
Advanced Network Monitoring Applications Based on
Mobile/Intelligent Agent Technology

Damianos Gavalas†, Dominic Greenwood*, Mohammed Ghanbari†, Mike O’Mahony†

†Communication Networks Research Group,
Electronic Systems Engineering Department,

University of Essex, Colchester, CO4 3SQ, U.K.
E-mail: {dgaval, ghan, mikej}@essex.ac.uk

*Distributed Network Management and Agent Technology Research Group
Fujitsu Telecommunications Europe Ltd.,

Northgate House, St. Peters Street, CO1 1HH, Colchester, U.K.
E-mail: D.Greenwood@ftel.co.uk

Abstract

Mobile Agents (MA) have been proposed as a solution for distributed Network Management
(NM). However, most MA-based infrastructures exhibit scalability limitations when data
intensive management applications are considered. Therefore, we present three novel
applications, tailored to transfers of bulk network monitoring data, in which MAs are used to
perform data aggregation, acquire atomic SNMP table views and support selective retrieval of
SNMP table objects that meet specific selection criteria. The proposed applications are
supported by a lightweight management framework described in previous work. A
quantitative evaluation, in terms of bandwidth usage, shows that these applications surpass
SNMP-based polling performance.

Keywords

Distributed network management, Mobile/Intelligent agents, Information aggregation, SNMP
table filtering.

1. Introduction

Current Network Management (NM) systems are typically designed according to a
centralised NM paradigm characterised by a low degree of flexibility and re-configurability.
Management interactions are based on a centralised, client/server model, where a central
station (manager) collects, aggregates and processes data retrieved from physically distributed
servers (agents1). Widely deployed NM standards, such as the Simple Network Management
Protocol (SNMP) [3] of the TCP/IP protocol suite or the Common Management Information
Protocol (CMIP) [9] of the OSI world, are designed according to this rigid centralised model.
Within these protocols, physical resources are represented by managed objects. Collections of
managed objects are grouped into tree-structured Management Information Bases (MIB2)
following the Abstract Syntax Notation 1 (ASN.1) format.

The centralised approach in NM is known to present severe efficiency and scalability
limitations: the process of data collection and analysis typically involves massive transfers of
management data causing considerable strain on network throughput and processing
bottlenecks at the manager host. All these problems suggest distribution of management
intelligence as a rational approach to overcome the limitations of centralised NM. The
Internet Engineering Task Force (IETF) has proposed an approach, known as RMON

1 The term ‘agent’ here refers to static management agents, which should not be confused with Mobile

Agents.
2 MIB is an SNMP term, which corresponds to the term Management Information Tree (MIT) used in

CMIP. Hereafter, we ignore the difference for sake of simplicity.

(Remote MONitoring) [14], which introduces a degree of decentralisation. RMON
monitoring devices (probes) collect management statistics from their local domain (e.g. an
Ethernet segment), providing detailed information concerning traffic activity.

In terms of recent research activities, Management by Delegation (MbD) [17]
represents a clear effort towards decentralisation of management logic. The initial approach
was to download management scripts that were compiled and executed at the agent side.
However, the advent of Java has made this task significantly simpler.

The idea of management distribution is taken further by solutions that exploit Mobile
Agents (MA), which provide a powerful software interaction paradigm that allows code
migration between hosts for remote execution [2][18]. The data throughput problem can be
addressed by delegation of authority from managers to MAs, which are able to filter and
process data locally without the need for transmission to a central manager. This ability has
attracted much attention to MA technology, with several Mobile Agent Frameworks (MAF)
proposed for NM applications [4][5][12][16]. However, most of these frameworks have been
mainly used in traffic analysis, as well as in fault and configuration management areas. In
contrast, not much work has been undertaken concerning network performance management
and network monitoring. This is because the overhead imposed by the frequent MA transfers,
required to perform network elements (NE) polling, may even surpass that of centralised
models. The factors contributing to that high overhead are:
(i) The prohibitively ‘costly’ MAs size.
(ii) No appropriate method for remote processing/filtering of network monitoring data or

SNMP tables has been proposed and, as a result, the volume of data transferred to the
manager is not significantly decreased.

In order to deal with the first problem, we have presented an infrastructure that
performs dynamic MA-based NM [5] utilising a lightweight MA code transfer scheme
(discussed in the succeeding section). In [6], we proposed two complimentary polling modes
that improve the infrastructure scalability: In the first approach, called Get ’n’ Go (GnG),
used to collect real-time data, the network is partitioned into several domains and a single MA
object is assigned to each of them. In every Polling Interval (PI), this MA sequentially visits
all NEs within the network domain and obtains the requested information before returning to
the manager. The second polling scheme, called Go ’n’ Stay (GnS), targets the acquisition of
data to be analysed off-line: an MA object is broadcasted to all managed devices and remains
there for a number of PIs collecting an equal number of samples before returning to the
manager.

In this paper, we focus on the second of the aforementioned problems using the
infrastructure described in [5] to employ NM data intelligent filtering applications. In
particular, we describe ways to: (i) aggregate several MIB values into more meaningful
values, (ii) efficiently acquire atomic snapshots of SNMP tables, and (iii) filter tables’
contents by applying arbitrarily complex filtering expressions. Regarding the table filtering
application, we introduce the idea of domain or global level filtering. Specifically, we exploit
the multi-node movement that MAs often undertake that allows them to perform a
superjacent level (second stage) of data filtering, in domain or even in network level. This is
achieved by merging the results collected by the hosts that have been already visited with the
results that have been just obtained.

The paper is organised as follows: Section 2 discusses the advantages that MA-based
approach brings to network monitoring applications over the static delegation agents of MbD
paradigm and RMON. Section 3 provides an overview of the MAF used to support this work.
Section 4 deals with the proposed applications of MAs on network monitoring. A quantitative
evaluation of the bandwidth usage is given in Section 5, with Section 6 concluding the paper
and suggesting several topics for further work.

2. Advantages of MA-based approach in NM

The advantages brought about by using MAs in NM, in comparison with the static
delegation agents proposed by MbD, are summarised in the following:
(i) Ease in modifying existing management functions. This is because management

functions are developed/modified centrally, with the modifications taking instant effect.
In case that static agents are used, each of them has to be updated by an ‘update’
message broadcasted from the manager to the managed devices. Frequent modifications
would create a considerable amount of traffic.

(ii) Efficient use of computing resources on the managed entities, as management functions
are executed only as long as the MA resides and is active on the NEs.

(iii) MAs can provide all the functionality offered by static delegation agents, having the
additional benefit of mobility. In that sense, MAs can be regarded as a ‘superset’ of MbD
agents and thus, whenever a static agent is sufficient for performing a management
function, an MA can be sent to managed device and remain there until no longer needed.

(iv) The mobility of MA components intrinsically implies a domain or global level view of
the managed network as MAs visit several or even all the network hosts. That allows the
MAs to apply a second stage of management data filtering, at domain or network level,
i.e. compare/merge the results acquired from each host with those already collected
during their itinerary and keep only the values conforming to certain restrictions. That
leads to a further reduction of NM data transfers as only a small portion of the originally
acquired data is sent to the manager, while relaxing the manager host from a
considerable processing burden.

(v) The impact on network bandwidth caused by MA migrations is not necessarily high.
This issue is discussed later in this section.

RMON is also shown to present several deficiencies compared to MA-based NM:
(a) Typically, a stand-alone RMON compliant device (probe) is required to monitor the

traffic activity of a single network segment, leading to considerable increase of cost
when the management of multiple segments is considered. In contrast, in MA-based
approach there is not any constraint on the number of segments that can be
traversed/managed by MA objects.

(b) The control operations of a RMON probe may be set/modified only at configuration
time. That represents a rather inflexible solution in comparison with the MA-based
approach where a management function may be configured/modified at runtime.

(c) RMON is adequate for providing only traffic-oriented statistics since the status of the
network is determined by direct inspection of the packets flowing in it, rather than
inspection of the devices status, like in the mainstream (centralised) approaches that offer
device-oriented statistics. That is not the case in the MA-based approach where
management operations may be applied in both NE and network level.

A key issue affecting the performance of an MA-based NM infrastructure is the size of
travelling MA entities. In a typical Java-based MAF, both the MA code and state are required
at the destination to instantiate the received MA objects. Nicklisch et al. [11] identified three
alternative agent code transfer schemes: (a) “push” (MA code is sent from a code repository
to all the managed devices prior to MA transfers); (b) “pull” (code is loaded by the NE from a
repository upon MA’s arrival); (c) “migrate” (migrating code is sent from one non-repository
NE to another).

To the best of our knowledge, all the existing MA-based NM framework
implementations, such as [4][12][16], use the “migrate” code transfer scheme, i.e. MA’s
bytecode is transferred along with its state in every single MA transfer. This results in a much
higher demand on network resources, as code size is typically much larger than state size. In
our infrastructure [5] the transfer of the MA bytecode is performed only once (at its
construction time), through broadcasting it to the active managed devices, i.e. the “push” code

transfer scheme is used. Thereafter, the transfer of persistent state is sufficient for the MAS
entities to recognise an incoming MA and recover its state.

3. The Mobile Agent Framework

The MA-based NM framework has been entirely developed in Java [15] chosen mainly
due to its inherent portability, rich class hierarchy and dynamic class loading capability.

Our framework consists of four major components [5], illustrated in Figure 1:
1. The Manager application;
2. The Mobile Agent Server (MAS);
3. The Mobile Agent Generator (MAG);
4. The Mobile Agents.

Figure 1. The Mobile Agents-based NM Infrastructure

3.1. Manager Application

The manager application, equipped with a browser style User Interface (UI), co-
ordinates monitoring and control policies relating to the NEs. Active agent processes are
discovered by the manager, which maintains and dynamically updates a ‘discovered list’.

3.2. Mobile Agent Server (MAS)

The interface between visiting MAs and legacy management systems is achieved
through MAS modules, installed on every managed device. The MAS resides logically above
the standard SNMP agent, creating an efficient run-time environment for receiving,
instantiating, executing, and dispatching MA objects. Integration with SNMP was vitally
important to maintain compliance with the legacy management systems.

 UI

Manager

...

MAG – Mobile Agents Generator
MAS – Mobile Agent Server
UI – User Interface
MA – Mobile Agent
SNMP – Simple Network Management Protocol
MIB – Management Information Base

Dispatch

Return &
Display results

MAS

Agent Host # n

MAS

Agent Host #1

MAG

 MAs

MA Code
repository

Compressed MA state

Figure 2. The Mobile Agent Server structure

The MAS also provides requested management information to active MAs and protects
the host system against external attack. The MAS composes four primary components (see
Figure 2):

� Mobile Agent Listener,
� Security Component,
� Service Facility Component,
� Migration Facility Component,

while two supplementary threads exist outside the boundary of the MAS: (i) Network
Discovery Daemon, (ii) Class Loader Daemon.

3.3. Mobile Agent Generator (MAG)

The MAG is essentially a tool for automatic MA code generation allowing the
construction of customised MAs in response to service requirements. Generated MA code is
stored into an MA code repository (see Figure 1). Such MAs may dynamically extend the
infrastructure’s functionality, post MAS initialisation, to accomplish management tasks
tailored to the needs of a changing network environment.

The MAG’s operation is described in detail in [5]. However, its functionality has been
extended so as to allow the operator (through a dedicated UI) to specify:

� Whether the constructed MA will be used for GnG or GnS polling;
� The polling frequency (i.e. the polling interval’s duration);
� The transmission protocol to be used for the MA transfers (either TCP or UDP);
� Whether MAs authentication and data encryption are applied or not.

3.4. Mobile Agents (MAs)

From our perspective, MAs are Java objects with a unique ID, capable of migrating
between hosts where they execute as separate threads and perform their specific management
tasks. MAs are supplied with an itinerary table, a data folder where collected management
information is stored and several methods to control interaction with polled devices. The
MA’s state information is compressed (using the Java gzip utility) before being transferred to
the next destination host.

JVM

NDD

SFC

SC

MFC

MAL

MAS

NE

 MA

CLD Bytecode

4. Intelligent filtering applications of NM data

The management operations defined in the IETF approach are usually very low-level,
as the management station can typically only get and set MIB object values. Semantically rich
operations, such as get-column, get-row or get-table are not available yet. Using the MA-
based approach, sequences of primitive operations can be grouped into higher-level
operations, sent to the NEs and executed independently of the management station. This
brings forward the benefit of modularity and parallelism into the management architecture,
and provides improved performance by reducing the number of messages exchanged between
the agent and the management station, thereby limiting the load in the area surrounding it.

To facilitate the construction of service-oriented MAs, we have refined the MA model
described in [5] by introducing an MA superclass, which provides the root attributes
mentioned in the preceding section. In addition, we have implemented several classes each of
which extends the MA superclass and corresponds to a specific management function. These
in turn are sub-classed by the MA classes created by the MAG. This flexible hierarchical
design minimises MA bytecode and eases the creation of service specialised MAs.

In the following sections, we describe three novel applications of MAs on network
monitoring, demonstrating their ability to minimise management data overhead.

4.1. Health Functions Evaluation

Polling is a frequent operation in NM as there are often several object values that
require constant monitoring. Cases often occur however, where one or two MIB variables are
not a representative indicator of system state and hence an aggregation of multiple variables is
required, known as a health function (HF) [7]. For instance, five MIB-II [10] objects are
combined to define the percentage E(t) of IP output datagrams discarded over the total
number of datagrams sent during a specific time interval,

gramsipForwData stsipOutReque

100*s)ipFragFail tesipOutNoRou ards(ipOutDisc
)t(E

+
++

= (4-1)

where MIB-II is an example of a MIB being supported by all the SNMP-enabled NEs.
In the SNMP model, the least ‘expensive’ option would be to group the five Object

Identifiers (OIDs) in a single get request packet. The response packet would then include the
OIDs along with the requested values, with the OIDs typically occupying more space than the
actual values. On the other hand, the MAs constructed by the MAG tool are able to compute
HFs, thereby providing a way to semantically compress large amounts of data into single
indices representing portions of the system status. Thus, a single value is returned to the
manager station, relieving it from processing NM data, while the MAs state size remains as
small as possible. MAs can also be instructed to transmit computed values only in the case
that certain thresholds are crossed. When the collected values are intended for off-line
analysis, GnS polling mode may be employed and multiple samples be wrapped into the
MA’s state before delivered to the manager application, reducing the associated network
overhead to a great extend.

4.2. SNMP Table Polling

Some of the major drawbacks with SNMP are related to the bulk transfer of data, e.g.
the transfer of large SNMP tables. The widely deployed SNMPv1 was not designed for
transferring large amounts of data. In addition, the total amount of management information
that needs to be transferred has been increased greatly, e.g. IP routing tables and TCP
connection tables are continuously growing. Later protocol versions (v2c & v3), apart from
their limited installation basis on managed devices, do not answer this problem sufficiently,
even though they provide a get-bulk operation [14].

Let us consider the retrieval of an SNMP table consisted of thousands entries. When
using the get-next operator (SNMPv1 model) the table retrieval requires at least one get-next
operation per table row (see Figure3.a). Apart from the apparent impact on network resources,
this operation is known to experience significant latency, especially when the management of
remote LANs is considered (each get-next operation should be completed before the next one
can start) [13]. In addition, the non-negligible time intervals between the acquisition of each
individual object value leads to potential inconsistencies (different sections of the table will
reflect updates at different times).

The situation improves with the introduction of the get-bulk request, which adds to the
ability of SNMP to retrieve large blocks of data efficiently by specifying a maximum number
of successive values to be returned (max-repetitions) [14]. That means that the human
manager has to guess a value for the max-repetitions parameter. Using small numbers for
max-repetitions may result in too many message exchanges (Figure 3.b). Using large
numbers, however, may result in an ‘overshoot’ effect [13]: the agent returns data that do not
belong to the table the manager is interested in. This data will be sent over the network back
to the manager just to be discarded (Figure 3.c).

Another factor contributing to the high overhead of the various SNMP implementations
is the OID naming scheme. In particular, the OIDs of the objects involved in bulk transfers
are characterised by a high degree of redundancy, i.e. multiple occurrences of identical
portions of OIDs can be observed. Therefore, redundant information is transferred, resulting
in higher network overhead than strictly needed.

Figure 3: Acquiring an SNMP table snapshot through: (a) successive get-next requests, (b)
multiple get-bulk requests, (c) a single get-bulk request, (d) MA migration and locally issued

get-next requests.

Here, we propose a way to improve the retrieval of SNMP tables both in terms of
network overhead and latency. An MA object is dispatched by its corresponding polling
thread and visits a pre-determined number of hosts. At each place of contact, when received
by the local MAS entity, the MA acquires an SNMP table through successive get-next
requests (see Figure 3.d). The table contents are then encrypted, if desired, and encapsulated
into its state before moving to the next host or returning to the manager. The MA may also
obtain several snapshots of the table (with a pre-determined frequency) and wrap them all into
its state before delivering to the manager for further analysis (GnS polling mode).

(d)

AgentManager

get-next request
get response

get-next request
get response

AgentManager

get-bulk request, max=10
get-bulk response

get-bulk response
get-bulk request, max=10

AgentManager get-bulk response

get-bulk request, max=1000

AgentManager
..

get response

get-next req
get response

get-next reqMA

(a)

(b)

(c)

…..

…..

…..

The overall latency is also reduced (especially for large tables), as the round-trip delay
of each request/response message exchange is significantly smaller. An inviting side effect of
that is the improved consistency of the acquired values.

The SNMP table is encapsulated into the MA’s state as a two-dimensioned array. That
solves the OID redundancy problem, since the OIDs are not returned to the manager at all; the
table’s OID (which is the common prefix for all the table objects) added to the value’s
location into the array (column, row) is sufficient to build the corresponding object’s OID.

New polling operations, used to acquire specific SNMP table views may be
added/modified in runtime, specifying the SNMP table and the hosts to be polled, the polling
interval, the polling mode (either GnG or GnS), the transport protocol to be used, etc (see
Figure 4).

Regarding the MA-SNMP agent interaction implementation, instead of reinventing the
wheel and developing everything from scratch, we re-used publicly available software as
much as possible. Thus, we have used several classes of the AdventNet SNMPv1 package [1]
offering MIB browsing capability, abstracting MIB nodes, issuing SNMP requests, etc. The
higher-level operations, built on the top of AdventNet package classes (e.g. get-table) and
invoked by incoming MAs, have been integrated into the Service Facilitator Component of
MAS modules.

Figure 4: Configuring the SNMP table polling operation through the Mobile Agent Generator
User Interface

4.3. SNMP Table Intelligent Filtering

In most existing network monitoring applications, the retrieved bulk data are usually
utilised to feed a processing module responsible for extracting results in a more high-level
and ‘understandable’ form. These results may be used later on to aid on capturing utilisation
or error rate peaks, indicate failed devices, foresee possible congestion points, propose future
network upgrades, etc. In fact, only a small portion of the obtained values is proved useful as,
in by far the majority of cases, bandwidth is consumed to learn nothing other than that the
network is operating within acceptable parametrical boundary conditions. This is because the
processing action, i.e. the filtering of management data takes place on the manager and not on
the NE side.

Therefore, we propose a third application of MAs on network monitoring exploiting
their ability to download management logic in order to perform intelligent filtering of NM
data on selected SNMP tables. Specifically, this type of MA is able to acquire an SNMP table
and subsequently apply a pre-determined filtering pattern to it.

The filtering operators offered in the current implementation are classified in
Arithmetic (Max, Min, Bigger, Less) and Textual (Match, Exclude) with their corresponding
method definitions and parameters shown in Figure 5. These operators typically take as input
the acquired SNMP table and filter it keeping only the rows for which a given element
(defined by its column index) meets certain criteria, e.g. is greater than a threshold value or
matches a given text string.

String[][] Max (String table[][], int colIndex, int rowsPerHost, int overallRows, boolean
ascending);

String[][] Min (String table[][], int colIndex, int rowsPerHost, int overallRows, boolean
ascending);

String[][] Bigger (String table[][], int colIndex, double biggerThan, int rowsPerHost, int
overallRows, boolean ascending);

String[][] Less (String table[][], int colIndex, double lessThan, int rowsPerHost, int
overallRows, boolean ascending);

String[][] Match (String table[][], int colIndex, String matchedValue);
String[][] Exclude (String table[][], int colIndex, String excludedValue);

Figure 5: Arithmetic and textual filtering operators method definitions

When arithmetic operators are considered, the user may set limitations on the
maximum number of rows that may be returned from individual hosts, the maximum overall
number of rows, whether the results will be sorted in ascending or descending order, etc.

It is also noted that the filtering operation may be either based on: (i) a given table
column, e.g. for the MIB-II interfaces table (ifTable) [10], “get the two rows (interfaces) with
the maximum number of incoming octets (max ifInOctets)”, or (ii) on a pre-defined HF, e.g.
“return the two more heavily loaded interfaces” (see Figure 6).

Figure 6: Customising the SNMP table filtering operation parameters

For instance, the invocation of the Bigger method with the following parameters:

String[][] bigger = Bigger (Utilisation (getTable (“ifTable”)), HFcolumn, 0.6, 2, 10, false);

returns the two more heavily loaded interfaces, in descending order, given that their utilisation
is greater than 60%. A maximum of ten interfaces will be returned to the manager coming
from any of the polled NEs. The Utilisation method, included in the MA’s code, takes as a
parameter the interfaces table and calculates the utilisation HF for each one of its rows:

)SysUpTimeifSpeed(

)sifOutOctetifInOctets(
)t(U

100

8

∗∗
∗+= (4-2)

The HF values are appended to the interface table, which is then sorted into HF values
order. The resultant table is scanned and the rows (two, at maximum) with HF values greater
than 0.6 are returned, in descending order. For the case where only specific table columns are
desired (e.g. only the number of octets sent out of the most heavily loaded interfaces), the rest
of the columns will be removed.

In addition to the simple filtering issues discussed so far, we introduce the concept of
domain or global level filtering. In particular, we exploit the multi-node movement of MAs to
perform an additional level (second stage) of data filtering, in domain or even in network
level. This is achieved by comparing/merging the results already collected with these that
have been just obtained/processed. Hence, not only is the manager host relieved from
processing bottlenecks, but the MA’s state size is prevented from growing rapidly (and
therefore the network overhead is further reduced), since the amount of information stored in
the MA’s data folder basically remains constant.

It should be emphasised that global filtering fits comfortably into both the GnG and
GnS polling modes. In the former case the MA may, for example, return the two most heavily
loaded interfaces found in the entire network, whereas in the latter, record a utilisation peak
on a host within a given observation period. When employing GnS polling, higher sample
rates may be used without putting any additional load on the network (since this will not
affect the MA’s state). In GnG polling mode, the results will be delivered to the manager and
then displayed on a graphical table component, with the interface information drawn in
different colours, depending on the host they are arriving from. This filtering operation is
summarised in the Figure 7 flow diagram.

Figure 7: SNMP table filtering operation flow diagram

In addition to the scenarios already examined, the construction of filtering expressions
with increased complexity has been also considered. Thus, MAs may be constructed with the
ability to apply arbitrarily complex boolean expressions, namely logical AND and OR
operators correlating individual filtering functions.

An example employing the AND operator would be: “return the interfaces with
utilisation 0.6<U(t)<0.8”. The output array bigger of the Bigger method invocation
(mentioned in a previous example) would then be passed as a parameter to the Less operator
to apply a second level of filtering (see Figure 7):

String[][] result = Less (bigger, HFcolumn, 0.8, 2, 10, false);

In contrast, when the OR operator is considered, the two output tables (arrays)
resulting from the individual expressions are simply concatenated. For example, to view the
TCP connections with either ‘listen’ or ‘established’ state (see the definition of the MIB-II
tcpConnTable [10]), the following expression needs to be applied:

Yes

Obtain the SNMP
table through

get-next requests

Start execution

Filtering
based on

HF values?

No

Whole row
required?

Arithmetic
f iltering
operator?

No

Yes

Yes

No

No

Global
filtering
enabled?

Yes

Boolean
expression
included?

Encapsulate
all the results

No

Encryption
enabled?

Encrypt all
the results

Yes

No

Compare/Merge
the previous with
the current results

GnG

Polling
mode?

Sleep for a
polling interval

GnS

Migrate to the
next host

C ompute the HF
value for every
row and append

it to the table

Sort the table in
descending order

of a given column

Filter the table
according to the

filtering expression

Strip the table
keeping only the

requested columns

Retrieve & decrypt
the results

stored so far

Yes

String [][] result = concat (Match (getTable (“tcpConnTable”), tcpConnState, “listen”),
Match (getTable (“tcpConnTable”), tcpConnState, “established”));

Relevant work has been reported in [8], which describes ways to create MIB views
within an agent. Views are created by defining operations on SNMP tables using a View
Definition Language (VDL). However, the support of a VDL interface (VDL translators)
increases the footprint of delegation agents on network devices, while these agents need to be
always updated as soon as a new control operation is introduced. This is not a prerequisite in
the MA-based approach, where the local MAS modules are unaware of the incoming MAs
functionality.

5. Quantitative Evaluation

The network overhead imposed by the proposed applications has been compared with
the AdventNet SNMPv1 implementation [1]. We consider a network of 50 managed devices.
The SNMP get request/response message is 90 bytes long, on average (at MAC layer), while
every extra value included in the SNMP packet’s varbind list represents an additional
overhead of 17 bytes, on average. Table 1 summarises all the MA attributes required to
evaluate the network overhead of the introduced applications.

HF Evaluation SNMP table
polling

SNMP table
filtering

Compressed code
size (in Kbytes) 1.25 1.36 1.95

Compressed (initial)
state size (in bytes)

381 384 447

State size increment
per sample (in bytes)

2
(one extra value)

68
(8×21 extra values)

13
(1×21 extra values)

Table 1: Attributes of the MA classes corresponding to the three proposed applications

Figure 8(a) compares the performance of SNMP-based polling against the MA-based
approach, when the calculation of the HF appearing in Eqn. (4-1) is considered. Despite the
object value aggregation, GnG mode does not outperform the centralised polling (the
performances of these two approaches will start to converge for larger number of aggregated
values). In addition, the segmentation of the managed network into five domains (employing
10 MAs in GnG polling) does not seriously effect bandwidth consumption, while reducing
greatly the overall response time [6]. Things improve with GnS mode, which becomes more
attractive as the number of polling intervals (PI) that MAs remain on the devices, increases. It
is noted that the starting point for GnG/GnS polling is at 62.5Kbytes, representing the
overhead imposed when broadcasting the compressed MA code to all NEs (50×1.25Kb).

Figure 8(b), drawn on logarithmic scale, compares our table polling method with the
traditional approach, when considering the retrieval of an interfaces table consisted of eight
rows (8×21 entries). We assume each get-next request retrieving a whole table row. The MA-
based approach clearly surpasses SNMP-based polling due to the lightweight data ‘encoding’
method employed and the fact that the whole table is wrapped into MA’s state before
delivered to the manager. It is worth noting that the network partitioning into five domains
provides better results in this case. This is explained by the rapid growth of the MA’s state [6]
encountered when a single MA object is responsible for polling all NEs (the MA state size is
increased by 68 bytes each time a NE is visited).

Figure 8: Bandwidth consumption of SNMP-based polling against MA-based proposed
applications: (a) HF evaluation, (b) SNMP table polling, and (c) SNMP table filtering.

The same experiment is repeated for the table filtering application, with the pre-
eminence of the former against SNMP-based approach being more distinct (see Figure 8.c).
Here, we assume MAs to bring back only the most heavily loaded interface (from each host).
It is also noted that global filtering improves the framework’s performance both in GnG and
GnS cases, since it keeps the size of the MAs state constant (in this case, the most heavily
loaded network interface is returned). The bandwidth usage is reduced even more when single
table entries (instead of entire rows) are requested (this is not shown here).

6. Conclusions

We have presented three applications of intelligent/mobile agents on network
monitoring. The applications, which have been built on the top of lightweight MAF described
in previous work [5], address the scalability limitations of centralised NM that become

(c)

(b)(a)

0

200

400

600

800

1000

1200

0 10 20 30 40
Polling Intervals

B
an

dw
id

th
 U

sa
ge

 (
K

by
te

s)

SNMP-based polling GnG polling (1 MA) GnG polling (10 MAs)
GnS polling (5 PIs) GnS polling (50 PIs)

10

100

1,000

10,000

100,000

0 10 20 30 40
Polling Intervals

B
an

dw
id

th
 U

sa
ge

 (
K

by
te

s)

SNMP-based polling GnG polling (1 MA) GnG polling (10 MAs)
GnS polling (5 PIs) GnS polling (50 PIs)

10

100

1,000

10,000

100,000

0 10 20 30 40
Polling Intervals

B
an

dw
id

th
 U

sa
ge

 (
K

by
te

s)

SNMP-based polling GnG polling (1 MA)
GnG polling - Global Filt . (1 MA) GnG polling (10 MAs)
GnS polling (5 PIs) GnS polling-Global Filt . (5 PIs)
GnS polling (50 PIs)

significantly more pronounced when transfers of bulk network monitoring data are
considered. In particular, MAs have been utilised to: (i) aggregate several MIB values into
more meaningful network health indicators, (ii) acquire SNMP tables snapshots, and (iii)
filter SNMP tables contents applying complex filtering expressions. Both real-time and off-
line NM data acquisition is considered.

We have also exploited MAs ability to realise multi-node itineraries to introduce the
concept of domain/global filtering, where MAs use the knowledge/information already
collected to perform a superjacent level of data filtering.

Empirical results confirm a significant improvement on traffic overhead when testing
the proposed applications in realistic management scenarios and comparing them against
traditional centralised polling.

Ongoing work addresses:
� Assignment of higher priorities to MA threads to ensure faster execution of time critical

management functions.
� Exploration of other NM areas where MA technology can be employed, such as network

performance testing or software distribution.

References

[1] AdventNet, http://www.adventnet.com/.
[2] Baldi M., Gai S., Picco G.P., “Exploiting Code Mobility in Decentralised and Flexible Network

Management”, Proceedings of the 1st International Workshop on Mobile Agents (MA'97), pp.
13-26, 1997.

[3] Case J., Fedor M., Schoffstall M., Davin J., “A Simple Network Management Protocol
(SNMP)”, RFC 1157, 1990.

[4] Feridun M., Kasteleijn W., Krause J., “Distributed Management with Mobile Components”,
Proceedings of the 6th IFIP/IEEE International Symposium on Integrated Network Management
(IM’99), pp. 857-870, 1999.

[5] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “An Infrastructure for Distributed and
Dynamic Network Management based on Mobile Agent Technology”, Proceedings of the IEEE
International Conference on Communications (ICC’99), pp. 1362-1366, 1999.

[6] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M., “Using Mobile Agents for Distributed
Network Performance Management”, accepted to the 3rd International Workshop on Intelligent
Agents for Telecommunication Applications (IATA’99), 1999.

[7] Goldszmidt G., “On Distributed Systems Management”, Proceedings of the 3rd IBM/CAS
Conference, 1993, http://www.cs.columbia.edu/~german/papers.html.

[8] Goldszmidt G., “Network Management Views using Delegated Agents”, Proceedings of the 6th
IBM/CAS Conference, 1996, http://www.cs.columbia.edu/~german/papers.html.

[9] ISO/IEC 9596, Information Technology, Open Systems Interconnection, Common Management
Information Protocol (CMIP) – Part 1: Specification, Geneva, Switzerland, 1991.

[10] McCloghrie K., Rose M., “Management Information Base for Network Management of TCP/IP-
based internets: MIB-II”, RFC 1213, 1991.

[11] Nicklisch J., Quittek J., Kind A., Arao S., “INCA: An Agent-Based Network Control
Architecture”, Proceedings of the 2nd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA’98), LNCS vol. 1437, pp. 143-155, 1998.

[12] Sahai A., Morin C., “Towards Distributed and Dynamic Network Management”, Proceedings of
the IEEE/IFIP Network Operation and Management Symposium (NOMS’98), 1998.

[13] Sprenkels R. and Martin-Flatin J.P., "Bulk Transfers of MIB Data", The Simple Times, 7(1):1-
7, 1999, http://www.simple-times.org/.

[14] Stallings W., “SNMP, SNMPv2, SNMPv3 and RMON 1 and 2”, 3rd ed., Addison Wesley, 1999.
[15] Sun Microsystems: “Java Language Overview – White Paper” [On-line] (1998),

http://www.javasoft.com/docs/white/index.html.
[16] Susilo G., Bieszczad A., Pagurek B., “Infrastructure for Advanced Network Management based

on Mobile Code”, Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS'98), pp. 322-333, 1998.

[17] Yemini Y., Goldszmidt G., Yemini S., “Network Management by Delegation”, Proceedings of
the 2nd International Symposium on Integrated Network Management, pp. 95-107, 1991.

[18] Zhang D., Zorn W., “Developing Network Management Applications in an Application-
Oriented Way Using Mobile Agent”, Computer Networks And ISDN Systems (30) 16-18
(1998) pp. 1551-1557.

List of Acronyms

ASN.1: Abstract Syntax Notation 1
CMIP: Common Management Information Protocol
GnG: Get ’n’ Go
GnS: Go ’n’ Stay
HF: Health Function
IETF: Internet Engineering Task Force
MA: Mobile Agent
MAF: Mobile Agent Framework
MAG: Mobile Agent Generator
MAS: Mobile Agent Server
MbD: Management by Delegation
MIB: Management Information Base
MIT: Management Information Tree
NE: Network Element
NM: Network Management
OID: Object Identifier
PI: Polling Interval
RMON: Remote Monitoring
SNMP: Simple Network Management Protocol
UI: User Interface
VDL: View Definition Language

Damianos Gavalas received his BSc degree in Informatics
(Computer Science) from University of Athens, Greece, in 1995 and
his MSc degree in telecommunications from University of Essex,
U.K., in 1997. He is currently pursuing a Ph.D. in electronics
engineering at the University of Essex. His research interests include
distributed computing, mobile agents, network and systems
management. He is a student member of the IEEE Computer and
Communication societies.

Dominic Greenwood was born in Llanidloes, Wales in 1970. He
received the Ph.D. degree from Staffordshire University in 1997,
specialising in the phase characterisation and auto-adaptive
compensation of non-linear effects in network traffic. Since February
1997, he has been working for Fujitsu Telecommunications Europe
Ltd., conducting research into the application of agent technology to
distributed network management. He will shortly be joining Fujitsu
Laboratories of America to continue work in this field. He has filed
one international patent and has authored over 25 publications.

Mohammed Ghanbari received the BSc degree in electrical
engineering from Aryamehr University of Technology, Tehran, Iran, in
1970, the MSc degree in telecommunications and the PhD in
electronics engineering, both from University of Essex, U.K., in 1976
and 1979, respectively. After working for almost ten years in industry,
he started his academic career in the Department of Electronic Systems
Engineering, University of Essex, where he currently holds the position
of the Professor. His research interests are video compression, video
networking and performance management.

Mike O’Mahony received a Ph.D. from the University of Essex in
1977, for research into digital transmission systems. In 1978, he
joined British Telecom working on research into fibre-optic systems,
and in 1988 became the Head of the Inland Systems Section with
overall responsibility for research into terrestrial systems and
networks. In 1991, he rejoined the University of Essex as Professor of
Communication Systems and Networks. He has published over 160
papers.

