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Abstract - Proposed distributed management architectures, incorporating mobile agent (MA) technology, have 
not adequately management scalability problems, when monitoring tasks requiring the employment of itinerant 
agents is considered. Mechanisms building optimal agents itinerary are needed to minimise the total migration 
cost in terms of the round-trip latency and the incurred traffic. This is of particular importance when the 
management of networks spanning multiple subnets is involved. On this direction, we have designed and 
implemented an algorithm which adapts methods usually applied for solving network design problems in the 
specific problematic of MA itinerary planning. The algorithm not only suggests the optimal number of MAs that 
minimise the overall cost but also constructs optimal itineraries for each of them. The algorithm implementation 
has been integrated into our MA framework research prototype and tested into real network environments, 
demonstrating significant management cost savings. 

1. INTRODUCTION 

The increasing complexity of networks has motivated the evolution of existing management models. 
These models traditionally adopt a centralised, Client/Server (CS) approach wherein the functionality of 
management entities is rigidly defined at design time. Concerning formal standardisation approaches in IP 
Network & Systems Management (NSM), the scene has been dominated, during the past decade, by the 
IETF Simple Network Management Protocol (SNMP)[13]. Despite its wide deployment base, SNMP follows 
the CS paradigm, typically associated with massive transfers of management data, which cause considerable 
strain on network throughput and processing bottlenecks at the manager host. The situation seriously 
deteriorates when considering managed networks that span multiple subnets or, even worse, include remote 
subnets connected to the manager site through expensive, low-bandwidth links. In such cases, the traffic 
associated with management tasks typically traverses several network segments and, when summed up, 
results in increased bandwidth waste [12]. 

These problems have motivated a trend towards distributed management intelligence that represents a 
rational approach to overcome the limitations of centralised NSM. The new trend in NSM involves using 
mobile agents (MAs) [3] to manage distributed network systems [2][8][9][10]. An MA can be used to locally 
retrieve and filter management data to monitor systems health and networking conditions in distributed 
environments. In particular, management tasks are assigned to an agent which delegates and executes 
management logic in a distributed and autonomous fashion. After completing these tasks, the results are 
either communicated through a messaging mechanism or carried back to the manager by the MA. 

Delegation of management logic may be realized with agents bound to single-hop mobility; the agents 
move from the managing node to remote managed nodes, where they statically execute their tasks [1]. What 
is not commonly exploited in management is the MA multiple-hop capability, where agents may move 
several times as they adapt to changing circumstances. While single-hop mobility can improve flexibility and 
scalability in the context of relatively static networked systems, it is the multiple-hop capability offered by 
MAs that needs to be exploited to meet the requirements of future networked systems, i.e. large scale and 
dynamics [8]. In addition, network monitoring based on multi-hop (itinerant) MAs is also advantageous for 
the following reasons (for a complete discussion of these issues, the interested reader may refer to [4]): 

 Short-term distributed tasks: When distributed tasks are intended to run over a set of devices for a 
relatively short period, it is more efficient to use a multi-hop MA to sequentially visit the devices rather 
than broadcasting mobile code and obtain the results from every network element (NE). That also 
reduces the code deployment time. 

 Local vs. global semantic compression of data: Single-hop mobility only involves a level of data filtering 
limited to a single device, and local to it. The itinerant MA paradigm, in contrast, enables global 
semantic filtering of data across all the network devices visited [9]. 
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 Device vs. Domain-level view: In parallel to the previous argument, approaches based on single-hop 
mobility imply a local view of the device where the distributed code statically resides. Itinerant MAs 
offer a more simple solution to this problem as they can perform data correlation through sequentially 
visiting the entire set of devices. 

However, while in single-hop mobility, agent itinerary control is straightforward (the itinerary is 
restricted to the single destination host), this is not the case in multi-hop mobility, where slight variations on 
the set of visited hosts or even on the order that a specific set of nodes is visited may result in dramatic 
changes of the overall trip latency and migration traffic. In this article, we focus on multi-hop mobility, 
aiming at devising methods to optimise MA itineraries. 

The remainder of the paper is organised as follows: Section 2 explains the importance of optimal agent 
itinerary planning in management applications. Section 3 discusses the background and the functionality of 
an algorithm that addresses this issue, while Section 4 focuses on the implementation details and Section 5 
presents experimental results. Section 6 reviews research projects of relevance to our work and Section 7 
concludes the paper and describes ongoing research. 

2. IMPORTANCE OF ITINERARY PLANNING IN AGENT-BASED MONITORING 

Despite the great potential of exploiting agent mobility in distributed applications, a naive use of MAs 
may lead to a highly inefficient design. In network monitoring applications for instance, using a single MA 
object launched from the manager platform that sequentially visits all the managed NEs, regardless of the 
underlying topology may actually lead to performance worse than the conventional SNMP-based approach 
(see Figure 1a). The performance further declines, when the monitoring MA collects monitoring data from 
multiple subnets, often interconnected by low-bandwidth links (see Figure 1b).  

 
Figure 1. (a) Centralised monitoring, (b) ‘Flat’ MA-based monitoring 

This inefficient approach, known as ‘flat’ MA-based monitoring [4], presents serious scalability 
problems: in large networks the round-trip delay of the MA greatly increases as the overall travel time 
depends on the number of hops realised by the MA and also the network overhead imposed by the MA 
transfers grows exponentially with the network size [4]; the slope of the overhead curve becomes steeper in 
the case of high selectivity1 values. 

A rational approach to overcome such scalability problems is to partition the managed network into 
several logical/physical domains. For instance, inFigure 2, an MA object polls the devices of the remote 
LAN, whereas a second MA is assigned to the subnet local to the manager host as well as to another subnet, 
which is part of the same LAN. 

The partitioning criteria could be the number of nodes assigned to each MA (i.e. equal distribution of 
managed hosts among individual MAs), the physical distribution of polled devices (i.e. one MA object 

                                                      
1  Selectivity σ ( 10 ≤≤ σ ) is a metric defined in as the proportion of data maintained to that retrieved from each host. For low selectivity values 

(the major part of the obtained data being filtered at the source) the MAs’ state size practically remains constant, otherwise the state rapidly grows 
[4]. 
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assigned to each network segment), or a combination of the previous criteria. An analytical evaluation of the 
partitioning criteria effect on the performance of management tasks, is given in [4]. 

Figure 2. Partitioning the network into two distinct domains 

Although partitioning the managed network into separate domains represents a step forward improving 
management scalability, it is clear that the scenario illustrated in Figure 2 represents an ideal case in terms of 
the WAN link utilisation. That is because the link is traversed only twice per polling interval (PI). For 
instance, network partitioning could be performed in such a way that the two MA objects would be required 
to visit NEs located in both the segment local to the manager station and the remote LAN. This is pictured in 
Figure3a, with the first MA following the itinerary BEF and the second ACGDH. In this case, the WAN link 
is traversed four times per PI. In a more pessimistic scenario, one of the MAs would not visit the remote 
LAN hosts in sequence, but traverse the link three times on each direction (itinerary: EBFCG); the second 
MA travel plan would be HDA (see Figure3b). Apparently, even when specific partitioning criteria are 
followed, the design of MA itineraries is almost random; itineraries scheduling process lacks a mechanism 
that would guarantee minimal use of links interconnecting individual management domains, hence optimal 
itineraries planning (OIP) is required. 

 
Figure 3. Non-optimised partitioning scenarios 

3. THE OPTIMAL ITINERARY PLANNING ALGORITHM 

Interestingly, the OIP problem exhibits many similarities with the Multi-point Line Topologies or 
Constrained Minimum Spanning Trees (CMST) problems. A CMST is a Minimum Spanning Tree2 with the 
additional constraint on the size of the subtrees rooted on the center (there is an upper limit on the number of 
nodes included on each of the subtrees originated at the tree’s root). CMST algorithms are used in graph 
theory, with the main application domain being network design problems. In such problems, the objective is 
the optimal selection of the links connecting terminals to concentrators3 or directly to the network center, 
                                                      
2  A Minimum Spanning Tree is defined as a tree (i.e. a connected graph without cycles) with the least total distance, cost, or some other metric of 

delay or reliability [7]. 
3  Concentrators (or multiplexors) are nodes that consolidate low speed lines into higher speed lines, directed to the network center [7]. 
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resulting in the minimum possible total cost. The output of CMST algorithms typically comprises topologies 
partitioned on several multi-point lines (or tree branches), where groups of terminals share a subtree to a 
specific node (center). For instance, Figure 4a depicts a set of nodes with a given network center and costs 
for connecting individual pair of nodes, while Figure 4b presents the optimal multi-line topology that 
minimises the overall cost, where network nodes have been partitioned into two clusters or subtrees, each 
directed to the network center. In this particular scenario, the overall cost will comprise the sum of costs for 
connecting each link included in the problem solution: 

 0,22,40,11,33,5 cccccc ++++= = 35. 

Since CMST problems are NP-hard, several heuristics have been developed to efficiently deal with 
them; Esau-Williams (E-W) and Sharma's algorithms are the two most well known [7].      

 

Figure 4. CMST problem: (a) The unconnected graph; (b) The optimal multi-point line topology 

The input of E-W algorithm comprises the number N of terminals to be connected, the index of the 
central network site, constants wi,j and ci,j ( Nj,i ≤≤1 ) that denote the traffic (weight) requirement and the 
cost for connecting terminals i and j respectively, and finally the aggregate cost wmax that sets a maximum 
limit for the traffic routed through each individual multi-point line (subtree)4. The algorithm’s output is a 
two-dimensional array including the endpoints (node indices) of the links included in the solution [7]. 

CMST algorithms are highly relevant to the OIP problem: partitioning a set of network terminals into 
multi-point lines is not semantically different to partitioning a set of managed devices into several domains. 
Besides, in both cases the objective remains to minimise the overall cost. The fact that CMST algorithms not 
only propose optimal clustering of the network into separate domains, but also decide on how the nodes 
included in each domain are interconnected (forming multi-point lines or subtrees) solves the problem of 
optimising the order that each MA visits the devices into its assigned domain: the MA object will simply 
have to traverse its respective subtree. 

In principle, our OIP algorithm derives from the E-W algorithm. That is, we have adapted the 
parameters described above (defined using network design problems terminology) to reflect the specific 
characteristics of the OIP problems. The prototype of the method implementing the OIP algorithm (in Java) 
and the definition of the parameters involved, follow: 

public int[][] OIP (int N, int center, int c[][], int w[], int wmax) 

 N: the overall number of managed devices (to be visited by MAs); 

 center: the index of the manager host; 

                                                      
4  The Esau-Williams algorithm evaluates a tradeoff function ti,j , associated with each link (i,j), defined as follows: 

icjiji cct −= ,, , where 

icc is the cost of connecting the component containing node i to the center [7]. Namely, it connects a node directly to the center only when 

that represents a solution ‘cheaper’ than connecting it to the nearest set of nodes already interconnected. 
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 c: the cost matrix (dimensions: NN × ) determining the cost of agent migration between each pair of 
hosts; 

 w: the amount of data collected from each visited device (dimension: N); 

 wmax: the maximum number of nodes that may be visited by a single MA. 

The function’s output is a two-dimensional array including the endpoints of individual agent hops 
(migrations) included in the solution. 

In order to execute the OIP function, an important task is to assign specific values to the parameters 
listed above, reflecting the topology characteristics of the examined managed network. 

In particular, the managed network V is defined as a union of its s individual subnets: 
{ }so SSSV ,..,, 1= . The manager station, denoted as terminal 0 and located in subnet S0 is appointed as the 

center of the managed network (graph). Without loss of generality, the weight variables are set to: 
iwi ∀= ,1 , in order to eliminate their effect on the proposed solution. Namely, we make the assumption that 

the amount of data collected from each host is constant. In addition, the cost variables are set to: 
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Therefore, for hosts i and j located in separate subnets the cost jic ,  of an MA migration from i to j is not 
constant but depends on the actual ‘distance’ between their respective subnets, i.e. the number of 
intermediate subnets that need to be traversed, the bandwidth of their interconnecting links, etc. Moreover, 
the cost for traversing each link is proportional to the inverse of its bandwidth. That is: 

)1...11(),(
,,, 211 lnk SSSSSS BBB

klkc +++∗=  (3-2) 

where S1, S2, … SN are the subnets physically located ‘between’ subnets Sk and Sl (traffic between Sk 
and Sl is routed through them), 

21 ,SSB  denotes the bandwidth of the link connecting S1 and S2 and k is a 
normalisation factor. 

 
Figure 5. Applying an OIP heuristic to propose (a) two, or (b) three near-optimal itineraries. 

Using as case study the simple network topology illustrated inFigure 2, the employment of the OIP 
algorithm prioritises the inclusion of the hosts located on the remote LAN into a separate management 
domain, for both the cases that two or three optimal MA itineraries were requested (see Figure 5). In the 
extreme case that only one itinerary is requested, the application of the OIP algorithm ensures that the remote 
LAN hosts are visited successively, namely the WAN link is being traversed only twice. Therefore, the 
algorithm described above not only provides optimal clustering of the managed network in management 
domains, but also optimal solutions regarding the order in which individual MA objects should visit their 
assigned NEs. 
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4. ALGORITHM IMPLEMENTATION DETAILS AND PERFORMANCE EVALUATION 
RESULTS 

The configuration of the OIP algorithm parameters is a task undertaken by the human administrator, 
through the GUI pictured in Figure 6. 

First, the criterion according to which the managed network will be partitioned into separate managed 
domains is chosen. Should the administrator chooses to grant the management framework the authority to 
automate the partitioning phase and construct optimal itineraries for the MAs involved in the monitoring 
process (execution of the OIP algorithm), two additional options are given: (a) Let the OIP algorithm decide 
on the optimal number of itineraries as well as the number of devices included in each managed domain; (b) 
Define an upper limit on the number of devices that may be included in each domain (that will certainly 
affect the final number of managed domains). If the latter option is chosen, the administrator defines the 
maximum number n of devices; the OIP function will then be invoked, setting the parameter wmax = n. If the 
former option is chosen, the parameter will be set equal to the total number of devices: wmax = N. 

Figure 6. Configuration of OIP algorithm parameters 

The results of several algorithm tests (for varying network topologies) revealed that OIP algorithm 
favors the ‘connection’ of NEs local to the manager subnet directly to the manager host (i.e. single-hop agent 
itineraries). Such solutions are clearly inefficient though as they result in the transmission of large numbers 
of MAs affecting the overall scalability. That is because the algorithm lacks a mechanism that would make 
the ‘connection’ of these NEs directly to the manager host less appealing than choosing to ‘inter-connecting’ 
them and forming a subtree. In order to exclude such results from the set of valid solutions, we have chosen 
to slightly modify the cost matrix of equation (3-1), introducing a small cost penalty for ‘connections’ 
between the manager host and devices residing on its local subnet. An alternative way around this problem 
would be to introduce an additional constraint wmin, which would prevent the construction of single-hop 
itineraries (by setting 2min ≥w ). However, this idea has been disqualified as in several topology scenarios, it 
failed to provide valid problem solutions. 

Thus, the output of OIP algorithm for the test network of Figure 2 is depicted in Figure 7a, which 
demonstrates the optimal clustering of the managed network in two separate ‘subtrees’, each assigned to an 
itinerant agent. 

Yet, there still remains an open issue to be addressed. There are three ways for an MA to traverse its 
domain (i.e. its subtree): 

 Pre-order traversal (visit the root, then the left subtree, then the right subtree); 

 In-order traversal  (visit left subtree, then the root, then the right subtree); 

 Post-order traversal (visit left subtree, then the right subtree, then the root). 

Post-order traversal is the most efficient though, as it leaves the devices local to the manager site to be 
visited at the end of the MA’s itinerary. That ensures that when traversing the link interconnecting two 
subnets, the MA has not yet collected any data, hence, it will have the minimum possible impact on network 
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resources. For instance, in Figure 2, the MA assigned to the domain including subnets A and B, first visits 
host H residing in subnet B and then returns to visit hosts D, C, B, A, which are local to the manager site. 

 
Figure 7. Output of the OIP algorithm: (a) For the test network of Figure 2, (b) After discovering two additional 

devices on Subnet B. 

To integrate OIP process into our hierarchical management framework prototype introduced in [5], we 
have implemented a software component termed the Itinerary Scheduler Module (ISM). ISM executes the 
OIP algorithm and informs the manager application on the number of MAs that need to be instantiated and 
their respective itineraries. It also ensures that each agent itinerary represents a post-order traversal of its 
assigned ‘subtree’. The manager application asks the ISM (through a callback function) to recalculate the 
optimal agent itineraries whenever a new managed device is ‘discovered’. This is depicted in Figure 7b, 
which shows the output of the OIP algorithm when two additional devices are discovered on Subnet B (see 
Figure 8a). 

In case that the number of managed devices on remote subnets becomes too large and given that 
specific criteria are met, the manager dynamically adapts to the new topology facts and deploys an MA 
(termed Mobile Distributed Manager [5]) to the remote subnet to act as a local manager thereby localising 
management traffic and reducing the associated cost (see Figure 8b). 

 
Figure 8. Discovery of new managed devices: (a) Reconfiguring optimal itinerary planning, (b) Applying an adaptive 

hierarchical MA-based management model 

5. EXPERIMENTAL RESULTS 

OIP algorithm performance tests have taken place on the network illustrated on Figure 8 comprising ten 
different WinNT machines with Pentium III (450 MHz) processor and 128MB of memory. The cost matrix 
has been calculated through equations (3-1) and (3-2), where 

BASSB  =10Mbps, 
RASSB =1Mbps and k = 107. 

The MA used in our experiments has code size of 1.95 Kbytes, initial state size of 447 bytes and accumulates 
50 bytes of data from each visited host. The algorithm has been tested on managed networks of 10 and 20 
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devices (in the latter case, two separate agent servers were simultaneously running to ‘simulate’ two 
managed devices on the same host). These managed networks have been segmented into 1, 2, 3 and 4 
separate partitions. In the following table we present the average improvement measured when applying the 
OIP algorithm against another technique, where managed devices are equally distributed among a fixed 
number of domains; in the latter case, after determining the hosts comprising each management domain, the 
itineraries of the agents assigned to each domain are randomly constructed. It is noted that each table entry 
represents the average improvement measured over 100 runs: clearly, the OIP algorithm provides the same 
solution for specific sets of nodes and a given pair of (#devices, #partitions); the 100 runs refer to different, 
randomly generated itineraries. It can be noticed that the prevalence of the OIP algorithm is more evident 
when applying it to larger sets of nodes and smaller number of partitions (the optimal construction of agent 
itineraries then becomes a decisive factor). 

  # partitions (managed domains) 

  1 2 3 4 

10 37% 34% 21% 4% 

# 
m

an
ag

ed
 

de
vi

ce
s 

20 66% 52% 28% 6% 

Table 1: Decrease of management cost when applying OIP algorithm over randomly generated itineraries 

6. RELATED WORK 

Iqbal et al. [6] developed a performance model that, given a specific communication pattern, allows 
agents to decide whether they should migrate to a site and communicate locally or the communication should 
be performed remotely. The decision is taken according to an Optimal Design Graph; in most cases, it has 
been indicated that the optimal performance of an agent is achieved by a critical sequence of mixed remote 
procedure calls and agent migrations. 

A work conceptually relevant to the research presented herein, has been presented in [11], where Qi and 
Wang propose the employment of MA paradigm for data fusion in wireless sensor networks. To optimize 
agents itinerary, they derived a Local Closest First (LCF) algorithm according to which each MA searches 
for the next destination with the shortest distance to its current location. However, their cost function 
formulation does not take into account potential clustering of visited hosts in multiple physical subnets, 
which would affect the calculation of the distance matrix. Also, LCF-like algorithms have been characterized 
as ‘nearsighted’, in the sense that their output highly depends on the MAs original location, while the nodes 
left to be visited last are associated with high migration cost [7]; the reason for this is that they search for the 
next destination among the nodes adjacent to the MA’s current location, instead of looking at the ‘global’ 
network distance matrix. 

Most importantly though, both the works presented in [6] and [11], deal with the problem of 
constructing near-optimal MA itineraries for given sets of network nodes, where a single MA visits the 
whole set. Yet, they do not address the fundamental problem of partitioning network nodes in optimal 
clusters. On the other hand, the algorithm presented in the preceding sections deals with the optimal 
clustering problem and subsequently uses the algorithm’s output to easily construct optimal agent itineraries 
(through the post-order tree traversal described above). 

7. CONCLUSIONS & ONGOING RESEARCH 

Despite the popularity of MA-based management applications, methodologies for designing efficient 
MA itineraries have received little attention. In particular, the number of hops realised by a multi-hop agent 
is not the only metric to evaluate the communication overhead of MA-based operations. The order in which 
MAs visit their assigned NEs is also a crucial factor, as slight changes on the agents itineraries may result in 
dramatically variant management costs. 

This article introduces an algorithm that borrows ideas and concepts from the area of network design to 
address the issue of MA optimal itinerary planning. The algorithm has been designed having network 
monitoring applications in mind, although it would comfortably fit in other application areas, such as 
network discovery, service management, etc. The OIP algorithm not only suggests the appropriate number of 
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MAs that should be employed to minimise the overall management cost but also constructs optimal 
itineraries for each of them. 

Ongoing research includes exhaustive testing of the presented OIP algorithm in large-scale, simulated, 
multi-subnet network environments using a network simulator tool. We also plan to test the applicability of 
the OIP algorithm in several application fields, other than network monitoring.  
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