
The Journal of Systems and Software 82 (2009) 355–371
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
A mobile agent platform for distributed network and systems management

Damianos Gavalas*, George E. Tsekouras, Christos Anagnostopoulos
Department of Cultural Technology and Communication, University of the Aegean, Arionos and Sapfous Street, 81100 Mytilene, Lesvos Island, Greece
a r t i c l e i n f o

Article history:
Received 13 March 2008
Received in revised form 23 June 2008
Accepted 24 June 2008
Available online 3 July 2008

Keywords:
Network and systems management
Mobile code
Mobile agents platform
Custom class loader
Optimal itinerary design
Agent generator
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.06.034

* Corresponding author. Tel.: +30 22510 36643.
E-mail addresses: dgavalas@aegean.gr (D. Gaval

Tsekouras), canag@ct.aegean.gr (C. Anagnostopoulos)
1 SNMP agents serve as an interface between the

legacy systems and should not to be confused with mo
a b s t r a c t

The mobile agent (MA) technology has been proposed for the management of networks and distributed
systems as an answer to the scalability problems of the centralized paradigm. Management tasks may be
assigned to an agent, which delegates and executes management logic in a distributed and autonomous
fashion. MA-based management has been a subject of intense research in the past few years, reflected on
the proliferation of MA platforms (MAPs) expressly oriented to distributed management. However, most
of these platforms impose considerable burden on network and system resources and also lack of essen-
tial functionality, such as security mechanisms, fault tolerance, strategies for building network-aware MA
itineraries and support for user-friendly customization of MA-based management tasks. In this paper, we
discuss the design considerations and implementation details of a complete MAP research prototype that
sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and opti-
mized for network and systems management applications. The paper also presents the evaluation results
of our prototype in real and simulated networking environments.

� 2008 Elsevier Inc. All rights reserved.
2

1. Introduction

Current IP network management systems are typically based on
centralized client–server architectures, with the simple network
management protocol (SNMP) (Stallings, 1999) being the core
management protocol. Within SNMP, the manager application
serves the role of the client and the static SNMP agents1 (installed
on managed devices) serve the role of distributed servers. The func-
tionality of both the manager and the SNMP agents is rigidly defined
at design time. Physical resources are represented by managed ob-
jects. Collections of managed objects are grouped into tree-struc-
tured management information bases (MIB). Despite its wide
deployment base, SNMP presents serious scalability problems when
the size and complexity of the network increases (Liotta et al., 2002;
Stephan et al., 2004). Thus, the need for decentralized and distrib-
uted network management architectures is more important and nec-
essary than ever before (To et al., 2005).

The emerging mobile agent (MA) technology can play an impor-
tant role in distributed network and systems management (NSM)
(Eid et al., 2005). The term agent is used to denote a (usually static)
software entity with a well-defined role, typically acting on behalf
of a human or another software component, which may be used
in a variety of applications (e.g. Manvi and Venkataram, 2006). In
contrast, the term MA refers to a software unit that travels between
ll rights reserved.

as), gtsek@ct.aegean.gr (G.E.
.
manager application and the
bile agents.
network nodes following either a pre-defined or a context-depen-
dent itinerary (Fuggeta et al., 1998). Post its creation, an MA can car-
ry its persistent state and code to another node, where its execution
can be restarted or resumed. Through interacting with a node, an
agent can perform complex processing and filtering operations
upon retrieved data, directly control equipment and dynamically
deploy software to the nodes. That is, the agent can carry the appli-
cation logic where it is needed and only accumulate filtered data
rather than the entire data set retrieved from nodes (To et al.,
2005). Several researchers have proposed the application of MA
technology in the area of NSM (Bohoris et al., 2000; Du et al.,
2003; Liotta et al., 2002; Puliafito et al., 2000; Rubinstein et al.,
2003; Satoh, 2006; Stephan et al., 2004). Typical scenarios involve:
(a) multi-hop MAs that sequentially visit a set of nodes to retrieve
and filter management data and then deliver high-level results to
the manager host, or (b) single-hop agents uploaded to remote de-
vices where they monitor systems and notify the manager in the
event of a ‘system’s health parameter’ crossing a pre-determined
threshold. Despite its potential though, MA technology has not yet
achieved the anticipated commercial success, mainly due to secu-
rity concerns2 (Fuggeta et al., 1998; Jiang et al., 2004); however, sev-
eral software developers have lately incorporated agent technology
The most critical security concerns related to MAs comprise: (a) protecting
mobile hosts from malicious agents, (b) protecting agents from malicious hosts, and
(c) protecting sensitive information carried by agents from eavesdropping. The first is
addressed through implementing authentication and authorization features which
ensure that only trusted agents may be executed, in a restricted authority domain.
The second may be achieved through protecting agents against tampering, while the
third is sufficiently addressed through encrypting sensitive data.

mailto:dgavalas@aegean.gr
mailto:gtsek@ct.aegean.gr
mailto:canag@ct.aegean.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

356 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
into their software products, including management product solu-
tions (Present Technologies, JAMES project; SysteMATech; White-
stein Technologies). In particular, JAMES (Present Technologies,
JAMES project) is a Java-based mobile agent platform used for the
management of telecommunication and data networks, while Sys-
teMATech is tailored to decentralized systems management applica-
tions. Whitestein Technologies is a software firm that makes use of
the advanced capabilities of software agents within its products, solu-
tions and services in application domains that span transportation,
production and supply networks.

A large number of commercial and research initiatives have led
to the development of mobile agent platforms (MAPs). While many
amongst them are referred to as ‘general-purpose’ platforms (i.e.
they can be effectively used in any distributed computing applica-
tion), others have been optimized having management applica-
tions in mind. However, most of these platforms impose
considerable burden on network and system resources and also
lack of essential functionality, such as security mechanisms, fault
tolerance, strategies for building network-aware MA itineraries
and support for user-friendly customization of MA-based manage-
ment tasks.

In this paper, we discuss the design considerations and imple-
mentation details of a complete MAP research prototype that suf-
ficiently addresses all the aforementioned issues. It is noted that an
earlier version of this work has been published in Gavalas (2006)
which has been extensively revised and extended so as to discuss
all the design issues, implementation details and experimental
evaluation of our proposed platform.

The remainder of the paper is organized as follows: Section 2 re-
views works related to our research. Section 3 discusses the design
considerations for our MAP prototype, while Section 4 describes
the implementation details of the individual MAP software compo-
nents. Experimental evaluation results on real networking environ-
ments are presented in Section 5 and simulation results in Section
6. Section 7 concludes the paper and draws direction for future re-
search on the field.

2. Related work

The phenomenal popularity of MAs is reflected on several
industrial initiatives that led to the development of numerous
MAPs (Eid et al., 2005). Most of them represent commercial, gen-
eral-purpose MAPs, e.g. IBM Aglets (Mobile Agent Platform
(IBM)), Toshiba Bee-gent, Present Technologies JAMES (Present
Technologies, JAMES project). Among other areas, these platforms
have been employed in distributed management applications (Du
et al., 2003; Stephan et al., 2004). From the management viewpoint
though, general-purpose MAPs share several weaknesses: (a) rich,
but unnecessary functionality: some of their features are unneces-
sary for management applications, yet, they are ‘hard-coded’ and
result in large MA sizes that affect the usage of system and network
resources; (b) lack of essential features: some features considered
as essential for flexible management systems are not supported,
for instance, the ability of servers that receive incoming MAs to dis-
tinguish between different versions of the same MA class, which
may reflect the update/modification of an existing management
task; (c) questionable support: companies shipping commercial
MAPs, often suspend their support (for instance GMD FOKUS and
IKV++ ceased their support for the -once popular- Grasshopper
platform (Bäumer and Magedanz, 1999)).

The aforementioned weaknesses of general-purpose MAPs led
to the development of numerous MAP research prototypes with
network management orientation, aiming at optimizing function-
ality, flexibility and performance aspects, e.g. Codeshell (Bohoris
et al., 2000), MAP (Puliafito et al., 2000) and MobileSpaces (Satoh,
2006). However, a number of limitations have been identified on
these MAPs:

� Heavyweight migration schemes: Most existing MAPs involve the
transfer of both state and code at each MA migration (Satoh,
2006). However, the transfer of code is necessary only when
the MA visits a device for a first time (the Java class loader stores
every loaded class on a local code cache). That inefficient scheme
may result in serious scalability problems both in terms of
latency and migration overhead. This problem is partially
addressed through the migration strategy proposed in Puliafito
et al. (2000), where only the MA state is transferred and should
the corresponding code is not present at a visited device, the
code is downloaded from a remote code server. However, this
approach increases the latency (the MA’s execution cannot start
until its code is downloaded) and involves more complex migra-
tion mechanisms, which are not necessary when MAs itinerary
is known in advance.

� MA services customization: The development and customization
of MA-enabled management tasks is not effortless with avail-
able MAPs (Bohoris et al., 2000; Puliafito et al., 2000; Satoh,
2006), as it requires programming skills and detailed knowledge
of the MAPs’ design.

� Class loading: Most MAPs include a class loader component, able
to receive and load at runtime visiting MAs bytecode. Yet, to the
best of our knowledge, there is not any MAP which allows to
overwrite a cached MA class, i.e. to dynamically upgrade MA-
enabled management tasks (this problem is related to a limita-
tion of the default Java class loading mechanism). Aglets frame-
work (Mobile Agent Platform (IBM)) represent an exception to
this rule, yet, using a resource-demanding method detailed in
Section 4.3.8.

� Security: Not all management-oriented MAPs sufficiently
address security issues related to MAs, e.g. authentication (Boh-
oris et al., 2000), authorization (Bohoris et al., 2000; Puliafito et
al., 2000; Satoh, 2006) and encryption (Mobile Agent Platform
(IBM); Toshiba Bee-gent; Bohoris et al., 2000).

� Fault tolerance: MAPs should be able to survive situations where
link or node failures disrupt the normal migration process of
roaming MAs or the communication with the manager station.
However, only few platforms (e.g. Present Technologies, JAMES
project) have addressed fault tolerance issues.

� Lack of itinerary optimizationstrategy: When multi-hop MA-
based management tasks are concerned, the order in which
MAs visit managed devices (i.e. the MAs’ itinerary) is a crucial
factor seriously affecting the overall delay and the network
overhead imposed by the MA transfers (Fuggeta et al., 1998;
Gavalas, 2004). Hence, an efficient MA itinerary design approach
is needed, which is not addressed by any of the available MAPs.

In this paper, we introduce a Java-based MAP research proto-
type that addresses all the aforementioned limitations of existing
general-purpose and management-oriented MAPs. The main
strengths of our MAP are:

� Network management applications orientation: Unlike publicly
available general-purpose MAPs, the introduced MAP takes into
account the special characteristics and requirements of manage-
ment applications and therefore provides a flexible and scalable
environment tailored to distributed management operations.

� Lightweight memory and storage footprint (only the necessary
MAP functionality for management operations is included).

� Support for existing management standards: Our architecture
encompasses the dominant management framework of the
Internet world, i.e. the SNMP. Due to its huge installation base,

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 357
integration with SNMP was considered of vital importance to
maintain compliance with legacy management systems (Pag-
urek et al., 2000).

� Adoption of modular MAP architecture that eases the addition of
new services or the modification of existing ones.

� Implementation of a novel lightweight migration scheme
wherein the MA code is deployed at startup and only the MA
state transferred thereafter, resulting in minimal usage of net-
work resources (bytecode size is typically much larger than state
size (Fuggeta et al., 1998) and faster class loading). The perfor-
mance trade-off related to our code deployment strategy is dis-
cussed in Section 3.10.

� Incorporation of various migration optimization (programming)
techniques suggested in Gavalas (2004).

� Ability of managed devices to distinguish between different ver-
sions of the same MA class, which may reflect the update/mod-
ification of an existing management task; to achieve that, a
novel class loading mechanism has been implemented as an
extension to the standard Java virtual machine (JVM).

� Easy addition of new MA-based management tasks through a
novel tool (mobile agent generator) which removes the require-
ment for programming skills by the network administrator.

� Support for essential security aspects (authentication, authori-
zation and encryption).

� Fault tolerance: Our MAP has been designed so as to enable a
reasonably fault-tolerant system, able of recovering from some
basic software faults that disrupt the normal migration process
of roaming MAs.

� Implementation of a software module that, depending on the
underlying network topology and the set of devices involved
in a management task, constructs near-optimal MA itineraries
thereby optimizing the usage of network resources.

At this point, we should make a distinction among mobile agents
and agents that derive from artificial intelligence (AI) formalisms,
termed as ‘‘intelligent agents” (IAs). Basically, IA ideas and technol-
ogies have been influenced by a wide variety of disciplines and
practices. However, the origins of this term are in the field of AI,
in particular distributed artificial intelligence (DAI). It is used since
the beginning of the 1980’s to reflect the idea of creating autono-
mous software entities that behave based on self-contained intelli-
gence (knowledge and inference) (Magedanz et al., 1996). However,
the following attributes are typical for intelligent agents: An agent
is a self-contained software element responsible for performing
part of a programmatic process. Therefore, it contains some level
of intelligence, ranging from simple predefined rules to self-learn-
ing AI inference machines. It acts typically on behalf of a user or a
process enabling task automation. Agents operate rather autono-
mously (they are often event or time triggered) and may communi-
cate with the user, system resources and other agents as required to
perform their task. Moreover, more advanced agents may cooperate
with other agents to carry out tasks beyond the capability of a single
agent. Finally, as transportable objects, they may move from one
system to another to access remote resources or to meet or cooper-
ate with other agents. In principle, intelligent agents have been
agreed upon to share the following properties (Franklin and Graes-
ser, 1997; Kendall et al., 1998; Krause and Magedanz, 1996): acting
on behalf of someone; reactiveness; autonomy; proactiveness;
communication and collaboration ability; learnability and rational-
ity; flexibility; personality; mobility.

Evidently, the MAs involved in our MAP prototype only have a
small fraction of the above-listed properties, that is acting on be-
half of someone, autonomy and mobility. As such, they cannot be
classified as IAs, hence, they cannot be defined neither described
using the AI domain’s formalisms.
3. Design considerations for the MAP prototype

This section identifies the design space and justifies the most
important design choices regarding our MAP research prototype.

3.1. Modular design

One of our basic design objectives has been the adoption of
modular MAP architecture that facilitates code reusability and
eases the addition of new services or the modification of existing
ones. Hence, in addition to identifying the main software modules
of the MAP framework, each one of these modules, follows a mod-
ular design and has been built on the basis of several independent
and interrelated sub-components.

Our MAP prototype consists of the following major building
blocks (see Fig. 1): (a) the Manager, responsible for launching
and controlling MAs and displaying results; (b) the MAs, capable
of migrating between the managed entities to collect information
based on pre-defined policies; (c) the mobile agent server (MAS),
capable of receiving MAs and providing an interface to the local
physical resources; (d) the mobile agent generator (MAG), a tool
that automates the creation and deployment of service-oriented
agents.

It is noted that two of the aforementioned components (MA and
MAS) are common place in almost all known MAPs (e.g. (Mobile
Agent Platform (IBM); Toshiba Bee-gent; Bohoris et al., 2000;
Puliafito et al., 2000; Satoh, 2006)), while the manager component
is essential in management applications. However, the MAG tool
represents a key feature of our MAP, not available on existing plat-
forms; the motivation for its development is explained in Section
3.8.

In a typical scenario, the network administrator creates a ser-
vice-specialized MA through the MAG tool (described in Section
4.4). The MA is then stored in the MA code repository and retrieved
by the manager application when a monitoring task is about to
start. The instantiated MA object is then supplied with an itinerary
and sequentially visits a group of nodes. On each node, the MA is
received by the local MAS, which acts as an interface between
incoming MAs and the legacy system. The MA retrieves manage-
ment data from the local SNMP agent and proceeds to the next des-
tination host, ultimately returning back to the manager station to
deliver collected data.

3.2. Implementation platform and database technology

A major design concern for our MAP has been to guaranty oper-
ation on any network device, regardless of the underlying hard-
ware platform or operating system. To address this issue, we
have chosen Java as implementation platform (the MAP has been
entirely developed using JDK 1.4.1 (Java 2 Platform)), known to of-
fer platform-independence.

Another serious concern has been the choice of an appropriate
database technology. The manager processes deliver data in real-
time to identify potential alarm levels of monitored variables and
stores these data in a database for future statistical analysis. The
relational database technology chosen both for storing the MA
code and management data is MySQL, because of its low cost and
effortless connection with the Java-based manager application,
through a Java database connectivity (JDBC) MySQL driver.

3.3. Choosing intelligent agent itineraries

In most distributed applications, using a single MA that sequen-
tially visits a set of devices set may result in serious scalability prob-
lems. That is in large networks the round-trip delay of the MA

MAS

Host N

MAS

Host N

MAS

Host #1

MAS

Host #1

MAS

Host #2

MAS

Host #2

2 3 N

SNMP agent

MIB

SNMP agent

MIB

SNMP agent

MIB

SNMP agent

MIB

SNMP agent

MIB

SNMP agent

MIB

MA Code
Repository
MA Code
Repository

ManagerManager

MA
Generator
MA
Generator

N+11

Fig. 1. The mobile agents-based infrastructure.

358 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
greatly increases as the overall travel time depends on the number
of hops executed by the MA. More importantly, the network over-
head imposed by the MA transfers grows exponentially with the
network size, since MAs accumulate more data from every visited
node and become heavier on the next hop (Fuggeta et al., 1998).
Hence, a more efficient MA itinerary design approach is needed,
which should take into account the underlying managed network
topology and the volume of accumulated management data; in
such approach, multiple MAs (each assigned a limited-hop itiner-
ary) will be employed in parallel to carry out given management
tasks, thereby minimizing the overall response time and optimizing
the use of network resources. To this end, we have designed and
implemented the Heuristic algorithm for itinerary planning (HIP),
which has been introduced and evaluated in Gavalas and Politi
(2006).

The main motivation for designing optimal agent itineraries is
to minimize the overall network overhead associated with MA
transfers and also to maintain low latency for completing their
task. In network monitoring applications for instance, using a sin-
gle MA object that sequentially visits all managed devices, regard-
less of the underlying topology may actually lead to performance
worse than the conventional SNMP-based approach. The perfor-
mance further declines, when the monitoring MA collects data
from multiple subnets, often interconnected by low-bandwidth
links. In such cases, the traffic associated with management tasks
typically traverses several network segments and, when summed
up, results in increased bandwidth waste (Gavalas and Politi,
2006), hence an itinerary optimization process would minimize
the number of ‘‘expensive” link traversals. HIP algorithm repre-
sents an efficient approach for addressing the itinerary optimiza-
tion problem and has been shown to provide better performance
results in comparison to alternative existing approaches (Gavalas
and Politi, 2006).

3.4. Optimizing MA migrations

A crucial design objective for a MAP is to minimize the network
overhead and latency associated with MA migrations. Following
the suggestions reported in Gavalas (2004), we have implemented
a series of design optimizations: (a) use of a lightweight MA code
transfer scheme (described in Section 4.4), (b) reduced state size
through minimal use of non-transient objects and use of primitive
instead of complex data types for non-transient objects (e.g. use of
arrays instead of Java Vector objects), (c) compression of MA state
and use of stream buffering for MA transfers.

3.5. Security considerations

MA technology has not yet achieved the anticipated commercial
success, mainly due to security concerns (Fuggeta et al., 1998; Jiang
et al., 2004). Hence, it is essential for a MAP to provide a reasonably
safe environment against malicious hosts and malicious agent at-
tacks. Our objective is to provide the following security features:

� authentication, to ensure that only trusted agents (dispatched
by authorized hosts) are instantiated;

� authorization, to restrict the authority domain of visiting MAs
upon legacy systems, e.g. prevent MAs from directly accessing
files, creating sub-processes, shutting down the MAS applica-
tion, etc;

� encryption, to protect collected management data from
eavesdropping;

� protection of MAs against tampering (to prevent malicious hosts
from modifying sensitive MA properties).

With these security precautions described in this section, we
consider the network devices to be reasonably safe from malicious
attacks. In general though, the implementation of an impenetrable
security shield has not been a principal aim during the develop-
ment of our architecture. Besides, agent security is a particularly
complex subject and represents an active and evolving research
area (Fuggeta et al., 1998; Jiang et al., 2004).

3.6. Fault-tolerance features

Our architecture has also been designed to provide a limited
range of fault tolerance features. A MAP should be able to survive
network and systems failures to secure MA migrations. In particu-
lar, the following two fault scenarios have been investigated:

1. An MA should adapt to unexpected situations, such as the fail-
ure of a host’s listener daemon, as shown in Fig. 2. In this case,
the TCP connection establishment fails (step 1). The MA records
the unreachable host’s name into the MA’s ‘problem folder’

Host A Host C

Host B

(a)

Host A Host C

Host B

(b)

Host A Host C

Host B

(c)

Step 1

Step 2

Step 3

Host A Host C

Host B

(a)

Host A Host C

Host B

(b)

Host A Host C

Host B

(c)

Step 1

Step 2

Step 3

Fig. 2. Tolerating node failures: (a) MA reaction to the detection of a failed MAL
thread.

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 359
(step 2) and retrieves the next destination host from the itiner-
ary folder. The MA will then migrate to this host (step 3). When
returning to the manager host, the MA reports the failed devices
to the manager application, which in turn will take any neces-
sary fault recovery actions.

2. A second scenario involves a fault in the listener daemon of the
manager host itself (Fig. 3), which represents a special case. Cer-
tainly, loss of management data carried by an MA should be
avoided. Hence, upon detecting a fault (step 1) the MA ‘sleeps’
for a given interval (step 2) and then resumes execution to retry
the connection. If the manager application recovers before a
pre-determined number of retries elapses, the MA is transferred
(step 3), otherwise it is disposed of.

If – in the process of an MA’s migration – a node or a link fails,
the persistent state of the MA (the data already collected from pre-
viously visited hosts and transient variable values) is not lost. That
is, the persistent state of departing MAs is disposed of only in the
event of a successful agent migration. In the failure event of node
hosting MA objects, the manager application re-dispatches the
monitoring MA, after a pre-defined time period (500 ms) elapses;
this MA will skip the crashed node, based on the first scenario de-
Host A
(a)

Manager

Host A (b)
Manager

Host A (c) Manager

Step 1

Step 2

Step 3

Host A
(a)

Manager

Host A (b)
Manager

Host A (c) Manager

Step 1

Step 2

Step 3

Fig. 3. The specific case of MAL thread failure on the manager host.
scribed above. An alternative fault tolerance approach would be to
use a redundant number of agents and MAS instances.

It should be noted that fault-tolerance has not been a primary
design goal for our framework. Fault tolerance mechanisms must
be based on the provision of useful redundancy, both for error
detection and error recovery. In software the redundancy required
is not simple replication of programs but redundancy of design
(Randell, 1975). Our objective has only been to support some
fault-tolerance features so as to enable a system able of recovering
from some basic software faults. A weakness of the above pre-
sented MAP’s fault-tolerance mechanisms is that the manager
application represents a single point of failure. Namely, in the
event of manager host’s failure travelling MAs cannot deliver their
collected monitoring data. This can be easily addressed by hosting
a backup manager application, preferably on a separate station.
Also, in the first fault scenario presented above, our platform basi-
cally can detect only TCP connection establishment fails. Certainly,
such failures do not necessarily translate to host failures, as they
may be due to network disconnections, firewall settings or some
host’s listener daemon failure.

3.7. Dealing with the versioning problem

In a typical MAP, when an MA arrives at a host, its definition is
retrieved from the network stream, and cashed within the default
JVM’s class loader (CL). This CL works fine as long as MAs’ defini-
tions remain unchanged; it is not able though to distinguish differ-
ent versions of the same class, due to a limitation of the default
JVM’s CL3 (Venners, 1998). That is, the older (cashed) version of a
class is still loaded even if an updated version of the same class
has been uploaded. This problem, known as ‘versioning’ problem,
represents a major issue for MA-based management applications
wherein management tasks are often modified at runtime and ex-
pected to take immediate effect.

To the best of our knowledge, none of the existing MAPs copes
with this MAs ‘versioning’ problem and, as a result, the administra-
tor is forced to ‘reboot’ all the MAS servers where the old version of
the updated MA class is already stored to allow modifications to
take effect. This solution is certainly not an adequate solution for
networks comprising hundreds of managed nodes. To this end,
we have extended the standard JVM, designing and implementing
a custom CL, the mobile agent class loader (MACL), which is able to
identify different versions of the same MA class and enable the
execution of the most recent version while disposing the old one.

The MACL maintains a list of the classes that have been already
received; thus, when a class definition is received, the CLD checks
the received classes list and should the same class has been re-
ceived in the past, the MACL is forced to load the class definition
from the network stream rather than from the cache.

The main advantage of the proposed class loading mechanism is
that a single MACL object is used, leading to minimal use of local
resources. This object is ‘overwritten’ with a new one taking its
place whenever one of the existing MA definitions is modified.
The new MACL object then loads the bytecode (definitions) of all
the existing MA classes in order to minimize the time needed to
load these MAs when they first visit the node (otherwise the byte-
code would be loaded from the disk upon the MAs reception lead-
ing to increased delay). The ‘replacement’ technique was
necessary, as a single CL does not load the bytecode of a given class
twice. The operation of the MACL is graphically depicted in the
block diagram of Fig. 4.
3 To the best of our knowledge, the newer versions of Java (e.g. Java 6) do not
eliminate or ameliorate the consecutive class loading problem.

Load the received
bytecode

Delete the old
MA-ClassLoader

Create a new
MA-ClassLoader

Has this MA
been received

again?

Yes

No

Start the
MA-ClassLoader

Reload all received
MA definitions

Wait for anew
MA definition

Fig. 4. Class loading mechanism block diagram.

Start

Get PropertiesGUI

Java Skeleton
Source Code

Build Java
Source Code

Compile

Broadcast the
bytecode to all

the active
agents

Yes

No

 Is there any
 MA with similar
 functionality?

Inform the
operator

Fig. 5. Mobile agents generator functional diagram.

360 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
The implementation details of the MACL component are pro-
vided in Section 4.3.8.

3.8. Automating the creation and deployment of service-oriented
agents

The focus of current research on MA-based management is on
the development of mobile agent platforms (Present Technologies,
JAMES project; Puliafito et al., 2000) and applications for MAs (Du
et al., 2003; Stephan et al., 2004). However, methodologies for
building agents have received little attention. Creating MAs can
be tedious and susceptible to errors and also requires program-
ming skills and detailed knowledge of the MAP design. Therefore,
we have designed and implemented the mobile agent generator
(MAG) tool that satisfies a number of design objectives:

� The MAG ensures that the architecture remains sufficiently flex-
ible by enabling on-the-fly construction of service-oriented
agents, without the need for reconfiguration, re-installation or
re-instantiation of either the manager or the agent applications.
The MAG functionality can easily be extended so as to cover a
wider range of management tasks.

� Ease in introducing new management tasks in a user-friendly
manner. The productivity of the development process is
increased through reducing the time needed to develop an MA
and improving reliability as a result of reusing proven
components.

� The generation of the MA bytecode and its distribution among
distributed managed hosts is automated and transparent to
the user.

� The network administrator does not need to be aware of the
implementation details behind the introduced management ser-
vice or the management framework, nor to have programming
experience.

The functionality of MAs created by the MAG may only be an
extension of limited generic service types, corresponding to spe-
cific service ‘templates’. The MAG uses a skeleton (template) Java
source code file with empty slots filled with the user-specified
MA’s properties. The Java code created is then programmatically
compiled and the generated Java bytecode transferred to selected
managed devices (see Fig. 5).

The implementation details behind the MAG tool are given in
Section 4.4.

3.9. Minimal usage of network resources for code deployment

A primary design objective of our framework is to employ pol-
icies that guarantee minimal usage of network resources for MA
migrations. To this end we have implemented a lightweight migra-
tion scheme wherein the transfer of the MA bytecode is performed
only once, at the MA construction time. From that point onwards
the transfer of persistent state is sufficient for MAS entities to rec-
ognize the incoming MA and recover its state. In contrast, contem-
porary MAPs (with the exception of Puliafito et al., 2000) apply a
policy that requires the transfer of both the MA’s bytecode and per-
sistent state, resulting in higher demand on network resources. To
illustrate, in our implementation the ratio (code size):(state size)
typically lies in the range 10:1–15:1.

We expect the proposed MA code transfer approach to perform
well in large-scale network environments, although whenever
updating the configuration of a monitoring task, the corresponding
MA class should be transferred to all monitored devices. This is be-
cause: (a) unlike existing MAPs, the transfer of the MA code will
not be repeated; thereafter the transfer of the MA state will be en-
ough for executing the monitoring task; (b) in many cases, updat-
ing the monitoring task’s definition does not necessarily translate
to code update, rather an update of the MA’s state (i.e. modification
of some non-transient variables) may be sufficient.

3.10. Reduced demand upon resource-constrained managed devices

The code deployment scheme described in Section 3.9, although
relieving the network from unnecessary MA code transfers, it cer-
tainly implies increased demand upon the execution environments
of distributed systems for MA code storage. Admittedly, some of
the MA code definitions and their corresponding functionalities
may be rarely used in some of the hosting systems. Although typ-
ical MA class definitions are of small size (1–2 kbytes), perma-
nently storing these classes in resource-constrained managed
systems might raise serious storage capacity issues.

To alleviate this drawback we have implemented two strate-
gies: (a) the MA code is exclusively multicasted to those devices
where monitoring tasks are to be performed; (b) to release the re-
sources engaged to rarely used MA-based monitoring tasks, we

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 361
employ a LUFD (last used-first delete) strategy, wherein the last
executed MA class is deleted from the local MA code repository
to free some storage space (this ‘garbage collection’ is performed
when the total space bound to MA definitions exceeds a device-
specific threshold).

In case that an MA corresponding to a deleted class definition
arrives, an approach similar to the one proposed in Puliafito et al.
(2000) has been implemented: the code is downloaded on-the-
fly from a remote code repository, residing at the manager station.

4. Infrastructure overview – implementation details

The following sections elaborate on the design and implemen-
tation details behind each one of the platform’s components.

4.1. Manager application

The manager application performs monitoring and control
operations through interacting with devices running agent pro-
cesses. It comprises a multithreading environment where a main
thread instantiates, controls and co-ordinates the operation of a
number of specialized software components. These components
are illustrated in Fig. 6 and analyzed in the following subsections.

4.1.1. Network discovery thread
At startup, the manager’s network discovery thread (NDT) exe-

cutes a topology discovery algorithm proposed in Lin et al. (1999)
to populate a list of ‘discovered’ active MASs. First, the manager
interacts with the DNS server to acquire all IP addresses of nodes
hosted on the local domain and then ‘pings’ the corresponding
nodes checking whether there is an active MAS thereon. It is noted
that active servers are discovered either at manager initialization
or whenever a new MAS starts operation. In the latter case, the
manager application is notified and the host name is appended
to that manager’s ‘discovered’ list. The MAS finds out the ID of
the manager host either through parsing a property file or through
‘pinging’ (at a specified TCP port) all hosts attached to its LAN. A
managed host name may be also added manually by the
administrator.

4.1.2. Itinerary scheduler module
The itinerary scheduler module (ISM) executes an algorithm

that suggests the number N of MAs should be created to carry
out this task and what their itinerary should be.

The ISM executes a Java implementation of the Heuristic algo-
rithm for itinerary planning (HIP), which has been incorporated
Manager Applica

Manager GUI

Manager componen

ISMISM
MCR

MFC NDTNDT

PTsPTs

JDBC

Fig. 6. Break-down of the components th
into the manager’s ISM component. HIP is executed whenever a
new multi-hop agent-based management task is about to start,
suggesting not only the optimum number of MAs that should be
dispatched but also their exact itinerary. It is noted that HIP’s out-
put is re-calculated whenever the managed network topology is al-
tered, e.g. upon the event of a node’s failure or the discovery of a
new active agent server.

4.1.3. Polling threads
Polling threads (PTs) are started and controlled by the manager

application; each of them corresponds to a single monitoring task.
They properties of PTs (i.e. the configuration of monitoring tasks)
are defined through the MAG tool (described in Section 4.4). The
role of each PT is to instantiate a number N of MAs (suggested
by the ISM) and assign them their itinerary, also provided by
the ISM.

In the event of a pending MA-based task, the class definition of
the MA corresponding to the management task is retrieved from
the mobile code repository (MCR), a MySQL database where MA
class files (bytecode) are stored in binary format.

Whenever the manager application shuts down, the PT proper-
ties are serialized and stored as polling thread configuration (PTC)
objects (‘configuration files’). Upon startup, those objects are de-
serialized and the associated PTs are resumed.

4.1.4. Migration facility component, mobile agent listener and security
component

Upon starting/resuming a monitoring task the state information
of the involved MA objects is compressed (using the Java gzip util-
ity) and transferred through the migration facility component
(MFC) to their first destination host.

When the MAs return back, they are received by the mobile
agent listener (MAL) thread. The MAs are authenticated by the
security component (SC) and their collected results are subse-
quently retrieved. The results are then presented to the user and
optionally stored in a database. The MFC, MAL and SC components
are basically identical to the ones used by the MAS entities; their
implementation details are discussed in Section 4.3.

The results delivered by monitoring MAs may be displayed in
real-time line graphs. Several classes of the Java-based AdvnetNet
SNMP package (Adventnet) have been utilized for the implementa-
tion of these graphs. Fig. 7 presents screenshots of real-time graphs
displaying the fluctuation of a MIB scalar variable value retrieved
from a specific managed device and notification messages (alarms)
issued upon the event of management parameters crossing pre-
determined thresholds.
tion
Management

data

JDBC
ts

SCSC

MALMAL

GUI: Graphical User Interface

MCR: Mobile Code Repository

ISM: Itinerary Scheduler Module

PT: Polling Thread

SC: Security Component

MFC: Migration Facility Component

NDT: Network Discovery Thread

MAL: Mobile Agent Listener

at compose the manager application.

Fig. 7. (a) Polling of a scalar MIB variable (ipInReceives variable of MIB-II (McCloghrie and Rose, 1991)); (b) real-time notifications for management parameters (result of
ipInDelivered/ ipInReceives) crossing pre-determined thresholds.

362 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
4.2. Mobile agent implementation

An agent is identified by its code (description of its behaviour)
and persistent state information (modifiable variables). In the con-
text of our MAP, MAs are Java classes supplied with: a unique ID,
an ‘itinerary folder’ (supplied by the ISM), a ‘data folder’ (used to
store collected data), a ‘problems folder’ (used to report faults), a
flag indicating whether retrieved data should be encrypted, a byte
array containing the MA’s ‘signature’, a number of methods that
facilitate the interaction with managed devices.

MA transfers are performed by the MFC components. In partic-
ular, through the process of serialization,4 the state of an MA can be
saved, transferred through the network and reconstructed (de-seri-
alized) at the receiving node. To protect MAs against tampering, sen-
sitive MA properties may be specified only once, when the MA is
created. If a malicious host attempts to modify these properties, a
Not_Authorized_To_Initialize_Exception exception is thrown.5

Admittedly though, our platform offers only basic protection against
malicious hosts; our research prototype design has not given empha-
sis on that particular security aspect. There are also methods used by
the MA itself, for instance to obtain the name of the next host to be
visited or request migration. A last set of callback methods are in-
voked when the MA is instantiated, arrives or moves from a host,
fails to migrate, or when its execution is started, stopped, resumed
or suspended.

Regarding its fault-tolerance features, our platform records as
‘failure event’ the failure to establish a connection among migra-
tion facility component of the source host and mobile agent lis-
tener of the destination host. This may occur as a result of a MAS
failure and not failure of the managed device itself. In such case,
4 The MA superclass (extended by all MA class definitions) implements the
java.io.Serializable interface A Java class cannot be serialized unless it implements
this interface, or it extends another class implementing the java.io.Serializable
interface.

5 The setParams() method of the MA super-class is invoked by the manager
application that originally creates an MA object to set the MA’s basic parameters (e.g.
ID, itinerary, etc). This information cannot be later altered by any process. The same
applies for the MA’s signature, used for authentication purposes. In addition, a
number of MA methods have been declared as ‘protected’, hence, they cannot be
invoked by any other process.
the crashed MAS may be remotely recovered through the manager
interface.

The fault-tolerance feature of our platform has been extensively
tested through controlled fault injection experiments, e.g. by shut-
ting down nodes’ MASs, managed nodes and the manager station
itself.

4.3. The mobile agent server (MAS)

The interface between visiting MAs and legacy systems is
implemented through MAS modules.6 Functionally, the MASs re-
side above standard SNMP agents, defining an efficient runtime
environment for receiving, instantiating, executing, and dispatch-
ing incoming MAs, whilst protecting the system against malicious
agent attacks. The SNMP agent process is started automatically at
MAS initialization, if not already active.

Similarly to the manager application, the MAS class is designed
as a multi-threaded entity. Apart from increasing the architecture’s
modularity, this scheme allows independent components to work
concurrently and therefore decrease the overall delay when han-
dling MAs, especially when the rate of incoming MAs is relatively
high or bursty.7 The main building blocks of a MAS are illustrated
in Fig. 8 with their implementation detailed in the following
subsections.

4.3.1. Mobile agent listener (MAL)
The MAL is a daemon, which listens for incoming MAs on a

well-known port. Upon the arrival of an MA, its state is decom-
pressed and de-serialized. The MA is then authenticated by the
security component (SC). If the authentication is successful (the
MA has been created by a trusted host), the MA is first registered
by the mobile agent register (MAR) component. A separate thread
is subsequently created for the MA’s execution and assigned a cer-
tain priority level which equals a ‘priority value’ attribute carried
6 The installation of a MAS on every managed device since SNMP interactions
between MAs hosted by a MAS and remote SNMP agents are also possible.

7 In fact, the use of threads and concurrent servers for distributing the processing
load and reducing the overall delay has been standard practice in the Internet for
several years.

JVM

NDD

SFC

MFC

MAL

SC

MAS

NE

 MA

CLD Bytecode

RIA

MAR

 RMI
Server

RIA - Resource Inspection Application

MAR - Mobile Agent Registration

RMI - Remote Method Invocation

RMI calls

MA_Info
 objects

Fig. 8. The mobile agent server.

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 363
by the MA. That way, critical management tasks may be prioritized
against other pending executing threads on the local device, to at-
tain their timely execution.

The MAL then binds the MA to the local MAS to enable the inter-
action of the two parties (allow the MA to invoke MAS methods
and vice-versa). Last, the MA’s execution is started. From that point
onwards, the execution of MAL and MA threads is detached, with
the first returning back to listening mode.

Of course the simultaneous arrival of many MAs cannot be pre-
vented. However, no special programming techniques need to be
used to synchronize the activity of several agents received simulta-
neously by a single MAL. The default operation of the MAL enables
decompressing and de-serializing arriving MAs in a first-in, first-
out order. If an MA arrives while the MAL is bound on decompress-
ing another MA, the compressed state of the former MA will be
kept within the temporary data buffer of the input stream.

4.3.2. Security component (SC)
This component acts as the system’s protective barrier. First, the

SC verifies the authenticity of the received MA through the use of
security keys, ensuring that only trusted agents (dispatched by
authorized hosts) are instantiated. In addition, it authorizes the ac-
tions performed by the locally executing MAs and ensures the pri-
vacy of sensitive management data returned to the manager
station. The RSA (Rivest–Shamir–Adleman) algorithm (Rivest et
al., 1978), based on the ‘public–private pair of keys’ paradigm,
has been implemented providing both authentication and encryp-
tion features. It is noted that data encryption is performed only if
requested by the administrator at the MA’s creation time.

The security of MAS entities has been strengthened by introduc-
ing authorization features that restrict the authority domain of vis-
iting MAs upon legacy systems. Specifically, the JVM’s standard
security manager (SM) has been extended to prevent MAs from di-
rectly accessing crucial system resources. The identification of ille-
gal actions is achieved through registering the incoming MA
threads to a given thread group, i.e. a batch of threads that eases
the manipulation of active MAs. Based on the fact that an MA can-
not change the thread group it belongs to, whenever a malicious
action is detected, the SM checks the thread group of the action’s
originating thread; if this thread belongs to the MAs thread group,
the action is not permitted.

Summarizing, our platform offers data encryption, as well as
some basic protection measures against malicious hosts (tamper-
ing) and malicious agents: (a) a malicious agent will fail to pass
the signature (authentication) test; (b) malicious MAs will be pre-
vented to access legacy systems by the SM.

4.3.3. Mobile agent register (MAR)
MAS entities keep active control of agents executing on their lo-

cal devices. In particular, the MAR component maintains a hash-
table, using MA IDs as a primary key and including a list of
‘‘MA_Info” objects, each mapped to an MA running on the local
host. MA_Info objects are basically records that include a reference
to the MA they correspond to (allowing the MAS to perform a num-
ber of actions upon it, i.e. invoke its methods) and additional infor-
mation related to the MA, such as the MA’s class name, the
execution frequency of its management task, its arrival time, its
execution status (activated, de-activated, suspended), etc. The
hashtable is dynamically updated whenever an MA arrives or
leaves the host.

The information maintained by the MAR can be remotely ob-
tained by the manager application through a remote method invo-
cation (RMI) call and presented in the graphical user interface
(GUI) (see Fig. 9). The administrator may then select any of the
MA instances and perform a number of actions upon them, e.g. sus-
pend, resume or activate an MA, modify the management task’s
polling frequency, etc.

4.3.4. Service facilitator (SF)
Upon successful authentication, the MA is activated and pro-

vided a handle to the service facilitator (SF) component, which
serves as an interface between MAs and services offered to them.
SF generally includes the ‘know-how’ of the services offered to
incoming MAs, i.e. all the functionality needed by the MAs to per-
form their decentralized management tasks.

At its current implementation, the SF component is solely ori-
ented to NSM applications; as such, it basically offers a library of
methods that facilitate the interaction of MAs with the local SNMP
agent. In particular, it allows the MAs to perform from simple
SNMP requests (‘get’, ‘get-next’, ‘set’, etc) to relatively complex
tasks (obtain an SNMP table, a specific column or row of a table,
etc). The Java-based SNMP package of AdventNet (Adventnet) has
been used as a basis to construct the complex management appli-
cations mentioned above.

In a typical scenario, an MA passes an arbitrary number of ob-
ject MIB OID strings to an SF method, which performs the SNMP
query and returns the requested values. These values are subse-
quently processed, if necessary, by the MA. The value acquired,

Fig. 9. Online visual profiling of MAs executing on a network device.

364 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
either directly by the system or as a result of computation, is
passed to the SC sub-system, encrypted and stored within the
MA’s data folder.

4.3.5. Migration facility component (MFC)
The role of the MFC is to dispatch upon request an MA to a specific

network device. An MA transfer may be requested either by the MA
itself or any other thread that holds a reference to the MA and the
MFC, through calling themove () method of the MFC. The MFC is part
of both the MAS servers and the manager application. In principle, its
operation is the inverse of the MAL’s operation. Namely, it estab-
lishes a network connection, compresses and serializes the MA state,
with the resulted byte stream directed into the connection’s output
stream. Following the MA’s migration, the MFC deletes the MA_Info
object associated with to the dispatched MA by invoking thedelete
() method of the MAR component. It is noted that, in case of link or
node failure in the process of an agent’s migration, the fault toler-
ance mechanisms described in Section 4.2 take effect.

A diagram that illustrates the sequence of interactions among
the MA and the various MAS components is shown in Fig. 10.
MAL

1: decompression & de-serialization
2: authentication
3: registration
4:instantiation
5: data retrieval from legacy system
6: data encryption
7: migration to next host

1

MA (compressed
& serialized)

4

5

6

7

MA

MA (carrying
data)

Fig. 10. Sequence of interactions among
4.3.6. RMI server
The RMI server is implemented as a separate thread, which can

optionally be instantiated by the main MAS thread (this is indi-
cated by the user in the command line that starts the MAS applica-
tion). The reasons that the RMI server presence is not compulsory
is that it does not directly interact with incoming MAs while it rep-
resents additional overhead on the local system.

The role of the RMI server is to enable remote interaction of the
manager with distributed MAS entities and, hence, allow the
administrator to obtain reports regarding the CPU and memory
load profile of network devices or the number and type of agents
currently executing on them. It also allows the administrator to
perform a number of actions upon the MAs (see Fig. 9).

4.3.7. Resource inspection application (RIA)
The RIA is an application developed in C programming lan-

guage, which runs outside the boundary of the MAS. Its purpose
is to monitor the usage of local resources in terms of CPU and
memory load. RIA is linked to the MAS application via the Java na-
tive interface (JNI) that enables the inter-operation of Java applica-
SNMP Agent

SC

3
MAR

SF
MIB

5

2

6

7

MA (compressed
& serialized)

MFC

MAs and the components of MAS.

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 365
tions with programs written in other languages. The motivation
behind RIA’s development has been to allow the administrator
and incoming MAs to obtain information regarding network de-
vices load. Similarly to the RMI server, the installation and instan-
tiation of the RIA is optional.

It is noted that the role of the RIA component is not to control
important resources of underlying operating systems (e.g. threads,
sockets creation, memory allocation, etc) but only to inform the
manager application on the CPU and memory load of distributed
systems; this information is given to the ISM component which
prioritizes the inclusion of low-loaded systems in MA itineraries
and relieves the heavily loaded systems from the execution of
additional MA threads.

4.3.8. Network discovery daemon (NDD) and class loader daemon
(CLD)

The NDD is a thread instantiated by the main MAS thread,
whose purpose is to discover the station where the manager appli-
cation runs, while also making the local host ‘visible’ to the man-
ager. Its operation is essentially very similar to the network
discovery thread of the manager application.

The CLD is a daemon controlled by the MAS thread, whose role
is to wait for MA class definitions sent by the manager application
at the time that a new management service is introduced.

Given the motivation to efficiently deal with the MA ‘version-
ing’ problem (see Section 3.7), we have extended the standard
JVM implementing a custom CL, the mobile agent class loader
(MACL). Unlike the CLs of existing MAPs,8 MACL is able to identify
different versions of the same MA class and enable the execution of
the most recent version while disposing the old one.

The MACL class extends the default (java.lang.ClassLoader) CL
class and overrides its loadClass() method. In order to force the
MAL thread to load the incoming MA object using the customized
MACL (and not the JVM’s default CL), a new class (MasObjectIn-
putStream) extending the java.io.ObjectInputStream class
and overriding its resolveClass() method, has been imple-
mented. Thus, by using the resolveClass() method of the MAs-

ObjectInputStream class, the MAL thread instructs the
customized MACL to load the latest version of the incoming MA
definition.

4.4. Mobile agent generator (MAG)

The MAG is essentially a factory for constructing customized,
service-oriented MAs. In the context of this article, generated
MAs are designed to poll static management (SNMP) agents
according to certain operational function requirements. A GUI,
dedicated to the MAG tool, allows the operator to:

� assign a name to the MA;
� specify the generic type of service this MA is intended to carry

out;
� define the MA’s functional requirements, i.e. determine its oper-

ational behaviour;
� set the polling frequency to determine how often instances of

the constructed MA will be launched;
� specify the startup time for this particular management task;
8 The only exception is the Aglets MAP, which allocates different CLs to different
sets of classes, with a new CL created for each updated version of an MA class (Mobile
Agent Platform (IBM)). The distinction between the updated and older versions of an
MA is achieved by sending information about thenames and versions of classes along
with the classes’ bytecode. However, that creates additional network overhead (class
version information transferred on every MA migration), while frequent MA classes
updates will trigger the creation of many CLs, with increased memory requirements.
� determine whether the data collected by the MA are to be
encrypted and the MA itself authenticated;

� specify the class of network devices to be polled;
� optionally, define the MA’s itinerary, i.e. the order in which the

MA will visit the managed devices.

Options for editing the attributes, deleting or updating an exist-
ing MA instance are also available.

The programmatic compilation of the Java template code (dis-
cussed in Section 3.8) is implemented through an invocation of
the compile() method of sun.tools.javac.Main class (this class
will be replaced by JavaCompilerTool tool in future JDK re-
leases). The generated Java bytecode is subsequently compressed
and transferred through TCP connections to all operating agent
hosts (see Fig. 5). On the agent side, the CLD receives and decom-
presses the transmitted bytecode, validates the included Java class
and stores it in a designated space. Thereafter, only the MA state is
transferred at each migration, resulting in minimal usage of net-
work resources.

The functionality of MAs created by the MAG may only be an
extension of limited generic service types. These types are de-
signed as sub-classes of the MA ‘super-class’, specifying general
patterns of MA-based NSM tasks. MAs constructed by the MAG tool
extend one of these sub-classes, refining their functionality and
defining service-specialized MAs.
5. Experimental evaluation

A critical omission frequently noticed in research papers intro-
ducing new MA-based frameworks for distributed management
(e.g. (Liotta et al., 1998; Puliafito et al., 2000; Satoh, 2006)) is the
experimental evaluation of the performance issues arising when
implementations of the corresponding models are used in real net-
working environments. To thoroughly evaluate the performance of
our proposed MAP, response time and the network overhead
experiments related to management operations have been con-
ducted. Admittedly, our experimental work lacks comparison of
our MAP against alternative solutions. This is because, first, a com-
parison against general-purpose MAPs would be unfair and point-
less since those platforms lack of essential features for
management applications support and, second, no NSM-oriented
MAP is currently publicly available.

5.1. Response time experiments

The time needed to complete a number of network perfor-
mance management operations is of critical importance when
considering real-time management operations. This part of perfor-
mance evaluation work involves a simple experiment wherein the
round-trip delay of multi-hop MAs visiting a set of managed de-
vices is measured. At each node, MAs accumulate management
data of variable length finally delivered to the manager station.
No data compression is performed to ensure that the increment
on the amount of encapsulated data coincides with the MA’s state
size increment. We have examined two scenarios: the first in-
volves a single MA that visits the entire set of managed devices
in arbitrary order; in the second, we have enabled the execution
of the HIP algorithm (by the manager’s ISM component) to suggest
an optimum number of MAs (and their corresponding itinerary)
depending on the network size and the volume of accumulated
data. Our experimental test bed includes 11 hosts (Windows
2000 operating system, CPU 1,2 GHz, 256 MB RAM), all included
in the same 100 Mps Ethernet segment; the 10 of them act the
role of the managed device and host a MAS while the last hosts
the manager application.

0

200

400

600

800

1000

1200

1400

10 100 500 1000 2000

2 hosts (without HIP) 6 hosts (without HIP) 10 hosts (without HIP)
2 hosts (with HIP) 6 hosts (with HIP) 10 hosts (with HIP)

bytes (collected from each host)

T
im

e
(m

se
c)

Fig. 11. Response time for multi-hop MAs as a function of the amount of encapsulated information.

366 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
The results shown in Fig. 11 indicates an exponential growth of
the real overall response time measured when engaging a single
MA to visit all our test bed devices (the overall network overhead
increases exponentially with the amount of collected data, hence
the transmission delay increases likewise). On the other hand,
when executing the HIP algorithm, more than one MAs are typi-
cally launched when the network size and the amount of encapsu-
lated data grows. As expected, the parallel employment of MAs
decreases the overall latency. In general, mainly due to its light-
weight MA code distribution scheme and the incorporated MA
migration optimization techniques our MAP ensures the timely
completion of monitoring tasks. The 90% confidence interval of
the measurements shown in Fig. 11 are between ð�x� 3:5; �xþ 3:5Þ
for 2 hosts (without HIP, 2000 bytes) and ð�x� 12; �xþ 12Þ for 10
hosts (without HIP, 2000 bytes).

The results drawn in Fig. 11 refer to response time measure-
ments taken while evaluating our MAP prototype in our experi-
0

5

10

15

20

25

30

10 100 5

T
im

e
(s

ec
)

2 hosts (without HIP) 6 hosts
2 hosts (with HIP) 6 hosts

bytes (collec

Fig. 12. Response time for multi-hop MAs in em
mental test bed. Admittedly though, the latency measurements
taken in a test bed comprising 11 hosts in a Gigabit LAN, cannot
serve as a reliable ‘hypothesis’ for evaluating the performance of
our framework in realistic large-scale environments. In such envi-
ronments, the manager station typically retrieves data from dozens
of managed devices spread in geographically dispersed locations;
hence, agent migrations are associated with prolonged transmis-
sion delays affecting the overall latency.

To evaluate the performance of our MAP in such environments,
we have conducted a second set of latency experiments emulating
the network conditions among hosts (see Fig. 12), although still
using the original – 11 hosts in a Gigabit LAN-test bed. In particu-
lar, travelling MAs are forced to delay their migrations for a ran-
dom time period following a normal distribution (mean l = 0.5 s,
variance r = 2 s), emulating the prolonged transmission delays
experienced on real networking environments. The curves appear-
ing in Fig. 12 are no longer exponential since the transmission de-
00 1000 2000

 (without HIP) 10 hosts (without HIP)
 (with HIP) 10 hosts (with HIP)

ted from each host)

ulated realistic networking environments.

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 367
lay dominates over the other latency components. As expected, the
overall latency is drastically increased and the prominence of the
solutions involving the execution of the HIP algorithm is evident.

5.2. Network overhead measurements

An important scalability parameter that signifies the appropri-
ateness of a model on NSM applications is the volume of data
transferred through the network when implementing this model.
Although scalability is suggested as the main argument that fa-
vours the development of management frameworks employing
MAs, very few works (e.g. (Bohoris et al., 2000)) supplement design
ideas and implementations with real traffic measurement data.

Similarly to the response time experiments, our objective has
been to measure the overall network overhead incurred when mul-
ti-hop MAs perform distributed monitoring tasks upon a group of
nodes. The initial state size of the MA used in this experiment is
400 bytes. Similarly to the response time experiment, the aim is
to investigate the effect of optimal itinerary design (execution of
the HIP algorithm) on the management cost (in the context of this
0

20

40

60

80

100

120

140

160

10 100 5

N
et

w
or

k
ov

er
he

ad
 (

K
by

te
s)

2 hosts (without HIP) 6 hosts
2 hosts (with HIP) 6 hosts

bytes (colle

Fig. 13. Total network overhead (per polling interval) for mul

0
0 5

100.000

200.000

300.000

400.000

500.000

600.000

10 15 20 25 30

0 0.2 0.4 0.6 0.8 1

#Polled devices

M
an

ag
em

en
t

co
st

a

Fig. 14. Management cost (per polling interval) of MA-based polling as a function of: (a
sizes.
article, the term ‘management cost’ refers to network overhead). As
shown in Fig. 13 the management cost increases exponentially
with the amount of encapsulated information when employing a
single MA to visit all devices. In contrast, the execution of the
HIP algorithm dictates the use of a larger number of MAs as the
volume of encapsulated data and the network size grows. For in-
stance, when considering 10 managed devices, 5 MAs are em-
ployed in parallel when the amount of data becomes 2000 bytes
(each MA will only visit two devices). Namely, the cost gain of
using HIP results from the fact that multiple MA instances are acti-
vated in parallel, instead of sequentially, choosing a more intelli-
gent path. It is noted that network overhead measurements have
been performed with the Ethereal network protocol analyzer, using
appropriate capturing filters.

The overall polling overhead highly depends on the increment
rate of the MAs’ state size, which in turn is a function of ‘‘selectiv-
ity” r (0 6 r 6 1), a metric defined in Liotta et al. (1998) as the pro-
portion of data maintained to that retrievedfrom each host. For high
selectivity values (the major part of the obtained data being fil-
tered at the source) the MAs state size practically remains con-
00 1000 2000

 (without HIP) 10 hosts (without HIP)
 (with HIP) 10 hosts (with HIP)

cted from each host)

ti-hop MAs as a function of the amount of encapsulated.

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96

10 hosts 20 hosts 30 hosts

Selectivity

M
an

ag
em

en
t

co
st

b

) the network size for various selectivity values; (b) selectivity for various network

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

50 100 150 200 250 300

multi-hop (non optimized) multi-hop (HIP)

single-hop (10 PIs) single-hop (100 PIs)

Polling intervals

T
ra

ns
fe

rr
ed

 d
at

a
(K

B
yt

es
)

Fig. 15. Total network overhead for single-hop vs. multi-hop MAs as a function of polling intervals.

9 A management information base (MIB) is a formal description of the set of
network objects that can be managed using SNMP. MIB-II (Magedanz et al., 1996)
Magedanz, Rothermel, Krause, ‘‘Intelligent agents: an emerging technology for next
generation telecommunications ?”, Proceedings of IEEE INFOCOM’96, pp. 464–472,
March 1996. McCloghrie and Rose (1991) is the standard MIB in the IP world,
supported by virtually all SNMP-compliant network devices.

368 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
stant, otherwise the state rapidly grows. A second set of measure-
ments aims at investigating the effect of selectivity and network
size upon the total network overhead. As demonstrated in Fig.
14a, MAs state size increases exponentially as a function of the
hop count (number of visited polled devices). In particular, it is
shown how the management cost per polling interval varies as a
function of the network size for various selectivity values (the ini-
tial MA state size is 400 bytes, the amount of retrieved data is
1000 bytes, no MA state compression is performed). On the con-
trary, management cost increases linearly with selectivity (see
Fig. 14b). It is noted that the results corresponding to more than
10 managed devices have been extrapolated.

A last experiment comprises a performance comparison among
multi-hop versus single-hop agent performing monitoring tasks
(we consider 10 managed devices and data samples of 2000 bytes),
where no processing of retrieved management information takes
place. For multi-hop MA-based polling we have measured the
overhead for both arbitrary and optimized (execution of HIP algo-
rithm) itineraries. For single-hop MA-based polling, 10 MAs mi-
grate to each individual host and remain there delivering
retrieved data through RMI invocations, either every 10 or 100
polling intervals (i.e. 10 or 100 data samples respectively are re-
turned to the manager with a single RMI call).

The results are presented in Fig. 15. As expected, the results
demonstrate an advantage of single-hop scheme, since MA migra-
tions occur only when the monitoring task is initiated. Multi-hop
MAs with non-optimized itineraries clearly exhibit the worse per-
formance amongst all alternative approaches. Extra savings on sin-
gle-hop scheme’s overhead should be expected in the case that
management information is locally processed (e.g. when MAs
monitor particular nodes’ health parameters and notify the man-
ager only when these parameters cross pre-determined thresh-
olds). On the other hand, network monitoring based on multi-
hop MAs is advantageous for short-term monitoring tasks (in such
tasks it would be time consuming to employ single-hop mobility,
i.e. to upload the agent code to all monitored devices) and also in
cases where a global (domain)-level rather than a local (device)-le-
vel view of managed resources is required (Liotta et al., 2002).

6. Simulation results in large-scale networking environments

Our platform has also been evaluated in simulated large-scale
network environments, using the network simulator (NS-2) tool
(Simulator - NS-2), a discrete event simulator targeted at network-
ing research. The application scenario involves polling managed
elements for the contents of tcpConnTable MIB-II9 table, which lists
information about all TCP connections of a host. In the SNMP-based
implementation, individual MIB tables are remotely retrieved
through exchanging request/response messages, in particular by
issuing successive get-next requests (each retrieving a table row).
Every tcpConnTable row contains five values (columns) (McCloghrie
and Rose, 1991), while managed elements store information about
40 TCP connections on average, i.e. included 40 table rows (40 � 5
values in total).

We have implemented SNMP and mobile agent modules. The
SNMP packets and MA size parameters measured though the Ethe-
real packet sniffer (Ethereal network protocol analyzer) have been
incorporated into the implemented modules to enhance simula-
tion results validity and accuracy. In particular, the MA initial size
is 1.08 KB and the MA state size increment per table sample is
98 bytes; the SNMP request/response packet size is 90 bytes and
the average SNMP packet increment for each additional requested
value is 17 bytes; the average SNMP-based and MA-based table re-
trieval response times are 102.1 ms and 71 ms, respectively.

Three different transit-stub topologies created by the topology
generator GT-ITM (Zegura et al., 1997) are used (the GT-ITM output
has been first converted to NS-2 format). The topologies comprise
272 nodes with interconnecting links of 2 Mbps bandwidth and la-
tency of few milliseconds; 100 Mbps links are assumed within stub
boundaries (see Fig. 16). The management station controls 15 stub
domains each hosting 16 network elements (240 managed ele-
ments in total). Several simulations tests (SNMP-based and three
variations of MA-based network monitoring scenarios) have been
performed and several measurements have been taken and
evaluated.

In the SNMP implementation, monitoring is performed in the
following way: first, all elements of a stub are accessed; then,
the next stub is managed until all the 16 stubs are accessed. In

E E

E

E

E

transit domain

stub domain

E E

E

E

E

transit domain

M

M: Manager station
E: Network element

15 stubs of 16 managed
elements each

Manager stub

Fig. 16. Network monitoring application on a transit-stub topology.

D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371 369
the MA-based implementation we simulated three different
alternatives:

� monitoring ‘with HIP’, which involves the parallel execution of
multiple MAs, each supplied with a ‘near-optimal’ itinerary;
the number of monitoring MAs depends on the specific topolog-
ical characteristics (this is the approach taken in our MAP),

� monitoring ‘without HIP’, wherein HIP algorithm is turned off,
i.e. a unique MA object visits sequentially all monitored devices
(carrying its state), interacts with local SNMP agents and stores
collected management data within its state,

� monitoring ‘without code upload’, wherein a unique MA object
visits sequentially all monitored devices, carrying both its code
and state, i.e. the MA code is not uploaded to all monitored
0

20

40

60

80

100

120

40 80 120 160 200 240

R
es

po
ns

e
tim

e
(s

ec
)

SNMP with HIP without HIP without code broadcast

0

50

100

150

200

250

300

350

400

450

SNMP with HIP without HIP without code broadcast

managed elements

40 80 120 160 200 240
managed elements

M
an

ag
em

en
t c

os
t (

m
ill

io
ns

)

Fig. 17. Monitoring of tcpConnTable MIB-II variable: comparison of SNMP against th
overall latency, (b) network overhead, (c) management cost, (d) network overhead with
devices prior to executing the monitoring task, as suggested in
Section 4.4 (in effect, this is the approach taken in all existing
MAPs).

Simulation results are reported in Fig. 17, where various curves
represent the mean response time or bandwidth consumption for
the three simulated topologies. Fig. 17a presents mean response
times for various managed network sizes. For a few sets of man-
aged elements, SNMP performs better than HIP-based approach
due to its lightweight nature and the fact that all the elements of
a specific stub are polled in parallel. As the number of managed
elements increases, SNMP response time grows proportionally
since the time to manage a stub is approximately the same for
all stubs. In the ‘without HIP’ approach, the response time in-
creases faster when the number of managed elements grows due
to the incremental rate of the MA’s state size which implies in-
creased transmission delays. HIP presents better scalability as
monitored elements are separated in ‘virtual’ managed domains,
each managed by separate MA objects collecting management data
in parallel. The monitoring ‘without code upload’ performs worse
since the unique MA carries its code in addition to its state on
every migration. Admittedly though, latency measurements may
differ when deploying our platform in real large-scale environ-
ments where different networking conditions may apply.

Fig. 17b shows that the network overhead generated by our
MAP (with HIP) and SNMP is approximately proportional to man-
aged network size, with our platform achieving significantly better
results. On the contrary, when disabling HIP the scalability be-
comes very poor (as the number of elements visited by the unique
object increases, the amount of collected data becomes much lar-
ger than the size of MA code itself).

A comparison of the real management cost associated with
monitoring operations (the cost of using the relatively expensive
2 Mbps interconnecting links is taken into account) is given in
Fig. 17c where the performance gain of HIP-based approach is
amplified. The drawbacks of the SNMP centralized approach be-
0

5.000

10.000

15.000

20.000

25.000

30.000

40 80 120 160 200 240

N
et

w
or

k
ov

er
he

ad
 (

K
B

)

SNMP with HIP without HIP without code broadcast

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

SNMP with HIP without HIP without code broadcast

managed elements

40 80 120 160 200 240

managed elements

N
et

w
or

k
ov

er
he

ad

(w
ith

in
 m

an
ag

er
 s

tu
b)

 (
K

B
)

e proposed MAP (with HIP, without HIP and without code upload) in terms of: (a)
in manager station stub.

370 D. Gavalas et al. / The Journal of Systems and Software 82 (2009) 355–371
comes evident as it indiscriminately makes heavy use of relatively
expensive network resources.

Finally, Fig. 17d illustrates the usage of network resources with-
in manager station stub. Interestingly, this metric represents the
main asset of the ‘without HIP’ solution, since it suggests that the
unique monitoring MA will use manager stub link only twice: on
its first migration and at the end of its itinerary (when it returns
to deliver collected data to the manager station). On the other
hand, SNMP routes all monitoring traffic through the manager stub
links, resulting in a congestion point.
7. Conclusions and future work

A critical issue that will affect the wider adoption of MA para-
digm in management applications is the development of MAPs ex-
pressly oriented to distributed NSM. These platforms should not
only provide an programmable environment for performing decen-
tralized management tasks but also to satisfy a number of design
requirements in terms of flexibility, functionality, security and de-
mand on systems and network resources.

In this paper, we introduced the design decisions and imple-
mentation aspects of a complete MAP research prototype that suf-
ficiently addresses all the aforementioned concerns. In comparison
to existing approaches, our MAP consolidates several novel design
features, dictated by our design choices and reflected upon our re-
search prototype implementation: (a) a lightweight code distribu-
tion scheme, (b) a class loading mechanism that allows the
modification of MA-based NSM tasks at runtime, (c) a tool that
supports the user-friendly customization of service-oriented MAs,
(d) a component that builds near-optimal network-dependent
MA itineraries. In addition, it satisfies other important NSM-related
requirements, such as lightweight footprint on systems resources,
security (authorization, authentication and encryption), recovery
from basic software faults, modularity, incorporation of agent
migration optimization techniques, platform-independence, etc.
Our MAP’s performance has been evaluated in realistic manage-
ment application scenarios.

The design and development team of our platform has gained
many experiences and received valuable lessons the course of
our research:

� several design decisions had to be made and the respective
trade-offs to be carefully evaluated; for instance, the decisions
related to the design of the itinerary optimizer tool, the agent
migration and code deployment scheme, the class loader dealing
with the ‘versioning’ problem, the method for reducing the
demand upon resource-constrained managed devices, etc.

� the design of an impenetrable security mechanism that deals
with any malicious host or agent attack is particularly complex,
in fact it remains an open research area;

� the development of the core MAP functionality (MA entities,
migration facility, agent server components, interface with leg-
acy systems, fault tolerance, information storage in databases,
etc) proved relatively effortless for an experienced Java pro-
grammer, as opposed to the implementation of the class loading
mechanism and the optimal itinerary scheduling algorithm;

� the creation of new monitoring tasks through the MAG tool has
been found an easy-to-do task, even by inexperienced users;

� professional network managers pointed out that a web interface
for the manager application would very much assist their job.

Future research will address the following issues: (a) perfor-
mance comparison in terms of latency and network overhead be-
tween our proposed MAP, general-purpose MAPs and NSM-
oriented MAP (when they become publicly available); (b) extensive
testing and practical evaluation of our MAP in real-world monitor-
ing applications by research engineers in order to identify potential
deficiencies and derive methods for improving the MAP’s perfor-
mance; (c) extension of the manager platform with the implemen-
tation of a web interface that will allow human administrators to
view updated management statistics through a typical web brow-
ser and remotely control their network; (d) implementation of a
light manager application that will be hosted to resource-con-
strained mobile devices; the manager will interact with managed
devices through a wireless application protocol (WAP) or i-mode
interface.
Acknowledgements

The authors are indebted to Kristen Pol for his valuable tips and
insightful ideas during the implementation of the custom class loa-
der. Paolo Bellavista is acknowledged for his invaluable help
throughout the development of the Resource Inspection Applica-
tion module.

The authors also wish to thank the anonymous reviewers for
their constructive comments which significantly improved the
technical content and the presentation of the paper.
References

Adventnet, <http://www.adventnet.com>.
Aglets Mobile Agent Platform (IBM), <http://www.trl.ibm.com/aglets/>.
Bee-gent Multi-Agent Framework (Toshiba), <http://www2.toshiba.co.jp/rdc/

beegent/index.htm>.
Bohoris, C., Liotta, A., Pavlou, G., 2000. Evaluation of constrained mobility for

programmability in network management. In: Proceedings of the 11th IFIP/IEEE
International Workshop on Distributed Systems: Operations & Management
(DSOM’2000), December 2000, pp. 243–257.

Bäumer, C., Magedanz, T., 1999. Grasshopper – a mobile agent platform for active
telecommunication. In: Proceedings of the 3rd International Workshop on
Intelligent Agents for Telecommunication Applications (IATA’99), 1999, pp. 19–
32.

Du, T., Li, E., Chang, A.P., 2003. Mobile agents in distributed network management.
Communications of the ACM 46 (7). July.

Eid, M., Artail, H., Kayssi, A., Chehab, A., 2005. Trends in mobile agent applications.
Journal of Research and Practice in Information Technology 37 (4), 323–351.
November.

Ethereal network protocol analyzer, <http://www.ethereal.com/>.
Franklin, S., Graesser, A., 1997. Is it an agent, or just a program? a taxonomy for

autonomous agents. In: Mueller, J. (Ed.), lntelligent Agents III; Agent Theories,
Architectures, and Languages. Springer, Berlin.

Fuggeta, A., Picco, G.P., Vigna, G., 1998. Understanding code mobility. IEEE
Transactions on Software Engineering 24 (5), 346–361.

Gavalas, D., 2004. Mobile agent platform design optimisations for minimising
network overhead and latency in agent migrations. In: Proceedings of the
2004 IEEE Global Communications Conference (Globecom’2004), December
2004.

Gavalas, D., 2006. A lightweight and flexible mobile agent platform tailored to
management applications. In: Proceedings of the 2006 Conference on Mobile
Computing and Wireless Communications (MCWC’06), September 2006.

Gavalas, D., Politi, C., 2006. Low-cost itineraries for multi-hop agents designed for
scalable monitoring of multiple subnets. Computer Networks, Elsevier Science
50 (16), 2937–2952. November.

Java 2 Platform, Standard Edition (J2SE), <http://java.sun.com/j2se/>.
Kendall, E.A., Krishna, P.V.M., Pathak, C.V., Suresh, C.B., 1998. Patterns of intelligent

and mobile agents. In: Proceedings of the 2nd International Conference on
Autonomous Agents (Agents’98), May 1998, pp. 92–99.

Krause, S., Magedanz, T., 1996. Mobile service agents enabling intelligence on
demand in telecommunications. Proceedings of IEEE GLOBCOM’96, 78–84.
November.

Jiang, Y.C., Xia, Z.Y., Zhong, Y.P., Zhang, S.Y., 2004. Defend mobile agent against
malicious hosts in migration itineraries. Microprocessors and Microsystems 28
(10), 531–546.

Lin, H.C., Lai, H.L., Lai, S.C., 1999. Automatic link layer topology discovery of IP
networks. Proceedings of the IEEE International Conference on Communications
(ICC’99). June.

Liotta, A., Knight, G., Pavlou, G., 1998. Modelling network and system monitoring
over the internet with mobile agents. In: Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS’98), February 1998, pp. 303–
312.

Liotta, A., Pavlou, G., Knight, G., 2002. Exploiting agent mobility for large scale
network monitoring. IEEE Network 16 (3), 7–15. May/June.

http://www.adventnet.com
http://www.trl.ibm.com/aglets/
http://www2.toshiba.co.jp/rdc/beegent/index.htm
http://www2.toshiba.co.jp/rdc/beegent/index.htm
http://www.ethereal.com/
http://java.sun.com/j2se/

D. Gavalas et al. / The Journal of Systems
Magedanz, T., Rothermel, K., Krause, S., 1996. Intelligent agents: an emerging
technology for next generation telecommunications? In: Proceedings of IEEE
INFOCOM’96, March 1996, pp. 464–472.

McCloghrie, K., Rose, M., 1991. Management information base for network
management of TCP/IP-based internets: MIB-II. RFC 1213. March.

Manvi, S.S., Venkataram, P., 2006. Agent based subsystem for multimedia
communications. IEE Proceedings Software Journal 153 (1), 38–48.

Network Simulator – NS-2, <http://www.isi.edu/nsnam/ns/>.
Pagurek, B., Wang, Y., White, T., 2000. Integration of mobile agents with SNMP: Why

and how. In: Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’2000), April 2000, pp. 609–622.

Present Technologies, JAMES project (Java Mobile Agent Platform for the
Management of Telecommunication and Data Networks), <http://
www.present-technologies.com/james.jsp>.

Puliafito, A., Tomarchio, O., Vita, L., 2000. MAP: design and implementation of a
mobile agents platform. Journal of System Architecture 46 (2), 145–162.
January.

Randell, B., 1975. System structure for software fault tolerance. IEEE Transactions
on Software Engineering Se-1(2). June.

Rivest, R.L., Shamir, A., Adleman, L., 1978. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21 (2). February.

Rubinstein, M.G., Duarte, O.C., Pujolle, G., 2003. Scalability of a mobile agents based
network management application. Journal of Communications and Networks 5
(3). September.

Satoh, I., 2006. Building and selecting mobile agents for network management.
International Journal of Network and Systems Management 14 (1), 147–169.
March.

Stallings, W., 1999. SNMP, SNMPv2, SNMPv3 and RMON 1 and 2, third ed. Addison
Wesley.

Stephan, R., Ray, P., Paramesh, N., 2004. Network management platform based on
mobile agents. International Journal of Network Management 14, 59–73.

SysteMATech – System Management based on Mobile Agent Technology, <http://
www.eutist-ami.org/more_systematech.asp>.

To, H.H., Krishnaswamy, S., Srinivasan, B., 2005. Mobile agents for network
management: when and when not!. In: 2005 ACM Symposium on Applied
Computing (SAC’05), March 2005, pp. 47–53.

Venners, B., 1998. Designing with dynamic extension: how dynamic extension
works in Java and how to use it in your designs, December 1998, <http://
www.artima.com/designtechniques/dynaext.html>.

Whitestein Technologies, <http://www.whitestein.com/pages/index.html>.
Zegura, E.W., Calvert, K.L., Donahoo, M.J., 1997. A quantitative comparison of graph-

based models for internet topology. IEEE/ACM Transactions on Networking 5
(6), 770–783. December.

Damianos Gavalas received his B.Sc. degree in Infor-
matics (Computer Science) from the University of Ath-
ens, Greece, in 1995 and his M.Sc. and Ph.D. degrees in
electronic engineering from University of Essex, UK in
1997 and 2001, respectively. Currently, he is an Assis-
tant Professor in the Department of Cultural Technology
and Communication, University of the Aegean, Greece.
He has served as a TPC member in several leading
conferences in the field of mobile and wireless com-
munications. He has co-authored over 70 papers pub-
lished in international journals, conference proceedings
and book chapters. His research interests include dis-

tributed computing, mobile code, network and systems management, mobile
computing & multimedia, m-commerce, mobile ad hoc & sensor networks.
George E. Tsekouras received the B.S. and Ph.D. degrees
from the Department of Chemical Engineering-National

Technical University of Athens in 1994 and 2000,
respectively. For several years he worked as a control
engineer in petrochemical industries. From 2002 until
now he is with the department of Cultural Technology
and Communication in the University of the Aegean,
Greece. His research interests include computational
intelligence and its applications in system modelling,
statistical data analysis, image and signal processing
and software engineering.

and Software 82 (2009) 355–371 371
Christos-Nikolaos E. Anagnostopoulos was born in
Athens, Greece in 1975. He received his Mechanical
Engineering Diploma from the National Technical Uni-
versity of Athens (NTUA) in 1998, and the Ph.D. degree
from the Electrical and Computer Engineering Depart-
ment, NTUA in 2002. Currently, he serves as assistant
professor in the Cultural Technology and Communica-
tion Department, University of the Aegean. Dr. Christos–
Nikolaos E. Anagnostopoulos is a member of the Greek
chamber of Engineers and member of IEEE. His research
interests are image processing, computer vision, neural
networks and artificial intelligence. He has published

more than 60 papers in journals and conferences, in the above subjects.

http://www.isi.edu/nsnam/ns/
http://www.present-technologies.com/james.jsp
http://www.present-technologies.com/james.jsp
http://www.eutist-ami.org/more_systematech.asp
http://www.eutist-ami.org/more_systematech.asp
http://www.artima.com/designtechniques/dynaext.html
http://www.artima.com/designtechniques/dynaext.html
http://www.whitestein.com/pages/index.html

	A Mobile Agent Platform mobile agent platform for Distributed Network distributed network and Systems Managementsystems management
	Introduction
	Related Workwork
	Design Considerations considerations for the MAP prototype
	Modular design
	Implementation Platform &Database platform and d
	Choosing intelligent agent itineraries
	Optimizing MA migrations
	Security considerations
	Fault-tolerance features
	Dealing with the versioning problem
	Automating the creation and deployment of service-oriented agents
	Minimal usage of network resources for code deployment
	Reduced demand upon resource-constrained managed devices

	Infrastructure Overview - Implementation Detailsoverview - implementation details
	Manager application
	Network Discovery Threaddiscovery thread
	Itinerary Scheduler Modulescheduler module
	Polling Threadsthreads
	Migration Facility Component, Mobile Agent Listener facility component, mobile agent listener and Security Componentsecurity component

	Mobile Agent Implementationagent implementation
	The Mobile Agent Server mobile agent server (MAS)
	Mobile Agent Listener agent listener (MAL)
	Security Component component (SC)
	Mobile Agent Register agent register (MAR)
	Service Facilitator facilitator (SF)
	Migration Facility Component facility component (MFC)
	RMI Serverserver
	Resource Inspection Application inspection application (RIA)
	Network Discovery Daemon discovery daemon (NDD) and Class Loader Daemon class loader daemon (CLD)

	Mobile Agent Generator agent generator (MAG)

	Experimental Evaluationevaluation
	Response Time Experimentstime experiments
	Network Overhead Measurementsoverhead measurements

	Simulation Results results in Large-Scale Networking Environmentslarge-scale networking environments
	Conclusions &Future Workand future work
	Acknowledgements
	References

