
EFFICIENT BSP/CGM ALGORITHMS FOR TEXT RETRIEVAL

Damianos G. Gavalas
Department of Cultural Technology and Communication

University of the Aegean
Mytilene, Greece

email:dgavalas@aegean.gr

Charalampos G. Konstantopoulos
Research Unit 1

Research Academic Computer Technology Institute
Patras, Greece

email:konstant@cti.gr
Basilis G. Mamalis and Grammati E. Pantziou

Department of Informatics
Technological Educational Institute of Athens

Athens, Greece
email: {pantziou,vmamalis}@teiath.gr

ABSTRACT
In this paper we present efficient, scalable and portable
parallel algorithms written in the Coarse-Grained Multi-
computer (CGM) and the Bulk Synchronous Parallel (BSP)
models for the off-line clustering, the on-line retrieval and
the update phases of the text retrieval problem based on
the vector space model and using clustering to organize
and handle a dynamic document collection. To the best
of our knowledge, our parallel retrieval algorithms are the
first ones analyzed under specific parallel models, which
capture within a few parameters the characteristics of the
parallel machine.

KEY WORDS
BSP model, CGM model, parallel algorithms, text retrieval,
document clustering.

1 Introduction

The continuous growth of electronically available informa-
tion, which is dispersed over a local or a wide area net-
work or usually, over different internet locations, together
with the increasing requirements for immediate process-
ing and access to the information, make the use of par-
allel processing indispensable to the information retrieval
field. Until today, many attempts have been made to apply
parallel processing and build efficient and practical parallel
text retrieval systems [1, 2, 3, 4], which achieve significant
response-time improvements compared with serial text re-
trieval systems.

In this work, we present the first efficient, scalable and
portable parallel algorithms written in the Coarse-Grained
Multicomputer (CGM) and the Bulk Synchronous Parallel
(BSP) models for the off-line clustering phase, the on-line
retrieval phase and the update phase of the text retrieval
problem based on the vector space retrieval model and us-
ing clustering to organize and handle a dynamic document
collection.

We prove that the off-line clustering phase requires
O(p) computation and communication rounds/supersteps,

where p is the number of processors of the parallel comput-
ing system. We also show that the local memory required
in each processor for this phase is O(n

p max{r, dsim}) at
most where n is the total number of documents of the in-
formation retrieval system and r and dsim are two para-
meters that depend on the maximum number of terms in
each document and the “similarity degree” of the n docu-
ments respectively. In addition, we show that the maximum
number of operations in each computation round is O(n2

p2 r)
due to the sparse matrix multiplication necessary for find-
ing document similarities. It should be noted that the above
amount of local computation and local memory per proces-
sor is the least possible and match in aggregate those ones
of the corresponding serial information-retrieval algorithm.

We also prove that for both the on-line retrieval and
the update phases, O(1) communication rounds are neces-
sary with O(n

p r) local computation per round. The local
memory per processor required for this phase is O(n

p r) at
most.

2 The BSP and CGM Computing Models

A BSP computer [5] is a collection of p processor/memory
modules connected by a communication infrastructure that
can deliver messages in a point to point fashion between the
processors. A BSP computation is divided into a sequence
of supersteps separated by barrier synchronizations. Each
superstep is divided into a computation and a communica-
tion superstep. In a computation superstep the processors
perform computations on data that were present locally at
the beginning of the superstep. In a communication super-
step data is exchanged among the processors via the com-
munication network. The parameters of a BSP computer
used to solve a problem are the problem size N , the num-
ber of processors p, the bandwidth parameter g i.e. the ratio
of overall system computational capacity (number of com-
putation operation) per unit time divided by the overall sys-
tem communication capacity (number of messages of unit
size that can be delivered by the underlying communica-
tion network) per unit time, and the latency parameter L,

which is the minimum time between two consecutive syn-
chronization operations.

The cost of a BSP algorithm equals to the sum of the
costs of its supersteps. The cost of a superstep is given by
the following formula

Tsuperstep = max{L, Tcomp + Tcomm}

where Tcomp is the maximum (over all processors) cost
for local computations and Tcomm is the maximum time
needed for transmitting all the outgoing messages to their
target processors. If we consider that during the com-
munication superstep each processor sends and receives
at most h 1-word messages (i.e. an h-relation has to be
implemented during the communication superstep) then
Tcomm = g · h. In that case, we have

Tsuperstep = max{L, Tcomp + g · h}

The Coarse-Grained Multicomputer (CGM) [6, 7, 8]
model is a simplified version of the BSP model and its main
purpose is the design of simple and practical yet theoret-
ically optimal or efficient parallel algorithms for coarse-
grained parallel systems. A CGM(N,p) computer consists
of p processors with N/p local memory (N/p � 1) each
connected by a router that can deliver messages in a point
to point fashion. A CGM algorithm consists of an alternat-
ing sequence of computation rounds and communication
rounds which are separated by barrier synchronizations. A
computation round is equivalent to a computation superstep
in the BSP model [5, 9], and therefore the total computa-
tion cost is defined analogously. A communication round
consists of a single h-relation with h = O(N/p), i.e., each
processor sends O(N/p) data and receives O(N/p) data.
The main advantage of the CGM model is that it allows us
to model the communication cost of a parallel algorithm
by a single parameter, i.e. the number of communication
rounds [7]. A practical assumption commonly met in most
proposed CGM algorithms (e.g. see [7]) is that N/p > pε

where constant ε > 1. The most important implication of
this assumption is that the basic operation of sorting can be
executed in a constant number of computation and commu-
nication rounds [10, 11].

Note that every CGM algorithm is also a BSP algo-
rithm but not vice versa. Note also that a CGM algorithm
with λ rounds and computation cost Tcomp corresponds to
a BSP algorithm with λ supersteps, communication cost
O(λ(g N

p + L)) and the same computation cost.

3 The VSM-based Text Retrieval Problem

The Vector Space Model (VSM) has been used as the basis
for many ranking Information Retrieval (IR) systems [12].
The model assumes that we are given a document collec-
tion of size n and an array (t1, t2, ..., tm) of m different
terms, which are word stems extracted out of all n docu-
ments. According to the model, each document Di in the

document collection is indexed by a so-called document-
term vector di, after the application of suitable stopping
and stemming procedures. Specifically, each document Di

is represented by the vector

di = (wi1, wi2, ..., wim)

where wij is a weight value ranging from 0 to 1 (assuming
normalization) and representing the significance of term tj
for the specific document Di. Each weight value wij as-
signed to each document Di is related to the frequency of
occurrence of term tj in both the specific document Di and
to the whole document collection. A weight value wij that
is equal to 0 usually means that the term tj is not appear-
ing in document Di. In a similar manner, the documents’
term vectors may also be expanded by additional document
identifiers (not only word stems) such as phrases, thesaurus
classes etc.

The model assumes that each user query Qi (which
actually is a set of words) is indexed in the same way, thus
resulting to a query-term vector qi of almost the same type
as di. Specifically, each query Qi is represented by the
vector

qi = (qi1, qi2, ..., qim)

where qij is usually set either to 1 or to 0 depending on
the presence of term tj in the query or not. However, a
query-term vector may consist of values ranging from 0 to
1 (assuming normalization), in the case that the user assigns
by himself weights on the query terms, depending on their
significance for the search.

According to the vector space retrieval model, the
query vector qi is compared (applying a suitable similar-
ity measure) to each one of the n document term vec-
tors, yielding to a corresponding relevance value (score)
sim(qi, Dj), for each document Dj , j = 1, ..., n. The doc-
uments are then ranked according to their scores and the
top-score ones are supposed to be the most relevant to the
query.

A valuable extension [12], in order to restrict the total
retrieval time, is to group the documents into a number of
document clusters. This can be done by computing the pair-
wise similarities sim(Di, Dj) for all pairs of documents
Di, Dj (i �= j) of the document collection and then apply-
ing a suitable graph-based algorithm - i.e. connected com-
ponents’ evaluation with a specific similarity value as the
adjacency criterion - over the corresponding documents’
similarity matrix. After the formation of the clusters, for
each cluster Ci, one centroid-vector ci is extracted of the
following form

ci = (wci1, wci2, · · · , wcim)

where wcij i.e., the weight of term j in cluster Ci, is com-
puted as the average of the weights of term j in documents
Dik belonging to cluster Ci. Therefore, the corresponding
retrieval task can now be performed via a suitable selec-
tive cluster-based searching algorithm (by first comparing

qi to the centroid-vectors ci in order to find the most rel-
evant clusters) and finally only a fraction of the whole set
of documents in the collection (those belonging to the most
relevant clusters) has to be exhaustively compared to the
user-query.

Our parallel text retrieval algorithm presented in the
next section follows this last approach to efficiently retrieve
documents.

4 The VSM-based text retrieval algorithm

4.1 The off-line preprocessing/clustering
phase

We assume that we are given p BSP/CGM processors and
n documents D1, D2, ..., Dn. For each document Di, i =
1, ..., n, its vector representation di = (wi1, wi2, ..., wim)
is given, while each processor keeps n/p documents. Note
that the vectors di are usually very sparse. The off-line
clustering algorithm computes the similarities among the
documents, forms the document clusters (centroids), com-
putes the centroid vector of each cluster and evenly distrib-
utes the documents of each cluster to the processors. The
basic steps of the algorithm are as follows.

Step 1. Consider the n×m matrix D, whose row i is the vec-
tor di, i = 1, ..., n. Notice that this is a sparse ma-
trix. For each document Di, i = 1, ..., n, use a sparse
matrix-vector multiplication algorithm to “multiply”
the sparse matrix D with the vector di, and therefore
to compute the similarity sim(Di, Dj) of Di with
each other document Dj , j = 1, ..., n, j �= i, using
the well-known “cosine-similarity” function i.e.

sim(Di, Dj) =
∑m

k=1 wik · wjk√∑m
k=1 w2

ik ·
√∑m

k=1 w2
jk

.

Then, use the similarity matrix to construct a graph
G = (V, E), such that there is a node in the graph for
each document in the document collection, i.e., V =
{D1, D2, ..., Dn}, while there is an edge between
two nodes Di and Dj , if and only if sim(Di, Dj) is
greater than or equal to a threshold value th1.

Step 2. Apply a connected components algorithm on the
graph G = (V, E). The connected components of G
comprise the set of clusters C of the document collec-
tion, and therefore “similar” documents belong to the
same cluster and we expect that relevant documents to
each user-query will belong with high probability to
some specific clusters.

Step 3. For each centroid (cluster) Ci in C, use the document
vectors of its documents to compute the centroid vec-
tor ci.

Step 4. For each centroid Ci in C, evenly distribute the doc-
ument vectors of the documents of the cluster to the

p processors. Therefore, after the execution of this
step, the documents of the collection are almost evenly
shared among the processors, i.e. each processor
holds approximately n

p document vectors in its local
memory.

Detailed description and analysis of the off-line cluster-
ing algorithm.

Step 1. Each processor q needs to compute the similarity
sim(Di, Dj) of document Dj with each other document
Di in q’s local memory. Since each processor keeps n

p dif-
ferent document vectors, processors should broadcast their
own n

p vectors to all other processors. After receiving a
new set of n

p vectors Dj , each processor computes the sim-
ilarity sim(Di, Dj) among its own set of vectors Di with

the vectors Dj , i.e. n2

p2 similarity values in total.
The sparsity of the matrix D and its constituent vec-

tors di, i = 1, ..., n, is exploited as follows: Only nonzero
vector elements are communicated from a processor to an-
other one, while local computations are performed only
if the corresponding vector elements are nonzero. This
means that if r is the maximum number of nonzero ele-
ments of a vector di, i = 1, ..., n, then each processor
should broadcast at most n

p r vector elements, while each

processor q needs to perform at most n2

p2 r local compu-

tation steps in order to compute the n2

p2 similarity values
sim(Di, Dj) of the received vectors Dj with the local vec-
tors Di (i, j = 1, · · · , N).

The whole computation is organized in p rounds. At
round i, processor i broadcasts its n

p vectors to all other
processors. By using a well-known technique [9, 13],
broadcasting can be completed in O(g n

p r + L) time.

After broadcasting, each processor computes the n2

p2

similarity values among its own vectors and the received
vectors of processor i in O(n2

p2 r) time. Thus, the to-

tal running time of round i is O(n2

p2 r + g n
p r + L) and

hence for the p rounds of the whole computation we need
O(n2

p r + gnr + pL) time in total.
It is worth mentioning, that after each computation

round, processors need to keep only those similarity values
which are above the threshold value th1. In this way, after
the completion of the p rounds, the local memory require-
ment in each processor for storing these values is at most
O(n

p dsim) where dsim is the maximum number of docu-
ments Dj , such that sim(Di, Dj) > th1, over all docu-
ments Di. It is also reasonable to assume that parameter
dsim is o(n), i.e. much smaller than n, the number of doc-
uments in the collection.

With the local O(n
p dsim) similarity values as input,

each processor creates its own portion of the document sim-
ilarity graph G(V, E). Specifically, graph G consists of
n vertices which represent the n documents of the collec-
tion and there is an edge between two vertices Vi, Vj if the

corresponding similarity value sim(Di, Dj) is above the
threshold th1. Clearly, each processor holds n

p vertices and
O(n

p dsim) edges of the graph G.

Step 2. The BSP version of the CGM connected com-
ponents algorithm of Dehne et al. [7] is used to com-
pute the connected components of the graph G con-
structed in the previous step. Notice that G is a graph
with n vertices whose number of edges is at most m =
O(ndsim). Therefore, the CGM connected compo-
nents algorithm needs O(log p) communication rounds and
O(ndsim

p) local computation per round while the commu-
nication cost of the BSP connected components algo-
rithm is O(log p(g ndsim

p + L)) and the computation cost

is O(ndsim

p log p).

Step 3. At the end of Step 2 each document Di knows the
cluster it belongs to while the cluster-heads are distributed
to the p processors. During step 3 the following are taking
place:

• Using sorting, give to the clusterheads consecutive
numbering from C1 to C|C|, where |C| is the num-
ber of clusters. Due to [10], sorting can be completed
in O(n

p + g n
p + L) time with a constant number of

communication and computation rounds.

• By using its local document vectors, each processor
qj , 1 ≤ j ≤ p computes (i) a “local” centroid vec-
tor lc(i, j) for each centroid (cluster) Ci which has at
least one document vector in qj’s local memory and
(ii) the number b(i, j) of document vectors in qj’s lo-
cal memory that belong to centroid (cluster) Ci. This
requires O(n

p r) local computation cost. A crucial
observation at this point is that the number of non-
zeroes in the “local” centroid vector lc(i, j) is at most
b(i, j) · r = O(n

p r). Thus, the computation of the
centroid vectors of clusters Ci from the local centroid
vectors lc(i, j) should be done in such a way that no
processor receive more than O(n

p r) vector elements
in the process. This can be achieved by the following
three steps.

• For i = 1, · · · , |C|, j = 1, · · · , p, compute the expres-
sions1

S(i, j) =
i−1∑
k=1

b(k, p) +
j∑

l=1

b(i, l)

by adapting the standard prefix-sum technique [9]. It
can been seen that the total running time for the calcu-
lation of S(i, j) is O(|C|+ g|C|+L)(= O(g n

p +L))
at most, assuming w.l.o.g. that the number of clusters
|C| is at most equal to O(n

p).

1For i=1, the first sum is equal to 0.

• Every processor qj , 1 ≤ j ≤ p, for each i = 1, ..., |C|,
sends its “local” centroid vector lc(i, j), to processor
qk, k = 1, ..., p, if and only if (k − 1)n

p < S(i, j) ≤
k n

p . Every processor sends all its “local” centroid vec-
tors in one (combined) h-relation. Since each proces-
sor sends and receives at most O(n

p r) vector elements,
only one O(n

p r)-relation is required for this step.

• Each processor qk uses the “local” centroid vectors
lc(i, j), j = 1, ..., p received previously to locally
compute the centroid vector ci, for each cluster Ci

such that qk has received “local” centroid vectors
lc(i, j). This step requires at most O(n

p r) local com-
putation. Note that if a cluster Ci is relatively large, its
“local” centroid vectors lc(i, j), j = 1, ..., p may be
spread among a number of q processors, say processor
ji, · · · , ji + q − 1. It is possible that the final centroid
vector ci may not contain O(n

p r) elements at most and
thus it cannot be stored in one processor. In this case,
we keep the non-zeroes of centroid ci distributed with
each of the q processors holding O(n

p r) non-zeroes
at most. The distributed computation of the centroid
vector ci can be performed as follows:

– For each non-zero element of the “local” cen-
troid vectors lc(i, j), form the pair (k, lc(i, j, k))
where k is the position of the non-zero element
inside vector lc(i, j) and lc(i, j, k) is the value
of this element.

– By using the algorithm in [11], sort pairs
(k, lc(i, j, k)) by k in O(1) rounds. The
total computation and communication cost is
O(nr log nr

p), O(g n
p r + L) respectively. Now af-

ter this sorting step, all vector elements at the
same position k have been placed consecutively.

– Now, the centroid vector elements can be easily
computed, by first adding the proper local ele-
ments in O(n

p r) time and then adding the par-
tial sums in one communication and computa-
tion round with a total O(p) computation and
O(gp + L) communication cost.

Clearly, the three steps above demand a constant
number of communication and computation rounds
and the total computation and communication cost is
O(nr log nr

p) and O(g n
p r + L) correspondingly.

Thus, with the completion of step 3 the centroid vec-
tors have been distributed among the processors and
each processor has O(n

p r) non-zero centroid vector
elements at most in its local memory.

Step 4. This step requires a redistribution of document
vectors so that the document vectors relevant to each clus-
ter are evenly distributed among the p processors. By keep-
ing the intermediate results of the prefix computation for
S(i, j) at step 3, each processor can easily determine the
processors which it should communicate with. Then, the

redistribution involves a O(n
p r)-relation and thus it can be

completed in O(g n
p r + L) time.

From the analysis above, we can easily verify the truth
of the following theorem.

Theorem 1 By reasonably assuming that r ≥ log p and
n ≥ log n+log r, the off-line clustering phase of the VSM-
based text retrieval algorithm has a total of O(n2r

p) com-

putation and O(gn max{r, log p
p dsim} + pL) communica-

tion cost, whereas the local memory requirement for each
processor is O(n

p max{r, dsim}) at most.

4.2 The on-line query processing phase

Given the query vector qi of a query Qi, the on-line query
processing algorithm proceeds as follows:

Step 1. Compute the “cosine-similarity function” of vec-
tor qi with each of the centroid vectors ck, (k = 1 · · · |C|).
There are two possibilities for this computation. If all the
elements of the centroid vector have been stored in a sin-
gle processor, the computation is local and requires O(n

p r)
time at most. Otherwise, if the centroid vector is distrib-
uted among q processors, the whole computation needs one
communication and two computation rounds. The size of
messages exchanged is O(1) at most and the communica-
tion required is an O(p)-relation. The computation rounds
can be completed in O(n

p r) time overall.
Now, for each centroid Ck such that sim(Qi, Ck) is

greater than or equal to a threshold value th2, consider it
as a “qualifying cluster”. Then, broadcast the IDs of these
clusters to all processors with O(g|C|+L)(= O(g n

p +L))
communication cost at most.

Step 2. By using the “cosine-similarity function”, each
processor locally computes the similarity of Qi with each
one of its local documents that belong to the “qualifying
clusters” according to the previous step. Apparently, this
local computation requires O(n

p r) time at most. Then, each
processor extracts the documentsDl such that sim(Qi, Dl)
is greater than or equal to a threshold value th3. These
documents are considered as “qualifying documents”.

Step 3. Rank the qualifying documents according to their
similarity scores with the query Qi. Clearly, this ranking
can be easily done by a sorting step [11] with O(nlogn

p)
computation and O(g n

p + L) communication cost.
Now, we can easily see that the following Theorem

holds.

Theorem 2 The on-line query processing phase of
the VSM-based text retrieval algorithm requires
O(n

p max{r, log n}) computation and O(g n
p + L)

communication time. The local memory in each processor
required for this phase is O(n

p r) at most.

4.3 Dynamic Cluster Maintenance

When clustering is used for organizing a dynamic docu-
ment collection, a problem frequently arising is how to
adapt the already built cluster structure so that it reflects
the new content. Although complete re-clustering is the
obvious solution, it is generally agreed [14] that this oper-
ation should be executed as rarely as possible, because it
heavily penalizes the performance of a fully operational IR
system. Thus, most of the proposed systems in the liter-
ature try to find a compromise between cluster adaptation
cost and accuracy of the new clusters.

As a high-performance parallel technique, our VSM-
based algorithm is mainly used for handling very large doc-
ument collections. Thus, we can reasonably assume that
the off-line indexing phase starts with a very large number
of documents as input, and the clusters, the output of this
phase, are relatively stable corresponding to well-separated
topics of the document collection. Therefore, during the
on-line operational mode of the IR system, document inser-
tions and deletions are not expected to change dramatically
the existing clusters.

Based on this assumption, a new document inclusion
can be done by simply finding the most similar cluster for
the new document, namely the cluster whose centroid vec-
tor is the most similar to the new document vector. This is
done as follows:

• By performing the first step of the on-line query
processing phase, each processor can determine which
centroid vector out of its local ones has the greatest
similarity with the new document vector.

• The identities of the most similar clusters along with
the corresponding similarity values are sent to one
processor which then computes the globally maxi-
mum similarity value. If the global maximum is
greater than a threshold th4, then the new document
is considered to belong to the cluster that corresponds
to this maximum.

The processor that will store the new document is selected
in a round-robin fashion, i.e. each time the new document
is stored in the next higher numbered processor starting
from the first. This ensures that all processors take an equal
share of the new documents.

On the rare occasion when the new document De can-
not be considered to belong to any of the existing clusters
(the “cosine-similarity” function less than th4), this docu-
ment is viewed as a new cluster Ce by itself whose centroid
vector equals to the document vector (ce = de). In sub-
sequent document inclusions, each time a new document
happens to belong to the recently formed centroid Ce then
the centroid vector ce is updated accordingly. Again, the
distribution of the new documents to the processors can be
done by using the round-robin technique.

It can be easily seen that the inclusion of the new doc-
ument requires O(n

p r) local computation and O(gp + L)

communication time for finding the similarity of the cen-
troid vectors with the new document vector and O(p) com-
putation and O(gp + L) communication time so that the
centroid vector which is the most similar to the new docu-
ment vector is determined.

Note that if the number of documents inclusions ex-
ceeds a specific fraction of the total number of documents
n, then the off-line clustering phase is ran so that new doc-
ument clusters are formed (re-clustering) and new centroid
vectors are computed.

Regarding document deletions, the deleted document
is simply removed from the processor that has been stored.
If a large number of documents has been removed from a
cluster, the remaining documents can be evenly redistrib-
uted among processors in O(g n

p r + L) time.
Therefore, the following Theorem gives the bounds

that the update phase of the VSM-based text retrieval algo-
rithm requires.

Theorem 3 The update phase of the VSM-based text
retrieval algorithm requires O(n

p r) computation and
O(g n

p r + L) communication time. The local memory per
processor required for this phase is O(n

p r) at most.

5 Conclusions

A notably efficient parallel algorithm for the VSM-based
text retrieval problem, has been presented and analyzed by
means of the CGM and BSP cost models. The total cost
is kept considerably low, exploiting the inherent sparsity of
the documents’ and query term vectors, even in the case
of the off-line clustering phase, which is the most inten-
sive task in corresponding VSM-based text retrieval ap-
proaches with clustering enhancements. Note also that the
above algorithm can easily be extended in order to cover
(preserving similar efficiency) additional “document iden-
tifiers” (not only word stems) for each document in the col-
lection (i.e. phrases, thesaurus classes etc.).

Acknowledgment

This work is co-funded by 75% from E.U. and 25%
from the Greek Government under the framework of the
Education and Initial Vocational Training II, programme
“Archimedes”.

References

[1] B. Mamalis, P. Spirakis and B. Tampakas, Opti-
mal High Performance Parallel Text Retrieval via Fat
Trees, Theory of Computing Systems (TOCS) journal,
32(6), 1999, 591–623.

[2] B. Mamalis, P. Spirakis and B. Tampakas, Parallel
Processing of Multiple Text Queries on Hypercube

Interconnection Networks, Intl. Journal on Comput-
ers and their Applications (IJCA), 10(1), 2003, 115–
132.

[3] A. Rungsawang, A. Laohakanniyom, and M. Lert-
prasertkune, Low-Cost Parallel Text Retrieval Us-
ing PC-Cluster, Proc. Euro PVM/MPI 2001, San-
torini/Thera, Greece, 2001, 419–426.

[4] S.-H. Chung, H.-C. Kwon, K. R. Ryu, Y. Chung,
H. Jang and C.-A. Choi, Information Retrieval on an
SCI-Based PC Cluster, The Journal of Supercomput-
ing, 19(3), 2001, 251–265.

[5] L. Valiant, A Bridging Model for Parallel Computa-
tion, Communications of the ACM, 33(8),1990, 103–
111.

[6] F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable Par-
allel Geometric Algorithms for Coarse Grained Mul-
ticomputer, Proc. ACM 9th Symposium on Computa-
tional Geometry, San Diego, USA, 1993, 298–307.

[7] F. Dehne, A. Ferreira, E. Caceres, S.W. Wong, and
A. Roncato, Efficient Parallel Graph Algorithms for
Coarse-Grained Multicomputers and BSP, Algorith-
mica, 33(2), 2002, 183–200.

[8] F. Dehne, A. Fabri, and C. Kenyon, Scalable
and Architecture Independent Parallel Geometric
Algorithms with High Probability Optimal Time,
Proc. IEEE Symposium on Parallel and Distributed
Processing, Cancun, Mexico, 1994, 586-593.

[9] A. Gerbessiotis, and C. Siniolakis, Primitive Oper-
ations on the BSP Model, Technical Report PRG-
TR-23-96, Computing Laboratory, Oxford University,
1996.

[10] A. Chan, and F. Dehne, A Note on Coarse Grained
Parallel Integer Sorting, Parallel Processing Letters,
9(4), 1999, 533–538.

[11] M. Goodrich, Communication Efficient Parallel Sort-
ing, SIAM Journal on Computing, 29(2), 1999, 416–
432.

[12] R. Baeza-Yates, and B. Ribeiro-Neto, Modern In-
formation Retrieval, (New York: Addison Wesley,
1999).

[13] B. Juurlink, H. Wijshoff, Communication Primitives
for BSP computers, Information Processing Letters,
58(6), 1996, 303–310.

[14] F. Can, Incremental Clustering for Dynamic Informa-
tion Processing, ACM Transactions on Information
Processing Systems, 11(2), 1993, 143–164.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

