
A Progressive Network Management Architecture
Enabled By Java Technology

Damianos Gavalas

Communication Networks
Research Group

Electronic Systems
Engineering Dept.,

University of Essex,
Colchester, CO4 3SQ, U.K.

Tel: +44 1206 872425

dgaval@essex.ac.uk

Dominic Greenwood

Fujitsu Telecoms. Europe
Research Group

Northgate House,
St. Peters Street,

Colchester,
CO1 1HH, U.K.

Tel: +44 1206 363002

D.Greenwood@ftel.co.uk

Mohammed Ghanbar i

Communication Networks
Research Group

Electronic Systems
Engineering Dept.,

University of Essex,
Colchester, CO4 3SQ, U.K.

Tel: +44 1206 872434

ghan@essex.ac.uk

Mike O’Mahony

Communication Networks
Research Group

Electronic Systems
Engineering Dept.,

University of Essex,
Colchester, CO4 3SQ, U.K.

Tel: +44 1206 872277

mikej@essex.ac.uk

Abstract

This paper proposes a framework based completely on Java technology. The advantages brought about
by the use of Java in network management answer some critical problems existing in current systems.
With this work we address several factors concerning interoperability and security in heterogeneous

network environments. Specifically, we present a manager application and a multithreaded agent
engine that make use of a lightweight communication mechanism for message exchange. A MIB

parser is introduced to accelerate handling of incoming management requests, and the RSA public-key
cryptosystem is implemented to provide both encryption and authentication features. Results,

measured in terms of response time, compare favourably with other published work and standard
management frameworks.

1. INTRODUCTION

The explosion in the size and complexity of today’s local and wide area networks,
combined with the increasing demands placed upon them for their resources has resulted in
establishing Network Management (NM) as a factor of paramount importance. To further
complicate matters, the concept of a single vendor network has vanished into history. Even if
a company’s network is provided by a single vendor, very soon the requirement to
interconnect with related companies by using a mixture of public and/or private networks
make the single vendor objective unrealistic. Therefore, an important goal of NM is to support
the heterogeneous integrated environment of a network that contains multi-vendor hosts,
software packages and carriers.

The current state of the art in NM involves a management application (manager) and the
managed entities (agents), embedded within Network Elements (NEs). Management
interactions make use of the Client/Server model, with the manager collecting status data and
setting control variables through the agents. The communication between the managing and
the managed entities is facilitated by NM protocols such as the Simple Network Management
Protocol (SNMP) [2], part of the TCP/IP protocol suite and the Common Management
Information Protocol (CMIP) [3] used in public telecommunication networks. Within these
protocols, abstractions of physical resources in a network are represented by managed objects.
Collections of managed objects are grouped into a tree-structured Management Information
Base (MIB) or Management Information Tree (MIT) following the Abstract Syntax Notation
1 (ASN.1) format and encoded for transport using the BER encoding [4]. The Internet
standard MIB-II [6] is an example of a MIB being supported by all the SNMP-managed NEs.
Of course, the implementation of the agents (which are typically ‘ closed’ , non extensible

applications) are left to the vendors, as long as they understand the protocol standard
‘ language’ and follow the MIB or MIT format and encoding definitions.

Despite its wide use, SNMP is known to have several significant disadvantages. The
most important among these is the poor community strings-based authentication pattern,
adopted by both SNMPv1 and SNMPv2c [9], in addition to the lack of encryption of sensitive
NM information. The issue of portability between different hardware architectures or
operating systems and the difficulty to extend agent functionality should be also stressed.
Another limitation of SNMP is related to the use of BER encoding, which is renowned for its
inefficiency. A second issue, regarding the protocol’s efficiency is within SNMP itself;
SNMP varbind lists are relatively expensive, because the Object Identifiers (OIDs) used to
name variables usually take much more space than the actual values. Also, the absence of an
efficient table retrieval mechanism means that the overall protocol efficiency suffers from
repeated message exchanges (and repeated computations on the agent side).

Java technology has recently attracted tremendous attention in the NM field both in
research [5][7] and at a commercial level [14]. Both [5] and [7] use TCP as transport protocol,
and give a solution to the portability but not to the security problems of SNMP. In addition,
they adopt a heavyweight communication mechanism that causes a serious impact on the
Network Management System (NMS) performance, both in terms of bandwidth usage and
response time.

The objective of this work is to explore the feasibility of integrating Java technology
in NM. The Java approach explained in this paper is intended to overcome some of the SNMP
limitations and reduce the complexity involved in NM. Two different aspects of NM that
exhibit several attractive features in comparison with the SNMP-based management are
considered. The first involves the manager side; we present an application in the form of a
browser tool that automatically discovers network topology and interacts with the managed
NEs using an efficient and lightweight communication scheme. The second aspect involves a
portable and extensible agent engine that, due to its multithreaded nature, supports concurrent
queries from one or more managers. In addition, an efficient MIB parsing method has been
implemented at the agent side to speed incoming manager request processing. Security issues
have also been investigated such that manager requests are authenticated while data returned
from the agents are encrypted. Also, either TCP or UDP protocol stacks can be used for
message exchange. As a whole, the presented framework consists of 38 classes amounting to
no more than 250 Kb. This relatively small footprint makes the method even more attractive
for network devices with limited storage capacity.

The rest of the paper is organised as follows: Section 2 summarises the characteristics
of Java that make it a suitable platform for the development of NM applications. Section 3
provides an overview of the MIB parser, the manager and the agent application, and describes
the exchanged messages between the managing and the managed entities. This section also
highlights the differences with the approach taken in [5]. Section 4 deals with associated
security issues. Experimental results are reported and discussed in Section 5 whilst Section 6
draws conclusions and considers directions for future work.

2. WHY JAVA FOR NETWORK MANAGEMENT?

Network computing based on Java technology is an emerging technology that provides
the basis for addressing limitations with legacy management systems. Java can be considered
a technology rather than merely as another programming language due to its 'standard'

implementation that includes an industrially supported network management infrastructure
(JMAPI) [12].

The proposed infrastructure has been entirely developed in Java, chosen due to its
numerous attractive features. Firstly, it is architecturally neutral and hence offers the platform
independence (portability) required for the management of a multi-faceted heterogeneous
environment. Furthermore, it has strong networking support through multithreading, allowing
the concurrent execution of several processes. Java also has the facility to obtain local system
information through native methods. In addition, the use of management applets allows an
operator to remotely manage a network through a standard web browser. The fundamental
assumption for our framework is the presence of a Java Virtual Machine (JVM) in every
managed NE. Current trends [11] indicate that JVMs may soon be integrated into many
network and computing resources.

Our framework has been developed using the Java Developer Kit (JDK) 1.1.7, with the
Swing package of JDK 1.2, Beta 4, used for the construction of the user interfaces.

3. NM ARCHITECTURE IMPLEMENTATION ISSUES

The main components of our proposed architecture consist of a Manager Browser and
an Agent Application. The manager browser is responsible for monitoring NEs by sending
SNMP-like requests to perform management tasks. The agent application runs as a daemon on
each of the managed devices providing an interface between the NMS and the NE resources
and serving manager requests.

In addition, a MIB parser constructs a Random Access File (RAF) used by the agent to
build a tree representation of the MIB objects. The use of the RAF structure reduces the time
taken by the agent to map a requested OID to the corresponding object name. The
implementation has been tested using the MIB-II definition [6], although the parser accepts
any MIB format.

3.1. The Manager Application

The manager is a Java application that executes monitoring and control operations
through its interaction with the agent processes. The manager adopts a browser style
Graphical User Interface (GUI) to ease user interaction.

3.1.1. Browser Overview

The GUI, shown in Figure 1, is the application tool through which the operator controls
the managed environment. It facilitates selection of the managed devices to be queried, the
transport protocol (TCP or UDP) and settings for both the OID and community strings of the
requested MIB object. In addition, the end user can determine (in runtime) whether the
messages exchanged are being authenticated and the management data encrypted or not.

The browser also maintains a list of the agents, which initially includes the host names
of all agent processes in operation at manager initialisation. These active processes are
‘discovered’ via a manager broadcast poll. Whenever a new agent process starts operation
after manager start-up, the manager is notified and the host name appended to the list.
Similarly, whenever an agent process terminates, it notifies the manager application, which in
turn removes the host name from the browser’s list.

Figure 1: The Manager Graphical User Inter face (GUI)

Additional facilities allow the operator to:
� Navigate the MIB tree;
� Issue an ‘SNMP-like’ request;
� Release a connection;
� Initiate an automated network discovery process;
� Obtain an on-line description of a MIB variable (see Figure 2);
� Set/modify the polling frequency, in runtime;
� Log operational results into a log file.

Figure 2: On-line descr iption of a MIB var iable

3.1.2. Manager Requests

As has been already mentioned, in our approach either TCP or UDP transport protocol
may be used for conveying the exchanged requests/responses. The issue of whether
management data should be carried over a reliable protocol such as TCP or an unreliable
protocol such as UDP has been debated for years. We believe that the network administration
should have the choice. Clearly, it is the duty of the administrator to ensure that the proportion
of the management data remains low compared to the user data. Thus, in case of oversized
networks where packet losses occur due to bursty traffic, management data should be
transported with a reliable protocol. TCP should also be the protocol choice in cases that the
number of retrieved values per managed device increases (as the number of transferred
messages per connection increases, the efficiency of TCP improves). Conversely, for
expensive intercontinental WAN links, management data are far less important than user
traffic; in these cases management data should be carried over an unreliable transport protocol
such as UDP.

A simple management query involves establishing a TCP or UDP (depending on the
protocol stack choice) socket connection, which remains open for the whole duration of the
transaction. Messaging will be then carried by TCP segments or UDP datagrams,
respectively. This lightweight communication mechanism differs greatly from that adopted in
[5], which relies on Java classes to pass information through the network. In particular, with
reference to [5], these classes include the requested OID string and have to be compiled
before being transmitted. The receiving agent loads the received class and retrieves the OID
string. The same scheme is also used in the return direction. Still, while adopting a
heavyweight messaging approach (unnecessary transfers of classes) this framework does not
overcome the security weaknesses of SNMP, as the requests are not authenticated and the
content of the transferred classes is ‘ readable’ . This process also exhibits the drawback of
delay imposed by time-intensive compilation and class loading.

In our proposed framework, the following request types may be sent from the manager
to the agent entity:

� ‘ Initialise’ request: This follows a successful connection establishment. The agent
responds by returning the first level of the MIB tree.

� ‘Next_Level’ / ‘Upper_Level’ requests: These facilitate the navigation to lower or upper
levels of the MIB tree, respectively. In the case of a ‘Next_Level’ request, the children
(next level nodes) of the currently selected node in the browser’s MIB tree list will be
returned. Otherwise, the agent returns the list of the upper level nodes.

	 ‘Get’ / ‘Get-Next’ / ‘Set’ requests: These have the same functionality as their SNMP
counterparts. Their invocation causes the manager to send, together with the command
string, the OID string it refers to. The OID string is checked before transmission to ensure
its validity.

 ‘Describe’ request: This provides on-line viewing of the information (textual OID, syntax,
access rights, status, description, etc.) associated with the selected MIB node.

� ‘Connection_Release’ request: When received by the agent, the socket connection is
released and the separate process (thread) that was created to carry out the manager’s
requests is terminated.

An alternative option for socket-based communication would be the use of Java Remote
Method Invocation (RMI). Like sockets, RMI offers a bi-directional association: once an RMI
client has bound to an RMI server, both of them can send data to each other. RMI is an

elegant solution in terms of design, as it gives a fully object-oriented view of network
management while it eases the design of complex applications. However, current RMI
implementations are considerably slower and tend to have a high demand on system and
network resources, which indicates that RMI-based NM is not sufficiently scalable for
widespread applications. The same applies to the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA); despite the language independence
that it brings, CORBA is a complex technology that makes use of heavyweight synchronous
protocols, incurring network transport overheads. Thus, for the time being, sockets offer a
preferable communication mechanism for NM.

3.2. MIB Parser

The MIB parser is a standalone Java application, executed prior to agent initialisation
that creates a RAF (through the java.io.RandomAccessFile class) using a standard MIB text
file for input. The RAF (Table 1) consists of a list of records, one for each of the objects
contained in the MIB file, and by its nature allows immediate access to specific records.
During agent initialisation, the RAF is used to build a MIB tree representation that is stored in
system memory and enhances agent efficiency when handling manager requests. The
usefulness of both the RAF and the MIB tree will be clearly shown in the next section.

Object Name mib-2 System Interfaces IfType snmpEnable
AuthenTraps

Syntax INTEGER .. INTEGER ..
Access read-only read-only
Status Mandatory mandatory

Description “The type...
stack”

“ Indicates ...
System”

Parent Node Mgmt mib-2 mib-2 IfEntry snmp
Identifier 1 1 2 3 30

Record Index 0 1 2 23 200

Table 1: Random Access File structure

The parser application compares each of the parsed strings with selected keywords. The
MIB file comments are skipped in order to speed the parsing procedure. Each record, included
in the resulting RAF contains object name, syntax, access, status and description fields.

3.3. The Java Agent Engine

The Java Agent is an application that runs as a background process on a managed node,
listening on well-known TCP and UDP ports and waiting for a manager connection request.
Upon reception of such a request, the main agent thread forks a slave thread that manages all
the requests sent by the manager for the duration of the connection (see Figure 3). The main
agent thread is then freed and returns to listening mode awaiting new connection requests. In
this manner, a single agent can serve multiple managers simultaneously. When the release of
a connection is requested, the slave thread terminates.

The Net Discovery thread is used to assist the manager to discover the active agent
processes. It listens on a pre-defined UDP port waiting for manager broadcast messages.
When receiving such a message this thread replies by sending the manager the IP address of
the agent host.

Figure 3: Threads of the Agent engine

3.4. MIB Tree Structure Descr iption

During initialisation, the agent opens the RAF created by the MIB parser and
sequentially reads the records stored within. For each of these, a node is inserted into a tree
structure (MIB tree) created in system memory. Each of these nodes consists of:

1. The name of the object that the node represents.

2. A vector (dynamic array) containing the next level nodes.

3. An index number indicating the location (offset) of the corresponding record in the RAF.

The agent application operation is summarised by the flow diagram in Figure 4.

Start

Random Access File
Read a RAF

record

Insert node
into MIB tree

Listening
mode

 Connection
request

received ?

Create a Slave
thread

No

Yes

 No

Yes

Is MIB tree
completed ?

 No

Yes

Figure 4: Agent operation flow diagram

Insertion of a node into the MIB tree is achieved through a recursive procedure. The
agent makes a search on the existing MIB tree structure, recursively reaching the parent node.
If, for instance, the MIB-II object ‘ ifType’ is to be inserted, ‘ ifEntry’ will be its parent node.
When the parent node is located, a new tree node is constructed containing the name of the
inserted object, an empty vector and the index to the RAF, while the vector of the parent node
(the list of its ‘children’) is updated. Figure 5 illustrates the resulting mapping of the MIB tree
nodes to the RAF record structure.

Agent Engine
...

Main thread

Net Discovery thread

Slave threadsTrap thread

MIBII System Interfaces SNMP
....

ifTable ifEntry ifType
........

0 1 2 10 19 20 23

Interfaces(2)
index = 2

MIBII (1)
index = 0

System (1)
index = 1 SNMP (11)

index = 10
........

ifTable (2)
index = 19

ifEntry (1)
index = 20

ifType (3)
index = 23

MIB Tree

RAF

Figure 5: Mapping of the MIB tree structure to the Random Access File

3.5. Handling of Manager Requests

The existence of the MIB tree greatly reduces the agent’s response time to manager
requests. Thus, the manager requests, mentioned in section 3.1.2, are handled as indicated
below:

� ‘ Initialise’ request: The root of the MIB tree is returned.
 ‘Next_Level’ / ‘Upper_Level’ requests: A search method is invoked that traces the node

for which the next or the upper tree level is requested. In the former case, the agent returns
the located node’s vector (containing the next level nodes), whereas in the latter the vector
of that node’s ‘grandparent’ is returned.

� ‘Get’ request: The agent parses the received OID string and follows the corresponding
path in the MIB tree. If the object requested belongs to the system MIB-II group, its value
is immediately retrieved; otherwise the system’s kernel is accessed through native
functions. ‘Get-Next’ and ‘Set’ requests are handled similarly.

� ‘Describe’ request: In this case, when the requested MIB tree node is located the offset of
the associated record is also read. The record is then directly accessed and its fields
returned by separate TCP segments (or UDP datagrams) to the manager. Figure 6
demonstrates how the slave thread manages the ‘Get’ and ‘Describe’ requests.

� ‘Connection_Release’ request: The socket connection closes and the slave thread dies.

No

MIB tree

Parse OID

Find node and
record’s offset

in RAF

Random Access File
Retrieve
record

Access system’s
kernel

Get request Describe request

Return results
to manager

Slave thread
starts

Wait for a
request

Connection
release

request ?

Termination

Yes

Figure 6: Slave thread operation for ‘Get’ and ‘Descr ibe’ request

The use of the MIB tree structure represents a notable improvement in comparison with
the parsing method described in [5]. Namely, according to the description given in [5] the
mapping of an OID string to the corresponding object name is achieved through the parsing of
the actual MIB text file. Hence, the parsing speed is dependent on the location of the
requested object in the file, and a significant delay may be imposed.

3.5.1. Kernel Access Mechanism

The native methods available in Java are used to obtain NM-related system information.
These methods are integrated into the Java code and are able to call functions written in other
programming languages (C, in our case), suitable for accessing the local operating system.
Integration is achieved through the Java Native Interface (JNI) [1]. The C code executes a
lookup (based on streams, in the case of Solaris 2.5), and acquires a data structure containing
all the objects of the MIB group of the requested variable. The object value of interest is then
returned to the main Java program. The MIB-II groups currently implemented are ip, tcp,
icmp and udp.

3.5.2. Traps Implementation

The agent application has been extended with event report capabilities through the
implementation of a trap thread running in parallel with the main agent thread (see Figure 3).
The primary task of this thread is to monitor several MIB objects by checking, at regular
intervals, their values against a threshold defined by the manager. The trap thread uses the
same mechanism described in the previous section to access the kernel (by forking a slave
thread). In the case of a monitored object value exceeding the given threshold, the manager is
notified by an event report. The manager application is able to append a new object to the list
of those already being monitored by sending the name of the object together with a threshold
value and the monitoring frequency.

4. SECURITY ISSUES

The proposed NMS is designed with several security features that overcome the
apparent weaknesses of SNMP and ensure privacy whilst protecting from unauthorised
access. In particular, the RSA public-key cryptosystem [8] has been implemented providing
both encryption and authentication. The Java Security API (built on top of JDK 1.1) has not
been chosen, due to the lack of encryption features, while the recently released Java

Cryptography Extension (JCE) 1.2 [13], which supplements the JDK 1.2, provides just a
framework but not the actual implementation of encryption algorithms.

The RSA algorithm is based on the ‘public-private pair of keys’ paradigm and its
security strength is related to the assumption that detection of the private key (needed to sign
or decrypt the transmitted data) is highly improbable. Thus, the steps followed during a single
transaction are:

i) The manager application signs the request using the private key. The digital signature
generated is then sent to the Java agent along with the request message.

ii) The SNMP security scheme is maintained and hence the request community name is
initially compared with the current agent’s community name. Upon success, the agent
executes an authentication function in conjunction with the public key and verifies
whether the original request message is recovered (this ensures data integrity). If the
second security level is successfully passed, the requested service is initiated else a
message is returned to the originating host informing of the access denial to system
information.

iii) The agent encrypts the data to be returned using the public key.

iv) The manager decrypts the data received by executing the decryption function, which
makes use of the private key.

5. EXPERIMENTAL RESULTS AND DISCUSSION

Our experimental setup involves several machines connected through 10Mbps Ethernet
segments. Specifically, a Solaris 2.5 UltraSparc-1, two Solaris 2.5.1 SparcStation4’s and two
120MHz Pentium PCs running WinNT have been used.

The proposed infrastructure has been compared, in terms of response time, with the
work of Luderer et al. [5], in addition to a standard SNMP package offered by University of
California at Davis [15] (UCD-SNMP ver. 3.3.1), developed in C programming language.
The application described in [5] has been implemented as a control model. The manager was
run from the UltraSparc-1 and Java Agents were initialised on the other machines.

Figure 7: Compar ison of response times measured for var ious implementations

The results shown in Figure 7 indicate that our proposed framework has a slightly
longer response time than SNMP (due to the authentication and encryption procedures that

UDP
TCP

UCD-
SNMP Luderer

System group

Other groups

104
106

77

2922

95 99
70

2440

1

10

100

1000

10000

R
es

p
o

n
se

 T
im

e
(m

s)

Implementation
MIB

group

are not present UCD-SNMP implementation), whilst an improvement in the order of 25 is
achieved in comparison with [5]. Separate measurements have been taken for system and
other MIB-II group variables (the latter require access to the system kernel in order to obtain
the variable value). The response times were measured at the manager end and averaged for
each group.

Clearly, thanks to the use of speed-up techniques such as the Just In Time (JIT)
compilers, the poor execution speed of Java interpreted bytecode does not represent a
significant problem any more.

6. CONCLUSIONS – FUTURE WORK

We have presented an NMS framework, including both a manager application and an
agent engine, completely based on Java technology. Java has been found an excellent
development platform, ideally suited to NM applications. Indeed, a number of intrinsic
problems of NM can be easily addressed and brought closer to solution. These are: first, the
portability across platforms or the independence from the underlying software and hardware
architectures, and second, a set of security aspects, such as authentication of incoming
requests and encryption of sensitive management information.

Moreover, the BER encoding used in the current SNMP frameworks is eliminated in
this approach, since the interoperability is supported by the Java bytecode. The administrator
is also given the option of using either the TCP or UDP protocol stacks depending on the
managed network topology and the traffic conditions. A MIB parser tool improves the
efficiency of the NMS, which seems to outperform a framework recently published in the
literature.

Current and future work address the following areas:
� Optimisation of the manager and agent code in order to further decrease the response

time.
� Construct an expanding and shrinking representation of the MIB tree on the manager

browser.
� Employ mobile agent technology, so as to reduce the management data volume.

7. REFERENCES

[1] Arnold K., Gosling J., “The Java Programming Language”, Addison-Wesley Publishing
Company Inc., 1996.

[2] Case J., Fedor M., Schoffstall M., Davin J., “A Simple Network Management Protocol
(SNMP)” , RFC 1157, May 1990, DDN Network Information Centre, SRI International.

[3] ISO/IEC 9596, Information Technology, Open Systems Interconnection, Common
Management Information Protocol (CMIP) – Part 1: Specification, Geneva,
Switzerland, 1991.

[4] ITU-T, Recommendation X.691, Information Technology – ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER), ITU, Geneva, Switzerland, July 1994.

[5] Luderer G., Ku H., Subbiah B., Narayanan A., "Network Management Agents
supported by a Java environment", Proceedings of the 5th IFIP/IEEE International
Symposium on Integrated Network Management (IM’97), 1997, URL:
http://www.eas.asu.edu/~netsys/areas/isinmabs.html.

[6] McCloghrie K., Rose M., “Management Information Base for Network Management of
TCP/IP-based internets: MIB-II” , RFC 1213, March 1991.

[7] Park J.K., Ban N.J., Kim T.G., “Java-Based Network Management Environment” ,
Proceedings of the IEEE International Conference on Communications (ICC’98), pp.
1124-1128, 1998.

[8] Rivest R.L., Shamir A., Adleman L., “A Method for obtaining Digital Signatures and
Public-Key Cryptosystems”, Communication of the ACM, 21(2), Feb. 1978.

[9] Stallings W., SNMP, SNMPv2 and CMIP: the Practical Guide to Network Management
Standards, Addison-Wesley, Reading, MA, USA, 1993

[10] Sun Microsystems: "Java Language Overview – White Paper" [On-line] (1998), URL:
http://www.javasoft.com/docs/white/index.html.

[11] Sun Microsystems, Jini Technology White Papers (1999), URL:
http://sun.com/jini/whitepapers/.

[12] Sun Microsystems, Java Management Application Programming Interface (JMAPI),
1998, URL: http://java.sun.com/products/JavaManagement/.

[13] Sun Microsystems, Java Cryptography Extension 1.2, 1998, URL:
http://java.sun.com/products/jdk/1.2/jce/.

[14] Thinsoft SNMP Management System, URL: http://www.thinsoft.com/feature.html.

[15] UCD-SNMP Project Home Page (1997), URL: http://www.ece.ucdavis.edu/ucd-snmp/.

