
-1-

Low-Cost Itineraries for Multi-Hop Agents Designed for Scalable
Monitoring of Multiple Subnets

Damianos Gavalas∗, Christina (Tanya) Politi†

∗ Department of Cultural Technology and Communication,
University of the Aegean

Arionos & Sapfous St., Mytilini, Lesvos Island, Greece
E-mail: dgavalas@aegean.gr

† School of Electrical and Computer Engineering,
National Technical University of Athens,

9 Heroon Polytechniou Street, Zographou, 15773, Athens, Greece
E-mail: tpoliti@telecom.ntua.gr

Abstract - Mobile agent (MA) technology represents a recent trend for implementing distributed
management architectures, as an answer to the flexibility and scalability problems of centralised models.
Management scalability limitations though, are not adequately addressed when monitoring tasks
requiring the employment of multi-hop agents are considered. This is because agent-based architectures
lack mechanisms that guarantee near-optimal agents itineraries so as to minimise the total migration cost
in terms of the round-trip latency and the incurred traffic. This is of particular importance when the
management of networks spanning multiple subnets is involved. To address these issues, we have adapted
an algorithm originally designed to solve network design problems to the specific problematic of MA
itinerary planning. The algorithm suggests the optimal number of MAs that minimise the overall cost and
also constructs optimal itineraries for each of them. A Java-based implementation of the algorithm has
been tested on realistic applications over a laboratory testbed, demonstrating significant cost savings.
Simulation tests verified the algorithm’s validity and competence over large enterprise networks.

1. Introduction
Mobile Agents (MA) [21], defined as autonomous programs with the ability of moving from host

to host and acting on behalf of users towards the completion of a given task, attract increasing
attention within the distributed computing field. One of the most popular topics in MA research
community has been distributed Network and Systems Management (NSM).

Traditionally, NSM systems rely on centralised, client/server approaches wherein the
functionality of both clients (managers) and distributed servers (management agents) is defined at
design time. This centralised model is exemplified in the IETF Simple Network Management Protocol
(SNMP) [25]. The centralised paradigm is known to exhibit severe scalability problems as it involves
massive transfers of management data, which cause considerable strain on network throughput and
processing bottlenecks at the manager host. Moreover, the system is highly dependent on the central
management station. If the latter goes offline or a key network link fails, the system is no longer
functional.

These problems have motivated a trend towards distributed management intelligence that
represents a rational approach to overcome the limitations of centralised NSM [6]. A new trend in
NSM involves using MAs to manage distributed network systems [5][17][24][27]. An MA can be
used to locally retrieve and filter management data to monitor systems health and networking
conditions in distributed environments. In particular, management tasks are assigned to an agent,
which delegates and executes management logic in a distributed and autonomous fashion. After
completing these tasks, the results are either communicated through a messaging mechanism or carried
back to the manager by the MA.

Delegation of management logic may be realized with agents bound to single-hop mobility: the
agents move from the managing node to remote managed nodes, where they statically complete their
tasks [3][4]. What is not commonly exploited in management is the MA multiple-hop capability,
where agents may move several times as they adapt to the changing circumstances. While single-hop

-2-

mobility can improve flexibility and scalability in the context of relatively static networked systems, it
is the multiple-hop capability offered by MAs that needs to be exploited to meet the requirements of
future networked systems, i.e. large scale and dynamics [17]. In addition, network monitoring based
on multi-hop (itinerant) MAs is advantageous for short-term monitoring tasks and also in cases that a
global (domain)-level rather than a local (device)-level view of managed resources is required. For a
complete discussion of these issues, the reader may refer to [7] and [18].

However, while in single-hop mobility, agent itinerary control is straightforward (the itinerary is
restricted to the single destination host), this is not the case in multi-hop mobility, where slight
variations on the set of visited hosts or even on the order that a specific set of nodes is visited may
result in dramatic changes of the overall trip latency and migration traffic. In this article, we focus on
multi-hop mobility, aiming at devising methods to optimize MA itineraries.

On that direction, we introduce an algorithm that addresses the issue of MA optimal itinerary
planning. Our proposed algorithm determines the optimal number of MAs and their corresponding
itineraries, which may be useful in a variety of distributed applications. The main motivation for
designing these optimal agent itineraries is to minimize the overall cost (network overhead) associated
with MA transfers and also to maintain low latency for completing their task.

The remainder of the paper is organised as follows: Section 2 explains the importance of optimal
agent itinerary planning in management applications and Section 3 reviews works relevant to the
research presented herein. Section 4 discusses the background, design and functionality of an
algorithm for optimal itinerary planning. A qualitative evaluation of our proposed algorithm against an
alternative approach is given in Section 5. Experimental results on real and simulated environments
are presented in Section 6 and Section 7, respectively, while Section 8 concludes the paper.

2. Importance of Itinerary Planning in Agent-Based Monitoring
The main objective in MA-based distributed computing is to minimize the volume of network

traffic exchanged between distributed systems while maintaining relatively low task execution time,
especially for time-critical tasks [6]. Despite the potential of agent mobility in distributed applications,
inappropriate use of MAs may lead to a highly inefficient design. In network monitoring applications
for instance, using a single MA object that sequentially visits all managed devices, regardless of the
underlying topology (see Figure 1a) may actually lead to performance worse than the conventional
SNMP-based approach. The performance further declines, when the monitoring MA collects
monitoring data from multiple subnets, often interconnected by low-bandwidth links. In such cases,
the traffic associated with management tasks typically traverses several network segments and, when
summed up, results in increased bandwidth waste [24].

 A

 B C

 D

Bridge

Manager

 H

Router

Router

 F

 E

 G

1

2

3

4

5

6

9

7

8

Subnet A

Subnet B

Remote LAN

(a)

6

 A

B C

 D

Bridge

Manager

 H

Router

Router

 F

 E

 G

11

2

3

4

3

2

Subnet A

Subnet B

Remote LAN

5 4

(b)
Figure 1. (a) ‘Flat’ MA-based monitoring; (b) Optimized partitioning of the network into two management

domains

This inefficient approach, known as ‘flat’ MA-based monitoring [7], presents serious scalability
problems: First, in large networks the round-trip delay of the MA greatly increases as the overall
travel time depends on the number of hops realized by the MA. Second, the network overhead

-3-

imposed by the MA transfers grows exponentially with the network size [7][24]; the slope of the
overhead curve becomes steeper in the case of high selectivity values (selectivity 10 ≤≤ σ is a metric
defined as the proportion of data maintained to that retrieved from each host).

A rational approach to overcome such scalability problems is to partition the managed network
into several logical/physical domains. For instance, in Figure 1b, an MA object polls the devices of the
remote LAN, whereas a second MA is assigned to the subnet local to the manager host as well as to
another subnet, which is part of the same LAN. Through management traffic localization, unnecessary
usage of expensive networking resources is restricted, thereby improving management scalability. The
partitioning criteria could be the number of nodes assigned to each MA, the physical distribution of
polled devices, or a combination of the previous criteria (see [7]).

However, the scenario illustrated in Figure 1 represents an ideal case in terms of the WAN link
utilisation. That is because the link is traversed only twice per polling interval. A slightly different
partitioning scheme or alteration on MAs itinerary would significantly increase total migration cost.
Apparently, even when specific partitioning criteria are followed, the design of MA itineraries is
almost random. Namely, itineraries scheduling process lacks a mechanism that would guarantee
minimal use of links interconnecting individual management domains, hence an algorithm for itinerary
planning is required. In Section 4, we describe a Heuristic algorithm for Itinerary Planning (HIP). The
main objective of itinerary planning is to optimize the use of network resources, i.e. to minimize the
cost associated with MA transfers; this optimization should not be achieved though at the expense of
large MA round-trip delays, hence maintaining relatively low task execution times is a parallel
objective.

3. Related Work
The problem of optimizing the itineraries of multi-hop MAs has not been sufficiently addressed

in the literature. A first attempt to address this issue has been reported in [13]: Iqbal et al. developed a
performance model that, given a specific communication pattern, allows agents to decide whether they
should migrate to a site and communicate locally or the communication should be performed
remotely. The decision is taken according to an ‘optimal design graph’; in most cases, it has been
indicated that the optimal performance of an agent is achieved by a critical sequence of mixed remote
procedure calls and agent migrations. The same approach has been followed in [23], in the context of
network and system management applications.

Rubinstein et al. [24] evaluated the scalability of MA-based management on large enterprise
networks and compared the performance of this approach against that of centralized management
paradigm. Recognizing the fact that “MA size increases with the number of visited nodes and, as a
consequence, migration becomes difficult”, they proposed a strategy in which the MA returns to the
management station to deliver its collected data, thereby reducing its size before visiting the remaining
hosts. Their simulation results indicated that for given network topologies there exists an optimum
number of hosts that the MA should visit before returning to the management host to ‘unload’ its
collected data, that minimizes the overall MA trip response time and cost (in terms of bandwidth
usage). However, the possibility of using multiple MAs to perform management tasks is not
investigated, nor is the issue of designing efficient agent itineraries.

A work conceptually relevant to the research presented herein has been presented in [22], where
Qi and Wang propose the employment of MA paradigm in wireless sensor networks. To optimize
agents itinerary, they derived a Local Closest First (LCF) algorithm according to which each MA
searches for the next destination with the shortest distance to its current location. However, their cost
function formulation does not take into account potential partitioning of visited hosts in multiple
clusters, which would affect the calculation of the distance matrix. Also, LCF-like algorithms have
been characterized as ‘nearsighted’, in the sense that their output highly depends on the MAs original
location, while the nodes left to be visited last are associated with high migration cost [16]; the reason
for this is that they search for the next destination among the nodes adjacent to the MA’s current
location, instead of looking at the ‘global’ network distance matrix.

-4-

Most importantly though, both the works presented in [13] and [22], deal with the problem of
constructing near-optimal MA itineraries for given sets of network nodes, where a single MA visits the
whole set. Also, they do not address the fundamental problem of partitioning network nodes in optimal
clusters. On the other hand, the algorithm presented in the following section deals with the optimal
clustering problem and subsequently uses the algorithm’s output to construct near-optimal agent
itineraries.

4. A Heuristic algorithm for Itinerary Planning (HIP)
Interestingly, the problem of designing optimised itineraries exhibits many similarities with the

Multi-point Line Topologies or Constrained Minimum Spanning Trees (CMST) problems. A CMST is
a Minimum Spanning Tree1 with the additional constraint on the size of the subtrees rooted on the
‘center’ (there is an upper limit on the number of nodes included on each of the subtrees originated at
the tree’s root). CMST algorithms are used in graph theory, with the main application field being
network design problems [16]. In such problems, the objective is the optimal selection of the links
connecting terminals to concentrators (multiplexors) or directly to the network center, resulting in the
minimum possible total cost. The output of CMST algorithms typically comprises topologies
partitioned on several multi-point lines (or tree branches), where groups of terminals share a subtree to
a specific node (center). For instance, Figure 2a depicts a set of nodes with a given network center and
costs for connecting individual pairs of nodes, and Figure 2b presents the optimal multi-line topology
that minimises the overall cost, where network nodes have been partitioned into two clusters or
subtrees, each directed to the network center. In this particular scenario, the overall cost will comprise
the sum of costs for connecting each link included into the problem solution:

 0,44,64,54,20,11,3 ccccccctotal +++++= = 36 (4-1)

(a) (b)

0

5

4
3

21

7 8

5 7

13
6

14

12 8

14

10
11

(a)

12
4

11

6

10

7

14

15

12

13

0

5

4
3

21

6

(b)

center center

concentrators

terminals

terminal

Figure 2. CMST problem: (a) The unconnected graph; (b) The optimal multi-point line topology (constrained

minimum spanning tree)

Substituting the terms ‘network center’, ‘link’ and ‘multi-point-line’ with the terms ‘manager
station’, ‘migration’ and ‘itinerary’ respectively, and following the observation that the output of
CMST algorithms (group of multi-point lines rooted at the center) very much resembles a group of
itineraries all originated at the manager station, the similarity of CMST and MA itinerary planning
problems becomes evident. As a result, the idea of using algorithms originally devised for CMST
problems in the application area of MA itinerary planning, naturally shapes up. It is noted that other
tree structures, such as Steiner trees [12] (known to provide the shortest overall edge cost) could
possibly be considered as alternatives of CMSTs for MA itinerary planning; however, we have chosen

1 A Minimum Spanning Tree is defined as a tree (i.e. a connected graph without cycles) with the least total distance, cost, or some other

metric of delay or reliability [16].

-5-

CMSTs (along with algorithms that deal with CMST problems), as they are more suitable for
modeling MA itineraries 2.

CMST problems are NP-hard and as a result several heuristics have been proposed to efficiently
deal with them; Esau-Williams (E-W) and Sharma are two popular algorithms that deal with such
problems [16]. Our HIP (Heuristic for Itinerary Planning) algorithm adapts some basic principles of E-
W algorithm in the specific requirements of itinerary planning problems. It is noted that some
preliminary ideas and experimental results related to HIP algorithm have been presented in [10].

4.1. REQUIREMENTS OF ITINERARY PLANNING PROBLEM

The simple cost function of (4-1) fails to address the requirements of agent itinerary design
problem since it considers the cost of link utilization as the only contributing factor to the total
itinerary cost ctotal. A key factor also affecting ctotal is the agent size; more importantly, the agent size
increment rate [6][24], which depends on the amount of data collected by the MA on every host. Let
us assume that a set of itineraries I = {I1, I2, …, In} is constructed, each assigned to an individual MA
object. Each itinerary Ii includes a sequence of hosts to be visited by its respective MA: Ii = N0, N1, .. ,
Nn, N0. Note that all itineraries originate and terminate at the manager station host N0.

0

5

4
3

21

7 8

5 7

13
6

14

12 8

14

10
11

manager
station

(a)

12
4

11

6

10

7

14

15

12

13

0

5

4
3

21

manager
station

6

2

4

6

3

5

1

7

(b)

0

5

4
3

21

manager
station

6

1

5

3

2

4

6

(c)

0

5

4
3

21

manager
station

6

(d)

1

2

3

3

24

5

1

Figure 3. The MA itinerary planning problem: (a) The original network graph; (b) The output of LCF algorithm;

(c) The output of HIP algorithm; (d) Two MA itineraries derived from the output of HIP algorithm

The total cost per polling interval over all itineraries I becomes:

2 The Steiner tree problem is remarkably similar to the minimum spanning tree problem: the objective is to interconnect a set V of points

(vertices) by a network (graph) of shortest length. Unlike the minimum spanning tree problem though, new vertices (Steiner vertices) can
be added to the network to reduce its length [12]. However, since in MA itinery planning, graph vertices correspond to nodes able of
receiving MAs (similarly, graph edges correspond to physical links), those additional vertices cannot be physically projected. Hence,
Steiner trees are not suitable for modeling the itinerary planning problem.

-6-

 Ctotal = ∑ ∑
=

−

=

+
I

i

IH

j
ijij

i

csd
1

1)(

0

*)((4-2)

where H(Ii) denotes the number of hosts included in itinerary sequence Ii, ijd is the amount of data
collected by the MA performing itinerary i on the first j visited hosts, s the MA initial size and cij the
cost of utilizing the link traversed by the MA on its jth hop, i.e. the link connecting hosts Nj and Nj+1 (cij
is given by the network cost matrix). In principle, HIP algorithm aims at constructing a set of
itineraries I minimizing the cost function of equation (4-2).

In order to provide our HIP algorithm a fair performance metric we have also implemented the
LCF algorithm, as described in [22] (LCF implementation details may be found in the Appendix). For
instance, for the network of Figure 3a with cost matrix detailed in Table 1, the itinerary constructed by
LCF is shown in Figure 3b. The sequence numbers enclosed within circles indicate the order in which
individual links (or migrations) become accepted in the corresponding algorithm steps.

Although the entries of the cost matrix presented in Table 1 are random, when testing the
efficiency of HIP and LCF algorithms in real or simulated environments cost matrices are constructed
so as to reflect the cost of using the underlying networking infrastructure3, e.g. we accept the fact that
it is ‘cheaper’ for an MA to migrate within a high-speed LAN than over a low-bandwidth WAN link
or a wireless connection.

 0 1 2 3 4 5 6

0 7 8 11 4 14 13

1 12 5 10 12 12

2 11 7 14 10

3 8 13 15
4 6 7

5 14

6

Table 1. Cost matrix of the network shown in Figure 3a

4.2. HIP ALGORITHM IMPLEMENTATION AND EXECUTION

HIP algorithm takes into account the amount of data accumulated by MAs at each visited host
(without loss of generality, we assume this is a constant d), a parameter ignored by LCF algorithm.
Namely, it recognizes that traveling MAs become ‘heavier’ (accumulate data multiple of d) while
visiting managed devices without returning back to the manager site to ‘unload’ their collected data
[24]. Therefore, HIP restricts the number of migrations performed by individual MAs, thereby
promoting the parallel employment of multiple cooperating MAs, each visiting a subset of managed
devices. The assumption of constant data accumulation d from each host affects the general formula
(4-2), which becomes:

 Ctotal = ∑ ∑
=

−

=

+
'

1

1)(

0
*)(

I

i

IH

j
ijj

i

csd (4-3)

Specifically, the aim of HIP algorithm is, given a set of hosts N = {N0, N1, …, Nn-1}, the manager
station N0 and the cost matrix C, to return a set of near-optimal itineraries I = {I0, .., Ik}, all originated
and terminated at the manager station. Initially, we assume N (= n) itineraries, as many as the

3 For hosts i and j located in subnets Si and Sj respectively, the cost ci,j of an MA migration from i to j depends on the actual ‘distance’

between Si and Sj, i.e. the number of intermediate subnets that need to be traversed, the bandwidth of their interconnecting links, etc. In
general, for Si ≡ Sj we set ci,j = 0, while for Si ≠ Sj ci,j > 0 (proportional to the inverse of the bandwidth of links interconnecting Si and Sj).

-7-

network nodes: I0, .., In-1 , each containing a single host (N0, N1, …, Nn-1, respectively). On each
algorithm step, two hosts i and j are ‘connected’ and, as a result, the itineraries including these hosts
(I(i) and I(j) respectively) are merged into a single itinerary.

As mentioned in Section 3, LCF-like algorithms usually fail as they tend to leave hosts located
far from the center stranded since they prioritize the inclusion of hosts closed to last selected host. As
a result, relatively expensive links are left last to be included in the solution, significantly increasing
the overall cost. A way of dealing with this problem is to pay more attention to nodes far from the
center, giving preference to links incident upon them. HIP algorithm accomplishes this by borrowing
and extending the concept of ‘tradeoff function’4 ti ,j associated with each link (i, j), defined by:

0,,,)))(())((*(Nijiji CjIHiIHdct −++= (4-4)

where
0,NiC is the cost of connecting I(i) to the manager station N0. Initially, this is simply the

cost of connecting node i directly to the manager station. As i becomes part of an itinerary containing
other nodes, however, this changes to:

 CkiIkNi cC ,)(, min
0 ∈
= (4-5)

Equation (4-4) implies that the more hosts an itinerary already includes, the more difficult for a
new host to become part of that itinerary, especially when the amount of data collected from each host
(d) is large. Figure 4 lists a pseudo-code implementation of HIP algorithm.

1

2

3

4

5

6

7

8

9

HIP (n, c, d, N0) // n: Total number of hosts, c: cost matrix, d: data collected per host, N0: origin station

initialize I // I: the list of itineraries to be constructed

current = N0

N_ connected = 0 // N_connected: the number of hosts already included into an itinerary

while (N_ connected < n)

 /* I(i) is the sequence of hosts (itinerary) where host i has already been included
 and H(I(i)) is the number of hosts already included within I(i) */
 compute

0,,,)))(())((*(Nijiji CjIHiIHdct −++= , where =∩)()(jIiI ss ∅ and

00 ,)(, min NkiIkNi cC
∈

= //)(iI s denotes the set corresponding to itinerary sequence I(i)

 merge (I(i), I(j)), for (i, j) minimizing the tradeoff function (jiji
t ,,

min)

 N_ connected ++

return I

Figure 4. Pseudocode implementation of HIP algorithm

HIP algorithm execution steps for the test network graph of Figure 3a are demonstrated in Figure
5, where the links (agent migrations) selected are highlighted; we assume that the amount of data
collected per host is d = 1. On every algorithm step, a pair (i, j) minimizing ti, j is selected and,
following that, the itineraries containing hosts i and j are merged into a single itinerary. This process is
repeated until a set if itineraries including all hosts is constructed. Figure 5 presents the values of ti, j
for pairs (i, j) minimizing the tradeoff function for each host i (jij

t ,min); the pair (i, j) that minimizes

4 The concept of the tradeoff function is introduced in E-W algorithm, defined as follows:

0,,, Nijiji cct −= . Equation (4-4) extends

and adapts this function in the specific requirements of agent itinerary planning problem. In particular, the inclusion of a parameter
representing the amount of data collected from each host (d) and also the number of hosts already included in the itineraries considered for
merging, i.e. I(i) and I(j), obstructs the construction of large itineraries, thereby promoting the formation of multiple itineraries, assigned to
separate MAs.

-8-

ti, j over all hosts (jiji
t ,,

min) is then selected. For instance, on step one, the pair minimizing ti, j is (i, j) =

(5, 4), hence itineraries including hosts 5 and 4 are merged forming: }4,5{)4()5(=∪ ss II . On next
step, ti, j values are re-calculated, for instance,

0,24,24,2)))4(())2((1(NCIHIHct −+∗+= =

7+(1+2)-8 = 2. Note that the elements of the itinerary set including host 4 have increased:)4(sI = {5,
4} ⇒ H(I(4))=2. At the end of step 6, two itinerary sequences are constructed, forming two subtrees
rooted at the manager host: 6, 5, 4, 2 and 3, 1 (see Figure 3c). It is then a trivial task to form the
itinerary plan of the two MAs: I1 = 0, 2, 6, 5, 4, 0 and I2 = 0, 3, 1, 0 (see Figure 3d). These itineraries
correspond to a post-order traversal5 of the two subtrees. Note that itinerary 0, 2, 6, 5, 4, 0 is chosen
amongst alternative post-order traversals (e.g. 0, 5, 6, 2, 4, 0 or 0, 6, 5, 2, 4, 0) as it provides the most
cost-efficient solution; for instance, C056240 = (14 + 14 + 10 + 7 + 4) × d = 49 × d, whereas C026540 = (8
+ 10 + 14 + 6 + 4) × d = 42 × d.

Step 1

t13 = 5+(1+1)-7 = 0

t24 = 7+(1+1)-8 = 1

t31 = 5+(1+1)-11 = -4

t40 = 4+(1+1)-4 = 2

t54 = 6+(1+1)-14 = -6

t64 = 7+(1+1)-13= -4

Step 2

t13 = 0

t24 = 7+(1+2)-8 = 2

t31 = -4

t40 = 4+(2+1)-4 = 3

t51 = 12+(2+1)-4 = 11

t64 = 7+(1+2)-13= -3

Step 3

t10 = 7+(2+1)-7 = 3

t24 = 2

t34 = 8+(2+2)-7 = 5

t40 = 3

t51 = 12+(2+2)-4 = 12

t64 = -3

Step 4

t10 = 3

t24 = 7+(1+3)-8 = 3

t34 = 8+(2+3)-7 = 6

t40 = 4+(3+1)-4 = 4

t51 = 12+(3+2)-4 = 13

t62 = 10+(3+1)-4= 10

Step 5

t14 = 10+(3+3)-0 = 16

t24 = 3

t34 = 8+(3+3)-0 = 14

t40 = 4+(3+3)-4 = 6

t51 = 12+(3+3)-4 = 14

t62 = 10

Step 6

t14 = 10+(3+4)-0 = 17

t20 = 8+(4+3)-4 = 11

t34 = 8+(3+4)-0 = 15

t40 = 4+(4+3)-4 = 7

t51 = 12+(4+3)-4 = 15

t61 = 12+(4+3)-4 = 15

Figure 5. HIP algorithm execution steps for the network of Figure 3a

5. Qualitative Evaluation of HIP and LCF Algorithms
The total costs associated with LCF and HIP proposed solutions (shown in Figure 3(b) and

Figure 3(d), respectively) are calculated using the generic cost function of equation (4-3):

CLCF = +∗++∗++∗++∗++∗ 2,33,11,55,44,0)4()3()2()(cdscdscdscdscs

0,66,2)6()5(cdscds ∗++∗++

5 Post-order traversal (visit the left subtree, then the right subtree, then the root) is more efficient than pre-order (visit the root, then the left

subtree, then the right subtree) or in-order (visit left subtree, then the root, then the right subtree) traversal, as it ensures minimal usage of
inter-connecting links. If, for instance, the manager host is located on subnet A and an MA object is assigned devices spread among
subnets A, B and C, it will first visit all devices of B, then all devices of subnet C (or vice-versa), leaving the devices of subnet A to be
visited at the end of the MA’s itinerary before returning to the manager host. That is, when crossing the link A→B, the MA has not yet
collected any data, hence, it will have the minimum possible impact on network resources. The decision regarding which subnet (B or C)
will be visited first is based on the overall cost of itineraries B→C→A and C→B→A. In particular, if CBC, CCA, CCB and CBA denote the
cost of links B→C, C→A, C→B and B→A respectively and H(A), H(B) and H(C) denote the number of elements hosted in subnets A, B
and C respectively, then the itinerary with smaller overall cost is chosen: min{CBCA, CCBA} = min{CBC*H(B)*d + CCA*H(C)*d,
CCB*H(C)*d + CBA*H(B)*d}.

-9-

CHIP = +∗++∗++∗])2()([
itineraryMA first ofcost

0,11,33,0 444444 3444444 21
cdscdscs

])4()3()2()([
itineraryMA second ofcost

0,44,22,66,55,0 4444444444444 34444444444444 21
cdscdscdscdscs ∗++∗++∗++∗++∗

Assuming an MA of initial size s=1000 bytes that collects an amount of d=100 bytes from each
node visited and after substituting various costs with the corresponding values found in the cost matrix
of Table 1, we get: CLCF = 90,500 and CHIP = 81,000 cost units, which corresponds to cost saving of
10.5% when employing the HIP instead of LCF algorithm. However, it is clear that as the s/d ratio
decreases (the MA accumulates a larger amount of data), HIP algorithm performance gain improves
further. For instance, for s=700 bytes and d=500 bytes, the resulting cost saving of HIP over LCF in this
scenario becomes 41.97%.

Figure 6 demonstrates how the overall cost of LCF and HIP algorithms scale as a function of the
amount of collected data (for s = 1000 bytes); the cost of using single agents with randomly selected
itineraries is also presented (the ‘Random’ curve represents the average cost among 5 different random
itineraries). It is noted that when d = 5000 bytes, HIP suggests the parallel employment of 3 MAs,
rather than two (four MAs for d = 10,000), since MA size growth rate is such that multi-hop itineraries
become too costly.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

0 10 30 50 100 200 500 1000 5000 10000

d (bytes)

O
ve

ra
ll

Co
st

LCF Random HIP

Figure 6. Scaling of LCF and HIP overall costs as a function of collected data per host, for s = 1000 bytes

6. Experimental Evaluation
It should be emphasized that HIP algorithm is platform-independent, i.e. it has not been designed

having a particular mobile agent platform (MAP) in mind. In fact it can easily be integrated in any
available MAP (e.g. Aglets [2] or JADE [14]), constructing and supplying near-optimal MA
itineraries. To prove HIP algorithm validity and effectiveness, we have implemented and incorporated
the algorithm as an add-in module, termed the Itinerary Scheduler Module (ISM), into our MAP
research prototype presented in [8].

ISM has been implemented in Java programming language (JDK 1.4.1 [15]); ISM executes the
HIP algorithm and informs the manager application on the number of MAs that need to be instantiated
and their respective itineraries. Agent itineraries are reconstructed whenever a new managed device is
‘discovered’ (upon such event, ISM is notified through a callback method). LCF algorithm has also
been implemented for comparison purposes.

HIP has only been tested on realistic network monitoring application scenarios; yet, it suits any
application field which benefits from distribution of intelligence and processing overhead offered by
MA paradigm. The experimental testbed includes several Windows NT (Pentium III 450MHz, 256

3 MAs

4 MAs

-10-

MB RAM) and Linux Red Hat v. 6.1 (Pentium MMX 233 MHz, 128 MB RAM) stations. The
managed network comprises two 10Mbps LANs connected through a 1Mbps leased line (see Figure
7); the first LAN (where the manager application executes) hosts 5 managed elements while the
second hosts a varying number (5 to 10) elements. The network traffic generated by MA migrations
has been measured using the WinDump network analyser [29]. Network monitoring data are collected
through interacting with SNMP agents hosted by managed elements; in particular, the standard SNMP
service has been used in NT stations, while snmpd agents of UCD-SNMP package [28] have been
installed on Linux stations.

The cost matrix used by HIP algorithm reflects the cost of using network resources (the
bandwidth of LANs medium is ten times larger than the bandwidth of the leased line):

⎩
⎨
⎧

=
LANsdifferent on located are j and i when ,10

LAN same on the located are j and i when ,1
, jic (6-1)

M

E

E

E

E E

MD_1

E

E

E

E E

M: Manager station
E: Managed network element
MD: Managed domain

1 Mbps link MD_2

(a)

M

E

E

E

E E

MD_1

E

E

E

E E

M: Manager station
E: Managed network element
MD: Managed domain

1 Mbps link

MD_2

E

E

E

E E

MD_3

(b)
Figure 7. HIP execution on the experimental testbed. (a) The remote subnet hosts 5 managed devices all
included in a single managed domain; (b) The remote subnet hosts 10 managed devices separated in two

managed domains

The performance of HIP and LCF algorithms has been compared against an implementation of
SNMP in Java [1]. The application scenario involves polling managed elements for the contents of
tcpConnTable MIB-II6 table, which lists information about all TCP connections of a host. In the
SNMP-based implementation, individual MIB tables are remotely retrieved through exchanging
request/response messages, in particular by issuing successive get-next requests (each retrieving a
table row). Every tcpConnTable row contains 5 values (columns) [19], while managed elements stored
information about 46 TCP connections on average, i.e. included 46 table rows (46 × 5 values in total).

Parameter Value

MA initial size 1,08 KB
Average SNMP request/response packet size
(including UDP header) 90 bytes

Average SNMP packet increment for each
additional requested value 17 bytes

MA state size increment per table sample
(compressed data) 98 bytes

Average SNMP-based table retrieval response time 102.1 msec
Average MA-based table retrieval response time 71 msec

Table 2. Network overhead and time parameters

In MA-based approaches, travelling MAs obtain table values through local interaction with
legacy systems; table contents are then compressed (using Java gzip facility) and encapsulated within
MAs state. In contrast with LCF algorithm, HIP involves the parallel execution of multiple MA

6 A management information base (MIB) is a formal description of the set of network objects that can be managed using SNMP. MIB-II

[19] is the standard MIB in the IP world, supported by virtually all SNMP-compliant network devices.

-11-

objects which depends on network size. For instance, when 5 managed elements are hosted in the
remote subnet, two managed domains are created, each assigned to an individual MA (Figure 7a).
However, when managed elements increase to 10, HIP separates them into two distinct managed
domain and engages an additional MA into polling operation (Figure 7b).

The network overhead and timing experiment parameters associated with our experiments are
presented in Table 2. Network overhead parameters have been measured by WinDump tool.
Experimental results are presented in Figure 8. The overall management cost has been calculated
according to the cost function of equation (4-3), where cost matrix coefficients are given in equation
(5-1). Figure 8a compares the management cost of SNMP against MA-based implementations, as a
function of the number of polled devices, for the network monitoring application scenario described
above. SNMP-based polling does not scale well as it involves heavy usage of the relatively expensive
interconnection link, when increasing the number of polled devices located in the remote subnet
(managed elements 6-15). In contrast LCF and HIP algorithms require usage of the interconnecting
link only when an MA migrates/returns to/from the remote subnet. HIP presents superior performance
since the MA(s) assigned to the remote subnet managed domain(s) migrate through the low-bandwidth
link with empty state; in the LCF-based solution, the unique MA first visits all the elements local to
the manager host subnet and then migrates to the remote subnet (at migration time though, the MA has
already collected an amount of data, therefore increasing network traffic). It should be emphasized
though that for application scenarios involving collection of larger chunks of data or managed network
topologies comprising large numbers of host, the performance gap of HIP against LCF is expected to
grow (this is verified by the simulation results presented in Section 7).

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Managed Elements

M
an

ag
em

en
t C

os
t

SNMP LCF HIP

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

10 30 50 100 150 200 500 1000 2000
d (bytes)

M
an

ag
em

en
t C

os
t

LCF HIP

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000

1 10 20 30 40 50
k (link cost coefficient)

M
an

ag
em

en
t c

os
t

LCF HIP

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Managed Elements

R
es

po
ns

e
Ti

m
e

(m
se

c)

SNMP LCF HIP

Figure 8. (a) Management cost of SNMP monitoring (per polling interval) against HIP and LCF
implementations for varying managed network sizes; (b) Management cost of HIP vs. LCF as a function of the

amount of collected data per managed element; (c) Management cost of HIP vs. LCF as a function of the
relative cost of the interconnecting link of Figure 7; (d) Response time of SNMP monitoring against HIP and

LCF implementations for varying network sizes

In Figure 8b, experiment parameters are adjusted to examine the effect of collected data amounts
in the overall cost. The experiments have been performed on the test network of Figure 7b (15
managed elements). Apparently, HIP performance gain over LCF increases as the amount of data
collected from each managed element increases. HIP algorithm separates remote subnet hosts into 2, 3
and 4 ‘virtual’ managed domains as data sample size increases to 100, 500 and 2000 bytes

 s = 1.08 KB
 d = 98 bytes
15 managed E

2 MAs 3 MAs

4 MAs

2 MAs

3 MAs
4 MAs

 s = 1.08 KB
 d = 98 bytes

 s = 1.08 KB
15 managed E

 s = 1.08 KB
d = 98 bytes

(a) (b)

(c) (d)

-12-

respectively. Figure 8c shows how management cost relates to the relative cost of the interconnecting
link of Figure 7 (for instance, when the bandwidth of that link is 10 times smaller to the bandwidth of
LANs medium, the cost coefficient is k = 10).

Regarding timing experiments, HIP performs better than LCF due to the parallel employment of
MA objects when managed network size increases (see Figure 8d). Interestingly, the SNMP-based
solution provided lower response time, which is attributed to the parallel request and collection of
SNMP table snapshots. On the other hand, an invited side effect of MA-based table polling is the
improved consistency of the acquired values due to the negligible time intervals between the retrievals
of individual table rows [6][7].

It should be noted that the graphs of Figure 8 represent the worst-case scenario for MA-based
implementations in terms of network overhead, as the agents store the entire SNMP table within their
state without exploiting their ability of filtering management data. If, for instance, the network
administrator is interested in acquiring only the table rows corresponding to established TCP
connections (the column tcpConnState of tcpConnTable equals the value “established”), the
amount of accumulated data may be significantly reduced. In addition, several MAP-related
parameters may be adjusted to minimize agent migrations overhead and latency, as suggested in [9].

7. Performance Analysis by Simulation
HIP has also been evaluated in simulated network environments, using the Network Simulator

(NS-2) tool [20], a discrete event simulator targeted at networking research. We have implemented
SNMP and mobile agent modules, while the parameters presented in Table 2 have been incorporated
into the implemented modules to enhance simulation results validity and accuracy.

Three different transit-stub topologies created by the topology generator GT-ITM [30] are used
(GT-ITM output has been first converted to NS-2 format). The topologies comprise 272 nodes with
interconnecting links of 2 Mbps bandwidth and latency of few milliseconds; 100 Mbps links are
assumed within stub boundaries (see Figure 9). The management station controls 15 stub domains
each hosting 16 network elements (240 managed elements in total). Two main simulations tests
(network monitoring scenarios) have been performed and several measurements have been taken and
evaluated.

E E

E

E

E

transit domain

stub domain

E E

E

E

E

transit domain

M

M: Manager station
E: Network element

15 stubs of 16 managed
elements each

Manager stub

Figure 9. Network monitoring application on a transit-stub topology

7.1. SIMULATION #1

The first test involves simulation of the same network monitoring application described in the
preceding section. In the SNMP implementation, monitoring is performed in the following way: first,

-13-

all elements of a stub are accessed; then, the next stub is managed until all the 16 stubs are accessed.
In the LCF-based approach, a unique MA object visits sequentially all monitored devices, interacts
with local SNMP agents and stores collected management data within its state. HIP-based monitoring
involves the parallel execution of multiple MAs, each supplied with a ‘near-optimal’ itinerary; the
number of monitoring MAs depends on the specific topological characteristics.

Simulation results are reported in Figure 10, where various curves represent the mean response
time or bandwidth consumption for the three simulated topologies. Figure 10a presents mean response
times for various managed network sizes. For a few sets of managed elements, SNMP performs better
than HIP-based approach due to its lightweight nature and the fact that all the elements of a specific
stub are polled in parallel. As the number of managed elements increases, SNMP response time grows
proportionally since the time to manage a stub is approximately the same for all stubs. In the LCF
approach, the response time increases faster when the number of managed elements grows due to the
incremental size of the mobile agent which implies increased transmission delays. HIP presents better
scalability as monitored elements are separated in ‘virtual’ managed domains, each managed by
separate MA objects collecting management data in parallel.

Figure 10b shows that network overhead generated by HIP and SNMP implementations is
approximately proportional to managed network size, with HIP achieving significantly better results.
On the contrary the scalability of LCF algorithm is very poor (as the number of elements visited by the
unique object increases, the amount of collected data becomes much larger than the size of MA code
itself).

A comparison of the real management cost associated with monitoring operations (the cost of
using low-bandwidth resources is taken into account) is given in Figure 10c where the performance
gain of HIP-based approach is amplified. The drawbacks of the SNMP centralised approach becomes
evident as it indiscriminately makes heavy use of relatively expensive network resources; as a result,
the host limit where SNMP surpasses LCF approach increases, i.e. it provides better results for
topologies comprising more than 200 hosts.

0

10

20
30

40
50

60
70

80

90

40 80 120 160 200 240
managed elements

R
es

po
ns

e
tim

e
(s

ec
)

SNMP LCF HIP

0

2,000

4,000

6,000

8,000

10,000

12,000

40 80 120 160 200 240
managed elements

N
et

w
or

k
ov

er
he

ad
 (K

B
)

SNMP LCF HIP

0

10,000

20,000

30,000

40,000

50,000

60,000

40 80 120 160 200 240
managed elements

M
an

ag
em

en
t c

os
t

SNMP LCF HIP

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

40 80 120 160 200 240
managed elements

N
et

w
or

k
ov

er
he

ad

(w
ith

in
 m

an
ag

er
 s

tu
b)

 (K
B

)

SNMP LCF HIP

Figure 10. Monitoring of tcpConnTable MIB-II variable: comparison of SNMP against HIP and LCF
algorithms in terms of (a) Overall latency, (b) Network overhead, (c) Management cost, (d) Network overhead

within manager station stub

(a) (b)

(c) (d)

-14-

Finally, Figure 10d illustrates the usage of network resources within manager station stub.
Interestingly, this metric represents the main asset of LCF algorithm, since it suggests that the unique
monitoring MA will use manager stub link only twice: on its first migration and at the end of its
itinerary (when it returns to deliver collected data to the manager station). On the other hand, SNMP
routes all monitoring traffic through the manager stub links, implying a congestion point.

7.2. SIMULATION #2

Admittedly, a comparison of HIP against SNMP only based on retrieving a SNMP table variable
(tcpConnTable)may seem biased, since table retrieval is a well-known weakness of SNMP [26].
Hence, our second simulation test involves the retrieval of ‘atomic’ (non tabular) MIB-II variables.

Cases often occur in monitoring operations, where one or two MIB variables are not a
representative indicator of system state and hence an aggregation of multiple variables is required,
known as a health function (HF) [11]. For instance, five MIB-II objects are combined to define the
percentage E(t) of IP output packets discarded over the total number of packets sent within a specific
time interval:

 gramsipForwData stsipOutReque
100*s)ipFragFail tesipOutNoRou ards(ipOutDisc)t(E

+
++

= (7-1)

In the SNMP model, the least ‘expensive’ option would be to group the five variables into a
single get request packet. The response packet would then include the variable IDs along with the
requested values, with the IDs typically occupying more space than the actual values [26]. On the
other hand, MAs are able to compute HFs locally, providing a way to semantically compress large
amount of data in a single value returned to the manager; thus, the manager application is relieved
from processing management data, while MAs state size remains as small as possible. MAs can also
be instructed to accumulate computed values only when certain thresholds are exceeded.

In addition to the parameters shown in Table 2, we have also measured and incorporated into the
simulation modules the following parameters: (a) MA state size increment per HF value sample
(compressed data): 2 bytes; (b) Average SNMP-based retrieval response time of 5 MIB-II variables: 8
msec; (c) Average MA-based retrieval response time of 5 MIB-II variables: 4 msec.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

40 80 120 160 200 240
managed elements

M
an

ag
em

en
t c

os
t

SNMP LCF HIP

0

10

20

30

40

50

60

70

40 80 120 160 200 240
managed elements

R
es

po
ns

e
tim

e
(s

ec
)

SNMP LCF HIP

Figure 11. Monitoring of health function value: comparison of SNMP against HIP and LCF algorithms in terms
of (a) Management cost, (b) Overall latency

The results of the second simulation test are shown in Figure 11. Evidently, HIP algorithm
provides again a more scalable solution in terms of management cost, compared to SNMP and LCF-
based monitoring (Figure 11a). This is mainly due to the heavy usage that SNMP implies over
‘expensive’ transit-stub interconnecting links. However, LCF demonstrates scalability improvement in
comparison with the first simulation test, since the MA state increment rate is reduced (a smaller
volume of management data is now accumulated). Finally, Figure 11b shows that HIP maintains
comparable response time to SNMP, while clearly overwhelming the LCF-based approach.

(a) (b)

-15-

8. Conclusions & Future Work
Despite the popularity of MA-based management applications, methodologies for designing

efficient MA itineraries have received little attention. In particular, the number of hops realised by a
multi-hop agent is not the only metric to evaluate the communication overhead of MA-based
operations. The order in which MAs visit their assigned hosts (i.e. MA itineraries) is also a crucial
factor, as slight modifications may result in dramatically variant costs.

This article introduces an algorithm that borrows ideas and concepts from the area of network
design to address the issue of MA optimal itinerary planning. Although only tested on network
monitoring applications, it would comfortably fit in other application areas, such as network
discovery, service management, etc. HIP algorithm not only suggests the appropriate number of MAs
that should be employed in parallel to minimise the associated cost but also constructs near-optimal
itineraries for each of them.

Future research will involve testing of HIP on several application fields, other than network
monitoring, such as configuration management, performance management, service discovery, etc.

Acknowledgements
The authors are grateful to Dr. Tryfonoula Korbi for proof-reading this paper and correcting many
grammatical and vocabulary errors. The authors also wish to thank the anonymous reviewers for their
constructive comments which significantly improved the technical content and the presentation of the
paper.

List of Acronyms

CMST: Constrained Minimum Spanning Trees MD: Managed Domain

E-W: Esau-Williams MIB: Management Information Base

HIP: Heuristic for Itinerary Planning MST: Minimum Spanning Trees

IETF: Internet Engineering Task Force NE: Network Element

IP: Internet Protocol NS-2: Network Simulator, version 2

ISM: Itinerary Scheduler Module NSM: Network and Systems Management

JDK: Java Development Kit RAM: Random Access Memory

LAN: Local Area Network SNMP: Simple Network Management Protocol

LCF: Local Closest First TCP: Transport Control Protocol

MA: Mobile Agent UDP: User Datagram Protocol

MAP: Mobile Agent Platform WAN: Wide Area Network

References
[1] Adventnet, http://www.adventnet.com.

[2] Aglets Mobile Agent Platform, http://www.trl.ibm.com/aglets/.

[3] C. Bohoris, A. Liotta, G. Pavlou, “Mobile Agent Based Performance Management for the Virtual Home
Environment”, Journal of Network and System Management, 11(2), pp. 133-149, June 2003.

[4] T. Chen, S. Liu, “A Model and Evaluation of Distributed Network Management Applications”, IEEE
Journal of Selected Areas in Communications, 20(4), May 2002.

[5] T. Du, E. Li, A.P. Chang, “Mobile Agents in Distributed Network Management”, Communications of the
ACM, 46(7), July 2003.

-16-

[6] A. Fuggeta, G.P. Picco, G. Vigna, “Understanding Code Mobility”, IEEE Transactions on Software
Engineering 24(5), pp. 346–361, 1998.

[7] D. Gavalas, “Mobile Software Agents for Network Monitoring and Performance Management”, PhD
Thesis, University of Essex, UK, July 2001.

[8] D. Gavalas, D. Greenwood, M. Ghanbari, M. O’Mahony, “Hierarchical Network Management: A Scalable
and Dynamic Mobile Agent-Based Approach”, Computer Networks, 38(6), pp.693-711, April 2002.

[9] D. Gavalas, “Mobile Agent Platform Design Optimisations for Minimising Network Overhead and Latency
in Agent Migrations”, Proc. of the 2004 IEEE Global Communications Conference (Globecom’2004),
December 2004.

[10] D. Gavalas, “Optimal Itinerary Planning for Mobile Agents-Based Management Applications”, Proc. of the
2005 IEEE Global Communications Conference (Globecom’2005), in press.

[11] G. Goldszmidt, “On Distributed Systems Management”, Proc. of the 3rd IBM/CAS Conference, 1993.

[12] F.K. Hwang, D.S. Richards, P. Winter, “The Steiner Tree Problem”, Annals of Discrete Mathematics
series, Vol. 53, Elsevier, 1992.

[13] A. Iqbal, J. Baumann, M. Straßer, “Efficient Algorithms to Find Optimal Agent Migration Strategies”,
Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1998/05, April 1998.

[14] JADE (Java Agent DEvelopment Framework), http://jade.tilab.com/

[15] Java 2 Platform, Standard Edition (J2SE), http://java.sun.com/j2se/

[16] A.Kershenbaum, “Telecommunications Network Design Algorithms”, McGraw-Hill, 1993.

[17] A. Liotta, G. Pavlou, G. Knight, “Exploiting Agent Mobility For Large Scale Network Monitoring”, IEEE
Network, 16(3), pp. 7-15, May/June 2002.

[18] P. Marques, P. Simões, L. Silva, F. Boavida, J. Gabriel, “Providing Applications with Mobile Agent
Technology”, Proc. of the 4th IEEE International Conference on Open Architectures and Network
Programming (OpenArch’01), April 2001.

[19] K. McCloghrie, M. Rose, “Management Information Base for Network Management of TCP/IP-based
Internets: MIB-II”, RFC 1213, March 1991.

[20] The Network Simulator - NS-2, http://www.isi.edu/nsnam/ns/

[21] V. Pham, A. Karmouch, “Mobile Software Agents: An Overview”, IEEE Communications Magazine,
36(7), pp. 26-37, 1998.

[22] H. Qi, F. Wang, “Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks”, Proc.
of the 15th IEEE International Conference on Wireless Communications, pp.147-153, July 2001.

[23] E. Reuter, F. Baude, “System and Network Management Itineraries for Mobile Agents”, Proc. of the 4th
International Workshop on Mobile Agents for Telecommunication Applications (MATA’02), LNCS vol.
2521, pp 227-238, October 2002.

[24] M.G. Rubinstein, O. C. Duarte, G. Pujolle, “Scalability of a Mobile Agents Based Network Management
Application”, Journal of Communications and Networks, 5(3), September 2003.

[25] W. Stallings, “SNMP, SNMPv2, SNMPv3 and RMON 1 and 2”, 3rd ed., Addison Wesley, 1999.

[26] Sprenkels R. and Martin-Flatin J.P., “Bulk Transfers of MIB Data”, The Simple Times, 7(1), pp. 1-7, 1999,
http://www.simple-times.org/.

[27] R. Stephan, P. Ray, N. Paramesh, “Network Management Platform Based on Mobile Agents”, International
Journal of Network Management, 14, pp. 59-73, 2004.

[28] UCD-SNMP project, http://www.ece.ucdavis.edu/ucd-snmp/.

[29] WinDump: tcpdump for Windows, http://windump.polito.it/

[30] E. W. Zegura, K. L. Calvert, M. J. Donahoo, “A quantitative comparison of graph-based models for
internet topology,” IEEE/ACM Transactions on Networking, 5(6), pp. 770–783, December 1997.

-17-

Appendix: LCF Algorithm Implementation
Local Closest First (LCF) algorithm has been implemented, based on the description given in

[22], to provide a fair performance and comparison measure to HIP algorithm.

Let n be the overall number of nodes to be managed, C the cost matrix (ci,j is the cost of including
in the itinerary an agent migration form host i to host j) and N0 the node hosting the manager
application. The unique MA itinerary proposed by LCF algorithm is formulated starting with host N0;
on every step, the so-far constructed itinerary is ‘merged’ with the host ‘nearest’ to the host previously
added in the itinerary. This process is described by the pseudo-code implementation of Figure 12.

LCF (n, C, N0)

initialize (I) // I is the unique itinerary constructed by the algorithm
N_connected = 0 // number of hosts already included in I
merge (I, N0)
current = N0 // ‘current’ is the host last included in I

while (N_ connected < n)
 closest = find_closest (current), where ccurrent, closest =

i
min (ccurrent, i), ∀ ∉i I

 merge (I, closest)
 current = nearest
 N_ connected ++

return I

Figure 12. Pseudo-code implementation of LCF algorithm

Dr. Damianos Gavalas received his BSc degree in Informatics (Computer
Science) from University of Athens, Greece, in 1995 and his MSc and
PhD degree in electronic engineering from University of Essex, U.K., in
1997 and 2001, respectively. In July 2004 he was appointed as a Lecturer
in the Department of Cultural Technology and Communication, University
of the Aegean, Greece. His research interests include distributed
computing, mobile code, network and systems management, network
design, e-commerce, m-commerce, wireless sensor networks and mobile
wireless ad-hoc networks clustering and routing.

.

Dr Christina (Tanya) Politi received a B.Sc. in Physics from the University
of Athens in 1998 and a M.Sc. degree in the "Physics of Laser
Communications" from the University of Essex in 2000. Subsequently, she
joined the Photonic Network Research Group in the Department of
Electronic Systems Engineering at the University of Essex where she
obtained her PhD. She was involved in various projects including the IST-
OPTIMIST and IST-BREAD projects. She has recently joint the Optical
Networks Group in ICCS/NTUA. Her research interests include network
design algorithms, optical packet and circuit switched networks, high
speed optical networks and optical wavelength converters.

