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Abstract In this paper, we present efficient, scalable, and portable parallel algo-
rithms for the off-line clustering, the on-line retrieval and the update phases of the
Text Retrieval (TR) problem based on the vector space model and using clustering
to organize and handle a dynamic document collection. The algorithms are running
on the Coarse-Grained Multicomputer (CGM) and/or the Bulk Synchronous Parallel
(BSP) model which are two models that capture within a few parameters the charac-
teristics of the parallel machine. To the best of our knowledge, our parallel retrieval
algorithms are the first ones analyzed under these specific parallel models. For all the
phases of the proposed algorithms, we analytically determine the relevant communi-
cation and computation cost thereby formally proving the efficiency of the proposed
solutions. In addition, we prove that our technique for the on-line retrieval phase per-
forms very well in comparison to other possible alternatives in the typical case of a
multiuser information retrieval (IR) system where a number of user queries are con-
currently submitted to an IR system. Finally, we discuss external memory issues and
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show how our techniques can be adapted to the case when processors have limited
main memory but sufficient disk capacity for holding their local data.

Keywords BSP model · CGM model · Parallel algorithms · Text retrieval ·
Document clustering · External memory

1 Introduction

The continuous growth of electronically available information, which is dispersed
over a local or a wide area network or usually, over different internet locations, to-
gether with the increasing requirements for immediate processing and access to the
information, make the use of parallel processing indispensable to the information re-
trieval field. Until today, many attempts have been made to apply parallel processing
and build efficient and practical parallel text retrieval systems [8, 9, 19, 24, 29, 37–39,
44, 47], which achieve significant response-time improvements compared with serial
text retrieval systems.

To the best of our knowledge, the attempts to adopt parallel processing tech-
niques to large-scale text retrieval have been made either on the real environment of
a supercomputer (e.g., connection machine [47], GCel3/512 Parsytec machine [19],
APseries multicomputers [24], high performance transputer networks [9]) or of a PC
cluster (e.g. [8, 29, 38, 44]), or by employing specific interconnection networks for
connecting the processors of the parallel machine (e.g., fat-trees, hypercubes [39]).
Many of the existing parallel text retrieval techniques designed on specific platforms
provide very efficient code for these platforms but at the cost of portability, i.e., the
code cannot be used on different platforms without rewriting it, as well as at the cost
of feasibility, i.e., the techniques are implemented with a significant amount of ef-
fort. In addition, different text retrieval techniques cannot be compared with respect
to a parallel model to determine which one is the best for a given criterion (e.g., the
execution time).

In this work, we concentrate on the design and analysis of parallel text retrieval
algorithms under specific parallel models, which capture within a few parameters the
characteristics of the machine on which the algorithm is supposed to run, as well
as the rules of execution of the program resulting from an implementation. Specifi-
cally, we present the first efficient, scalable and portable parallel algorithms written in
the Coarse-Grained Multicomputer (CGM) and the Bulk Synchronous Parallel (BSP)
models for the off-line clustering phase, the on-line retrieval phase and the update
phase of the text retrieval problem based on the vector space retrieval model and
using clustering to organize and handle a dynamic document collection.

We prove that the off-line clustering phase requires O(p) computation and com-
munication rounds/supersteps, where p is the number of processors of the parallel
computing system. We also show that the local memory required in each processor
for this phase is O(max{R

p
dsim, n

p
rmax}) at most, where n is the number of docu-

ments, R is the total data volume of document collection while rmax and dsim are two
parameters, that depend on the maximum number of terms in each document and the
“similarity degree” of the n documents, respectively. In addition, we show that the
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total computation and communication cost is O(nR
p

) and O(g max{R, R
p
dsim} + pL)

respectively. Note that the computation cost is dominated by the cost of the sparse ma-
trix multiplication required for finding document similarities. Also, the above amount
of local computation and local memory per processor match in aggregate those ones
of the corresponding serial information-retrieval algorithm, and thus can be consid-
ered optimal.

We also prove that for the on-line retrieval phase, O(1) communication rounds are
necessary with O(g n

p
+ L) communication cost and O(max{|C|, n

p
}rq) local com-

putation per round where rq is the number of distinct terms of the submitted query.
The local memory per processor required for this phase is O( n

p
rmax) at most. We

also formally show that the document distribution resulting from the off-line clus-
tering phase guarantees a very good system performance during the on-line retrieval
phase specially, when a large number of queries are concurrently submitted to the IR
system.

The update phase (document insertion/deletion) requires O(gp + L) communica-
tion time at most. The local computation cost is O(|C|rmax) for document insertion
and O(max{|C|, log n

p
}rmax) for document deletion. The local memory per processor

required for the update phase is O( n
p
rmax) at most.

It is important to observe that the number of communication rounds/supersteps
for the off-line preprocessing/clustering phase is O(p) while for the on-line retrieval
and the update phases is O(1), i.e., in all cases it is independent of the problem size.
When the size of the problem grows, then the size of the messages grow but the total
number of messages remains the same and, therefore, the overhead associated with
the message transmissions is kept low.

Finally, we address the issue of external memory implementation of our tech-
niques. Specifically, by making use of the general simulation techniques proposed
in [12, 13, 15, 16], we present how our BSP/CGM algorithms can be adapted to
the External Memory (EM) BSP model which is an enhancement of the classic BSP
model and apart from communication and computation cost, it also captures the cost
of data transfer between main and external memory.

A preliminary version of the paper can be found in [20]. That paper does not
include the discussion about the external memory issues and the analysis of the off-
line clustering and the on-line query phase is considerably shorter and less general
than that described in this paper.

2 The BSP and CGM computing models

The BSP model was introduced by Valiant [48, 49] as a bridging model that tries to
close the gap between the domains of decentralized (i.e., parallel or distributed [28])
architectures and parallel algorithms. Apart from the cost of the parallelism that is
accounted by the traditional PRAM cost model, BSP also considers the communica-
tion and synchronization issues imposed by the realistic decentralized architectures.
At the same time, BSP abstracts away from the algorithm designers, detailed archi-
tectural features, such as the topology of the interconnection network or the synchro-
nization procedures and, therefore, it allows the design of parallel algorithms that
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can be efficiently executed on a variety of decentralized architectures at a predictable
cost expressed w.r.t. some architectural parameters that reflect the capabilities of the
underlying platform.

A BSP computer is a collection of p processor/memory modules connected by a
communication infrastructure that can deliver messages in a point to point fashion
between the processors. A BSP computation is divided into a sequence of supersteps
separated by barrier synchronizations. Each superstep is divided into a computation
and a communication superstep. In a computation superstep, the processors perform
computations on data that were present locally at the beginning of the superstep. In a
communication superstep, data is exchanged among the processors via the commu-
nication network. The parameters of a BSP computer used to solve a problem are the
problem size N , the number of processors p, the bandwidth parameter g, i.e., the
ratio of overall system computational capacity (number of computation operation)
per unit time divided by the overall system communication capacity (number of mes-
sages of unit size that can be delivered by the underlying communication network)
per unit time, and the latency parameter L, which is the minimum time between two
consecutive synchronization operations.

The cost of a BSP algorithm equals to the sum of the costs of its supersteps. The
cost of a superstep is given by the following formula

Tsuperstep = max{L,Tcomp + Tcomm},
where Tcomp is the maximum (over all processors) cost for local computations and
Tcomm is the maximum time needed for transmitting all the outgoing messages to
their target processors. If we consider that during the communication superstep each
processor sends and receives at most h 1-word messages (i.e., an h-relation has to be
implemented during the communication superstep) then Tcomm = g · h [42]. In that
case, we have

Tsuperstep = max{L,Tcomp + g · h}.
The Coarse-Grained Multicomputer (CGM) [10, 11, 14, 17] model is a simplified

version of the BSP model and its main purpose is the design of simple and practical
yet theoretically optimal or efficient parallel algorithms for coarse-grained parallel
systems. A CGM(N,p) computer consists of p processors with N/p local memory
(N/p � 1) each connected by a router that can deliver messages in a point to point
fashion. A CGM algorithm consists of an alternating sequence of computation rounds
and communication rounds, which are separated by barrier synchronizations. A com-
putation round is equivalent to a computation superstep in the BSP model [21, 22,
48, 49] and, therefore, the total computation cost is defined analogously. A commu-
nication round consists of a single h-relation with h = O(N/p), i.e., each processor
sends O(N/p) data and receives O(N/p) data. The main advantage of the CGM
model is that it allows us to model the communication cost of a parallel algorithm
by a single parameter, i.e., the number of communication rounds [17]. A practical
assumption commonly met in most proposed CGM algorithms (e.g., see [17]) is that
N/p ≥ pε where ε is a constant greater than 1. The most important implication of
this assumption is that the basic operation of sorting can be executed in a constant
number of computation and communication rounds [6, 23].



290 C. Konstantopoulos et al.

Note that every CGM algorithm is also a BSP algorithm but not vice versa. Note
also that a CGM algorithm with λ rounds and computation cost Tcomp corresponds
to a BSP algorithm with λ supersteps, communication cost O(λ(g N

p
+ L)) and the

same computation cost.

3 The VSM-based text retrieval problem

The Vector Space Model (VSM) has been used as the basis for many ranking Infor-
mation Retrieval (IR) systems [2]. The model assumes that we are given a document
collection of size n and an array (t1, t2, . . . , tm) of m different terms, which are word
stems extracted out of all n documents. According to the model, each document Di

in the document collection is indexed by a so-called document-term vector di , af-
ter the application of suitable stopping and stemming procedures. Specifically, each
document Di is represented by the vector

di = (wi1,wi2, . . . ,wim),

where wij is a weight value ranging from 0 to 1 (assuming normalization) and repre-
senting the significance of term tj for the specific document Di [45, 46]. Each weight
value wij assigned to each document Di is related to the frequency of occurrence
of term tj in both the specific document Di and to the whole document collection.
A weight value wij that is equal to 0 usually means that the term tj is not appear-
ing in document Di . In a similar manner, the documents’ term vectors may also be
expanded by additional document identifiers (not only word stems) such as phrases,
thesaurus classes, etc.

The model assumes that each user query Q (which actually is a set of words) is
indexed in the same way, thus resulting to a query-term vector q of almost the same
type as di . Specifically, each query Q is represented by the vector

q = (q1, q2, . . . , qm),

where qj is usually set either to 1 or to 0 depending on the presence of term tj in the
query or not. However, a query-term vector may consist of values ranging from 0 to
1 (assuming normalization), in the case that the user assigns by himself weights on
the query terms, depending on their significance for the search.

According to the vector space retrieval model, the query vector q is compared
(applying a suitable similarity measure) to each one of the n document term vectors,
yielding to a corresponding relevance value (score) sim(q,Dj ), for each document
Dj , j = 1, . . . , n. The documents are then ranked according to their scores and the
top-scored ones are supposed to be the most relevant to the query.

For speeding up similarity calculations, an inverted index [2] is commonly used
where for each term in the document collection, there is a posting list, that is a list
of the ids of documents which contain that term. For each document in the posting
list of a term, the corresponding weight of the term in that document is also stored.
As a result, the similarity measure is calculated only for documents appearing in the
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posting list of at least one of the terms of the query, yielding so a significant saving
in the total number of required calculations.

A valuable extension [5, 40, 45], in order to further lower the total retrieval time, is
to group the documents into a number of document clusters (cluster-based retrieval)
where each cluster contains documents that are most similar to each other. Briefly, the
worth of using document clustering in IR (especially for “cluster-based retrieval”) is
based on the well-known “cluster hypothesis” [50]: “the associations between docu-
ments convey information about the relevance of documents to requests.” Since each
cluster contains similar documents and if the cluster hypothesis holds for a document
collection, then finding the most relevant clusters to a given query would automati-
cally retrieve the majority of the relevant documents to the specific query.

One possible way of creating document clusters (followed in our work) is by
computing the pair-wise similarities sim(Di,Dj ) for all pairs of documents Di ,
Dj (i �= j ) of the document collection and then applying a suitable graph-based
algorithm—i.e., connected components’ estimation with a specific similarity thresh-
old as the adjacency criterion—over the corresponding documents’ similarity ma-
trix. After the formation of the clusters, for each cluster Ci , one centroid-vector ci

is extracted of the following form ci = (wci1,wci2, . . . ,wcim) where wcij, i.e., the
weight of term j in cluster Ci , is computed as the average of the weights of term j in
documents Dik belonging to cluster Ci . Therefore, the corresponding retrieval task
can now be performed via a suitable selective cluster-based searching algorithm (by
first comparing q to the centroid-vectors ci in order to find the most relevant clus-
ters) and finally only a fraction of the whole set of documents in the collection (those
belonging to the most relevant clusters) has to be considered. Can et al. in [5] show
that by enhancing the posting lists in the classic inverted index with skip pointers
so that only portions of posting lists corresponding to documents belonging to the
relevant clusters will be accessed, cluster-based retrieval can significantly reduce the
total number of posting elements processed and hence the total execution time.

With regard to the connected-components document clustering method, this
method is widely used for flat/partitional clustering and it is based on the well
known and more general single-link hierarchical clustering method. The single-link
and complete-link methods are the most popular ones for hierarchical document clus-
tering [26]. In the single-link hierarchical clustering method, the two clusters with
the smallest minimum pairwise distance are merged at each step, whereas in the
complete-link method the two clusters with the smallest maximum pairwise distance
are merged, assuming that the smallest distance corresponds to the greatest similarity.
Now, the connected-components clustering method can be shown as an instance of
the single-link method or equivalently a break method for flat/partitional clustering
out of a cluster hierarchy. Specifically, if d(n) is the distance of the two clusters to
be merged at step n of the single-link method, and G(n) is the graph that links all
data points within a distance of at most d(n), then the clusters after step n are the
connected components of G(n).

Equivalently, the minimum spanning tree algorithm could be used with almost
equivalent results both theoretically and practically. The above algorithms, single-link
and complete-link as well as their variants for flat/partitional clustering, connected
components, minimum spanning trees, maximal complete subgraphs, etc., are gener-
ally regarded as the most appropriate in the domain of document retrieval, although
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they are computationally expensive since they require the computation of all the pair-
wise document similarities. Moreover, they have been proved to perform better than
other less time-consuming heuristic/iterative partitional clustering methods such as
squared error or k-means clustering methods. That is especially true when these meth-
ods are to be used for cluster-based document retrieval or automatic thesaurus con-
struction etc. (see [43]). Also, the single-link hierarchical clustering method as well as
the “connected components” method have been widely-used together with “centroid-
based” mean-cluster vector representatives in classical well-known research IR sys-
tems such the SMART and SIRE systems [45].

Generally, (as stated in [5, 40, 45] too) cluster-based retrieval leads to relatively
inexact search, however, the expected decrease in search quality is small (depending
on the specific algorithms used for cluster formation and representation). The main
need for using cluster-based retrieval despite of its qualitative tradeoffs/disadvantages
lies on the need for faster response times in very large/huge collections, which is an
important issue in IR nowadays. In addition, if the documents belonging to the same
cluster and their meta-data (e.g., term-weights, etc.) are stored in contiguous positions
in the system disk, the I/O time for cluster-based retrieval can be minimized [5].
Also, encouraging results about the effectiveness of the cluster-based retrieval (higher
recall and precision) have recently been shown in [18, 34, 36] where either the basic
framework of cluster-based retrieval is used in combination with a statistical language
modeling approach for estimating the similarity of documents with a given query [34,
36] or clusters are built by following an information theoretic approach (distributional
clustering) and then the clustering structure is used for searching as well as browsing
the document collection [18].

4 The VSM-based text retrieval algorithm

In this section, we present the details of our BSP/GCM algorithms for the VSM text
retrieval problem. First, we describe the parallel implementation of the off-line pre-
processing phase and then we give the details of the on-line query processing phase.
Next, we discuss how to handle the case when a number of queries is concurrently
submitted to the system (bulk query processing). After that, we present techniques
for dynamic cluster maintenance when documents are inserted or deleted from the
collection. Finally, we discuss external memory issues related to the fact that in some
cases the local memory of the processors is limited, and thus most of the data should
be placed in local disks.

For convenience, most of the notation needed for the analysis of our techniques in
the next two subsections has been placed in Table 1. Also, for keeping the notation
simple and short, some of the symbols in Table 1 are reused with different meaning
in the next subsections.

4.1 The off-line preprocessing/clustering phase

We assume that we are given p BSP/CGM processors and n documents D1,D2, . . . ,

Dn. For each document Di , i = 1, . . . , n, its vector representation di = (wi1,wi2, . . . ,
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Table 1 Basic notation of our algorithms

Basic notation for the VSM-based text retrieval algorithm

n the number of documents in the collection

p the number of processors

di the vector representation of document Di

m number of distinct terms in document collection

q the vector representation of query Q

rq the maximum number of distinct terms in a query Q

ci the centroid vector of cluster Ci

C the set of clusters in the document collection

dsim the maximum number of documents similar to a document

ni the number of documents stored in processor i when the data volume of document collection is
evenly distributed to processors

ri the number of non-zero elements of document vector di

rmax maxi=1...n ri

R
∑n

i=1 ri

nmax maxi=1...p ni

Rmax the maximum number of document vector elements stored in a processor when the documents of
the collection are evenly distributed to processors

wim) is given. Note that the vectors di are usually very sparse and let ri be the number
of nonzero elements of document vector di . Initially, each processor holds O(R

p
)

document vector elements where R = ∑n
i=1 ri . We reasonably assume that ri ≤ R

p
,

and thus each processor will keep only entire document vectors.
The off-line clustering algorithm computes the similarities among the documents,

forms the document clusters (centroids), computes the centroid vector of each cluster
and evenly distributes the documents of each cluster to the processors. The basic steps
of the algorithm are given as follows. A pseudo-code description is also provided in
Algorithm 1.

Step 1. Consider the n × m matrix D, whose row i is the vector di , i = 1, . . . , n.
Notice that this is a sparse matrix. For each document Di , i = 1, . . . , n, use a sparse
matrix-vector multiplication algorithm to “multiply” the sparse matrix D with the
vector di , and, therefore, to compute the similarity sim(Di,Dj ) of Di with each
other document Dj , j = 1, . . . , n, j �= i, using the well-known “cosine-similarity”
function, i.e.,

sim(Di,Dj ) =
∑m

k=1 wik · wjk
√∑m

k=1 w2
ik ·

√∑m
k=1 w2

jk

. (1)

Then use the similarity matrix to construct a graph G = (V ,E), such that there
is a node in the graph for each document in the document collection, i.e., V =
{D1,D2, . . . ,Dn}, while there is an edge between two nodes Di and Dj , if and
only if sim(Di,Dj ) is greater than or equal to a threshold value th1.
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Algorithm 1 High level description of the off-line clustering phase
1: {Step 1}
2: for each pair of documents (Di,Dj ), i �= j do
3: Compute the Similarity function sim(Di,Dj ) from Eq (1)
4: end for
5: Define the graph G = (V ,E) with V = {D1,D2, . . . ,Dn} and eij ∈ E if

sim(Di,Dj ) ≥ th1
6: {Step 2}
7: Find the clusters/connected components C = {C1,C2, . . . ,C|C|} of G

8: {Step 3}
9: for i = 1 to |C| do {Compute the centroid vectors}

10: ci =
∑

Di∈Ci
di

|Ci |
11: end for
12: for each processor i do
13: Build a local inverted index for the centroid vectors residing in processor i

14: end for
15: {Step 4}
16: for i = 1 to |C| do {�|Ci |/p� or 	|Ci |/p
 document vectors per processor for

Cluster i after the redistribution}
17: Distribute the documents vectors of Ci evenly to processors
18: end for
19: {Step 5}
20: for each processor i do
21: for j = 1 to |C| do
22: Build a local inverted index for the documents of Cj residing in the proces-

sor i

23: end for
24: end for

Step 2. Apply a connected components algorithm to the graph G = (V ,E). The con-
nected components of G comprise the set of clusters C of the document collection
and, therefore, “similar” documents belong to the same cluster and we expect that
relevant documents to each user-query will belong with high probability to some
specific clusters.

Step 3. For each centroid (cluster) Ci in C, use the document vectors of its docu-
ments to compute the centroid vector ci . Store the centroid vectors in each proces-
sor by using an inverted index structure. As mentioned in Sect. 3, the inverted index
is the data structure of choice for almost all information retrieval systems since it
helps execute faster the user queries [2, 54].

Step 4. For each centroid Ci in C, evenly distribute the vectors of the documents
of the cluster to the p processors. Therefore, after the execution of this step, the
document vectors of the collection are almost evenly shared among the processors,
i.e., each processor holds approximately n

p
document vectors in its local memory.

Step 5. At each processor, build a separate inverted index for the documents of each
cluster stored in the local memory of the processor. Now for each term appearing
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Algorithm 2 Step 1—parallel implementation
1: at round i do {i = 1 . . . p}
2: Processor i broadcasts its local document vectors di

l (l = 1 . . . ni ) to all proces-
sors

3: for each processor j do
4: for each pair of document vectors (d

j
k , di

l ), k = 1 . . . nj , l = 1 . . . ni do

5: Compute the value S = sim(d
j
k , di

l )

6: Store the value S only if S ≥ th1
7: end for
8: end for
9: end at

10: Redistribute the similarity values so that each processor holds the similarities of
each of n/p documents to all other documents of the collection

11: for each processor i do {Define the similarity graph G = (V ,E)}
12: for each local document Dj do
13: Define the corresponding vertex Vj of G

14: end for
15: for each local similarity value sim(dk, dl) do {Only values ≥ th1 have been

kept (line 6)}
16: Define the corresponding edge ekl of G

17: end for
18: end for

in the documents, there is a list of ids of the documents containing that term along
with the weight of the term in each of these documents.

4.1.1 Detailed description and analysis of the off-line clustering algorithm

Now we will provide the implementation details for each of the basic steps of the
algorithm. We also give a pseudocode description for each step.

Step 1. Each processor needs to compute the similarity sim(Di,Dj ) of document
Dj with each other document Di in its local memory. Each processor i keeps O(R

p
)

document vector elements and let ni be the number of documents corresponding
to this amount of elements. Since the document vectors are sparse, we have that
ni �= nj for i �= j , in general. Now, each processor i should broadcast their own
O(R

p
) vector elements to all other processors. After receiving a new set of ni vectors

Di
l (l = 1 . . . ni ), each processor j computes the similarity sim(D

j
k ,Di

l ) among its

own set of vectors D
j
k (k = 1 . . . nj ) with the vectors Di

l , i.e., ninj similarity values
in total.

The whole computation is organized in p rounds (lines 1–9 in Algorithm 2). At
round i, processor i broadcasts its O(R

p
) vector elements to all other processors. By

using a well-known technique [21, 27], broadcasting can be completed in O(g R
p

+L)

time. The technique proceeds in two communication supersteps. In the first step,
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Algorithm 3 Step 2—parallel implementation
1: Apply the connected components algorithm of Dehne et al. in [17] on G = (V,E)

processor i partitions the O(R
p
) elements in p pieces of O( R

p2 ) elements each, and
send each piece to a different processor including itself. The cost of this transfer in the
BSP model is O(g R

p
+ L). Then each processor creates p − 1 copies of the elements

just received and sends these copies to the rest of the processors in O(g R
p

+ L) time.
At each round after broadcasting, each processor j computes the ninj similarity

values among its own vectors D
j
k and the received vectors Di

l of processor i (lines
3–8 in Algorithm 2). Note that the number of multiplications required for this com-
putation is

∑m
w=1 |Di |w|Dj |w where m is the total number of terms in document

collection (the dimension of document vectors) and |Di |w , |Dj |w is the number of
documents Di

l and D
j
k , respectively, that contain the term w. Note also the number

of summations for this computation is strictly smaller than the amount above.
Now, we can easily see that

∑m
w=1 |Di |w|Dj |w ≤ R

p
min(ni, nj ). Note that this

bound is tight. Just consider the case that the documents Di
l and D

j
k contain only the

first � R
pni

� and � R
pnj

�, respectively terms of the document collection.

Thus, the total running time of round i is O(R
p
ni + g R

p
+ L), and hence for the p

rounds of the whole computation we need O(R
p
n + gR + pL) time in total.

It is worth mentioning that after each computation round, processors need to keep
only those similarity values which are above the threshold value th1. In this way, after
the completion of the p rounds, the local memory requirement in each processor for
storing these values is at most O(nmaxdsim) where nmax = max1=1...p ni and dsim
is the maximum number of documents Dj , such that sim(Di,Dj ) > th1, over all
documents Di . It is also reasonable to assume that parameter dsim is o(n), i.e. much
smaller than n, the number of documents in the collection.

Next, we redistribute the O(ndsim) similarity values so that each processor will
store the similarity values for n

p
documents, that is O( n

p
dsim) similarity values at

most (line 10 in Algorithm 2). Apparently, this step takes O(gnmaxdsim) time at most.
With the local O( n

p
dsim) similarity values as input, each processor creates its own

portion of the document similarity graph G(V,E) (lines 11–18 in Algorithm 2).
Specifically, graph G consists of n vertices which represent the n documents of the
collection and there is an edge between two vertices Vi , Vj if the corresponding sim-
ilarity value sim(Di,Dj ) is above the threshold th1. Clearly, each processor holds n

p

vertices and O( n
p
dsim) edges of the graph G.

Step 2. The BSP version of the CGM connected components algorithm of Dehne et
al. [17] is used to compute the connected components of the graph G constructed in
the previous step (Algorithm 3). Notice that G is a graph with n vertices whose num-
ber of edges is at most m = O(ndsim). Therefore, the CGM connected components
algorithm needs O(logp) communication rounds and O(

ndsim
p

) local computation per
round while the communication cost of the BSP connected components algorithm is
O(logp(g

ndsim
p

+ L)) and the computation cost is O(
ndsim

p
logp).
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Algorithm 4 Step 3—parallel implementation
1: Let C = {Ci1,Ci2, . . . ,Ci|C| } be the set of clusters/connected components from

Step 2.
2: Sort the set C according to the indices of the clusters
3: Based on this order, renumber the clusters in the range [1 . . . |C|]
4: Return the documents to their initial positions as they were before Step 1
5: for each processor j do
6: for each Cluster Ci do
7: lc(i, j) = 0 {lc(i, j): the local centroid of Ci in processor j}
8: for each local document Dk ∈ Ci do
9: lc(i, j) = lc(i, j) + dk

10: end for
11: end for
12: end for
13: Let b(i, j) be the number of non-zeroes in lc(i, j)

14: Compute S(i, j) for i = 1 . . . |C|, j = 1 . . . p using Algorithm 5 {S(i, j) is given
by Eq. (2)}

15: for each processor j do
16: for i = 1 . . . |C| do
17: Find k such that (k − 1)R

p
< S(i, j) ≤ k R

p
18: Send lc(i, j) to processor k

19: end for
20: end for
21: {Now, the p (at most) local centroids of each cluster are stored in consecutively

numbered processors}
22: for each processor j do
23: for each Cluster i with local centroid vectors in processor j do
24: Add the local centroid vectors of Cluster i and store the result in lc(i, j)

25: end for
26: end for
27: {Here, for a cluster i totally contained in one processor j , the corresponding

centroid vector has already been computed, i.e. ci = lc(i, j)}
28: for each Cluster i spanning more than one processor do {in parallel}
29: Compute the Centroid vector of Ci using Algorithm 6
30: end for
31: for each processor i do
32: Organize the locally stored centroid vectors (or part of them) with an inverted

index.
33: end for

Step 3. At the end of step 2, each document Di knows the cluster it belongs to while
the cluster-heads are distributed to the p processors. During step 3, the following
substeps take place:

• Using sorting, give to the clusterheads consecutive numbering from C1 to C|C|,
where |C| is the number of clusters (lines 1–3 in Algorithm 4). Due to [6], sorting



298 C. Konstantopoulos et al.

Algorithm 5 Compute S(i, j) for i = 1, . . . |C|, j = 1, . . . , p

1: for each processor j do {j = 1, . . . , p}
2: Send the |C|

p
elements b(k, j), (k = (i − 1)

|C|
p

+ 1, . . . i
|C|
p

) to processor i,
(i = 1, . . . , p)

3: Compute the prefixes SCk(i) = ∑i
l=1 b(k, l), for k = (j − 1)

|C|
p

+ 1, . . . j
|C|
p

and i = 1, . . . , p

4: Send the prefixes SCk(i) (k = (j − 1)
|C|
p

+ 1, . . . j
|C|
p

) to processor i, (i =
1, . . . , p)

5: if j = p then {only processor p executes this part}
6: Compute the prefixes GS(i) = ∑i

k=1 SCk(p), (i = 1, . . . |C|)
7: Broadcast the values GS(i) to all processors.
8: end if
9: Compute S(i, j) = ∑i−1

l=1 GS(l) + SCi(j), (i = 1, . . . |C|)
10: end for

can be completed in O( n
p

+ g n
p

+ L) time with a constant number of communica-
tion and computation rounds.

• Return the documents to the their initial positions (line 4 in Algorithm 4). Specif-
ically, return each document and its cluster identity to the processor that holds the
corresponding document vector. This can be easily done by having remembered
the position of each document before the redistribution substep at the end of step 1.
This transfer takes O(gnmax) time at most.

• By using its local document vectors, each processor j , 1 ≤ j ≤ p computes a
“local” centroid vector lc(i, j) for each centroid (cluster) Ci which has at least one
document vector in the local memory of processor j (lines 5–12 in Algorithm 4).
This requires O(R

p
) local computation cost. Let b(i, j) be the number of nonzero

elements of local” centroid vector lc(i, j). A crucial observation at this point is
that the number of nonzeroes b(i, j) in the “local” centroid vector lc(i, j) is at
most O(R

p
). Thus, the computation of the centroid vectors of clusters Ci from

the local centroid vectors lc(i, j) should be done in such a way that no processor
receive more than O(R

p
) vector elements in the process. This can be achieved by

the following three steps.
• For i = 1, . . . , |C|, j = 1, . . . , p, compute the expressions1

S(i, j) =
i−1∑

k=1

p∑

l=1

b(k, l) +
j∑

l=1

b(i, l) (2)

by adapting the standard prefix-sum technique [21] (lines 13–14 in Algorithm 4
and Algorithm 5). Clearly, each of the steps in Algorithm 5 involves either the
execution of a |C|-relation or a computation step with O(|C|) additions. Thus, the
total running time for the calculation of S(i, j) is O(|C| + g|C| + L) at most.

• Every processor j , 1 ≤ j ≤ p, for each i = 1, . . . , |C|, sends its “local” centroid
vector lc(i, j), to processor k, k = 1, . . . , p, if and only if (k −1)R

p
< S(i, j) ≤ k R

p

1For i = 1, the first sum is equal to 0.
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Algorithm 6 Compute the Centroid vector of Ci

1: Let ji . . . ji + l − 1 be the processors where the local centroids of Ci have been
stored

2: Let lc(i, j, k) be the weight of lc(i, j) at index k (k = 1 . . .m, j = ji . . . ji + l−1)
3: In parallel sort all lc(i, j, k) values according to their index k

4: {Now all the weights of the same index are stored in the same or in consecutively
numbered processors}

5: In parallel add the weights of the same index
6: {The centroid vector ci may now be distributed in consecutively numbered

processors}

(lines 15–20 in Algorithm 4). Every processor sends all its “local” centroid vectors
in one (combined) h-relation. Since each processor sends and receives at most
O(R

p
) vector elements, only one O(R

p
)-relation is required for this step.

• Each processor j uses the “local” centroid vectors lc(i, k), k = 1, . . . , p previ-
ously received to compute a new aggregated local centroid vector lc(i, j), for each
cluster Ci (lines 22–27 in Algorithm 4). This step requires at most O(R

p
) local

computation. Note that if all the local centroid vectors of a cluster Ci have been
gathered from the previous step exclusively in processor j , then at this step the
centroid vector ci of cluster Ci has been computed, that is ci = lc(i, j). However,
if a cluster Ci is relatively large, its “local” centroid vectors lc(i, j) may be spread
among a number of l processors, say processors j with j = ji, . . . , ji + l − 1. It is
possible that the final centroid vector ci may not contain O(R

p
) elements at most,

and thus it cannot be stored in one processor. In this case, we keep the nonzeroes
of centroid ci distributed with each of the l processors holding O(R

p
) nonzeroes at

most. The distributed computation of the centroid vector ci can be performed as
follows (lines 28–33 in Algorithm 4 and Algorithm 6):
– For each nonzero element of the “local” centroid vectors lc(i, j), form the

pair (k, lc(i, j, k)) where k is the position of the nonzero element inside vec-
tor lc(i, j) and lc(i, j, k) is the value of this element.

– By using the algorithm in [23], sort pairs (k, lc(i, j, k)) by k in O(1) rounds.
The total computation and communication cost is O(

R logR
p

), O(g R
p

+ L), re-
spectively. Now after this sorting step, all vector elements at the same position
k have been placed consecutively.

– Now, the centroid vector elements can be easily computed, by first adding the
proper local elements in O(R

p
) time and then adding the partial sums in one

communication and computation round with a total O(p) computation and
O(gp + L) communication cost.

– The local centroid vector elements in each processor are organized by using an
inverted index structure. This means that for each nonzero position k, there is a
list of pairs (id, val) where id is the id of a cluster whose centroid vector contain
an nonzero element at this position and val is the corresponding nonzero value.
Building the inverted index involves a sorting step [54] of O(R

p
) pairs (k, id, val)

according to the non-zero position k. For this sorting step, we can use the merge-
sort algorithm starting from O(|C|) ordered lists each one corresponding to a
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Algorithm 7 Step 4—parallel implementation
1: Redistribute the documents vectors of each cluster Ci evenly to processors

{�|Ci |/p� or 	|Ci |/p
 vectors per processor}

Algorithm 8 Step 5—parallel implementation
1: for each each processor i do
2: for j = 1 to |C| do
3: Build a local inverted index for the documents of cluster Cj residing in

processor i

4: end for
5: end for

local centroid vector. They are O(log |C|) merge phases at most with O(R
p
)

cost per phase. Thus, the total cost of the merge sort algorithm is O(R
p

log |C|)
at most.
Clearly, the three steps above demand a constant number of communication

and computation rounds and the total computation and communication cost is
O(

R logR
p

) and O(g R
p

+ L), correspondingly.
Thus, with the completion of Step 3 the centroid vectors have been distributed

among the processors and each processor has O(R
p
) nonzero centroid vector ele-

ments at most in its local memory.

Step 4. This step requires a redistribution of document vectors so that the document
vectors relevant to each cluster are evenly distributed among the p processors (Algo-
rithm 7). By performing a prefix computation similar to that for the computations of
vectors GS and S at Step 3 (see Algorithm 5), each processor can easily determine
the processors which it should communicate with. Then the redistribution involves
a Rmax-relation where Rmax is the maximum number of document vector elements
stored in any processor after this redistribution step. Thus, the total time for this step
is O(|C| + g max{|C|,Rmax} + L).

Now, each processor contains O( n
p
) document vectors. Since each document vec-

tor has a different number of nonzero elements, this document allocation may create
an uneven load distribution over the processors. However, this allocation is essential
for achieving fast execution in the on-line query processing phase as will be explained
later.

Step 5. For the documents inside the local memory of each processor, build an in-
verted index structure (Algorithm 8). This means that for each term of the local doc-
ument collection there is a list of local documents containing that term along with
the weight of the term in each of these documents. We can also follow the technique
of Can et al. [5] where along each posting list of the inverted index there are skip
pointers so that the portions corresponding to a specific cluster can be fast accessed.

Similarly to local centroid inverted index, building this inverted index requires a
sorting step of O(Rmax) pairs (ti , dj ,wij ,Cj ) according first to the their terms ti and
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then to Cj where wij is the nonzero weight of term ti in document dj and the Cj is
the cluster containing the document dj . Again, we use the merge sorting algorithm
starting now from O( n

p
) ordered lists each one corresponding to a local document

vector. The number of merge steps is O(log n
p
) at most and each step has O(Rmax)

cost at most. Thus, the total cost of the sorting step is O(Rmax log n
p
) at most.

From the analysis above, we can easily prove the following theorem.

Theorem 1 By reasonably assuming that |C| < R
p

, rmax ≤ R
p

, dsim = o(n), p2 ≤ n,
R ≥ n logp and n ≥ logn + log rmax where rmax = maxi=1...n ri , the off-line cluster-
ing phase of the VSM-based text retrieval algorithm has a total of O(nR

p
) computa-

tion and O(g max{R, R
p
dsim} + pL) communication cost, whereas the local memory

requirement for each processor is O(max{R
p
dsim, n

p
rmax}) at most.

Proof By checking the complexity of each step, we can easily see that the total com-
putation cost is

O

(

max

{
R

p
n,

ndsim

p
logp, |C|, R logR

p
,
R

p
log |C|,Rmax log

n

p

})

at most. Note that R � n and n � dsim. So, we can reasonably assume that R >

dsim logp. Thus, it holds that R
p
n >

ndsim
p

logp. Also, we have that R ≥ Rmax and

so R n
p

≥ Rmax log n
p

. Moreover, if n ≥ logn + log rmax then we also get that R
p
n >

R logR
p

. Finally, by assuming w.l.o.g that |C| < R
p

, the total computation cost of the

off-line clustering phase turns out to be O(nR
p

) at most.
As for the communication cost of the off-line clustering phase, the total complexity

is

O

(

g max

{

R,nmaxdsim, logp
ndsim

p
, |C|,Rmax

})

at most.
Again, we assume that |C| < R

p
. Clearly also, it holds that R

p
> nmax, R > Rmax.

Now, provided that R ≥ n logp, the total computation complexity is
O(g max{R, R

p
dsim}) at most.

Note that the condition R ≥ n logp also covers the condition R > dsim logp men-
tioned above for the computation cost.

Finally, the local memory requirement for this phase is

O

(

max

{
R

p
, |C|, nmaxdsim,Rmax

})

at most.
Since, R

p
> nmax, n

p
rmax > Rmax and |C| < R

p
, it easily follows that local memory

requirement at each processor is O(max{R
p
dsim, n

p
rmax}) at most. �

Now, it would be interesting to compare the running time of our parallel algorithm
with that of the corresponding sequential algorithm which implements the off-line
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Algorithm 9 On line query processing—a high level description
1: q = the vector of the user query Q

2: for each Cluster Ck do {Step1}
3: Compute the similarity value sim(q, ck)

4: if sim(q, ck) > th2 then {th2 is a threshold}
5: Ci is a qualifying cluster{The documents of Ci will be checked for similar-

ity with q}
6: end if
7: end for
8: for each Qualifying Cluster i do {Step2}
9: for each document Dl in Cluster i do

10: Compute the similarity value sim(q, dl)

11: if sim(q, dl) > th3 then {th3 is a threshold}
12: Dl is a qualifying document{It will be included in the retrieved docu-

ments}
13: end if
14: end for
15: end for
16: Sort the qualifying documents according to their similarity scores{Step 3}

clustering phase. First, the sequential sparse matrix multiplication needs �(nR) time
at most. Then by repeated application of depth first search on the similarity graph of
documents which is a graph with N = n vertices and M = ndsim edges, we can find
the connected components of the graph in �(N + M) or equivalently �(ndsim) time
at most [32]. Finally, the computation of cluster centroid vectors takes �(R) time
at most. So, the total time of sequential off-clustering algorithm is �(nR) at most.
By comparing this complexity with those of Theorem 1, we can easily see that the
speed-up of our technique is close to p for sufficiently large n and R.

4.2 The on-line query processing phase

Let Q be a user query whose query vector q contains rq terms at most. Note
that users most often submit queries with a small number of terms especially in web
interfaces [40, p. 87]. Thus, we can assume that the parameter rq is a relatively small
integer constant most of time.

The on-line query processing algorithm proceeds as follows (see also Algo-
rithm 9):

Step 1. Compute the “cosine-similarity function” of vector q with each of the cen-
troid vectors ck , (k = 1 . . . |C|). There are two possibilities for this computation. If
all the elements of the centroid vector have been stored in a single processor, the
computation is local and we can use the inverted index structure of local centroid
vectors to complete this processing in O(|C|rq) time at most. Otherwise, if the
centroid vector is distributed among a number of processors, the whole computa-
tion needs one communication and two computation rounds. The size of messages
exchanged is O(1) at most and the communication required is an O(p)-relation.
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The computation rounds can be completed in O(|C|rq) time overall, by making
use of the inverted index structure again.

Now, for each centroid Ck such that sim(q, ck) is greater than or equal to a
threshold value th2, consider it as a “qualifying cluster.” Then broadcast the ids
of these clusters to all other processors with O(g|C| + L) communication cost at
most.

Step 2. By using the “cosine-similarity function,” each processor locally computes
the similarity of query Q with each one of its local documents that belong to the
“qualifying clusters” according to the previous step. Based on the inverted index
structure of local documents, this local computation can be completed in O( n

p
rq)

time at most. Then each processor extracts the documents Dl such that sim(q, dl)

is greater than or equal to a threshold value th3. These documents are considered
as “qualifying documents.”

Step 3. Rank the qualifying documents according to their similarity scores with the
query Q. For the similarity score values, we can safely assume finite precision,
3 or 4 decimal digits, for instance, since difference in similarity values smaller
than this amount is immaterial and the corresponding documents can be consid-
ered equivalent in the final document ranking. Thus, this ranking can be easily
done by employing integer sorting and specifically the algorithm in [6] with O( n

p
)

computation and O(g n
p

+ L) communication cost.

Now, we can easily see that the following theorem holds.

Theorem 2 The on-line query processing phase of the VSM-based text retrieval algo-
rithm requires O(max{|C|, n

p
}rq) computation and O(g n

p
+L) communication time.

The local memory in each processor required for this phase is O( n
p
rmax) at most.

Recall again that the parameter rq is a small integer, and thus the computation and
communication cost of the on-line query phase increases linearly with the number
of local documents stored in each processor. That was exactly the reason why we
evenly redistributed the document vectors among the processors at the step 4 of the
off-line clustering phase. In this way, we minimize the query execution time during
this phase.

With regard to the speedup of our technique, we can easily check that the run-
ning time of the corresponding sequential algorithm is �((|C| + n)rq) at most. So,
the speedup offered by our technique is close to p for sufficiently large number of
documents n and a relatively small number of clusters |C|.

4.3 On the bulk query processing

The previous section presented the details of the single query execution on the pro-
posed IR system. A highly relevant and important issue is how the system processes
a number of concurrently submitted queries. Today’s commercial search engines ac-
cept thousand requests and they should respond to all these IR requests in a timely
manner.

In this section, we show that our basic approach fares very well in comparison to
other reasonable approaches of handling a number of concurrently submitted queries
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to an IR system. For our analysis, we assume that q queries have been submitted to the
IR system at the same time. Then the first step of our on-line query processing phase
of the previous subsection is executed in order that the q queries can be classified
according to their most relevant cluster. We assume that each query is relevant to
only one of the |C| clusters of the collection. For our purposes, this assumption is
acceptable since we only intend to present an analysis that will be indicative of the
real system performance. Our analysis is also valid in the following scenario common
in major web search engines where users first browse the document collection using
the existing clustering structure and then, after deciding which of the topics of the
clusters is the most pertinent to their information need, they start searching among
the documents of the most relevant cluster using the VSM model.

Now in our case, let qi be the number of queries that are found relevant to cluster
i (i = 1 . . . |C|). We also introduce the fractional parameter fi such that qi = fiq

(i = 1 . . . |C|) i.e. fi is the percent over all the queries that are relevant to cluster Ci ,
and

∑|C|
i=1 fi = 1.

Then in our scheme of the previous subsection (Single Query Processing (SQP)
scheme), the q queries are processed sequentially, one after another, by repeatedly ex-
ecuting the last two steps of the on-line query phase. Recall also that the documents
of each of the |C| clusters have been evenly distributed among the p processors of the
system. Another reasonable approach is the parallel execution of queries concerning
different clusters (Multiple Query Processing (MQP) scheme). More precisely, we
dedicate a certain number of processors, pi , to each cluster Ci and the documents
belonging to this cluster are only distributed to the pi specific processors. If cluster
Ci contains ni documents out of the n documents of the whole collection, each of the
pi processors of the cluster i holds O(

ni

pi
) documents at most. Then the qi queries

for cluster i are processed one after the other on the pi processors by repeatedly fol-
lowing again the last two steps of the on-line query phase. In addition, the queries of
each cluster i are executed in parallel with other queries concerning different clus-
ters j (i �= j ). Understandably, more processors should be devoted to clusters whose
documents are in a great demand. So, it is normal to consider that pi = fip since
fi reflects the “popularity” of cluster i among the concurrently submitted queries.
For convenience in the subsequent analysis, we assume that pi for each i as defined
above, is an integer.

In the following, we are going to show that the SQP scheme outperforms the
MQP scheme with regard to two important metrics, namely the total execution time
(makespan) and the average completion time. These two metrics have been widely
used in the literature for evaluating the performance of scheduling algorithms [30].

In our case, if ti is the completion time of query i (i = 1 . . . q), then the makespan
(MS) and the average completion time (ACT) are defined as follows:

MS = max
i=1...q

ti ,

ACT =
∑q

i=1 ti

q
.

From system’s perspective, the makespan metric is very important because it
shows how efficiently the proposed scheduling algorithm uses the CPU resources of
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the system. However, from users’ perspective, the average completion time is more
important because this metric is indicative of the average delay users experience be-
fore getting the reply to their query.

In the following two theorems, we prove that the SQP scheme outperforms the
MQP scheme with regard to the above mentioned metrics.

Theorem 3 If the latency parameter L is negligible when compared with the com-
munication cost due to message transfer and if also each one of the submitted queries
is relevant to only one of the clusters, then it holds that

MSSQP ≤ MSMQP,

where MSSQP and MSMQP is the makespan of the SQP and the MQP Scheme, respec-
tively.

Proof In the SQP scheme, we first execute the q1 queries of cluster 1, then the q2
queries of cluster 2 and so on. Note also that the last two steps of the on-line query
processing phase for a query relevant to cluster i takes

O

(
ni

p
rq + g

ni

p
+ L

)

time at most. The same time for the parallel scheme is

O

(
ni

pi

rq + g
ni

pi

+ L

)

.

In our analysis, it is reasonable to assume that gni/p as well as gni/pi � L since
the number of documents ni in each cluster i are so large that the terms gni/p and
gni/pi dominate in the communication complexity in comparison to the parameter L.
For convenience also, we define the monotonically increasing function

A(x) = xrq + gx.

So, eventually the above time complexities can be written as O(
A(ni )

p
) and

O(
A(ni )

pi
) for the SQP and MQP scheme respectively.

Now, we can easily see that the makespan (MS) of the SQP scheme is the sum of
the execution time of the individual queries that is

MSSQP = O

( |C|∑

i=1

qi

A(ni)

p

)

or equivalently

MSSQP = O

( |C|∑

i=1

qi

A(ni)

p

)
qi=fiq�⇒
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MSSQP = O

( |C|∑

i=1

fiq
A(ni)

p

)

�⇒

MSSQP = O

(

q

|C|∑

i=1

fi

A(ni)

p

)

.

In the MQP scheme, the queries of each cluster are executed sequentially and at
the same time in parallel with the queries belonging to different clusters. As the total
execution of the queries of cluster i is O(qi

A(ni )
pi

) or equivalently O(q
A(ni )

p
) since

pi = fip and qi = fiq , we can easily see that the makespan of the MQP scheme is
as follows:

MSMQP = O

(

max
i=1...|C|

q
A(ni)

p

)

.

From the expression above, we can easily see that the cluster with the largest
number of documents dominates in the makespan complexity. So, if imax is the index
of that cluster (nimax ≥ ni , i = 1 . . . |C|), then the makespan for the MQP scheme can
also be written as follows:

MSMQP = O

(

q
A(nimax)

p

)

.

Note the bounds implied by the O-notation in the expressions of MSSQP and
MSMQP are tight and we could used �-notation instead. So, we can safely remove
the O-notation and in order to prove that MSSQP ≤ MSMQP, we only need to prove
that

q

|C|∑

i=1

fi

A(ni)

p
≤ q

A(nimax)

p
.

Indeed,

q

|C|∑

i=1

fi

A(ni)

p
≤ q

A(nimax)

p
�⇒

∑

i=1...|C|
i �=imax

fiA(ni) ≤ A(nimax)(1 − fimax) �⇒

∑

i=1...|C|
i �=imax

fi(A(ni) − A(nimax)) ≤ 0.

The last inequality obviously holds because A(ni) ≤ A(nimax) for i = 1 . . . |C|. �

Now, we will show that the SQP scheme performs equally well with respect to the
average completion time metric in the case that the queries are properly scheduled
according to a predefined order. Specifically, we first execute the queries of the cluster
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with the smallest number of documents, then the queries of the cluster with the second
smallest number of documents and so on. So, we “visit” the clusters according to a
nondecreasing order of their number of documents. Now, we can prove the following
theorem.

Theorem 4 If the latency parameter L is negligible compared with the communica-
tion cost due to message transfer and if also the queries are sequentially executed by
“visiting” the clusters with an nondecreasing order in the number of documents per
cluster and if, in addition, each one of the submitted queries is relevant to only one
of the clusters, then it holds that

ACTSQP ≤ ACTMQP,

where ACTSQP and ACTMQP are the average completion time of the SQP and the
MQP Scheme respectively.

Proof For convenience, we renumber the |C| clusters of the collection so that the
sequence {n1, n2, . . . , n|C|} forms an nondecreasing integer sequence.

Now, we can easily check that the completion time t
j
i of the ist query of cluster j

(i = 1 . . . qj , j = 1 . . . |C|) in the SQP scheme is given by the following expression:

t
j
i = O

(
j−1∑

k=1

qk

A(nk)

p
+ i

A(nj )

p

)

.

The expression qk
A(nk)

p
in the first sum is the total execution time of the qk queries

of cluster k, and thus the first sum is the delay due to the execution of queries of

the previous j − 1 clusters. The term i
A(nj )

p
in the expression above is the total time

required for the first i queries of the cluster j .
Now the average completion time (ACT) for the SQP scheme will be

ACTSQP =
∑|C|

j=1

∑qj

i=1 t
j
i

q
.

By some algebraic manipulation and recalling that qi = fiq , we finally get that

ACTSQP = O

(

q
∑

1≤i<j≤|C|
fifj

A(ni)

p
+

|C|∑

i=1

fi(fiq + 1)

2

A(ni)

p

)

.

In the MQP scheme, we can easily check that the completion time t
j
i of the ist

query of cluster j will be

t
j
i = i

A(nj )

pj

.



308 C. Konstantopoulos et al.

So, the average completion time for the MQP scheme will be

ACTMQP =
∑|C|

j=1

∑qj

i=1 t
j
i

q

pj =fj p,

qj =fj q�⇒

ACTMQP = O

( |C|∑

i=1

(fiq + 1)

2

A(ni)

p

)

.

Again, the bounds in the above O-notations are tight. Therefore, in order to prove
that ACTSQP ≤ ACTMQP, we need only to show that

q
∑

1≤i<j≤|C|
fifj

A(ni)

p
+

|C|∑

i=1

fi(fiq + 1)

2

A(ni)

p
≤

|C|∑

i=1

(fiq + 1)

2

A(ni)

p
.

Notice that fi
A(ni )

p
≤ A(ni )

p
for i = 1 . . . |C|. So, we actually need to show that

q
∑

1≤i<j≤|C|
fifj

A(ni)

p
+

|C|∑

i=1

fifiq

2

A(ni)

p
≤

|C|∑

i=1

fiq

2

A(ni)

p
.

Indeed,

q
∑

1≤i<j≤|C|
fifj

A(ni)

p
+

|C|∑

i=1

fifiq

2

A(ni)

p
≤

|C|∑

i=1

fiq

2

A(ni)

p
�⇒

∑

1≤i<j≤|C|
fifjA(ni) ≤

|C|∑

i=1

fi

2
A(ni) −

|C|∑

i=1

fifi

2
A(ni) �⇒

∑

1≤i<j≤|C|
fifjA(ni) ≤

|C|∑

i=1

(1 − fi)fi

2
A(ni) �⇒

∑

1≤i<j≤|C|
fifjA(ni) ≤ 1

2

|C|∑

i=1

⎛

⎜
⎜
⎝

∑

j=1...|C|,
j �=i

fj

⎞

⎟
⎟
⎠fiA(ni) �⇒

∑

1≤i<j≤|C|
fifjA(ni) ≤ 1

2

|C|∑

i=1

⎛

⎜
⎜
⎝

∑

j=1...|C|,
j<i

fj +
∑

j=1...|C|,
j>i

fj

⎞

⎟
⎟
⎠fiA(ni) �⇒
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∑

1≤i<j≤|C|
fifjA(ni) ≤ 1

2

|C|∑

i=1

⎛

⎜
⎜
⎝

∑

j=1...|C|,
j<i

fj

⎞

⎟
⎟
⎠fiA(ni)

+ 1

2

|C|∑

i=1

⎛

⎜
⎜
⎝

∑

j=1...|C|,
j>i

fj

⎞

⎟
⎟
⎠fiA(ni) �⇒

∑

1≤i<j≤|C|
fifjA(ni) ≤ 1

2

∑

1≤i<j≤|C|
fifjA(nj ) + 1

2

∑

1≤i<j≤|C|
fifjA(ni) �⇒

1

2

∑

1≤i<j≤|C|
fifj (A(ni) − A(nj )) ≤ 0.

Due to the particular scheduling order, we follow for executing the concurrently
submitted queries, it holds that A(ni) ≤ A(nj ) for any i < j and i, j = 1 . . . |C|. So
the left-hand expression is always a nonpositive number and, therefore, the inequality
above holds. �

The previous two theorems clearly show that the even distribution of the docu-
ments of each cluster among all the processors is a well-justified approach that fares
very well in comparison to other more involved alternatives. Note also, that SQP
and MQP scheme have equivalent performance only in the rare case when each clus-
ter Ci of the document collection contains the same number of documents, that is,
ni = n/|C|.

4.4 Dynamic cluster maintenance

With the advent of the world wide web, today’s IR systems have become highly dy-
namic with frequent document insertions and deletions. For instance, a search engine
should continually update its collection with documents that crawlers track down on
the Internet. Further, a search engine should withdraw any document that has become
obsolete and cannot be found on the Internet.

When clustering is used for organizing a dynamic document collection, a prob-
lem frequently arising is how to adapt the already built cluster structure so that it
reflects the new content. Although complete reclustering is the obvious solution, it
is generally agreed [1, 4, 7, 25] that this operation should be executed as rarely as
possible, because it heavily penalizes the performance of a fully operational IR sys-
tem. Thus, most of the proposed systems in the literature try to find a compromise
between cluster adaptation cost and accuracy of the new clusters.

As a high-performance parallel technique, our VSM-based algorithm is mainly
used for handling very large document collections. Thus, we can reasonably assume
that the off-line indexing phase starts with a very large number of documents as input,
and the clusters, the output of this phase, are relatively stable corresponding to well-
separated topics of the document collection. Therefore, during the on-line operational
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mode of the IR system, document insertions and deletions are not expected to change
dramatically the existing clusters.

Based on this assumption, a new document inclusion can be done by simply find-
ing the most similar cluster for the new document, namely the cluster whose centroid
vector is the most similar to the new document vector. This is done as follows:

• By performing the first step of the on-line query processing phase, each processor
can determine which centroid vector out of its local ones has the greatest similarity
with the new document vector. By using the local centroid inverted index structure,
this step can be completed in O(|C|rmax) time at most.

• The identities of the most similar clusters along with the corresponding similarity
values are sent to one processor, which then computes the globally maximum sim-
ilarity value. If the global maximum is greater than a threshold th4, then the new
document is considered to belong to the cluster that corresponds to this maximum.
The total cost of this step is O(p + gp + L) at most.

The processor that will store the new document is selected in a round-robin fashion,
i.e., each time the new document is stored in the next higher numbered processor
starting from the first. This ensures that all processors take an equal share of the new
documents. Also, the new document should be inserted in the local inverted index
and specifically the id of this document should be placed at the end of rmax posting
lists. So, this operation takes O(rmax) time at most. Note also that by always giving
to a newly inserted document an id higher than those of documents already in the
collection, we can ensure that each affected posting list remains sorted after each
insertion.

On the rare occasion that the new document De cannot be considered to belong
to any of the existing clusters (the “cosine-similarity” function is less than th4), this
document is viewed as a new cluster Ce by itself, whose centroid vector equals to
the document vector (ce = de). In subsequent document inclusions, each time a new
document happens to belong to the recently formed centroid Ce then the centroid
vector ce is updated accordingly. Again, the distribution of the new documents to the
processors can be done by using the round-robin technique.

It can be easily seen that the inclusion of the new document requires O(|C|rmax)

local computation and O(gp + L) communication time for finding the similarity
of the centroid vectors with the new document vector and O(p) computation and
O(gp + L) communication time so that the centroid vector which is the most similar
to the new document vector is determined.

Note that if the number of documents inclusions exceeds a specific fraction of the
total number of documents n, then the off-line clustering phase is ran so that new
document clusters are formed (re-clustering) and new centroid vectors are computed.

Regarding document deletions, the deleted document is removed from the local
inverted index of the processor where it has been stored. This step involves a search-
ing through rmax posting lists, each corresponding to a term of the deleted document.
Searching in each list can be carried out in O(log n

p
) time at most by using binary

searching. So, the total cost of removing a document from the local inverted index is
O(rmax log n

p
) at most.

The following theorem summarizes the cost complexities of the update phase of
the VSM-based text retrieval algorithm.
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Theorem 5 The update phase of the VSM-based text retrieval algorithm requires
O(|C|rmax) computation time for document insertion and O(max{|C|, log n

p
}rmax)

computation time for document deletion. The communication cost for both insertion
and deletion is O(gp +L) at most. The local memory per processor required for this
phase is O( n

p
rmax) at most.

4.5 External memory based implementation

Information retrieval systems routinely handle a huge volume of data. This is espe-
cially true for commercial search engines which should store billions of web pages in
order to be competitive in comparison to other search engines. So, it is necessary to
consider how our parallel algorithms for the off-line clustering and the on-line query
processing phases can be adapted to the case that the main memory of each processor
is not enough to hold all the necessary data for processing. A possible solution would
be to ignore this limitation and instead to rely on the virtual memory mechanism
built in all modern operating systems to handle the data transfer between main mem-
ory and disk. However, practice has shown that this approach may seriously degrade
the whole system performance due to frequent disk accesses. So, many researchers
have deal with the problem of minimizing the number of disk accesses for various
fundamental algorithms such as sorting, data permutation, etc. by exploiting the var-
ious locality data access patterns that these algorithms exhibit and also by taking into
account the block structure of the disks (see [31, 51] for a survey of these techniques).

For the adaptation of our algorithms to the external memory equipped processors,
we use the external memory BSP (EM-BSP) model proposed by Dehne et al. [12,
13, 15, 16] which abstracts away all implementation details and extends the BSP
model. Specifically, in this model, each BSP processor has also a secondary memory
consisting of D disks. Each disk can read or write a block of B items in a single I/O
operation and hence a total of DB items can be transferred to or from the secondary
memory in one operation if disks are accessed in parallel. It is also assumed that there
is an upper-bound in the size of local main memory per processor, i.e., O(M) main
memory per processor.

Dehne et al. in [15, 16] have presented a technique for simulating a v-processor
BSP algorithm on fewer, p, EM-BSP processors with each processor having local
main memory at least as large as that of a simulated BSP processor. Essentially, each
real processor simulates v/p virtual processors and stores the local memory of each
of these processors in its D local disks. Now, the communication step of each su-
perstep of the BSP algorithm is simulated in v/p rounds. At each round, a processor
sends the messages of one of its v/p virtual processors and the messages arriving in
a real processor during this round are stored in the secondary memory of the proces-
sor. After the v/p communication rounds, each real processor simulates the message
reception by its virtual processors and then simulates the computation performed by
its virtual processors in the current simulated BSP superstep. Specifically, for each
virtual processor, the real processor reads from the disks the local memory of the
virtual processor and the messages arrived for this processor in the previous BSP su-
perstep and then executes the computations carried out in the current superstep by this
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specific virtual processor. Finally, it sends the messages sent by this virtual proces-
sor in the current simulated BSP superstep to the real processors holding the virtual
processors, destinations of these messages.

An important detail of the algorithm is the placement of the messages and local
memories in the disks in such a way that it ensures full parallel I/O operation of the D

local disks in each real processor. In summary, Dehne et al have proved the following
theorem:

Theorem 6 [15, 16] The simulation of a v processor BSP algorithm with λ super-
steps, computation time β , communication time gλ(N

v
) + λL, and local memory size

μ on p processors with D local disks and �(M) local memory per processor re-
quires v

p
β + v

p
O(λμ) computation time, gλO(N

p
) + v

p
λL communication time and

Gλ v
p
O(

μ
BD

) I/O time for M ≥ μ + BD, p ≤ v, N ≥ v2B + v2(v−1)
2 .

The notation needs some explanation. Parameter G shows how many times an
I/O operation is more expensive in comparison to an arithmetic operation. Also, N

is the total problem size. Further, it holds that μ = �(N
v
).

For our simulation, we assume that M = μ. We also ignore the quantity BD as
its size is usually very small when compared to μ. Also, the number v of virtual
processors are as many as are needed so that their memories can hold the input of
size N cumulatively, e.g., v = N

M
. Replacing v with N

M
in the inequality N ≥ v2B +

v2(v−1)
2 , we can find the following sufficient condition for the total input size in order

that the previous inequality hold:

8B3 ≤ N ≤ (M)3/2. (3)

Although it seems a heavy requirement for the size of the main memory at first glance,
it is not that serious. Indeed, a simple calculation shows that a main memory of
4 GB in size is sufficient for all practical purposes. Specifically, according to [33],
the Google search engine indexes about 20.5 billions pages currently (May 2008).
Also, in [35], the average number of terms met in a typical web page is estimated at
about 474 terms per page. So, the size R of input weight matrix of our techniques
will contain 20.5 × 109 × 474 = 9.71 × 1012 elements. Now, from (3), a main mem-
ory holding about M = 4.56 × 108 elements is enough for handling N = R input
elements. Note that since the input matrix is a sparse matrix and only the nonzero el-
ements are stored, for each element we may need to store the index of the document,
the index of the term as well as the corresponding weight. For 20.5 billion pages, we
can use a document index of 35 bits, for weight values we can allocate 10 bits and
for term index, we can use 27 bits capable of indexing about 1.34 × 108 terms. So,
in total, 9 bytes are required for each of the N input elements. So, the capacity of the
main memory can be estimated at about 4.56 × 108 × 9/230 ≤ 4 GB. Apparently, this
size for the main memory is not a heavy demand for today server machines.

Alternatively, we can use the randomized simulation method of the same au-
thors in [12, 13] whose complexity bounds hold with high probability. Specifically,
the computation, communication and I/O cost of the simulation is (1 + o(1)) v

p
β ,

O(g N
p

+ λ log(M/B) + v
p
λL), O(G(v/p)(μλ/BD)) respectively, provided that
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M = �(μ), v = �(pD log(M/B)). These conditions can be easily satisfied in prac-
tice even when v is equal to N

M
.

Now, we will briefly discuss how to apply the first deterministic simulation tech-
nique to our algorithms. Specifically, we discuss the basic issues by showing the
simulation of the first step of the off-line clustering phase. Then the reader can eas-
ily fill the details for the simulation of the steps of the algorithm. Note that similar
techniques are also followed in the case of the second randomized simulation method.

At each step, it is important to check the total size of data input or output by this
step in the worst case. Then we assume as many virtual processors as are needed to
cover that data size. So, at step 1 of the off-line clustering phase, the size of the ag-
gregate input and output of the sparse matrix multiplication is O(R) and O(Rdsim),
respectively. Therefore, we should use v = O(

Rdsim
M

) virtual processors in order to
cover this memory requirement. This also implies that initially each virtual proces-
sor holds O( M

dsim
) vector elements. Now, based on Theorem 6, we can show that the

execution of sparse matrix multiplication on p processors with �(M) local mem-

ory and D local disks per processor requires O(Rn
p

+ R2d2
sim

Mp
) computation time, and

O(G
R2d2

sim
MBDp

) I/O time. Note that the communication complexity is lower than that

predicted by Theorem 6. This is so, because at each round, a single virtual processor
broadcasts O( M

dsim
) vector elements to the remaining virtual processor and so each

real processor actually sends and receives only O( M
dsim

) data elements and not O(R
p
)

as implied by Theorem 6. Since they are v broadcast rounds, the total computation

communication complexity is O(gR + Rdsim
M

L) and not O(g
R2d2

sim
Mp

+ R2d2
sim

M2p
L) ac-

cording to Theorem 6.
After the sparse matrix multiplication, the similarity matrix whose total size is

O(ndsim) is redistributed so that each processor holds O( n
p
dsim) elements after re-

distribution. Since, before the redistribution, each processor contains O(
Rdsim

p
) matrix

elements at most, we should use O(
Rdsim

M
) virtual processors for this simulation. Note

that some of the virtual processors may be empty at the beginning. Also during the
simulation of this step, we should be aware of the actual position of virtual processors
with regard to the real processors so that the redistribution can be done correctly on
the real processors. More precisely, since each processor simulates O(

Rdsim
Mp

) virtual

processors and after the redistribution step each processor should hold O(
ndsim

p
) el-

ements, only O(
ndsim
Mp

) out of O(
Rdsim
Mp

) virtual processors in each processor should

be “filled” with data in the end. This different redistribution requires only a slight
change to the original algorithm.

Now, again by Theorem 6, we can easily see that the simulation of the redistrib-
ution step has O(

Rdsim
p

), O(g
Rdsim

p
+ Rdsim

Mp
L) and O(G

Rdsim
pBD

) computation, commu-
nication and I/O cost, respectively.

The rest of the off-line clustering phase as well as the on-line query processing
phase can be simulated following the methodology above. A possible concern about
this simulation is whether the assumptions made during the discussion of the off-line
clustering phase actually hold when there is a large number of processors as is the
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case when considering virtual processors. For instance, both sorting algorithms [6,
23] used in off-line clustering phase assume that N

p
≥ pε where N is the input size, p

the numbers of processors running the algorithm and ε some constant greater than 1.
For N

M
virtual processors, the previous inequality gives that M ≥ N

ε
ε+1 . However,

from (3), the last inequality is implied if we set ε a value equal to 2.
Also, some substeps such as the inverted index creation in each processor can

apparently be done directly without using the simulation technique. There are many
optimized algorithms for the basic operations of this important data structure which
is widely used in information retrieval systems [2, 54].

Finally, the analysis in Sect. 4.3 is still valid, since after application of the simu-
lation technique, the basic complexities have again the same form, O(

A(n)
p

), where
A(n) is monotonically increasing function of input size n.

5 Conclusions and future work

A notably efficient parallel algorithm for the VSM-based text retrieval problem, has
been presented and analyzed by means of the CGM and BSP cost models. The total
cost is kept considerably low, exploiting the inherent sparsity of the documents’ and
query term vectors, even in the case of the off-line clustering phase, which is the most
intensive task in corresponding VSM-based text retrieval approaches with clustering
enhancements. Note also that the above algorithm can be easily extended in order
to cover (maintaining similar efficiency) additional “document identifiers” (not only
word stems) for each document in the collection (i.e., phrases, thesaurus classes, etc.).

The BSP and CGM models were specifically chosen as the basic means for our
work mainly because they are realistic enough to represent a wide diversity of exist-
ing platforms, thus allowing extensive experimental studies. Moreover, with regard
specially to CGM, its inherent tendency of the model to have large local computation
steps allows the use of good existing sequential algorithms during the local compu-
tations. It is also worth mentioning that all the cost complexities mentioned in the
paper are worst-case complexities with low constants hidden in the O-notation. So,
it is fair to assume that the average performance of our algorithms on real machines
will be at least no worse or even better than that predicted by our analysis.

We also discussed the external memory implementation of our algorithms and
showed that our techniques can be easily simulated on the EM-BSP model, an exten-
sion to the BSP model for modeling external memory related performance issues.

Finally, as a future work, we plan to investigate the parallel implementation of hi-
erarchical clustering methods and the use of our techniques for supporting searching
as well as browsing of document collection. Another interesting direction for future
research is the study of our parallel text-retrieval algorithms on more recent parallel
models that have been proposed as extensions to the classical BSP model such as the
Decomposable BSP (D-BSP) model [3] which takes into account the fact that in a
parallel architecture some processors may be nearer than others and the Heteroge-
neous BSP (H-BSP) model [52, 53] as well as the Dynamic BSP model [41] which
have been proposed for modeling heterogeneous clusters and computational grids.
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