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Abstract - Proposed management architectures, incorporating 
mobile agent (MA) technology, fail to address scalability 
problems, when monitoring tasks employing multi-hop agents are 
considered. This is because they lack mechanisms which can 
guarantee that the agents itinerary is optimised so as to minimise 
migration traffic and round-trip latency. Herein, we propose an 
algorithm that adapts methods usually applied for addressing 
network design problems in the problematic of MA itinerary 
planning. The algorithm not only suggests the optimal number of 
MAs that minimise the overall cost but also constructs optimal 
itineraries for each of them. The algorithm implementation has 
been integrated into our MA framework research prototype while 
its validity and competence has been verified through simulation 
results over large enterprise networks.* 

I. INTRODUCTION 
Despite its wide deployment base, the IETF Simple 

Network Management Protocol SNMP is known to exhibit 
serious scalability problems, result of client/server paradigm it 
follows. These problems have motivated a trend towards 
distributed management intelligence that represents a rational 
approach to overcome the limitations of centralised NSM. A 
new trend in NSM involves using mobile agents (MAs) [2] to 
manage distributed network systems [4][8]. An MA can be 
used to locally retrieve and filter management data, monitor 
systems health and networking conditions in distributed 
environments. In particular, management tasks are assigned to 
an agent, which delegates and executes management logic in a 
distributed and autonomous fashion. After completing these 
tasks, the results are either communicated through a messaging 
mechanism or carried back to the manager by the MA. 

Delegation of management logic may be realized with 
agents bound to single-hop mobility; the agents move from the 
managing node to remote managed nodes, where they statically 
execute their tasks. What is not commonly exploited in 
management is the MA multiple-hop capability, where agents 
may move several times as they adapt to changing 
circumstances. While single-hop mobility can improve 
flexibility and scalability in the context of relatively static 
networked systems, it is the multiple-hop capability offered by 
MAs that needs to be exploited to meet the requirements of 
future networked systems, i.e. large scale and dynamics [4]. In 
addition, network monitoring based on multi-hop (itinerant) 
MAs is advantageous for short-term monitoring tasks and also 
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in cases that a global (domain)-level rather than a local 
(device)-level view of managed resources is required (for a 
complete discussion of these issues, the interested reader may 
refer to [2] and [4]). 

However, while in single-hop mobility, agent itinerary 
control is straightforward (the itinerary is restricted to the 
single destination host), this is not the case in multi-hop 
mobility, where slight variations on the set of visited hosts or 
even on the order that a specific set of nodes is visited may 
result in dramatic changes of the overall trip latency and 
migration traffic. In this article, we focus on multi-hop 
mobility, aiming at devising methods to optimize MA 
itineraries. 

In network monitoring applications, using a single MA 
object launched from the manager platform that sequentially 
visits all the managed elements, regardless of the underlying 
topology may actually lead to performance worse than the 
conventional SNMP-based approach. The performance further 
declines, when the monitoring MA collects monitoring data 
from multiple subnets, often interconnected by low-bandwidth 
links. In such cases, the traffic associated with management 
tasks typically traverses several network segments and, when 
summed up, results in increased bandwidth waste [8]. 
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Figure 1. Optimized partitioning of the network into two management domains 

This inefficient approach, known as ‘flat’ MA-based 
monitoring [2], presents serious scalability problems: in large 
networks the round-trip delay of the MA greatly increases as 
the overall travel time depends on the number of hops realized 
by the MA and also the network overhead imposed by the MA 
transfers grows exponentially with the network size [2][8].  

A rational approach to overcome such scalability 
problems is to partition the managed network into several 
logical/physical domains. For instance, in Figure 1, an MA 
object polls the devices of the remote LAN, whereas a second 
MA is assigned to the subnet local to the manager host as well 
as to another subnet, which is part of the same LAN. Through 



 

management traffic localization, unnecessary usage of 
expensive networking resources is restricted, thereby 
improving management scalability. However, the scenario 
illustrated in Figure 1 represents an ideal case in terms of the 
WAN link utilisation. That is because the link is traversed only 
twice per polling interval. A slightly different partitioning 
scheme or alteration on MAs itinerary would dramatically 
increase total migration cost. Apparently, even when specific 
partitioning criteria are followed, the design of MA itineraries 
lacks a mechanism that would guarantee minimal use of 
network resources; hence an algorithm for itinerary planning is 
required. In section III, we describe a Heuristic algorithm for 
Itinerary Planning (HIP). 

The remainder of the paper is organised as follows: 
Section II reviews works related to the research presented 
herein. Section III discusses the design and functionality of an 
algorithm for optimal itinerary planning. Simulation results are 
presented in Section IV, while Section 0 concludes the paper. 

II. RELATED WORK 
The problem of optimizing the itineraries of multi-hop 

MAs has not been sufficiently addressed in the literature. An 
attempt to address this issue has been reported in [7], which 
describes a performance model that allows agents to decide 
whether they should migrate to a site and communicate locally 
or the communication should be performed remotely. The 
decision is taken according to an ‘optimal design graph’; in 
most cases, it has been indicated that the optimal performance 
of an agent is achieved by a critical sequence of mixed remote 
procedure calls and agent migrations. 

Rubinstein et al. [8] evaluated the scalability of MA-
based management on large enterprise networks and compared 
the performance of this approach against that of centralized 
management paradigm. Recognizing the fact that “MA size 
increases with the number of visited nodes and, as a 
consequence, migration becomes difficult”, they proposed a 
strategy in which the MA returns to the management station to 
deliver its collected data, thereby reducing its size before 
visiting the remaining hosts. However, the possibility of using 
multiple MAs to perform management tasks is not investigated, 
nor is the issue of designing efficient agent itineraries. 

A work relevant to the research presented herein has been 
presented in [6], where Qi and Wang propose the employment 
of MA paradigm in wireless sensor networks. To optimize 
agents itinerary, they derived a Local Closest First (LCF) 
algorithm according to which each MA searches for the next 
destination with the shortest distance to its current location. 
However, their cost function formulation does not take into 
account potential partitioning of visited hosts in multiple 
clusters, which would affect the calculation of the distance 
matrix. The output of LCF-like algorithms though highly 
depends on the MAs original location, while the nodes left to 
be visited last are associated with high migration cost [3]; the 
reason for this is that they search for the next destination 
among the nodes adjacent to the MA’s current location, instead 
of looking at the ‘global’ network distance matrix. 

Most importantly though, both the works presented in [6] 
and [7], deal with the problem of constructing near-optimal 

MA itineraries for given sets of network nodes, where a single 
MA visits the whole set. Also, they do not address the 
fundamental problem of partitioning network nodes in optimal 
clusters. On the other hand, the algorithm presented in the 
following section deals with the optimal clustering problem 
and subsequently uses the algorithm’s output to construct near-
optimal agent itineraries. 

III. A HEURISTIC ALGORITHM FOR ITINERARY PLANNING (HIP) 
Interestingly, the problem of designing optimised 

itineraries exhibits many similarities with the Multi-point Line 
Topologies or Constrained Minimum Spanning Trees (CMST) 
problems. A CMST is a Minimum Spanning Tree (i.e. a 
connected graph without cycles, with the least total cost) with 
the additional constraint on the size of the subtrees rooted on 
the ‘center’ (there is an upper limit on the number of nodes 
included on each of the subtrees originated at the tree’s root). 
CMST algorithms are used in graph theory, with the main 
application field being network design problems [3]. In such 
problems, the objective is the optimal selection of the links 
connecting terminals to concentrators or directly to the network 
center, resulting in the minimum possible total cost. The output 
of CMST algorithms typically comprises topologies partitioned 
on several multi-point lines (or tree branches), where groups of 
terminals share a subtree to a specific node (center). 

Substituting the terms ‘network center’, ‘link’ and ‘multi-
point-line’ with the terms ‘manager station’, ‘migration’ and 
‘itinerary’ respectively, and following the observation that the 
output of CMST algorithms (group of multi-point lines rooted 
at the center) very much resembles a group of itineraries all 
originated at the manager station, the similarity of CMST and 
MA itinerary planning problems becomes evident. As a result, 
the idea of using algorithms originally devised for CMST 
problems in the application area of MA itinerary planning, 
naturally shapes up. CMST problems are NP-hard and as a 
result several heuristics have been proposed to efficiently deal 
with them. Our HIP (Heuristic for Itinerary Planning) 
algorithm adapts some basic principles of Esau-Williams (E-
W) algorithm [3] in the specific requirements of itinerary 
planning problems. 

The cost function used be E-W algorithm considers 
selected links cost as the only contributing factor to the total 
itinerary cost. This is certainly not adequate metric to evaluate 
the cost of agents itineraries ctotal. A key factor also affecting 
ctotal is the agent size; more importantly, the agent size 
increment rate [8], which depends on the amount of data 
collected by the MA on every host. Let us assume that a set of 
itineraries I = {I1, I2, …, In} is constructed, each assigned to an 
individual MA object. Each itinerary Ii includes a set of hosts 
to be sequentially visited by its respective MA: Ii = {N0, N1, .. , 
Nn, N0}. Note that all itineraries originate and terminate at the 
manager station host N0. The total cost per polling interval over 
all itineraries I  becomes: 
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where jd is the amount of data collected by the MA on 
the first j visited hosts, s the MA initial size and cj the cost of 
utilizing the link traversed by the MA on its jth hop, i.e. the link 
connecting hosts Nj and Nj+1 (cj is given by the network cost 
matrix). In principle, HIP algorithm aims at constructing a set 
of itineraries I minimizing the cost function of equation (1). 

In order to provide our HIP algorithm a fair performance 
metric we have also implemented the LCF algorithm, as 
described in [6]. For instance, for the network graph of Figure 
2a (which also presents link selection costs), the itinerary 
constructed by LCF is shown in Figure 2b. The sequence 
numbers enclosed within circles indicate the order in which 
individual links (or migrations) become accepted in the 
corresponding algorithm steps. 
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Figure 2. The MA itinerary planning problem: (a) The original network graph; 

(b) The output of LCF algorithm; (c) The output of HIP algorithm; (d) Two 
MA itineraries derived from the output of HIP algorithm 

Although in Figure 2 example, link selection costs are 
random, when testing the efficiency of HIP and LCF 
algorithms in real or simulated environments cost matrices are 
constructed so as to reflect the cost of using the underlying 
networking infrastructure, e.g. we accept the fact that it is 
‘cheaper’ for an MA to migrate within a high-speed LAN than 
over a low-bandwidth WAN link or a wireless connection. 

HIP algorithm takes into account the amount of data 
accumulated by MAs at each visited host (without loss of 
generality, we assume this is a constant d), a parameter ignored 
by LCF algorithm. Namely, it recognizes that traveling MAs 
become ‘heavier’ while visiting managed devices without 
returning back to the manager site to ‘unload’ their collected 
data [8]. Therefore, HIP restricts the number of migrations 
performed by individual MAs, thereby promoting the parallel 

employment of multiple cooperating MAs, each visiting a 
subset of managed devices. 

Specifically, the aim of HIP algorithm is, given a set of 
hosts N = {N0, N1, …, Nn-1}, the manager station N0 and the 
cost matrix C, to return a set of near-optimal itineraries I = {I0, 
.., Ik}, all originated and terminated at the manager station. 
Initially, we assume N  (= n) itineraries, as many as the 
network nodes: I0, .., In-1 , each containing a single host (N0, N1, 
…, Nn-1, respectively). On each algorithm step, two hosts i and 
j are ‘connected’ and, as a result, the itineraries including these 
hosts (I(i) and I(j) respectively) are merged into a single 
itinerary. 

As mentioned in Section 0, LCF-like algorithms usually 
fail as they tend to leave hosts located far from the center 
stranded since they prioritize the inclusion of hosts closed to 
last selected host. As a result, relatively expensive links are left 
last to be included in the solution, significantly increasing the 
overall cost. A way of dealing with this problem is to pay more 
attention to nodes far from the center, giving preference to 
links incident upon them. HIP algorithm accomplishes this by 
using the concept of ‘tradeoff function’ ti ,j associated with each 
link (i, j), defined by: 

0,,, )))()((( Nijiji CjIiIdct −+∗+=
      

(2) 

where 
0,NiC is the cost of connecting I(i) to the manager 

station N0. Initially, this is simply the cost of connecting node i 
directly to the manager station. As i becomes part of an 
itinerary containing other nodes, however, this changes to: 
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Equation (2) implies that the more hosts an itinerary 
already includes, the more difficult for a new host to become 
part of that itinerary, especially when d is large. Figure 3 lists a 
pseudo-code implementation of HIP algorithm. 

// n: Total number of hosts, c: cost matrix, d: data collected per 
host, N0: origin station */ 
HIP (n, c, d, N0)    

// I: the list of itineraries to be constructed  
initialize I    
current = N0 
/* N_connected: the number of hosts already included into 
an itinerary */ 
N_ connected = 0   
while (N_ connected < n) 

/* I(i): the itinerary where host i has already been 

included, )(iI :number of hosts included within I(i) */ 

compute 
0,,, )))()((( Nijiji CjIiIdct −+∗+= , 

where =∩ )()( jIiI ∅ and 
00 ,)(, min NkiIkNi cC

∈
=  

merge (I(i), I(j)), for (i, j) minimizing the tradeoff 
function ( jiji

t ,,
min ) 

N_ connected ++ 
return I 

Figure 3. Pseudocode implementation of HIP algorithm 



 

HIP algorithm execution steps for the test network graph 
of Figure 2a are demonstrated in Figure 4, where the links 
(agent migrations) selected are highlighted; we assume that the 
amount of data collected per host is d = 1. On every algorithm 
step, a pair (i, j) minimizing ti, j is selected and, following that, 
the itineraries containing hosts i and j are merged into a single 
itinerary. This process is repeated until a set if itineraries 
including all hosts is constructed. Figure 4 presents the values 
of ti, j for pairs (i, j) minimizing the tradeoff function for each 
host i ( jij

t ,min ); the pair (i, j) that minimizes ti, j over all hosts 

( jiji
t ,,

min ) is then selected. 

 

Step 1 
t13 = 5+(1+1)-7 = 0 
t24 = 7+(1+1)-8 = 1 
t31 = 5+(1+1)-11 = -4 
t40 = 4+(1+1)-4 = 2 
t54 = 6+(1+1)-14 = -6 
t64 = 7+(1+1)-13= -4 

Step 2 
t13 = 0 
t24 = 7+(1+2)-8 = 2 
t31 = -4 
t40 = 4+(2+1)-4 = 3 
t51 = 12+(2+1)-4 = 11 
t64 = 7+(1+2)-13= -3 

Step 3 
t10 = 7+(2+1)-7 = 3  
t24 = 2 
t34 = 8+(2+2)-7 = 5 
t40 = 3 
t51 = 12+(2+2)-4 = 12 
t64 = -3 

Step 4 
t10 = 3 
t24 = 7+(1+3)-8 = 3 
t34 = 8+(2+3)-7 = 6 
t40 = 4+(3+1)-4 = 4 
t51 = 12+(3+2)-4 = 13 
t62 = 10+(3+1)-4= 10 

Step 5 
t14 = 10+(3+3)-0 = 16 
t24 = 3 
t34 = 8+(3+3)-0 = 14 
t40 = 4+(3+3)-4 = 6 
t51 = 12+(3+3)-4 = 14 
t62 = 10 

Step 6 
t14 = 10+(3+4)-0 = 17 
t20 = 8+(4+3)-4 = 11 
t34 = 8+(3+4)-0 = 15 
t40 = 4+(4+3)-4 = 7 
t51 = 12+(4+3)-4 = 15 
t61 = 12+(4+3)-4 = 15 

Figure 4. HIP algorithm execution steps for the network of Figure 2a 

For instance, on step one, the pair minimizing ti, j is (i, j) 
= (5, 4), hence itineraries including hosts 5 and 4 are merged 
forming: }4,5{)4()5( =∪ II . On next step, ti, j values are re-
calculated, for instance, 

0,24,24,2 ))4()2((*1( NcIIct −++= = 7+(1+2)-8 = 2 (note 
that the set elements of the itinerary including host 4 have 
increased: I(4) = {5, 4} ⇒ 2)4( =I ). At the end of step 6, two 
sets are constructed, forming two subtrees rooted at the 
manager host: {6, 5, 4, 2} and {3, 1} (see Figure 2c). It is then 
a trivial task to form the itinerary plan of the two MAs:  I1 = 
{0, 5, 6, 2, 4, 0} and I2 = {0, 3, 1, 0} (see Figure 2d). 

IV. EXPERIMENTAL EVALUATION 

To prove HIP algorithm validity and effectiveness, we 
have implemented and incorporated the algorithm as an add-in 
module, termed the Itinerary Scheduler Module (ISM), into our 
research prototype presented in [2]. ISM has been implemented 
in Java programming language; ISM executes the HIP 
algorithm and informs the manager application on the number 
of MAs that need to be instantiated and their respective 

itineraries. Agent itineraries are reconstructed whenever a new 
managed device is ‘discovered’. LCF algorithm has also been 
simulated for comparison purposes. 

HIP has only been tested on realistic network monitoring 
application scenarios; yet, it suits any application field which 
benefits from distribution of intelligence and processing 
overhead offered by MA paradigm. The experimental testbed 
includes several Windows NT and Linux Red Hat v. 6.1 
stations. The managed network comprises two 10Mbps LANs 
connected through a 1Mbps leased line (see Figure 5); the first 
LAN (where the manager application executes) hosts 5 
managed elements while the second 10 elements. The network 
traffic generated by MA migrations has been measured using 
the WinDump network analyser [9]. Network monitoring data 
are collected through interacting with SNMP agents hosted by 
managed elements. 

The cost matrix used by HIP algorithm reflects the cost of 
using network resources (the bandwidth of LANs medium is 
ten times larger than the bandwidth of the leased line): 
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Figure 5. HIP execution on the experimental testbed. (a) The remote subnet 
hosts 5 managed devices all included in a single managed domain; (b) The 

remote subnet hosts 10 managed devices separated in two managed domains 

The performance of HIP and LCF algorithms has been 
compared against an SNMP implementation [1]. The 
application scenario involves polling managed elements for the 
contents of tcpConnTable MIB-II table [5], which lists 
information about all TCP connections of a host (a 
management information base, MIB, is a formal description of 
the network objects that can be managed using SNMP; MIB-II 
is supported by virtually all SNMP-compliant network devices 
in the IP world). In the SNMP-based implementation, 
individual MIB tables are remotely retrieved through 
exchanging successive request/response messages, each 
retrieving a table row. Every tcpConnTable row contains 5 
values (columns) [5], while managed elements stored 
information about 46 TCP connections on average, i.e. 
included 46 table rows (46 × 5 values in total). 



 

In MA-based approaches, travelling MAs obtain table 
values through local interaction with legacy systems; table 
contents are then compressed and encapsulated within MAs 
state. In contrast with LCF algorithm, HIP involves the parallel 
execution of multiple MA objects which depends on network 
size. For instance, when 5 managed elements are hosted in the 
remote subnet, two managed domains are created, each 
assigned to an individual MA (Figure 5a). However, when 
managed elements increase to 10, HIP separates them into two 
distinct managed domains and engages an additional MA into 
polling operation (Figure 5b). The network overhead 
experiment parameters associated with our experiments have 
been measured by WinDump tool [9] and presented in Table I. 

TABLE I. NETWORK OVERHEAD PARAMETERS  

Parameter Value 

MA initial size 1,08 KB 
Average SNMP 
request/response packet size 
(including UDP header) 

90 bytes 

Average SNMP packet 
increment for each   additional 
requested value 

17 bytes 

MA state size increment per 
table sample (compressed data) 98 bytes 

Experimental results are presented in Figure 6. The 
overall management cost has been calculated according to the 
cost function of equation (1), where cost matrix coefficients are 
given in equation (4). 

Figure 6a compares the management cost of SNMP 
against MA-based implementations, as a function of the 
number of polled devices, for the network monitoring 
application scenario described above. SNMP-based polling 
does not scale well as it involves heavy usage of the relatively 
expensive interconnection link, when increasing the number of 
polled devices located in the remote subnet (managed elements 
6-15). In contrast LCF and HIP algorithms require usage of the 
interconnecting link only when an MA migrates/returns 
to/from the remote subnet. HIP presents superior performance 
since the MA(s) assigned to the remote subnet managed 
domain(s) migrate through the low-bandwidth link with empty 
state; in the LCF-based solution, the unique MA first visits all 
the elements local to the manager host subnet and then 
migrates to the remote subnet (at migration time though, the 
MA has already collected an amount of data, therefore 
increasing network traffic). 
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Figure 6. (a) Management cost of SNMP monitoring (per polling interval) 
against HIP and LCF implementations for varying managed network sizes; (b) 
Management cost of HIP vs. LCF as a function of the amount of collected data 

per managed element 

In Figure 6b, experiment parameters are adjusted to 
examine the effect of collected data amounts in the overall 
cost. The experiments have been performed on the test network 
of Figure 5b (15 managed elements). Apparently, HIP 
performance gain over LCF increases as the amount of data 
collected from each managed element increases. HIP algorithm 
separates remote subnet hosts into 2, 3 and 4 ‘virtual’ managed 
domains as data sample size increases to 100, 500 and 2000 
bytes respectively. 

V. CONCLUSIONS & ONGOING RESEARCH 
Methodologies for designing efficient MA itineraries 

have received little attention in the literature. In addition to the 
number of hops realised by a multi-hop agents, the order in 
which MAs visit their assigned elements (i.e. MA itineraries) is 
also a crucial factor affecting the overall cost. 

This article introduces an algorithm that borrows ideas 
and concepts from the area of network design to address the 
issue of MA optimal itinerary planning. The HIP algorithm not 
only suggests the appropriate number of MAs that should be 
employed in parallel to minimise the associated cost but also 
constructs near-optimal itineraries for each of them. Ongoing 
research involves simulation study of HIP algorithm in large 
enterprise environments. 
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