
Deploying a Hierarchical Management Framework
Using Mobile Agent Technology

Damianos Gavalas†, Dominic Greenwood*, Mohammed Ghanbari†,
Mike O’Mahony†

†Communication Networks Research Group,
Electronic Systems Engineering Department,

University of Essex, Colchester, CO4 3SQ, U.K.
E-mail: {dgaval, ghan, mikej}@essex.ac.uk

*Distributed Network Management and Agent Technology Research Group
Fujitsu Telecommunications Europe Ltd.,

Northgate House, St. Peters Street, CO1 1HH, Colchester, U.K.
E-mail: D.Greenwood@ftel.co.uk

Abstract. The use of Mobile Agent (MA) paradigm has been proposed by
many researchers as an answer to the scalability and flexibility limitations of
centralised Network Management (NM). Nevertheless, while large enterprise
networks are already hierarchically structured, MA-based management has not
yet moved from ‘flat’ to hierarchical structures. That results in non-scalable flat
architectures, particularly when the management of remote subnetworks is
considered. In this context, the deployment of a hierarchically structured MA-
based management framework is a reasonable approach. The migration to
hierarchical structures is achieved with an additional management entity, the
Mobile Distributed Manager (MDM), which takes the full control of managing
a given network segment. This architecture exploits the mobility features of
MDMs to dynamically adapt to mutable networking conditions. Empirical
results indicate a substantial reduction of the overall management cost
compared to both centralised and MA-based flat management approaches.

1. Introduction

Contemporary large enterprise networks span applications, organisational and
geographical boundaries. In order to cope sufficiently with the unpredictable growth
of the number of network devices, structuring networks in logical hierarchies is being
employed as a design and deployment principle. Accordingly, the design of such
networks’ management system needs to be aligned with the corresponding managed
network hierarchical structures. Hence, several hierarchical/distributed management
solutions have been proposed both by researchers [1][2] and standardisation forums
[3][4].

Despite these efforts towards management distribution, the majority of traditional
systems still rely on centralised architectures, wherein operational data is collected by
stationary agents embedded in network devices and subsequently gathered by a
central platform (manager) using a management protocol, such is the IETF Simple



Network Management Protocol (SNMP) [5]. The centralised nature of NM protocols
results in massive transfers of NM data that stress the network resources to their
limits, while causing processing bottlenecks at the manager host. Another serious
disadvantage of centralised paradigm is its intrinsic architecture inflexibility as the
functionality of both managing and managed parties is rigidly defined at design time.

Hierarchical NM models help to overcome the scalability limitations of their
centralised counterparts through delegating part of the management functionality to
dual-role entities; these are responsible for a set of devices, which play the role of the
agent when managers request information, while acting as managers for the agents
located within their domain. Yet, these models cannot sufficiently meet the flexibility
requirements of today’s networks, with the fluctuating traffic patterns and topology
structures. This is due to the static definition of the incorporated NM components and
their corresponding roles in the management hierarchy. Such static configurations
would possibly provide a feasible solution for moderately small and/or not very
dynamic networks. However, it is not in step with the evolution of large-scale
enterprise networks.

In search of more flexible management solutions, the Mobile Agents (MA)
paradigm has recently attracted considerable attention in the field of distributed NM.
MAs introduce a new software communication paradigm that allows code migration
between hosts for remote execution. However, there is a notable inconsistency
between the currently hierarchically structured networks and the emerging Mobile
Agent Frameworks (MAF) that insist on ‘flat’ models. These models bring about
scalability issues when the management of large networks is considered, whilst
resulting in heavy use of low-bandwidth WAN links connecting remote subnetworks
to the backbone network, due to the frequent MA transfers.

This work attempts to address these issues by coupling the concepts of hierarchical
management and Mobile Agents. Therefore, we propose the deployment of a
hierarchically structured, dynamic MA-based management infrastructure. To attain
this objective, we introduce a novel management entity termed the “Mobile
Distributed Manager” (MDM), which operates at an intermediary level between the
manager and the stationary agents. MDMs are essentially MAs that may be
dynamically assigned to / removed from a network domain in response to a change in
traffic distribution or network’s topology. Upon their migration, MDMs take full
control of managing the assigned domain, localising the associated management
traffic. In addition, MDMs may transparently move within their domain when their
hosting processor becomes overloaded, thereby optimising the usage of local
resources.

The rest of the paper is organised as follows: Section 2 comprises an overview of
several MAFs employed to distributed NM applications, whilst Section 3 explains the
rationale and introduces our proposed hierarchical approach. Section 4 provides an
overview of the MAF used to support this work. Section 5 discusses the
implementation details of the introduced architecture with a performance evaluation
given in Section 6 and conclusions drawn in Section 7.



2. Mobile Agents-based Distributed Management

The use of mobile code has attracted tremendous attention during the last few years.
MAs offer a new powerful abstraction for distributed computing, answering many of
the flexibility and scalability problems of traditional centralised archetypes.
Regarding distributed NM area, MAs can provide all the functionality offered by
static delegation agents, having the additional benefit of mobility. In that sense, MAs
can be regarded as a ‘superset’ of MbD agents, leading to more efficient use of
computing resources on the managed entities, as management functions are executed
only so long as the MAs reside and are active on the NEs [6][17]. An exhaustive
review of all the MAFs proposed for distributed NM in the last few years is beyond
the scope of this paper, so we have chosen to concentrate on the most representative.

Thus, several works [6]-[12] deal with implementations of MAFs employed for
NM, while others [13][14] are confined to describing the general concepts behind the
introduced frameworks and discussing the arising theoretical aspects. Another set of
research papers [15][16] include performance evaluations of MA-based management.

Focusing on the works supplemented by implementations, many researchers [6]-
[11] have deployed new MAFs from scratch whereas some others [12] have chosen
general-purpose, commercial platforms to comprise the core of their architectures. In
the majority of the former [7]-[10], MAs can interact with standard SNMP agents
providing access to legacy systems. Currently, only the frameworks described in [10]
and [11] comply with the OMG Mobile Agent System Interoperability Facility
(MASIF) [18] emerging standard that defines agent mobility and management
policies. In addition, Java programming language [19] has dominated, being the
implementation platform in all cases.

Regarding their practical use within NM, MAs have been utilised to address a
broad spectrum of applications, among others: network monitoring [11][13]; traffic
analysis [12]; collecting atomic Management Information Base (MIB) object values
from multiple hosts [8]; calculating aggregation functions combining several MIB
values [9][10]; obtaining snapshots and filtering the contents of SNMP tables [17];
automated fault management of SDH networks [6], etc.

Fig. 1. Centralised vs. ‘flat’, MA-based Network Management

The common denominator below the aforementioned MA-based management
architectures is the assumption of a ‘flat’  network architecture, i.e. a single MA is

(a) Centralised (b) Flat 

Remote LAN

Manager

Remote LAN

Manag er



launched from the manager platform and sequentially visits all the managed NEs,
regardless from the underlying topology (see Figure 1b). However, although relaxing
the network from a flood of request/response SNMP messages (see Figure 1a), such
an approach brings about scalability issues, especially when frequent polling is
required. That is, for large networks the round-trip delay for the MA will greatly
increase, whilst the network overhead may overcome that of centralised paradigm (the
MA size will grow after visiting each of the nodes included into its itinerary [15]).
The situation seriously deteriorates when considering management of remote LANs,
connected to the main site through low-bandwidth, expensive WAN links. In this
case, frequent MA transfers may potentially create bottlenecks and considerably
increase the management cost. Hence, the deployment of a hierarchically structured
MA-based management framework seems a rational approach to overcome this
problem.

3. Mobile Agent-based Approach to Hierarchical Management

Surprisingly, MA-based architectures proposed for distributed NM have not yet
moved from flat to hierarchical structures. This represents an inconsistency though, as
these management systems are not directly mapped to the managed networks. In this
work we address this issue through combining the concepts of
Hierarchical/Distributed Management and Mobile Agents for NM. Specifically, we
introduce the concept of Mobile Distributed Manager (MDM), referring to a
management component that operates at an intermediary level between the manager
and management agent end points. MDM entities are essentially MAs that undertake
the full responsibility of managing a network domain, when certain criteria
(determined by the administrator) are satisfied. Upon being assigned to a domain, the
MDM migrates to a host running in that domain (see Figure 2) and takes over the
management of local NEs from the central manager. In a later section, we discuss
how the decision concerning the selection of the host, where the MDM will carry out
its management tasks from, is made.

As a result, the traffic related to the management of that domain will be localised,
as the MDM will be able to dispatch and receive MAs to collect NM data from the
local hosts, or even execute centralised management operations on them. The MDM
will continue to perform its tasks without the manager’s intervention, even if the
interconnecting link fails. A first-line response will also be given to tackle trivial
faults/alarms, with the manager being notified only in case of a complex problem or
an emergency situation. In performance management applications, only aggregated
values and statistics are sent to the manager at regular intervals, thereby diminishing
the amount of data transferred through the WAN link. The duration of these intervals
is application-dependent and determined by the administrator.

The mobility feature of MDMs allows the management system to adapt
dynamically to a mutable environment, optimising the use of network resources.
Apart from the fact that management functionality may be added/configured at
runtime, this architecture can also dynamically adapt to changing networking
conditions. Namely, an MDM entity can be deployed to / removed from a network
segment to reflect a change on traffic patterns, or move to the least loaded host to
minimise the usage of local resources.



Fig. 2. Hierarchical MA-based management

Similar work has been reported in two research papers. Liotta et al. [13] have
conducted an interesting study of an MA-based management architecture adopting a
hierarchical, multi-level approach. Interesting cost functions corresponding to various
MA configurations are also discussed. However, there is no implementation
supplementing this work, while the authors have not considered providing “Middle
Managers” mobility features, so as to dynamically change their location. In addition,
the criteria according to which the managed network is segmented in domains and the
way that these domains are assigned to Middle Managers are not explicitly
mentioned. In [14], Oliveira and Lopes proposed  the integration of the IETF’s
Disman framework [4] into their MA-based NM infrastructure. Again, this work lacks
implementation details while the “Mobile Disman” architecture they propose is
heavyweight (it consists of many resource-demanding components) and would
certainly have increased requirements on system resources.

4. Overview of the Mobile Agent Framework

The MAF that comprises the core of the hierarchical infrastructure has been entirely
developed in Java chosen due to its inherent portability, rich class hierarchy and
dynamic class loading capability.

Our framework consists of four major components [9], illustrated in Figure 3:
(I) Manager Application: The manager application, equipped with a browser style
Graphical User Interface (GUI), co-ordinates monitoring and control policies relating
to the NEs. Active agent processes are automatically discovered by the manager,
which maintains and dynamically updates a ‘discovered list’.
(II) Mobile Agent Server (MAS): The interface between visiting MAs and legacy
management systems is achieved through MAS modules, installed on every managed
device. The MAS resides logically above the standard SNMP agent, creating an

Remote LAN

Manag er

MD M

MD M: Mobi le Distributed Manager
LAN: Local Area Network



efficient run-time environment for receiving, instantiating, executing, and dispatching
MA objects. Integration with SNMP was vitally important to maintain compliance
with the legacy management systems.

The MAS also provides requested management information to incoming MAs and
protects the host system against external attack. The MAS composes four primary
components: (a) Mobile Agent Listener, (b) Security Component, (c) Service Facility
Component, and (d) Migration Facility Component.

Fig. 3. The Mobile Agents-based NM Infrastructure

 (III) Mobile Agent Generator (MAG): The MAG is essentially a tool for automatic
MA code generation allowing the construction of customised MAs in response to
service requirements. Generated MA code is stored into an MA code repository (see
Figure 3). Such MAs may dynamically extend the infrastructure’s functionality, post
MAS initialisation, to accomplish management tasks tailored to the needs of a
changing network environment.

The MAG’s operation is described in detail in [9]. However, its functionality has
been extended so as to allow the operator (through a dedicated GUI) to specify: the
polling frequency (i.e. the polling interval’s duration); the transmission protocol to be
used for the MA transfers (either TCP or UDP); the security policies.
(IV) Mobile Agents (MAs): From our perspective, MAs are Java objects with a
unique ID, capable of migrating between hosts where they execute as separate threads
and perform their specific management tasks. MAs are supplied with an itinerary
table, a data folder where collected management information is stored and several
methods to control interaction with polled devices.

As described in [17], the multi-node movement of MAs can be exploited in a
variety of data filtering applications. In particular, MAs may: (i) aggregate several
MIB values into more meaningful values, (ii) efficiently acquire atomic snapshots of

JVM

NDD

SFC

SC

MFC

MAL

MAS

NE
CLD Bytecode

            UI

Manager

MAG

    MAs

MA Code
repository

Dispatch compressed
MA state

MAG – Mobile Agent Generator
MAS - Mobile Agent Server
UI - User Interface
MA - Mobile Agent
SNMP - Simple Network Management Protocol
MIB - Management Information Base
NE - Network Element
MAL - Mobile Agent Listener
SC - Security Component
SFC -Service Facility  Component
MFC - Migration Facility Component

NDD - Network Discovery Daemon
CLD - Class Loader Daemon
JVM - Java Virtual Machine

Go to next host or
Return & Display results



SNMP tables, and (iii) filter tables’ contents by applying complex filtering
expressions thereby keeping only the values that meet pre-specified criteria.

5. Implementation Details

5.1. Topology Map

An important element of our framework is the topology map, a graphical component
of the manager application, used to view the devices with currently active MAS
servers. This component not only presents the discovered active devices, but also the
underlying network topology, namely the subnetworks where these devices are
physically connected as well as how these subnetworks are interconnected.

In terms of implementation, the topology map is internally represented by a tree
structure (termed “topology tree”), where each of the tree nodes corresponds to a
specific subnetwork. The node representing the manager’s location is the root of the
topology tree (see Fig. 4.). Each of the tree nodes consist of the following attributes:
� subnetwork’s name;
� the names of hosts and routers connected to this subnetwork;
� a flag indicating the presence of an active MDM on this subnetwork;
� the number nl of local active hosts on this subnetwork;
� the number ns of active hosts on the subnetwork’s “subtree” (the term subtree

here denotes the set of subnetworks located in hierarchically lower levels in the
topology tree, including the present subnetwork itself), hence ls nn ≥ ;

� a pointer to the upper level tree node;
� pointers to the next level nodes;
� a list of graphical elements, each corresponding to a specific host, that will be

made visible upon discovering an active MAS entity on that host.

Fig. 4. The topology tree structure

Sub-network A

Sub-network B

Hosts
Routers

Hosts
Routers Sub-network D

Hosts Routers

Sub-network C

Hosts
Routers

Manager Platform



For instance, the number of active hosts in the subtree of Subnetwork A (in Figure
4) will be:

subD,lsubC,lsubB,lsubA,lsubA,s nnnnn +++= (1)

As described in a following section, the topology tree plays a crucial role when the
manager application needs to make a decision on which subnetworks require the
deployment of an MDM entity.

 5.2. Policies on MDMs Deployment

A key characteristic of this work is the dynamic adaptation of our architecture to
changes in the managed network. The structure of the proposed model is not rigidly
designed, as MDMs may be dynamically deployed to specific network domains, given
that certain requirements are met.

Fig. 5. Graphical User Interface for customising the hierarchical NM system policies

Specifically, the administrator may explicitly set (through the GUI shown in Figure
5) the policies that define the hierarchical NM system operation, i.e. specify the
criteria that should be satisfied for deploying an MDM to a network segment. In
general, the deployment of MDMs may conform to either of the two following
policies:
� Policy 1: the population of remotely active managed devices.
� Policy 2: the overall management cost.

In the former case (Policy 1), the administrator specifies the number of remote
managed NEs that will justify the deployment of an MDM to a particular network
segment. This number may either denote nl or ns. If, for instance, the specified number



N denotes the population of the examined subnetwork’s local devices nl, an MDM
will be deployed to every network segment S with Nn S,l ≥ , otherwise to every

segment with Nn S,s ≥ . In the latter case (Policy 2), the management cost may either

be: (a) proportional to the inverse of link bandwidth, or (b) manually specified.

5.3. Implementing MDMs Deployment

Upon discovering an active MAS module, the corresponding host is located through
scanning the topology tree and finding the subnetwork where the host belongs, whilst
the host icon is instantly made visible on the topology map. Then, the number nl of
active hosts on that subnetwork is increased by one and subsequently, through
following the pointer to the upper-level nodes, all the topology tree nodes up to the
root are traversed and their number ns of subtree nodes is also updated. A similar
procedure is followed when a MAS server is being shut down.

The discovery or termination of a MAS server triggers an event at the manager
host. The topology tree is then scanned with the subnetworks that meet specific
requirements added to a list. In case that ‘Policy 1’ is employed, referring to the
policies listed in the preceding section, that list will include the subnetworks with nl or
ns (depending on whether the MDMs deployment is a function of the active devices
running locally or in the whole subtree) greater than the specified constant N. If
‘Policy 2’ is employed, the cost corresponding to the management of each subnetwork
is evaluated and the list of subnetworks created accordingly. Ultimately, an MDM
will be deployed to each of the subnetworks included in the list.

Certainly, the set of management tasks already performed by the manager on these
subnetworks will need to be conveyed to the MDM deployed therein. This is achieved
through sending the Polling Threads (PT) configurations along with the MDM. PTs
are originally started and controlled by the manager application with each of them
corresponding to a single monitoring task. Upon its arrival at the remote subnetwork,
the MDM instantiates the PTs, which thereafter start performing their tasks without
any further disruption of the management process.

5.4. MDM’s Migration Within its Domain

Although MDMs have been designed to be as lightweight as possible, they cannot
avoid consuming memory and processing resources on the NE where they execute.
The framework should therefore be sufficiently flexible to allow MDMs to
autonomously move to another host, when their current hosting device is overloaded.

This is accomplished through the regular inspection of the other domain’s NEs, in
terms of their memory and CPU utilisation: an MA object is periodically dispatched
and visits all the local devices obtaining these figures before delivering the results to
the MDM. If the hosting processor is seriously overloaded, compared to the
neighboring devices, the MDM will transparently move to the least loaded node. In
our early prototype, MAs may only extract memory usage values, but will soon be
able to acquire CPU load information also.



5.5. Communication Between Manager and MDMs

One of the key advantages of our framework is that it greatly reduces the amount of
information exchanged between the manager platform and the managed devices. This
is due to the introduction of the intermediate management level (MDMs).  However,
that does not obviate the necessity for bi-directional communication between MDMs
and the manager host. In particular, MDMs often need to send the manager the
statistics obtained through filtering raw data collected from the local devices, inform
the manager when migrating to another host, etc. In the opposite direction, the
manager may require an MDM to terminate its execution or move to another domain,
to download in runtime an additional management service, i.e. a new MA object
along with its corresponding PT configuration, etc.

We have chosen Java RMI [20] for implementing the communication bus between
the distributed MDMs and the manager host, due to its inherent simplicity and the
rapid prototype development that it offers.

6. Performance Evaluation

Although mobility can often be beneficial for NM, overheads induced by MAs and
MDMs in particular, e.g. due to their deployment and management should be
accounted for very carefully. Slightly different configurations for a set of MDMs may
result in dramatically variant network loads [13]. Hence, it is crucial to define
concrete cost functions estimating the corresponding overheads.

In this context, let the “cost coefficients” 
ji S,Sk denote the cost of sending a byte

of information between subnetworks Si and Sj, where S0 is the manager host location.
For multi-hop connections, the cost coefficients will be equal to the summation of the
individual links coefficients. In the following investigation, we make the simplifying
assumption that an MDM may manage only the hosts included in a single subnetwork
and not a wider set of devices.

Examining a simple performance management application, let us first evaluate the
management cost imposed from SNMP-based management. If Sreq is the average
request size (at MAC layer), and polling of N devices, each for v operational
variables, is applied, the wasted bandwidth for p polling intervals (PI) would be:

( ) ( )[ ]∑
=

∗∆∗−+∗∗=
N

i
reqreqS,SSNMP pSvSkC i

0

12
0

(2)

where every extra value included in the SNMP response packet’s varbind list
represents an additional overhead of reqS∆  bytes, on average. The index Si represents

the subnetwork including the host i.
A simple function characterising the bandwidth consumption for our hierarchical

architecture, is the following:

delivpoldepldistrhier CCCCC +++= (3)



where the four terms represent the cost for distributing to the MAS servers the
bytecode of the MA that will undertake the monitoring task, the MDMs deployment
cost, the bandwidth used for the actual monitoring operation (polling) and the cost for
delivering to the manager host the collected data, respectively.

Concerning bytecode distribution, we adopt a lightweight scheme: in contrast with
all known MAFs proposed for management applications [6]-[11], wherein both the
MA’s code and state are transferred on each migration, we have chosen to distribute
the bytecode at the MA’s construction time and thereafter transfer only the state
information, resulting in a much lower demand on network resources (bytecode size is
typically much larger than state size [15]). The code distribution scheme proposed in
[6]-[11] offers a better starting point in terms of the associated network overhead,
since the bootstrapping procedure described above is not required. However, it is
outperformed by the scheme adopted by our MAF, after a small number of polling
intervals.

The introduction of MDMs reduces the code distribution cost even further: the
MAs bytecode is no longer broadcasted to all managed devices, as in flat management
[9], but instead it is distributed to the active MDMs, which in turn multicast it to the
local NEs. The code distribution cost is therefore given by:

CNkkNkC
M

i
iS,SS,SS,Sdistr iii ∗














 ∗++∗= ∑

=0
0

000
(4)

where M is the total number of active MDMs, C the compressed bytecode size and Ni

the number of hosts included in subnetwork Si.
Likewise, Cdepl is equal to the cost of broadcasting M MDM objects to their

corresponding remote domains:

∑
=

∗=
M

i
S,Sdepl STkC i

0
0

0
(5)

where STi represents the compressed state size of an MA when migrating from the ith

host.
Cpol is defined as the summation of the cost induced for polling the NEs being

directly managed by the manager host and the cost associated with polling the NEs
that operate under the MDMs control, multiplied with the number of PIs:

pSTkSTkC
m

i

M

i

N

j
jS,SiS,Spol

i

iiii ∗











∗+∗= ∑ ∑∑

= = =
+

0 0 0
1 (6)

Clearly, the first term of the summation dominates on the overall polling cost if the
m devices managed by the central manager platform are spread among several
subnetworks. Specifically, cost coefficients 1+ii S,S

k  are typically larger when an MA

migrates from subnetwork Si to another subnetwork Si+1  ( 1+≠ ii SS ) rather than when

it moves within the same subnetwork ( 1+= ii SS ). It is emphasised that MAs state
size STi does not remain constant, but increases for each visited node. Thus, the



polling cost highly depends on the increment rate of the MAs state size, which in turn
is a function of “selectivity” σ, a metric defined in [13] as the ratio of the amount of
data ultimately delivered to that acquired from each host. It is apparent that for small
selectivity values (the major part of the obtained data being filtered at the source) the
MAs state size will practically remain constant, otherwise the state will rapidly grow.
Thus, if b bytes of information are obtained at each host, an MA’s state size at its ith

hop is given by:

( ) ibSTSTi ∗∗+= σ0 (7)

The last term appearing in Eq. (6-2) represents the cost associated with the delivery
of the gathered data from the MDMs to the manager host:

pt
DkC

M

i
S,Sdeliv i ∗










∗= ∑

=0
0

(8)

where t indicates (in number of PIs) how often MDMs package the computed
statistics of size D and deliver them to the manager.

The quantitative model introduced in this section has been applied to the test
network shown in Figure 6, where the network domain margins are depicted by the
dotted curved lines.

Fig. 6. The test network

Referring to this particular topology, we assign the cost coefficients the following
values: 1

221100
=== S,SS,SS,S kkk , 5

10
=S,Sk  and 50

20
=S,Sk . These values are

chosen in accordance to the bandwidth of the links they correspond to. We have also
measured the set variables: Sreq = 90 bytes, reqS∆ = 17 bytes, C = 1.95 Kb, and ST0  =

Manager

WinNT

Win98

Solaris

 
Linux

Router

Solaris

Win95

WinNT

Win98

Solaris

 

Bridge

Subnet 1

Subnet 0

Subnet 2

Router

MDM

MDM

Linux



447 bytes. These values have been measured after testing our framework in a real
network comprising Solaris and WinNT devices.

Equations (6-1)-(6-7) are applied to compare the performance of SNMP polling
against that of MA-based flat and hierarchical NM in terms of the overall
management cost, as shown in Figure 7a, drawn on a logarithmic scale. The functions
defining the cost of MA-based flat management represent special cases of those
developed for hierarchical management.

Fig. 7. Comparison between SNMP-based polling, flat MA-based polling and the proposed
hierarchical framework in terms of: (a) Overall management cost, (b) Bandwidth usage of the

WAN link

We consider a data intensive application, namely polling every host for the
contents of the MIB-II interfaces table [21]. We assume the minimum of two
interfaces per host, i.e. 2×21 collected values per host, since each table row includes
21 columns. As described in [17], the MA objects are capable of performing local
filtering of the obtained data, so that only the values corresponding to the more
heavily loaded interface are being encapsulated into the MA’s state and returned to
the manager or the MDM that originally launched the MA. That results in improving
system scalability, due to the low selectivity ratio %.821≈σ achieved over the
obtained data (b = 714 bytes/host). In other words, the MAs state size increases only
by 13=× bσ bytes, for each visited host. We also assume that management data (D =
39 bytes/PI for Subnet 1 and 52 bytes/PI for Subnet 2) are delivered to the manager
from distributed MDMs with a frequency of t = 10 PIs.

Clearly, the introduced hierarchical architecture gives rise to a remarkable
reduction of management cost, while the cost of flat management is surpassed by that
of centralised polling only after the first 16 PIs. It is also noted that the starting point
for the cost induced by the hierarchical infrastructure is much lower than the
equivalent of flat management, due to the adopted scalable code distribution scheme,
described above.

Figure 7b focuses on the NM traffic generated from each of the compared
paradigms on the WAN link connecting Subnet 0 to Subnet 2. Again, the hierarchical
NM framework outperforms both flat MA-based and SNMP management with
sufficient distinct. In particular, following bytecode distribution and MDM
deployment, our framework uses the WAN link only to deliver the statistics to the

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 10 20 30 40 50

# Polling Intervals

M
an

ag
em

en
t 

C
os

t

SNMP-based polling MA-based flat NM
Hierarchical MA-based NM

1

10

100

1000

0 10 20 30 40 50

# Polling Intervals

M
an

ag
em

en
t 

T
ra

ff
ic

 (
K

by
te

s)
 

SNMP-based polling MA-based flat NM
Hierarchical MA-based NM



manager host, every 10 PIs. In contrast, SNMP heavily utilises the link to broadcast
request messages and receive back the associated responses, while in flat management
an MA object traverses the link at least twice in every PI, provided that MAs
itineraries are optimised so as to poll the remote LAN hosts in sequence.

7. Conclusions – Future Work

This paper has proposed the use of MA technology for dynamic hierarchical
management. In this context, we introduced the MDM, a novel management entity,
which is dynamically assigned to a given network segment and localises the
associated management traffic. MDMs mobility feature allows the management
system to adapt to potential changes of the managed network topology or traffic
distribution and optimise the use of local resources. Finally, a performance evaluation
in terms of the overall management cost confirms the proposed model’s improved
scalability over both traditional centralised and flat MA-based architectures.

Future work will address the following issues:
� Optimisation of MAs itinerary, so that in case the manager or an MDM manages

more than one subnetwork, the MAs will not traverse the interconnecting links
more than twice.

� Investigate the use of CORBA [22] instead of RMI to implement the
communication bus between distributed MDMs and the manager host.

List of Acronyms

CORBA: Common Object Request Broker
Architecture

CS: Client/Server
DM: Distributed Manager
GUI: Graphical User Interface
IETF: Internet Engineering Task Force
LAN: Local Area Network
MA: Mobile Agent
MAC: Medium Access Control
MAF: Mobile Agent Framework
MAG: Mobile Agent Generator
MAS: Mobile Agent Server
MASIF: Mobile Agent System

Interoperability Facility

MbD: Management by Delegation
MDM: Mobile Distributed Manager
MIB: Management Information Base
NE: Network Element
NM: Network Management
OSI: Open Systems Interconnection
PI: Polling Interval
PT: Polling Thread
RMI: Remote Method Invocation
RMON: Remote Monitoring
SNMP: Simple Network Management

Protocol
WAN: Wide Area Network

References

[1] Goldszmidt G., Yemini Y., Yemini S., “Network Management by Delegation”,
Proceedings of the 2nd International Symposium on Integrated Network Management
(ISINM’91), April 1991.



[2] Siegl M. R., and Trausmuth G., “Hierarchical Network Management: A Concept and its
Prototype in SNMPv2”, Computer Networks and ISDN Systems, Vol. 28, No. 4, pp. 441-
452, February 1996.

[3] S. Waldbusser, “Remote Network Monitoring Management Information Base”, RFC
1757, February 1995.

[4] Distributed Management (disman) Charter,
http://www.ietf.org/html.charters/disman-charter.html.

[5] Case J., Fedor M., Schoffstall M., Davin J., “A Simple Network Management Protocol
(SNMP)”, RFC 1157, May 1990.

[6] Sugauchi K., Miyazaki S., Covaci S., Zhang T., “Efficiency Evaluation of a Mobile
Agent Based Network Management System”, 6th International Conference on Intelligence
and Services in Networks (IS&N’99), LNCS vol. 1597, pp. 527-535, April 1999.

[7] Susilo G., Bieszczad A., Pagurek B., “Infrastructure for Advanced Network Management
based on Mobile Code”, Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS'98), pp. 322-333, February 1998.

[8] Sahai A., Morin C., “Enabling a Mobile Network Manager through Mobile Agents”,
Proceedings of the In Proceedings of the 2nd International Workshop on Mobile Agents
(MA’98), LNCS vol. 1477, pp. 249-260, September 1998.

[9] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “An Infrastructure for
Distributed and Dynamic Network Management based on Mobile Agent Technology”,
Proceedings of the IEEE International Conference on Communications (ICC’99), pp.
1362-1366, June 1999.

[10] Pualiafito A., Tomarchio O., Vita L., “MAP: Design and Implementation of a Mobile
Agents Platform”, to appear in Journal of System Architecture.

[11] Bellavista P., Corradi A., Stefanelli C., “An Open Secure Mobile Agent Framework for
Systems Management”, Journal of Network and Systems Management (JNSM), Special
issue on Mobile Agent-based Network and System Management, Vol. 7, No 3, September
1999.

[12] Feridun M., Kasteleijn W., Krause J., “Distributed Management with Mobile
Components”, Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management (IM’99), pp. 857-870, May 1999.

[13] Liotta A., Knight G., Pavlou G., Modelling Network and System Monitoring Over the
Internet with Mobile Agents”, Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS'98), pp. 303-312, February 1998.

[14] Oliveira J.L., Lopes R.P., “Distributed Management Based on Mobile Agents”,
Proceedings of the 1st International Workshop on Mobile Agents For Telecommunication
Applications (MATA’99), October 1999.

[15] Fuggetta A., Picco G.P., Vigna G., “Understanding Code Mobility”, IEEE Transactions
on Software Engineering, Vol. 24, No. 5, pp. 342-361, 1998.

[16] Rubinstein M., Duarte O.C., “Evaluating Tradeoffs of Mobile Agents in Network
Management”, Networking and Information Systems Journal, Vol. 2, No. 2, July 1999.

[17] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Advanced Network
Monitoring Applications Based on Mobile/Intelligent Agent Technology”, to appear in
Computer Communications Journal.

[18] GMD Fokus, IBM Corp., “The OMG MASIF Standard”,
http://www.fokus.gmd.de/research/cc/ima/masif/.

[19] Sun Microsystems: “Java Language Overview – White Paper” [On-line] (1999), URL:
http://www.javasoft.com/docs/white/index.html.

[20] Java Remote Method Invocation (RMI), http://java.sun.com/products/jdk/rmi/
index.html.

[21] McCloghrie K., Rose M., “Management Information Base for Network Management of
TCP/IP-based internets: MIB-II”, RFC 1213, March 1991.

[22] CORBA/IIOP 2.2 Specification, http://www.omg.org/library/corbaiiop.html.


