Isolated nodes (i.e. those with no path 
to the PE) are excluded. Not surprisingly, MIP algorithms 
obtain shorter service times, as multiple MAs are travelling 
along nodes in parallel, each following a shorter path. The 
service time in MIP algorithms is determined by the length of 
the longest itinerary. Hence, MIP algorithms performing worse 
are those that either fail to calculate the suitable number of 
MAs or derive rather unbalanced itineraries. 

TBID yields the shortest service time, followed by NOID. 
It is also interesting to observe that TBID improves its service 
time as more nodes are added to the sensor network. This is 
because more sensors lie within the first zone which is directly 
accessible by the PE. As a result, more MAs are sent to the 
network, each assigned a shorter path to follow on average. 

Another interesting observation is the fact that most SIP 
algorithms have marginal differences in their service time 
(apart from GCF, which clearly performs worse). It is also 
noted that the path calculated by TSP is the best among the SIP 
algorithms used, although it is not specifically designed to be 
used in this context. 

Figure 2 shows the total energy consumption for all nodes 
that are part of an MA itinerary. As with the service time, 
energy consumption of intermediate nodes is taken into 
account. Although MIP algorithms generally prevail against 
SIP algorithms, their performance gain is not as clear as with 
service time. In fact, TSP outperforms several MIP algorithms. 
This result has been somewhat unexpected: MIP algorithms 
send out more MAs, each assigned fewer nodes. Hence, each 
MA should normally transfer less sensory data from node to 
node, especially compared to the last steps of SIP algorithms. 
This should have led to lower overall energy consumption. 

The justification to the above paradox is provided by Figure 
3, which demonstrates that MIP algorithms derive itineraries 
with substantially more intermediate nodes. Although no data 
is collected at these nodes, energy is consumed to receive the 
MA and retransmit it to the next node. As a result, the energy 
efficiency of MIP algorithms reduces. It is worth noting that 
TSP performs particularly well with respect to these two 
metrics. It has the lowest total energy consumption and the 
lowest number of intermediate nodes. This second observation 
further strengthens our argument about the importance of 
taking into account intermediate nodes in assessing the 
performance of examined algorithms. 

Figure 4 illustrates the performance of compared 
algorithms as regards network lifetime, i.e., the time that the 
first node dies due to energy depletion (network lifetime is 
 

 

Figure 1.  Time required (in seconds) for MAs to visit all source nodes 
included in their itinerary. 

 

Figure 2.  Total energy consumed (in Joules) by network nodes throughout a 
single data aggregation operation (i.e. due to transfer and execution of all 

MAs along their itineraries). 

determined by the node that requires most energy to operate). 
Since the path calculated by an algorithm does not change 
during consecutive travels of the MA, the same node will 
always spent the maximum energy and it will be the first to 
deplete. SIP algorithms perform worse in this aspect. As more 
data is accumulated after visiting each source node, nodes 
towards the end of the path have to transmit large amounts of 
data to the next node. Due to the greedy logic shared among 
many of these algorithms, distances between nodes towards the 
end of the path tend to be larger, meaning that the maximal 
transmission level needs to be used. These two factors 
combined lead to increased maximum power consumption. 

V. CONCLUSIONS AND FUTURE WORK 
Itinerary planning algorithms for mobile agents enrolled in data 
aggregation tasks in WSNs are pursuing to balance among 
several metrics that characterize their performance, like service 
time, energy consumption, network lifetime, etc. In order for a 
comparison among different itinerary planning 
 



 

Figure 3.  Average number of intermediate nodes included over all 
itineraries. 

 

Figure 4.  Energy consumed by the most heavily utilized node among all 
network nodes included in itineraries. 

algorithms to be valid, two important aspects have to be taken 
into account. Firstly, the evaluation of the algorithms should be 
performed upon a common platform, utilizing the same set of 
parameters among those that affect their performance. 
Secondly, having derived the MA itineraries (namely, the 
ordered sets of source nodes assigned to individual MAs), the 
determination of the actual paths should take into account all 
restrictions inherent in real environments and, hence, include 
intermediate nodes in-between source nodes, if necessary. 

In this work we implemented the most representative static 
itinerary planning algorithms and compared them following the 
aforementioned rules. Our simulation results reveal several 
interesting performance aspects. Although service time of MIP 
algorithms is significantly lower than SIP algorithms, the 
energy consumption of the former is not as good. The main 
reason is that their itinerary planning decisions lead to the 
inclusion of a substantially larger number of intermediate 
nodes along derived paths. This implies that the design of MIP 
algorithms explicitly incorporating transmission range of 

sensor nodes in itinerary planning decisions could possibly lead 
to including smaller numbers of intermediate nodes, hence, 
improved performance. 

Nevertheless, the paths derived by MIP algorithms remain 
shorter than those produced by their SIP counterparts, which 
results in clear prevalence of MIP algorithms with respect to 
network life-time. Among all examined algorithms, TBID has 
been found to perform better, that is, to offer a better balance 
among all performance indicators. 
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