
Cluster-based Heuristics for the Team
Orienteering Problem with Time Windows

Damianos Gavalas1, Charalampos Konstantopoulos2, Konstantinos Mastakas3,
Grammati Pantziou4, and Yiannis Tasoulas2

1 Department of Cultural Technology and Communication, University of the Aegean,
Mytilene, Greece, dgavalas@aegean.gr

2 Department of Informatics, University of Piraeus, Piraeus, Greece,
{konstant,jtas}@unipi.gr

3 Department of Mathematics, University of Athens, Athens, Greece,
kmast@math.uoa.gr

4 Department of Informatics, Technological Educational Institution of Athens,
Athens, Greece, pantziou@teiath.gr

Abstract. The Team Orienteering Problem with Time Windows (TOPTW)
deals with deriving a number of tours comprising a subset of candidate
nodes (each associated with a “profit” value and a visiting time window)
so as to maximize the overall “profit”, while respecting a specified time
span. TOPTW has been used as a reference model for the Tourist Trip
Design Problem (TTDP) in order to derive near-optimal multiple-day
tours for tourists visiting a destination featuring several points of inter-
est (POIs), taking into account a multitude of POI attributes. TOPTW
is an NP-hard problem and the most efficient known heuristic is based on
Iterated Local Search (ILS). However, ILS treats each POI separately;
hence it tends to overlook highly profitable areas of POIs situated far
from the current location, considering them too time-expensive to visit.
We propose two cluster-based extensions to ILS addressing the afore-
mentioned weakness by grouping POIs on disjoint clusters (based on
geographical criteria), thereby making visits to such POIs more attrac-
tive. Our approaches improve on ILS with respect to solutions quality,
while executing at comparable time and reducing the frequency of overly
long transfers among POIs.

Keywords: Tourist Trip Design Problem, Point of Interest, Team Orienteering
Problem with Time Windows, Iterated Local Search, Clustering.

1 Introduction

A TTDP [15] refers to a route-planning problem for tourists interested in visiting
multiple points of interest (POIs). The objective of the TTDP is to select POIs
that match tourist preferences, thereby maximizing tourist satisfaction, while
taking into account a multitude of parameters and constraints (e.g., distances
among POIs, visiting time required for each POI, POIs visiting hours, entrance

fees) and respecting the time available for sightseeing in daily basis. Different
versions of TTDP have been studied in the literature. Herein, we deal with a
version of TTDP that considers the following input data: (a) a set of candidate
POIs, each associated with the following attributes: a location (i.e. geographical
coordinates), time windows(TW) (i.e. opening hours), a “profit” value, calcu-
lated as a weighted function of the objective and subjective importance of the
POI (subjectivity refers to the users’ individual preferences and interests on spe-
cific POI categories) and a visiting time (i.e. the anticipated duration of visit
of a user at the POI), (b) the travel time among POIs, based on the topolog-
ical distance between a pair of POIs, (c) the number k of routes that must be
generated, based upon the period of stay (number of days) of the tourist at the
destination, and (d) the daily time budget B that a tourist wishes to spend on
visiting sights; the overall daily route duration (i.e. the sum of visiting times
plus the overall travel time among visited POIs) should be kept below B.

By solving the TTDP we expect to derive k routes (typically starting and
ending at the tourist’s accommodation location) each of length at most B, that
maximize the overall collected profit. A well-known optimization problem that
may formulate this version of TTDP is the team orienteering problem with time
windows (TOPTW) [13]. TOPTW is NP-hard (e.g. see [3], [6]). Hence, exact
solutions for TOPTW are feasible for instances with very restricted number
of locations (e.g. see the work of Li and Hu [7], which is tested on networks
of up to 30 nodes). Note that since the TTDP is typically dealt with online
web and mobile applications with strict execution time restrictions, only highly
efficient heuristic approaches are eligible for solving it. The most efficient known
heuristic for TOPTW is based on Iterated Local Search (ILS) [14], offering a fair
compromise with respect to execution time versus deriving routes of reasonable
quality. However, ILS treats each POI separately, thereby commonly overlooking
highly profitable areas of POIs situated far from current location considering
them too time-expensive to visit. ILS is also often trapped in areas with isolated
high-profit POIs, possibly leaving considerable amount of the overall time budget
unused.

Herein, we introduce CSCRatio and CSCRoutes, two cluster-based algorith-
mic approaches to the TTDP, which address the shortcomings of ILS. The main
incentive behind our approaches is to motivate visits to topology areas featuring
high density of ‘good’ candidate nodes (such areas are identified by a geograph-
ical clustering method performed offline); the aim is to improve the quality of
derived solutions while not sacrificing time efficiency. Furthermore, both our al-
gorithms favor solutions with reduced number of overly long transfers among
nodes, which typically require public transportation rides (such transfers are
costly and usually less attractive to tourists than short walking transfers). The
remainder of this article is organized as follows: Section 2 overviews TOPTW
heuristics. Section 3 presents our novel cluster-based heuristics, while Section
4 discusses the experimental results. Section 5 concludes the paper.

2 Related work

Labadi et al. [4] proposed a local search heuristic algorithm for TOPTW based
on a variable neighborhood structure. In the local search routine the algorithm
tries to replace a segment of a path by nodes offering more profit. For that,
an assignment problem related to the TOPTW is solved and based on that
solution the algorithm decides which arcs to select. Lin et al. [9] proposed a
heuristic algorithm for TOPTW based on simulated annealing. On each iteration
a neighbouring solution is obtained from the current solution by applying one of
the moves swap, insertion or inversion, with equal probability. A new solution is
adopted provided that it is more profitable than the current one; otherwise, the
new solution might again replace the current one with a probability inversely
proportional to their difference in profits. After applying the above procedure for
a certain number of iterations the best solution found so far is further improved
by applying local search.

The Iterated Local Search (ILS) heuristic proposed by Vansteenwegen et al.
[14] is the fastest known algorithm proposed for TOPTW [13]. The algorithm
is discussed in the following section. Montemanni and Gambardella proposed
an ant colony system (ACS) algorithm [10] to derive solutions for a hierarchical
generalization of TOPTW, wherein more than the k required routes are con-
structed. At the expense of the additional overhead, those additional fragments
are used to perform exchanges/insertions so as to improve the quality of the k
tours. ACS has been shown to obtain high quality results (that is, low average
gap to the best known solution) at the expense of prolonged execution time,
practically prohibitive for online applications. In [2] a modified ACS framework
(Enhanced ACS) is presented and implemented for the TOPTW to improve the
results of ACS.

Labadi et al. [5] recently proposed a method that combines the greedy ran-
domized adaptive search procedure (GRASP) with the evolutionary local search
(ELS). Their approach derives solutions of comparable quality and significantly
less computational effort to ACS. Compared to ILS, GRASP-ELS gives better
quality solutions at the expense of increased computational effort [5]. Tricoire
et al. [12] deal with the Multi-Period Orienteering Problem with Multiple Time
Windows (MuPOPTW), a generalization of TOPTW, wherein each node may
be assigned more than one time window on a given day, while time windows may
differ on different days. Both mandatory and optional visits are considered. The
authors developed two heuristic algorithms for the MuPOPTW: a deterministic
constructive heuristic which provides a starting solution, and a stochastic local
search algorithm, the Variable Neighbourhood Search (VNS), which considers
random exchanges between chains of nodes. Vansteenwegen et al. [13] argue
that a detailed comparison of ILS, ACS and the algorithm of Tricoire et al. [12],
is impossible since the respective authors have used (slightly) different bench-
mark instances. Nevertheless, it can be concluded that ILS has the advantage
of being very fast (its execution time is no longer than a few seconds), while
ACS, Enhanced ACS and the approach of Tricoire et al. have the advantage of
obtaining high quality solutions.

3 Cluster-based heuristics

In TOPTW we are given a directed graph G = (V,A) where V = {1, ..., N}
is the set of nodes (POIs) and A is the set of links, an integer k, and a time
budget B. The main attributes of each node are: the service or visiting time
(visiti), the profit gained by visiting i (profiti), and each day’s time window
([openim, closeim],m = 1, 2, . . . , k) (a POI may have different time windows per
day). Every link (i, j) ∈ A denotes the transportation link from i to j and is
assigned a travel cost travelij . The objective is to find k disjoint routes starting
from 1 and ending at N , each with overall duration limited by the time budget
B, that maximize the overall profit collected by visited POIs in all routes.

The ILS heuristic proposed by Vansteenwegen et al. [14] defines an “inser-
tion” and a “shake” step. At each insertion step (ILS Insert) a node is in-
serted in a route, ensuring that all following nodes in the route remain feasible
to visit, i.e. their time window constraints are satisfied and the time budget
is not violated. ILS modeling involves two additional variables for each node
i: (a) waiti defined as the waiting time in case the arrival at i takes place
before i’s opening time, and (b) maxShifti defined as the maximum time the
start of the visit of i can be delayed without making any visit of a POI in
the route infeasible. If a node p is inserted in a route t between i and j, let
shiftp = travelip + waitp + visitp + travelpj − travelij denote the time cost added
to the overall route time due to the insertion of p. The node p can be inserted
in a route t between i and j if and only if startit +visiti + travelip ≤ closept and
at the same time shiftp ≤ waitj + maxShiftj . For each node p not included in
a route, its best possible insert position is determined by computing the lowest
insertion time cost (shiftp). For each of these possible insertions the heuristic

calculates the ratio ratiop =
profit2

p

shiftp
, which represents a measure of how prof-

itable is to visit p versus the time delay this visit incurs. Among all candidate
nodes, the heuristic selects for insertion the one with the highest ratio .

At the shake step (Shake) the algorithm tries to escape from local optimum
by removing a number of nodes in each route of the current solution, in search
of non-included nodes that may either decrease the route time length or increase
the overall collected profit. The shake step takes as input two integers: (a) the
removeNumber that determines the number of the consecutive nodes to be re-
moved from each route and (b) the startNumber that indicates where to start
removing nodes on each route of the current solution. If throughout the process,
the end location is reached, then the removal continues with the nodes following
the start location.

To the best of our knowledge, ILS is the fastest known algorithm for solv-
ing the TOPTW offering a fair compromise in terms of speed versus deriving
routes of reasonable quality. However, it presents the following weaknesses: (i)
During the insertion step, ILS may rule out candidate nodes with high profit
value because they are relatively time-expensive to reach (from nodes already
included in routes). This is also the case even when whole groups of high profit
nodes are located within a restricted area of the plane but far from the current

route instance. In case that the route instance gradually grows and converges
towards the high profit nodes, those may be no longer feasible to insert due to
overall route time constraints. (ii) In the insertion step, ILS may be attracted
and include into the solution some high-score nodes isolated from high-density
topology areas. This may trap ILS and make it infeasible to visit far located areas
with “good” candidate nodes due to prohibitively large traveling time (possibly
leaving considerable amount of the overall time budget unused).

Herein, we propose two heuristic algorithms, Cluster Search Cluster Ratio
(CSCRatio) and Cluster Search Cluster Routes (CSCRoutes), which address
the aforementioned weaknesses of the ILS algorithm. Both algorithms employ
clustering to organize POIs into groups (clusters) based on topological distance
criteria. POIs at the same cluster are close to each other e.g., they are within
walking distance or they belong to the same area of the city. Having visited a
high-profit POI that belongs to a certain cluster, our algorithms encourage visits
to other POIs at the same cluster because such visits reduce (a) the duration of
the routes and (b) the number of transfers among clusters. Note that a tourist
apart from maximizing the total profit, may also prefer to minimize inter-cluster
tranfers as those are typically long and require usage of public transportation,
this may incur a considerable budget cost, while walking is usually a preferred
option than using the public transportation.

Both CSCRatio and CSCRoutes employ the global k-means algorithm [8] to
build a clustering structure consisting of an appropriate (based on the network
topology) number of clusters (numberOfClusters). Once the clusters of POIs
have been formed during a preprocessing (clustering) phase, a route initialization
phase RouteInitPhase starts. During this phase one POI is inserted into each
of the k initially empty routes. Each of the k inserted POIs comes from a different
cluster, i.e. no two inserted POIs belong to the same cluster. Since the number of
clusters is usually larger that k we need to decide which k clusters will be chosen
in the route initialization phase. Different approaches may be followed such as
choosing the k clusters with the highest total profit, or trying different sets of k
high-profit clusters and run CSCRatio and CSCRoutes algorithms for each such
set searching for the best possible solution. Following the second approach, we
consider a listOfClusterSets list containing a specific number of different sets of
k high-profit clusters. The list may contain all k-combinations of the elements
of a small set S with the most profitable clusters. RouteInitPhase takes as
argument a set of k clusters from listOfClusterSet and proceeds as follows: for
each cluster Ci in the set, it finds the POI p ∈ Ci with the highest ratiop
and inserts it into one of the empty routes. By initializing each one of the k
routes of the TOPTW solution with a POI from different clusters the algorithms
encourage searching different areas of the network and avoid getting trapped at
specific high-scored nodes. Then the algorithms combine an insertion step and
a shake step to escape from local optima.

Cluster Search Cluster Ratio Algorithm. The CSCRatio algorithm intro-
duces an insertion step CSCRatio Insert which takes into account the cluster-
ing of the POIs by using a parameter clusterParameter ≥ 1. The higher the value

of clusterParameter, the more the insertion of a node p before or after a node
that belongs to the same cluster with p is favored. Specifically, the parameter
clusterParameter is used to increase the likelihood of inserting p between i and j
if p belongs to the same cluster with either i or j. For that, CSCRatio considers

the variable shiftClusterp defined as the ratio
shiftp

clusterParameter
in the case that

cluster(p) coincides with cluster(i) or cluster(j) (cluster(l) denotes the cluster
where a node l belongs to). Otherwise, shiftClusterp = shiftp. Then the lowest
insertion time cost (shiftClusterp) i.e. the best possible insert position for p, is
determined. For each of those best possible insertions, the heuristic calculates

ratiop =
profit2

p

shiftClusterp
. CSCRatio initializes the clusterParameter with the value

of 1.3 in order to initially encourage visits to be within the same clusters and de-
creases the value of clusterParameter by 0.1 every a quarter of maxIterations. At
the last quarter the CSCRatio Insert step becomes the same as ILS Insert.
Thus, routes with a lot of POIs belonging to the same cluster are initially fa-
vored, while as the number of iterations without improvement increases, the
diversification given by ILS is obtained.

The maximum value of the parameter removeNumber used in the shake step
is allowed to be half of the size of the largest route (currentSolution.maxSize)
in the current solution and not N

3k as in ILS [14]. In this way, execution time
is saved, since local optimum is reached in short time, if a small portion of the
solution has been removed. As a result, the number of iterations of CSCRatio
can be larger than the number of iterations of ILS [14] without increasing the
overall algorithm’s execution time.

CSCRatio loops for a number of times equal to the size of the listOfCluster-
Sets. Within the loop, firstly all POIs included into the current solution’s routes
are removed and the route initialization phase is executed with argument a set
of high-profit clusters taken (pop operation) from the listOfClusterSets list. Sec-
ondly, the algorithm initializes the parameters startNumber and removeNumber
of Shake to 1 and the parameter clusterParameter of CSCRatio Insert as
discussed above, and executes an inner loop until there is no improvement of
the best solution for maxIterations successive iterations. The insertion step is
iteratively applied within this loop until a local optimum is reached. Lastly, the
shake step is applied. The pseudo code of CSCRatio algorithm is listed below
(Algorithm 1). In order to reduce the search space (therefore, the execution
time) of CSCRatio Insert, in case that a non-included POI p is found infea-
sible to insert in any route, it is removed from the list of candidate POIs and
added back, only after Shake has been applied.

Cluster Search Cluster Routes Algorithm. Given a route t of a TOPTW
solution, any maximal sub-route in t comprising a sequence of nodes within the
same cluster C is defined as a Cluster Route (CR) of t associated with cluster
C and denoted as CRt

C . The length of CRt
C may be any number between 1

and |C|. Note that a route t of a TOPTW solution constructed by the ILS or
CSCRatio algorithm may include more than one cluster route CRt

C for the same
cluster C, i.e., a tour t may visit and leave cluster C more than once. CSCRoutes

run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
it1← maxIterations

4
; it2← 2·maxIterations

4
; it3← 3·maxIterations

4

while listOfClusterSets is not empty do
remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

if notImproved < it2 then
if notImproved < it1 then clusterParameter ← 1.3
else clusterParameter ← 1.2
end if

else
if notImproved < it3 then clusterParameter ← 1.1
else clusterParameter ← 1.0
end if

end if
while not local optimum do

CSCRatio Insert(clusterParameter)
end while
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > currentSolution.maxSize

2
then removeNumber ← 1

end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

Algorithm 1: CSCRatio(numberOfClusters,maxIterations)

algorithm is designed to construct routes that visit each cluster at most once,
i.e. if a cluster C has been visited in a route t it cannot be revisited in the same
route and therefore, for each cluster C there is only one cluster route in any
route t associated with C. The only exception allowed is when the start and the
end node of a route t belong to the same cluster C ′. In this case, a route t may
start and end with nodes of cluster C ′, i.e. C ′ may be visited twice in the route
t and therefore, for a route t there might be two cluster routes CRt

C′ .

The insertion step CSCRoutes Insert of CSCRoutes does not allow the
insertion of a node p in a route t, if this insertion creates more than one clus-

ter routes CRt
C for some cluster C. Therefore, a POI cannot be inserted at

any position in the route t. In the sequel, the description of insertion step
CSCRoutes Insert is given, based on the following assumptions. Consider
w.l.o.g. that the start and end nodes in the TOTPW coincide (depot). If a route
t contains two CRs associated with the cluster of the depot, then let CRt

f be the

first cluster route (starts at the depot) in t, and CRt
l be the last cluster route

(ends at the depot) in t. Also, assume that for each POI p ratiop is calculated
as in ILS algorithm. Finally, consider for each route t, the list listOfClusters(t)
containing any cluster C for which there is a nonempty CRt

C . Given a candidate
for insertion node p and a route t, CSCRoutes Insert distinguishes among the
following cases:

– cluster(p)=cluster(depot) and listOfClusters(t) contains only the cluster(depot).
Then p can be inserted anywhere in the route, since the insertion would not
violate the CR constraints.

– cluster(p)=cluster(depot) and listOfClusters(t) contains more than one clus-
ter. Then p can be inserted anywhere in CRt

f and in CRt
l .

– cluster(p)6=cluster(depot) and listOfClusters(t) contains only cluster(depot),
then the insertion is feasible anywhere in t. If the insertion occurs, then a
new CR will be created with p as its only POI.

– cluster(p)6=cluster(depot) and listOfClusters(t) contains two or more clusters
but not cluster(p). Then p can be inserted after the end of every CR in t. If
the insertion occurs, then a new CR will be created with p as its only POI.

– cluster(p)6=cluster(depot) and listOfClusters(t) contains two or more clusters
and also includes cluster(p). Then p can be inserted anywhere in CRt

cluster(p)
.

The CSCRoutes algorithm is likely to create solutions of lower quality (w.r.t.
overall profit), especially in instances featuring tight time windows. However,
it significantly reduces the number of transfers among clusters and therefore
it favors routes that include POIs of the same cluster. Thus, walking trans-
fers are preferred while overly long travel distances are minimized. In effect,
CSCRoutes is expected to perform better than ILS and CSCRatio with respect
to execution time, since CSCRoutes Insert is faster than ILS Insert and
CSCRatio Insert (this is because the number of possible insertion positions
for any candidate node is much lower).

4 Experimental Results

Test Instances. Montemanni and Gambardella [10] designed TOPTW instances
based on previous OPTW instances of Solomon [11] and Cordeau et al. [1] (data
sets for vehicle routing problems with time windows). Solomons instances com-
prise 100 nodes, with c1*, r1* and rc1* featuring much shorter time budget and
tighter time windows than c2*, r2* and rc2* instances. Likewise, Cordeau et al.
instances feature 48-288 nodes, constant time budget (=1000 min) and average
time windows equal to 135 min and 269 min for pr01-10 and pr11-20 instances,

respectively. All the aforementioned instances involve one, two, three and four
tours.

The aforementioned instances, though, are not suitable for real-life TTDP
problems, wherein: (a) POIs are typically associated with much wider, overlap-
ping, multiple time windows; (b) POIs are densely located at certain areas, while
isolated POIs are few; (c) visiting time at a POI is typically correlated with its
profit value ; (d) the daily time budget available for sightseeing is typically in the
order of a few hours per day (in contrast, most existing instances define unreal-
istically long time budgets). Along this line, we have created 100 new TOPTW
instances (t*) with the following characteristics: the number of tours is 1-3; the
number of nodes is 100-200; 80% of the nodes are located around 1-10 zones;
the visiting time at any vertex is 1-120 min and proportional to the profit; re-
garding time windows, we assume that 50% of the nodes are open in 24h basis,
while the remaining are closed either for one or two days per week (during their
opening days, the latter are open 08:30-17:00); the daily time budget is set to
10h in t1* and 5h in t2* instances, respectively. The instances of Montemanni
and Gambardella are available in
http://www.mech.kuleuven.be/en/cib/op/, while the t* instances in
http://www2.aegean.gr/dgavalas/public/op instances/.

Results. All computations were carried out on a personal computer Intel Core
i5 with 2.50 GHz processor and 4 GB RAM. Our tests compared our proposed
algorithms against the best known real-time TOPTW approach (ILS). Clearly,
mostly preferred solutions are those associated with high profit values, low num-
ber of transfers and reduced execution time. CSCRatio and CSCRoutes set the
value of maxIterations equal to 400

|listOfClusterSets| ·
k+1
2·k . ListOfClusterSets is im-

plemented by adding dnumberOfClusters/ke disjoint sets of k clusters which are
randomly selected from the set of the clusters. The value of numberOfClusters
is set to N/10.

Table 1 illustrates the average gaps among CSCRatio and ILS over all the
existing and new test instances, with respect to profit, number of transfers and
execution time; the existing instances have been tested on 1 to 4 tours. Positive
gaps denote prevalence of our algorithm against ILS (the opposite is signified
by negative gap values). CSCRatio yields significantly higher profit values, es-
pecially for instances with tight daily time budget and small number of tours
(e.g. 0.79 in r1* and 2.04 in rc1*, for one tour). This is because ILS is com-
monly trapped in isolated areas with few high profit nodes, failing to explore
remote areas with considerable numbers of fairly profited candidate nodes, As
regards the number of transfers, CSCRatio clearly prevails, mainly when the
time budget is prolonged (e.g. in c2*, r2* and rc2* instances), as it prioritizes
the successive placement of nodes assigned to the same cluster into the tours. ILS
and CSCRatio attain similar execution times in most cases, however the former
clearly executes faster when examining instances with both long time budget
and wide time windows. With regards to our new benchmark instances (i.e. t1*
and t2*) CSCRatio achieves considerably higher profit gaps than ILS, especially
when considering instances featuring tight time budgets (t2* instances). This

improvement is attributed to the RouteInitPhase incorporated into both our
proposed algorithms, which increases the probability of initially inserting high-
profit nodes located on far-reached clusters (such nodes are typically overlooked
by ILS itineraries due to the high travel time, hence, low insertion ratio). On the
other hand, ILS performs better as regards the number of transfers yield on t2*
instances (CSCRatio commonly explores areas far located from the depot, hence,
it is forced to perform a number of inter-cluster transfers to connect those areas
to the depot). Last, the two algorithms present comparable execution times.

Table 1. Average gaps between ILS and CSCRatio for Solomon, Cordeau et al., t*
instances

Profit Gap(%) Transfers Gap (%) Time Gap (%)
Name 1 2 3 4 1 2 3 4 1 2 3 4
c1* 0.21 0.32 0.53 0.68 -0.2 -0.01 3.12 6.21 -40.8 8.45 35 24.9
c2* 0.84 0.79 0.29 0 19.1 12.6 12.3 20 -4.29 -18.2 -101 -398
r1* 0.79 0.91 -0.57 0.33 4.96 4.55 -0.11 2.71 -20.7 18.1 39.3 21.9
r2* 0.11 0.47 0.03 0 9.78 9.86 10.8 14 -4.88 -120 -305 -608
rc1* 2.04 0.87 0.81 -0.47 9.17 3.75 4.81 4.94 -1.07 36.3 34.7 44.7
rc2* 0.45 -0.34 0.32 0 5.49 1.83 0.48 5.49 11.9 -38.4 -197 -416
pr* 1.46 -0.02 0.4 0.9 -0.72 -9.99 4.5 4.62 29.1 27.4 7.44 -27.4
t1* 0.28 2.19 -5.27
t2* 2 -13.2 8.33

Table 2 illustrates the average gaps among CSCRoutes and ILS. The results
indicate a trade-off between the profit and the number of transfers. In particular,
ILS yields improved quality solutions as it inserts best candidate nodes freely,
irrespective of their cluster assignment. This is especially true when consider-
ing instances which combine long time budgets with tight time windows (e.g.
r2*), whereby CSCRoutes fails to use the time budget effectively, as it might
get trapped within clusters, spending considerable amounts of time waiting for
the nodes opening time, while not allowed to escape by visiting neighbor clus-
ter nodes. This disadvantage is mitigated when the number of tours increases,
as high-profit nodes are then more likely to be selected. On the other hand,
CSCRoutes clearly improves on ILS with respect to the number of transfers due
to its focal design objective to prohibit inter-cluster transfers. CSCRoutes also
attains shorter execution times (excluding the c2*, r2* and rc2* instances for
4 tours), as it significantly reduces the search space on its insertion phase (i.e.
in order to insert a new vertex between a pair of nodes that belongs to the
same cluster, it only examines nodes assigned to the same cluster). As regards
the new benchmark instances, ILS yields higher profit values than CSCRoutes in
t1*, however, the performance gap is decreased compared to the results reported
on previous instances. This is due to the wider and overlapping time windows
chosen in t* instances, which diminishes the wait time (until opening) and allows
more effective use of the budget time by CSCRoutes. CSCRoutes performs much
better with respect to number of transfers and execution time. Interestingly, the
results differ significantly on t2* instances, with CSCRoutes deriving solutions
of considerably higher quality at the expense of increased number of transfers.

This is mainly due to some outlier values, which largely affect the average value.
In those instances, CSCRoutes is initialized inserting a far-located high-profit
vertex and is forced to traverse a number of intermediate clusters in order to
connect it to the depot vertex. It is noted that CSCRoutes retains lead over ILS
with regard to the execution time on t2* instances.

Table 2. Average gaps between ILS and CSCRoutes for Solomon, Cordeau et al., t*
instances

Profit Gap(%) Transfers Gap (%) Time Gap (%)
Name 1 2 3 4 1 2 3 4 1 2 3 4
c1* -1.65 -3.59 -1.03 -1.36 19.2 22.1 23.8 20.2 -21.1 29 38.2 31.2
c2* -0.82 0.79 0.14 0 36 30.5 25.7 37.7 65.5 57.9 10.4 -170
r1* -1.2 -1.27 -2.37 -2.15 23 21.7 16.6 22.2 0.1 36.5 49.4 38.6
r2* -15.5 -10.3 -3.79 -1.21 56.3 55.4 52.6 46.4 76.7 25.1 -77.7 -284
rc1* 1.06 -1.8 -1.26 -1.86 16.7 11.9 14.8 14.4 10.7 50.3 42.9 52.9
rc2* -9.5 -12.5 -8.21 -2.63 39.7 42.6 44.5 45.2 76 51.1 -40 -203
pr* -8.11 -8.11 -5.44 -4.8 35.5 34.1 32.6 32.4 62.2 62.9 42.9 14.6
t1* -0.52 5.31 22.2
t2* 1.91 -4.5 4.59

5 Conclusions

The comparison of CSCRatio over ILS demonstrated that CSCRatio achieves
higher quality solutions in comparable execution time (especially when consid-
ering limited itinerary time budget), while also reducing the average number of
transfers. As regards the CSCRoutes-ILS comparison, the former clearly pre-
vails in situations where the reduction of inter-cluster transfers is of critical
importance. The transfers gap, though, is achieved at the expense of slightly
lower quality solutions. CSCRoutes achieves the best performance results with
respect to execution time, compared to ILS and CSCRatio. Notably, the perfor-
mance gap of our algorithms over ILS increases when tested on realistic TTDP
instances, wherein nodes are located nearby each other and feature wide, over-
lapping time windows, while the daily time budget is 5-10h. We argue that our
two cluster-based heuristics may be thought of as complementary TTDP algo-
rithmic options. The choice among CSCRatio and CSCRoutes (when considering
real-world online TTDP applications) should be determined by user-stated pref-
erences. For instance, a user willing to partially trade the quality of derived
solutions with itineraries more meaningful to most tourists (i.e. mostly walk-
ing between successive POI visits, rather than public transportation transfers)
should opt for the CSCRoutes algorithm.

Acknowledgement. This work was supported by the EU FP7/2007-2013 (DG
CONNECT.H5-Smart Cities and Sustainability), under grant agreement no.
288094 (project eCOMPASS).

References

1. J-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks, 30:105–119, 1997.

2. L.M. Gambardella, R. Montemanni, and D. Weyland. Coupling ant colony systems
with strong local searches. European Journal of Operational Research, 220(3):831
– 843, 2012.

3. B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics (NRL), 34(3):307–318, 1987.

4. N. Labadi, R. Mansini, J. Melechovský, and R. Wolfler Calvo. The team orien-
teering problem with time windows: An lp-based granular variable neighborhood
search. European Journal of Operational Research, 220(1):15 – 27, 2012.

5. N. Labadi, J. Melechovský, and R. Wolfler Calvo. Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. Journal
of Heuristics, 17:729–753, 2011.

6. G. Laporte and S. Martello. The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2-3):193 – 207, 1990.

7. Z. Li and X. Hu. The team orienteering problem with capacity constraint and
time window. The Tenth International Symposium on Operations Research and Its
Applications (ISORA 2011), pages 157–163, August 2011.

8. A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm.
Pattern Recognition, 36(2):451 – 461, 2003.

9. S.-W. Lin and V. F. Yu. A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 217(1):94
– 107, 2012.

10. R. Montemanni and L. M. Gambardella. An ant colony system for team orien-
teering problems with time windows. Foundations of Computing and Decision
Sciences, 34(4):287–306, 2009.

11. M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research, 35:254–265, 1987.

12. F. Tricoire, M. Romauch, K. F. Doerner, and R. F. Hartl. Heuristics for the multi-
period orienteering problem with multiple time windows. Computers & Operations
Research, 37(2):351 – 367, 2010.

13. P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering prob-
lem: A survey. European Journal of Operational Research, 209(1):1 – 10, 2011.

14. P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. It-
erated local search for the team orienteering problem with time windows. Comput.
Oper. Res., 36:3281–3290, December 2009.

15. P. Vansteenwegen and D. Van Oudheusden. The mobile tourist guide: An or
opportunity. Operational Research Insight, 20(3):21–27, 2007.

