

Optimal Itinerary Planning for Mobile Agents-Based
Management

Dr. Damianos Gavalas
Department of Cultural Technology and Communication

University of the Aegean, Mytilini, Lesvos Island, Greece
E-mail: dgavalas@aegean.gr

Abstract - Proposed management architectures, incorporating
mobile agent (MA) technology, fail to address scalability
problems, when monitoring tasks employing multi-hop agents are
considered. This is because they lack mechanisms which can
guarantee that the agents itinerary is optimised so as to minimise
migration traffic and round-trip latency. Herein, we propose an
algorithm that adapts methods usually applied for addressing
network design problems in the problematic of MA itinerary
planning. The algorithm not only suggests the optimal number of
MAs that minimise the overall cost but also constructs optimal
itineraries for each of them. The algorithm implementation has
been integrated into our MA framework research prototype while
its validity and competence has been verified through simulation
results over large enterprise networks.*

I. INTRODUCTION
Despite its wide deployment base, the IETF Simple

Network Management Protocol SNMP is known to exhibit
serious scalability problems, result of client/server paradigm it
follows. These problems have motivated a trend towards
distributed management intelligence that represents a rational
approach to overcome the limitations of centralised NSM. A
new trend in NSM involves using mobile agents (MAs) [2] to
manage distributed network systems [4][8]. An MA can be
used to locally retrieve and filter management data, monitor
systems health and networking conditions in distributed
environments. In particular, management tasks are assigned to
an agent, which delegates and executes management logic in a
distributed and autonomous fashion. After completing these
tasks, the results are either communicated through a messaging
mechanism or carried back to the manager by the MA.

Delegation of management logic may be realized with
agents bound to single-hop mobility; the agents move from the
managing node to remote managed nodes, where they statically
execute their tasks. What is not commonly exploited in
management is the MA multiple-hop capability, where agents
may move several times as they adapt to changing
circumstances. While single-hop mobility can improve
flexibility and scalability in the context of relatively static
networked systems, it is the multiple-hop capability offered by
MAs that needs to be exploited to meet the requirements of
future networked systems, i.e. large scale and dynamics [4]. In
addition, network monitoring based on multi-hop (itinerant)
MAs is advantageous for short-term monitoring tasks and also

* The research work presented herein has been co-funded by 75% from EU and

25% from the Greek government under the framework of the Education and
Initial Vocational Training II, Programme Archimedes.

in cases that a global (domain)-level rather than a local
(device)-level view of managed resources is required (for a
complete discussion of these issues, the interested reader may
refer to [2] and [4]).

However, while in single-hop mobility, agent itinerary
control is straightforward (the itinerary is restricted to the
single destination host), this is not the case in multi-hop
mobility, where slight variations on the set of visited hosts or
even on the order that a specific set of nodes is visited may
result in dramatic changes of the overall trip latency and
migration traffic. In this article, we focus on multi-hop
mobility, aiming at devising methods to optimize MA
itineraries.

In network monitoring applications, using a single MA
object launched from the manager platform that sequentially
visits all the managed elements, regardless of the underlying
topology may actually lead to performance worse than the
conventional SNMP-based approach. The performance further
declines, when the monitoring MA collects monitoring data
from multiple subnets, often interconnected by low-bandwidth
links. In such cases, the traffic associated with management
tasks typically traverses several network segments and, when
summed up, results in increased bandwidth waste [8].

6

 A

B C

 D

Bridge

Manager

 H

Router

Router

 F

 E

 G

11

2

3

4

3

2

Subnet A

Subnet B

Remote LAN

5 4

(b)

Figure 1. Optimized partitioning of the network into two management domains

This inefficient approach, known as ‘flat’ MA-based
monitoring [2], presents serious scalability problems: in large
networks the round-trip delay of the MA greatly increases as
the overall travel time depends on the number of hops realized
by the MA and also the network overhead imposed by the MA
transfers grows exponentially with the network size [2][8].

A rational approach to overcome such scalability
problems is to partition the managed network into several
logical/physical domains. For instance, in Figure 1, an MA
object polls the devices of the remote LAN, whereas a second
MA is assigned to the subnet local to the manager host as well
as to another subnet, which is part of the same LAN. Through

management traffic localization, unnecessary usage of
expensive networking resources is restricted, thereby
improving management scalability. However, the scenario
illustrated in Figure 1 represents an ideal case in terms of the
WAN link utilisation. That is because the link is traversed only
twice per polling interval. A slightly different partitioning
scheme or alteration on MAs itinerary would dramatically
increase total migration cost. Apparently, even when specific
partitioning criteria are followed, the design of MA itineraries
lacks a mechanism that would guarantee minimal use of
network resources; hence an algorithm for itinerary planning is
required. In section III, we describe a Heuristic algorithm for
Itinerary Planning (HIP).

The remainder of the paper is organised as follows:
Section II reviews works related to the research presented
herein. Section III discusses the design and functionality of an
algorithm for optimal itinerary planning. Simulation results are
presented in Section IV, while Section 0 concludes the paper.

II. RELATED WORK
The problem of optimizing the itineraries of multi-hop

MAs has not been sufficiently addressed in the literature. An
attempt to address this issue has been reported in [7], which
describes a performance model that allows agents to decide
whether they should migrate to a site and communicate locally
or the communication should be performed remotely. The
decision is taken according to an ‘optimal design graph’; in
most cases, it has been indicated that the optimal performance
of an agent is achieved by a critical sequence of mixed remote
procedure calls and agent migrations.

Rubinstein et al. [8] evaluated the scalability of MA-
based management on large enterprise networks and compared
the performance of this approach against that of centralized
management paradigm. Recognizing the fact that “MA size
increases with the number of visited nodes and, as a
consequence, migration becomes difficult”, they proposed a
strategy in which the MA returns to the management station to
deliver its collected data, thereby reducing its size before
visiting the remaining hosts. However, the possibility of using
multiple MAs to perform management tasks is not investigated,
nor is the issue of designing efficient agent itineraries.

A work relevant to the research presented herein has been
presented in [6], where Qi and Wang propose the employment
of MA paradigm in wireless sensor networks. To optimize
agents itinerary, they derived a Local Closest First (LCF)
algorithm according to which each MA searches for the next
destination with the shortest distance to its current location.
However, their cost function formulation does not take into
account potential partitioning of visited hosts in multiple
clusters, which would affect the calculation of the distance
matrix. The output of LCF-like algorithms though highly
depends on the MAs original location, while the nodes left to
be visited last are associated with high migration cost [3]; the
reason for this is that they search for the next destination
among the nodes adjacent to the MA’s current location, instead
of looking at the ‘global’ network distance matrix.

Most importantly though, both the works presented in [6]
and [7], deal with the problem of constructing near-optimal

MA itineraries for given sets of network nodes, where a single
MA visits the whole set. Also, they do not address the
fundamental problem of partitioning network nodes in optimal
clusters. On the other hand, the algorithm presented in the
following section deals with the optimal clustering problem
and subsequently uses the algorithm’s output to construct near-
optimal agent itineraries.

III. A HEURISTIC ALGORITHM FOR ITINERARY PLANNING (HIP)
Interestingly, the problem of designing optimised

itineraries exhibits many similarities with the Multi-point Line
Topologies or Constrained Minimum Spanning Trees (CMST)
problems. A CMST is a Minimum Spanning Tree (i.e. a
connected graph without cycles, with the least total cost) with
the additional constraint on the size of the subtrees rooted on
the ‘center’ (there is an upper limit on the number of nodes
included on each of the subtrees originated at the tree’s root).
CMST algorithms are used in graph theory, with the main
application field being network design problems [3]. In such
problems, the objective is the optimal selection of the links
connecting terminals to concentrators or directly to the network
center, resulting in the minimum possible total cost. The output
of CMST algorithms typically comprises topologies partitioned
on several multi-point lines (or tree branches), where groups of
terminals share a subtree to a specific node (center).

Substituting the terms ‘network center’, ‘link’ and ‘multi-
point-line’ with the terms ‘manager station’, ‘migration’ and
‘itinerary’ respectively, and following the observation that the
output of CMST algorithms (group of multi-point lines rooted
at the center) very much resembles a group of itineraries all
originated at the manager station, the similarity of CMST and
MA itinerary planning problems becomes evident. As a result,
the idea of using algorithms originally devised for CMST
problems in the application area of MA itinerary planning,
naturally shapes up. CMST problems are NP-hard and as a
result several heuristics have been proposed to efficiently deal
with them. Our HIP (Heuristic for Itinerary Planning)
algorithm adapts some basic principles of Esau-Williams (E-
W) algorithm [3] in the specific requirements of itinerary
planning problems.

The cost function used be E-W algorithm considers
selected links cost as the only contributing factor to the total
itinerary cost. This is certainly not adequate metric to evaluate
the cost of agents itineraries ctotal. A key factor also affecting
ctotal is the agent size; more importantly, the agent size
increment rate [8], which depends on the amount of data
collected by the MA on every host. Let us assume that a set of
itineraries I = {I1, I2, …, In} is constructed, each assigned to an
individual MA object. Each itinerary Ii includes a set of hosts
to be sequentially visited by its respective MA: Ii = {N0, N1, .. ,
Nn, N0}. Note that all itineraries originate and terminate at the
manager station host N0. The total cost per polling interval over
all itineraries I becomes:

 Ctotal = ∑∑
=

−

=

∗+
I

i

I

j
jj

i

csd
1

1

0

)((1)

where jd is the amount of data collected by the MA on
the first j visited hosts, s the MA initial size and cj the cost of
utilizing the link traversed by the MA on its jth hop, i.e. the link
connecting hosts Nj and Nj+1 (cj is given by the network cost
matrix). In principle, HIP algorithm aims at constructing a set
of itineraries I minimizing the cost function of equation (1).

In order to provide our HIP algorithm a fair performance
metric we have also implemented the LCF algorithm, as
described in [6]. For instance, for the network graph of Figure
2a (which also presents link selection costs), the itinerary
constructed by LCF is shown in Figure 2b. The sequence
numbers enclosed within circles indicate the order in which
individual links (or migrations) become accepted in the
corresponding algorithm steps.

(a)

0

5

4
3

21

7 8

5 7

13
6

14

12 8

14

10
11

(a)

12
4

11

6

10

7

14

15

12

13

manager
station

0

5

4
3

21

manager
station

6

1

(b)

2
3

4 5

6
7

0

5

4
3

21

manager
station

6

(c)

1

2

3

4

5

6

0

5

4
3

21

manager
station

6

(d)

1

2

3

1

2

3

4

5

Figure 2. The MA itinerary planning problem: (a) The original network graph;

(b) The output of LCF algorithm; (c) The output of HIP algorithm; (d) Two
MA itineraries derived from the output of HIP algorithm

Although in Figure 2 example, link selection costs are
random, when testing the efficiency of HIP and LCF
algorithms in real or simulated environments cost matrices are
constructed so as to reflect the cost of using the underlying
networking infrastructure, e.g. we accept the fact that it is
‘cheaper’ for an MA to migrate within a high-speed LAN than
over a low-bandwidth WAN link or a wireless connection.

HIP algorithm takes into account the amount of data
accumulated by MAs at each visited host (without loss of
generality, we assume this is a constant d), a parameter ignored
by LCF algorithm. Namely, it recognizes that traveling MAs
become ‘heavier’ while visiting managed devices without
returning back to the manager site to ‘unload’ their collected
data [8]. Therefore, HIP restricts the number of migrations
performed by individual MAs, thereby promoting the parallel

employment of multiple cooperating MAs, each visiting a
subset of managed devices.

Specifically, the aim of HIP algorithm is, given a set of
hosts N = {N0, N1, …, Nn-1}, the manager station N0 and the
cost matrix C, to return a set of near-optimal itineraries I = {I0,
.., Ik}, all originated and terminated at the manager station.
Initially, we assume N (= n) itineraries, as many as the
network nodes: I0, .., In-1 , each containing a single host (N0, N1,
…, Nn-1, respectively). On each algorithm step, two hosts i and
j are ‘connected’ and, as a result, the itineraries including these
hosts (I(i) and I(j) respectively) are merged into a single
itinerary.

As mentioned in Section 0, LCF-like algorithms usually
fail as they tend to leave hosts located far from the center
stranded since they prioritize the inclusion of hosts closed to
last selected host. As a result, relatively expensive links are left
last to be included in the solution, significantly increasing the
overall cost. A way of dealing with this problem is to pay more
attention to nodes far from the center, giving preference to
links incident upon them. HIP algorithm accomplishes this by
using the concept of ‘tradeoff function’ ti ,j associated with each
link (i, j), defined by:

0,,,)))()(((Nijiji CjIiIdct −+∗+=

(2)

where
0,NiC is the cost of connecting I(i) to the manager

station N0. Initially, this is simply the cost of connecting node i
directly to the manager station. As i becomes part of an
itinerary containing other nodes, however, this changes to:

 CkiIkNi cC ,)(, min
0 ∈
=

(3)

Equation (2) implies that the more hosts an itinerary
already includes, the more difficult for a new host to become
part of that itinerary, especially when d is large. Figure 3 lists a
pseudo-code implementation of HIP algorithm.

// n: Total number of hosts, c: cost matrix, d: data collected per
host, N0: origin station */
HIP (n, c, d, N0)

// I: the list of itineraries to be constructed
initialize I
current = N0
/* N_connected: the number of hosts already included into
an itinerary */
N_ connected = 0
while (N_ connected < n)

/* I(i): the itinerary where host i has already been

included,)(iI :number of hosts included within I(i) */

compute
0,,,)))()(((Nijiji CjIiIdct −+∗+= ,

where =∩)()(jIiI ∅ and
00 ,)(, min NkiIkNi cC

∈
=

merge (I(i), I(j)), for (i, j) minimizing the tradeoff
function (jiji

t ,,
min)

N_ connected ++
return I

Figure 3. Pseudocode implementation of HIP algorithm

HIP algorithm execution steps for the test network graph
of Figure 2a are demonstrated in Figure 4, where the links
(agent migrations) selected are highlighted; we assume that the
amount of data collected per host is d = 1. On every algorithm
step, a pair (i, j) minimizing ti, j is selected and, following that,
the itineraries containing hosts i and j are merged into a single
itinerary. This process is repeated until a set if itineraries
including all hosts is constructed. Figure 4 presents the values
of ti, j for pairs (i, j) minimizing the tradeoff function for each
host i (jij

t ,min); the pair (i, j) that minimizes ti, j over all hosts

(jiji
t ,,

min) is then selected.

Step 1
t13 = 5+(1+1)-7 = 0
t24 = 7+(1+1)-8 = 1
t31 = 5+(1+1)-11 = -4
t40 = 4+(1+1)-4 = 2
t54 = 6+(1+1)-14 = -6
t64 = 7+(1+1)-13= -4

Step 2
t13 = 0
t24 = 7+(1+2)-8 = 2
t31 = -4
t40 = 4+(2+1)-4 = 3
t51 = 12+(2+1)-4 = 11
t64 = 7+(1+2)-13= -3

Step 3
t10 = 7+(2+1)-7 = 3
t24 = 2
t34 = 8+(2+2)-7 = 5
t40 = 3
t51 = 12+(2+2)-4 = 12
t64 = -3

Step 4
t10 = 3
t24 = 7+(1+3)-8 = 3
t34 = 8+(2+3)-7 = 6
t40 = 4+(3+1)-4 = 4
t51 = 12+(3+2)-4 = 13
t62 = 10+(3+1)-4= 10

Step 5
t14 = 10+(3+3)-0 = 16
t24 = 3
t34 = 8+(3+3)-0 = 14
t40 = 4+(3+3)-4 = 6
t51 = 12+(3+3)-4 = 14
t62 = 10

Step 6
t14 = 10+(3+4)-0 = 17
t20 = 8+(4+3)-4 = 11
t34 = 8+(3+4)-0 = 15
t40 = 4+(4+3)-4 = 7
t51 = 12+(4+3)-4 = 15
t61 = 12+(4+3)-4 = 15

Figure 4. HIP algorithm execution steps for the network of Figure 2a

For instance, on step one, the pair minimizing ti, j is (i, j)
= (5, 4), hence itineraries including hosts 5 and 4 are merged
forming: }4,5{)4()5(=∪ II . On next step, ti, j values are re-
calculated, for instance,

0,24,24,2))4()2((*1(NcIIct −++= = 7+(1+2)-8 = 2 (note
that the set elements of the itinerary including host 4 have
increased: I(4) = {5, 4} ⇒ 2)4(=I). At the end of step 6, two
sets are constructed, forming two subtrees rooted at the
manager host: {6, 5, 4, 2} and {3, 1} (see Figure 2c). It is then
a trivial task to form the itinerary plan of the two MAs: I1 =
{0, 5, 6, 2, 4, 0} and I2 = {0, 3, 1, 0} (see Figure 2d).

IV. EXPERIMENTAL EVALUATION

To prove HIP algorithm validity and effectiveness, we
have implemented and incorporated the algorithm as an add-in
module, termed the Itinerary Scheduler Module (ISM), into our
research prototype presented in [2]. ISM has been implemented
in Java programming language; ISM executes the HIP
algorithm and informs the manager application on the number
of MAs that need to be instantiated and their respective

itineraries. Agent itineraries are reconstructed whenever a new
managed device is ‘discovered’. LCF algorithm has also been
simulated for comparison purposes.

HIP has only been tested on realistic network monitoring
application scenarios; yet, it suits any application field which
benefits from distribution of intelligence and processing
overhead offered by MA paradigm. The experimental testbed
includes several Windows NT and Linux Red Hat v. 6.1
stations. The managed network comprises two 10Mbps LANs
connected through a 1Mbps leased line (see Figure 5); the first
LAN (where the manager application executes) hosts 5
managed elements while the second 10 elements. The network
traffic generated by MA migrations has been measured using
the WinDump network analyser [9]. Network monitoring data
are collected through interacting with SNMP agents hosted by
managed elements.

The cost matrix used by HIP algorithm reflects the cost of
using network resources (the bandwidth of LANs medium is
ten times larger than the bandwidth of the leased line):

⎩
⎨
⎧

=
LANsdifferent on located are j and i when ,10

LAN same on the located are j and i when ,1
, jic (4)

M

E

E

E

E E

MD_1

E

E

E

E E

M: Manager station
E: Managed network element
MD: Managed domain

1 Mbps link MD_2

(a)

M

E

E

E

E E

MD_1

E

E

E

E E

M: Manager station
E: Managed network element
MD: Managed domain

1 Mbps link

MD_2

E

E

E

E E

MD_3

(b)
Figure 5. HIP execution on the experimental testbed. (a) The remote subnet
hosts 5 managed devices all included in a single managed domain; (b) The

remote subnet hosts 10 managed devices separated in two managed domains

The performance of HIP and LCF algorithms has been
compared against an SNMP implementation [1]. The
application scenario involves polling managed elements for the
contents of tcpConnTable MIB-II table [5], which lists
information about all TCP connections of a host (a
management information base, MIB, is a formal description of
the network objects that can be managed using SNMP; MIB-II
is supported by virtually all SNMP-compliant network devices
in the IP world). In the SNMP-based implementation,
individual MIB tables are remotely retrieved through
exchanging successive request/response messages, each
retrieving a table row. Every tcpConnTable row contains 5
values (columns) [5], while managed elements stored
information about 46 TCP connections on average, i.e.
included 46 table rows (46 × 5 values in total).

In MA-based approaches, travelling MAs obtain table
values through local interaction with legacy systems; table
contents are then compressed and encapsulated within MAs
state. In contrast with LCF algorithm, HIP involves the parallel
execution of multiple MA objects which depends on network
size. For instance, when 5 managed elements are hosted in the
remote subnet, two managed domains are created, each
assigned to an individual MA (Figure 5a). However, when
managed elements increase to 10, HIP separates them into two
distinct managed domains and engages an additional MA into
polling operation (Figure 5b). The network overhead
experiment parameters associated with our experiments have
been measured by WinDump tool [9] and presented in Table I.

TABLE I. NETWORK OVERHEAD PARAMETERS

Parameter Value

MA initial size 1,08 KB
Average SNMP
request/response packet size
(including UDP header)

90 bytes

Average SNMP packet
increment for each additional
requested value

17 bytes

MA state size increment per
table sample (compressed data) 98 bytes

Experimental results are presented in Figure 6. The
overall management cost has been calculated according to the
cost function of equation (1), where cost matrix coefficients are
given in equation (4).

Figure 6a compares the management cost of SNMP
against MA-based implementations, as a function of the
number of polled devices, for the network monitoring
application scenario described above. SNMP-based polling
does not scale well as it involves heavy usage of the relatively
expensive interconnection link, when increasing the number of
polled devices located in the remote subnet (managed elements
6-15). In contrast LCF and HIP algorithms require usage of the
interconnecting link only when an MA migrates/returns
to/from the remote subnet. HIP presents superior performance
since the MA(s) assigned to the remote subnet managed
domain(s) migrate through the low-bandwidth link with empty
state; in the LCF-based solution, the unique MA first visits all
the elements local to the manager host subnet and then
migrates to the remote subnet (at migration time though, the
MA has already collected an amount of data, therefore
increasing network traffic).

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Managed Elements

M
an

ag
em

en
t C

os
t

SNMP LCF HIP

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

10 30 50 100 150 200 500 1000 2000
d (bytes)

M
an

ag
em

en
t C

os
t

LCF HIP

Figure 6. (a) Management cost of SNMP monitoring (per polling interval)
against HIP and LCF implementations for varying managed network sizes; (b)
Management cost of HIP vs. LCF as a function of the amount of collected data

per managed element

In Figure 6b, experiment parameters are adjusted to
examine the effect of collected data amounts in the overall
cost. The experiments have been performed on the test network
of Figure 5b (15 managed elements). Apparently, HIP
performance gain over LCF increases as the amount of data
collected from each managed element increases. HIP algorithm
separates remote subnet hosts into 2, 3 and 4 ‘virtual’ managed
domains as data sample size increases to 100, 500 and 2000
bytes respectively.

V. CONCLUSIONS & ONGOING RESEARCH
Methodologies for designing efficient MA itineraries

have received little attention in the literature. In addition to the
number of hops realised by a multi-hop agents, the order in
which MAs visit their assigned elements (i.e. MA itineraries) is
also a crucial factor affecting the overall cost.

This article introduces an algorithm that borrows ideas
and concepts from the area of network design to address the
issue of MA optimal itinerary planning. The HIP algorithm not
only suggests the appropriate number of MAs that should be
employed in parallel to minimise the associated cost but also
constructs near-optimal itineraries for each of them. Ongoing
research involves simulation study of HIP algorithm in large
enterprise environments.

REFERENCES
[1] Adventnet, http://www.adventnet.com.
[2] D. Gavalas, “Mobile Software Agents for Network Monitoring and

Performance Management”, PhD Thesis, University of Essex, UK,
2001.

[3] A.Kershenbaum, “Telecommunications Network Design Algorithms”,
McGraw-Hill, 1993.

[4] A. Liotta, G. Pavlou, G. Knight, “Exploiting Agent Mobility For Large
Scale Network Monitoring”, IEEE Network, 16(3), pp. 7-15, 2002.

[5] K. McCloghrie, M. Rose, “Management Information Base for Network
Management of TCP/IP-based Internets: MIB-II”, RFC 1213, 1991.

[6] H. Qi, F. Wang, “Optimal itinerary analysis for mobile agents in ad
hoc wireless sensor networks”, Proc. of the 15th IEEE International
Conference on Wireless Communications, 2001.

[7] E. Reuter, F. Baude, “System and Network Management Itineraries for
Mobile Agents”, Proc. of MATA’02, pp 227-238, 2002.

[8] M.G. Rubinstein, O. C. Duarte, G. Pujolle, “Scalability of a Mobile
Agents Based Network Management Application”, Journal of
Communications and Networks, 5(3), 2003.

[9] WinDump: tcpdump for Windows, http://windump.polito.it/
 s = 1.08 KB
 d = 98 bytes

 s = 1.08 KB
15 managed E

(a)

(b)

2 MAs 3 MAs

4 MAs

