
An Infrastructure for Distributed and
Dynamic Network Management based

on Mobile Agent Technology
Damianos Gavalas†, Dominic Greenwood*, Mohammed

Ghanbari†, Mike O’Mahony†

†Communication Networks Research Group,
Electronic Systems Engineering Department,

University of Essex, Colchester, CO4 3SQ, U.K.
Tel: +44 (0)1206 872425 E-mail: { dgaval, ghan,

mikej} @essex.ac.uk
*Fujitsu Telecommunications Europe Ltd.,

Northgate House, St. Peters Street, CO1 1HH, Colchester,
U.K.

Tel: +44 (0)1206 363002 E-mail:
D.Greenwood@ftel.co.uk

ABSTRACT

The use of Mobile Agent technology to distribute and
delegate management tasks promises to overcome the
scalability and flexibility limitations of the centralised
Network Management paradigm. An efficient, lightweight
infrastructure based on Mobile Agents is described, which
addresses these issues by distributing management operations
amongst managed devices and hence reducing processing load
and bandwidth usage. A Mobile Agent Generator that
facilitates the creation of new mobile agents for additional
services is also presented. Our infrastructure is shown to
outperform SNMP both in terms of polling response time and
bandwidth consumption when considering data intensive
operations.

1. INTRODUCTION

Most contemporary Network Management Systems
(NMS) are characterised by poor scalability through being
strongly rooted in the centralised, Client/Server model. In
such systems, core management logic resides on a central
station (manager) which collects and analyses data retrieved
from physically distributed servers (agents). This process
typically involves massive transfers of management data
causing considerable strain on network throughput and a
processing bottleneck at the manager host. The de-facto
standard SNMP for TCP/IP networks suffers from such
disadvantages and additionally, architecture inflexibility as
the functionality of both managing and managed parties is
rigidly defined at design time. Security weaknesses of
SNMP should be also highlighted.

A rational approach to overcome the inherent limitations
of the centralised NMS is to distribute Network
Management (NM) operations and move management
intelligence as close as possible to the managed resources.
A first approach addressing this issue has been
Management by Delegation (MbD), proposed in [1]
However, alternative approaches to distributed NM, based
on Mobile Agent (MA) technology, have recently attracted
considerable attention [3][4][5]. MAs introduce a new
software communication paradigm that allows code
migration between hosts for remote execution [2]. The data

throughput problem can be addressed by delegation of
authority from managers to MAs, where these agents are
able to filter and process data locally without the need for
transmission to a central manager [3].

In the MA architecture described in [4], MAs are
launched from a manager, visit each network element (NE)
sequentially and return collected data to the manager
station. Another MA-based approach reported in [5]
describes an architecture that makes use of mobile code to
interact in a simulated network environment. However,
neither [4] or [5] considers remote processing issues and, as
a result, the manager host still suffers from a computational
burden induced by processing bottlenecks. In addition, no
authentication or encryption features have been integrated
into [4], while only the former has been identified in [5].

Hence, in this paper we present an infrastructure that
exploits the benefits of MAs to carry out semantically rich
management operations in a highly scalable, flexible and
efficient manner. A manager application has been
developed to co-ordinate the policies of monitoring and
controlling the NEs. In order to minimise the impact on
network bandwidth, agent code migrates sequentially
between managed devices and any necessary processing is
performed locally. This alleviates the need for broadcast
polling and results in a significant reduction in NM data at
the source, as only directly specified information is
returned to the manager.

The interface between the visiting agents and legacy
management systems is achieved through Mobile Agent
Servers (MAS). Several security issues have also been
addressed including authentication of visiting MA instances
and encryption of sensitive management information.

We also introduce a novel tool prototype, the Mobile
Agent Generator (MAG), which creates MAs in response to
service requirements. Such MAs may be generated post
MAS initialisation to accomplish intelligent management
tasks, tailored to the needs of a changing network
environment. Thus, the MAG realises a flexible
infrastructure through the creation of new MA instances,
which dynamically extend NMS functionality.

 The paper is organised as follows: Section 2 provides an
overview and implementation details of our infrastructure.
The suitability of the infrastructure when exposed to a data
intensive NM operation is examined in Section 3.
Experimental results are reported and discussed in Section
4, with Section 5 drawing conclusions and considerations
for future work.

2. INFRASTRUCTURE OVERVIEW

The proposed infrastructure employs Java [6] due to its
inherent platform independence, making it suitable for
portability within distributed heterogeneous environments.
This and other features, such as strong networking support
suggest Java as a suitable platform for developing MA-
based applications. Also, Java programs compile to
bytecode, which executes within Java Virtual
Environments, such as the Java Virtual Machine (JVM).
Current trends [7] indicate that JVMs may soon be
integrated into many network and computing resources.

The infrastructure, as illustrated in Figure 1, consists of
the following major components:

1. The Manager, responsible for launching MAs and
displaying returned results.

2. The MA code, capable of migrating between the
managed entities to collect information based on
pre-defined policies.

3. The MAS, capable of receiving MAs and providing
an interface to the local physical resources.

4. The MAG, a factory that generates service-oriented
MA objects.

Figure 1: The Mobile Agents-based Infrastructure

2.1. MANAGER IMPLEMENTATION

The manager performs monitoring and control operations
through its interaction with devices running agent
processes. Active processes are ‘discovered’ through a
broadcast poll at manager initialisation or whenever a new
agent process starts operation. In the latter case, any active
manager is notified and the host name appended to that
manager’s ‘discovered’ list.

In the event of a pending MA dispatch the manager
assigns it an itinerary including all active agents hosts,
unless a travel plan is manually specified. The MA’s state
information is then compressed (using the Java gzip utility)
and transferred to the first destination host.

The manager application is equipped with a Graphical
User Interface (GUI) consisting of a MIB browser plus
‘problem’, ‘event’ and ‘ results’ panels. Currently,
additional facilities allow:
�

 Polling of agents for specific object values;
�

 Initialisation of automated network discovery
processes;

�
 Acquisition of on-line MIB variable descriptions;

�
 File logging of operational results.

2.2. MOBILE AGENT IMPLEMENTATION

An MA object is identified by its code (behavioural
description), state information (modifiable variables) and
attributes (static/permanent information). From our
perspective, MAs are Java classes supplied with an

itinerary table, a vector to store gathered data, the Object
Identifier (OID) string(s) of requested object(s) and a
number of methods that facilitate interaction with polled
devices. These methods are called, for example, to obtain
the OID string(s) or the next host to be visited, to update
the data vector, etc. The MA code is minimised in order to
reduce bandwidth requirements. Through the process of
serialisation, the state of an MA object can be saved,
transferred through the network and reconstructed (de-
serialised) at the receiving node.

2.3. THE MAS: INTERFACE TO MANAGED RESOURCES

The interface between the visiting MAs and the legacy
system is achieved through MAS modules (Figure 2),
installed on every agent server. Functionally, the MASs
reside above standard SNMP agents, defining an efficient
run-time environment for receiving, instantiating,
executing, and dispatching incoming MA objects, whilst
protecting the system against malicious attacks. The SNMP
agent process starts automatically at MAS initialisation and
is ‘killed’ when the MAS application terminates.

Figure 2: The Mobile Agent Server structure

A principal MAS component is the Mobile Agent
Listener (MAL), a daemon listening on a well-known TCP
port for incoming MAs. Upon arrival of an MA its code is
decompressed and de-serialised (its state is loaded). The
MAL then returns to listening mode and the MA object is
passed to the Security Component (SC), which acts as the
system’s protective barrier. Specifically, the SC verifies the
authenticity of the received MA through the use of security
keys, ensuring that only trusted agents, dispatched by
authorised hosts, are allowed instantiation. The RSA
algorithm [9], based on the ‘public-private pair of keys’
paradigm, has been implemented providing both
authentication and encryption features.

Upon successful authentication the MA is activated and
provided a handle to the Service Facilitator (SF)
component, which serves as an interface to the SNMP
agent. The SF calls the MA method that returns the
requested object OID string(s). The corresponding system
information is then obtained through interaction with the
SNMP agent and processed, if necessary, by an
automatically invoked MA method. The value acquired,

SNMP Agent

MIB

NE

JVM

MAL

NDD

 MA
SF

SC

Discovery messages

CLD
Bytecode

MAS
MFC

NE - Network Element
MA - Mobile Agent
MAS - Mobile Agent Server
MAL - Mobile Agent Listener
SC - Security Component
SF – Service Facilitator
MFC – Migration Facility Component
NDD - Network Discovery Daemon
CLD - Class Loader Daemon
JVM - Java Virtual Machine
SNMP – Simple Network Management

Protocol
MIB – Management Information Base

Dispatch

Retu

 GUI

Management
Applications

MAG

Mobile Agents

Manager

SNMP Agent

MIB

SNMP Agent

MIB

Agent Host #n

MAS

MAS

MAG – Mobile Agents Generator
MAS – Mobile Agent Server
GUI – Graphical User Interface
SNMP – Simple Network

Management Protocol
MIB – Management Information Base

...

Agent Host #1

either directly by the system or as a result of computation,
is passed to the SC sub-system, encrypted and encapsulated
into the MA’s state. Ultimately, through the Migration
Facility Component (MFC), the MA will be serialised and
dispatched to the next host, or returned to the manager at
the end of its operational travel plan. The life cycle of an
MA object and its interaction with the MAS application is
summarised in Figure 3.

Two additional threads run on each NE, outside the
boundary of the MAS: the Network Discovery Daemon
(NDD) that allows the manager to ‘discover’ active agent
processes and the Class Loader Daemon (CLD), whose role
will be discussed in Section 2.4.

Yes

No

Manager MA Server Mobile Agent

Compress &
Dispatch MA

Listen for
incoming MAs

 MA arrived?
Load state

Return OID(s)

No

Yes

Computation
Required?

Compute
requested value

Encrypt &
Save result

Display results

Save state

Return next node

Define itinerary

Create an MA
instance

Save State

Decompress,
Deserialise &
Authenticate

Obtain OID(s)

Perform NM task
& return data

Get next
host name

Serialise &
Compress MA

Yes

No

 Last node?

Dispatch MA
to next host

Load state

Figure 3: Flow diagram of a Mobile Agent’s life cycle

2.4. MOBILE AGENT GENERATOR

The MAG (Figure 4), is essentially a factory for
constructing customised MAs. In the context of this paper,
generated MAs are designed to poll static management
agents according to their operational function requirements.
A GUI, dedicated to the MAG tool, allows the operator to:

�
 assign a name to the MA;

�
 define functional requirements;

�
 set the polling frequency to determine how often

instances of the constructed MA will be launched;
�

 specify the classes of network devices to be polled.

Options for editing, deleting or updating an existing MA
instance are also available.

Start

Get PropertiesGUI

Java Skeleton
Source Code

Build Java
Source Code

Compile

Broadcast the
bytecode to all

the active
agents

Yes

No

 Is there any
 MA with similar
 functionality?

Inform the
operator

 Figure 4: Mobile Agents Generator functional diagram

The MAG uses a skeleton Java source code with slots
containing the MA’s specified properties. The Java code
created is then compiled and the generated Java bytecode
compressed and transferred through TCP connections to all
operating agent hosts. The MA’s properties are compared,
prior to its construction, against those of the existing MA
classes to ensure that there is no other with the same
functionality.

On the agent side, the CLD (see Figure 2) receives and
decompresses the transmitted bytecode, validates the
included Java class and stores it in a designated space. It
should be emphasised that the transfer of the MA bytecode
is performed only once, at MA construction time. From that
point forward the transfer of persistent state, obtained from
serialising the instance of the MA, is sufficient for the MAS
entity to recognise the incoming MA and recover its state.
In contrast, both [4] and [5] apply a policy that requires the
transfer of both the MA’s bytecode and persistent state,
resulting in higher demand on network resources. To
illustrate, for an MA with a 2.72Kb bytecode, its
corresponding state information is only 260 bytes long (205
bytes compressed).

An alternative approach would be to keep a unique MA
structure able to deal with arbitrary complex management
operations. However, this would result in the unnecessary
transfer of dynamically growing code, much of which may
only be occasionally executed.

The MAG component ensures the framework remains
sufficiently flexible by using run-time customisable MAs
for specialised management tasks without the need for
reconfiguration, re-installation or re-instantiation of either
the manager or the agent applications. The MAG
functionality can be easily extended in order to cover a
wider range of management tasks.

3. MA OPERATIONAL FUNCTIONS

The applicability and performance of our infrastructure
has been tested on a complex and data intensive
management operation, i.e. polling. Compared to SNMP-
based polling, which is inherently centralised and results in
a flood of request/response messages (Figure 5), the use of
MAs to collect and return the requested management
information is shown to improve the NMS scalability and
flexibility.

Figure 5: Centralised (SNMP-based) polling

Polling is a common operation in NM as there are often
several object values that require constant monitoring.
Cases occur, however, where one or two MIB variables are
not a representative indicator of system state and a large
number of them may require aggregation to provide a
meaningful function (known as a health function) [10]. For
example, the percentage E(t), of the IP output datagrams
discarded over the total number of datagrams transmitted in
a specific time interval, is defined as:

E(t)=
gramsipForwData stsipOutReque

100*s)ipFragFail tesipOutNoRou ards(ipOutDisc

+
++

(1)

Where ipOutNoRoutes, ipFragFails, ipOutDiscards,
ipOutRequests and ipForwDatagrams are standard MIB-II
objects [8]. A useful indication of the instantaneous
network state would then be provided by the derivative:

E’(t) =
t

)t(E)tt(E

∆
−∆+

 (2)

Where ∆t is the polling interval.
Thus, when centralised polling is employed, all the

operating agents will receive five queries corresponding to
the five object values appearing in (1). The value of E(t) is
then computed by the manager when all object values have
been returned. If on the other hand, MA-based polling is
used, the health function calculation is performed at the
local agent host, leading to a more balanced distribution of
the computational burden. Moreover, a considerable
compression of data volume is achieved at the source since
a large number of observed operational variables is reduced
to a single value. Also, the MAS entity is unaware of the
health function formulation or any computational details,

thereby increasing framework flexibility.
However, the two approaches also differ in terms of total

response time. In the general case that k variables are
required, the overall time for centralised polling, will be:

Tcentr = k*(max [2(tdel+*tp)+ ts])+ntcomp (3)

While for distributed polling:

Tdistr = (n+1)*(tdel + ts/d)+knts+ntcomp (4)

Where n is the number of agents being polled, tdel is the
average network latency between the manager and the agent
or any pair of agents, tp the processing time required for a
simple request, ts/d the time taken to serialise/de-serialise an
MA, ts the time needed to access the system resources, and
tcomp the E(t) function computation time.

As indicated by (3), Tcentr is defined as the maximum time
taken to obtain k operational values from any of the polled
devices, plus the time required to compute n health function
results. Tdistr is defined as the total transition time to visit
each device and return to the manager (hence n+1), plus the
time needed to access and process the management
information locally. It is noted that Tcentr and Tdistr scale
linearly in relation to k and (n+1), respectively.

4. RESULTS

I) Response Time
The proposed infrastructure has been tested on a network

comprised of Solaris and WinNT machines and compared
to the conventional SNMP model. AdventNet’s
implementation of SNMP in Java [11] has been used as a
comparison measure. Measurements of response time
required to acquire a health function value have been
recorded, as a function of (i) MIB variables, for a fixed
number of polled devices (Figure 6a), and (ii) Managed
devices, for a constant number of MIB objects (Figure 6b).

Figure 6(a) demonstrates that MA-based polling has
superior performance in a limited size network, when health
functions combining a large number of objects are
employed. This is a key issue when considering time
critical management operations. On the other hand, Figure
6(b) clearly depicts that the response time for MA-based
polling increases linearly, see Eqn. (4), as opposed to
SNMP-based polling response time that stabilises as the
number of polled devices increases.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10
MIB Objects

R
es

po
ns

e
T

im
e

(m
se

c)

M As-based polling SNM P-based Polling

5 Polled Devices

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7
Polle d De vice s

R
es

po
ns

e
T

im
e

(m
se

c)

M A s-based polling SNM P-based Polling

5 MIB objects

Figure 6: Response times as a function of: (a) MIB objects (for 5 polled devices), (b) Polled devices (for 5 MIB objects).

Manager

SNMP Agent

 MIB

SNMP Agent

 MIB

SNMP Agent

 MIB

...

Agent Host
#1

Agent Host
#2

Agent Host
#n

Thus, there is an upper bound on the number of devices
that can be polled whilst maintaining lower response times
over the SNMP-based polling scheme. However, the
infrastructure’s scalability can easily be improved by
introducing a partitioned NMS structure with the managed
network segmented into several domains, each with
dedicated MAs.

II) Network Traffic Overhead
With the traditional centralised approach, assuming an

average request/response size of 100 bytes including data
and header information, and that polling of n devices for k
operational variables is applied, the transmitted data would
be 200*n*k bytes per polling interval. For MA-based
polling the size of the compressed MA state information is
on average 205 bytes (for a bytecode of 2.72 Kb), resulting
in an overhead of 205*(n+1) bytes per polling interval, as
the k variables are aggregated into one.

Thus, when large networks (as n>>) are considered, the
management data are, in approximation, reduced by a factor
of k. In addition the traffic is more evenly distributed and
not concentrated at the manager host.

5. CONCLUSIONS

The design and implementation of an infrastructure that
exploits the capabilities of MAs in distributed NM has been
described. It has been shown that the use of MA objects
leads to the sharing of workload between the manager and
the agent hosts, thereby reducing bandwidth usage by
applying remote data aggregation methods. Security issues
have also been addressed through the implementation of the
RSA algorithm to provide MA authentication and data
encryption. A novel tool that dynamically extends NMS
functionality by constructing lightweight MAs, able to carry
out specified management tasks has also been introduced.

The functional appropriateness of the presented
architecture has been demonstrated with data intensive
operations. Empirical results indicate a significant
improvement in both response time and bandwidth
consumption when compared to the centralised paradigm.

Current work addresses:
�

 Optimisation of MAs itinerary to minimise polling
response time.

	
 Extensions to MAG functionality, such as constructing

MAs able to filter SNMP tables.

 Enhancements to all security aspects of MAs.

REFERENCES

[1] Yemini Y., Goldszmidt G., Yemini S., “Network
Management by Delegation” , Proceedings of the 2nd

International Symposium on Integrated Network
Management, April 1991.

[2] Nwana H., Ndumu D., “ Introduction to Agent
Technology” , BT Technology Journal, Vol. 14, No 4,
pp. 55-67, 1996.

[3] Baldi M., Gai S., Picco G., “Exploiting Code Mobility
in Decentralised and Flexible Network Management” ,
Proceedings of the 1st International Workshop on
Mobile Agents (MA’97), pp. 13-26, 1997.

[4] Ku H., Luderer G., Subbiah B., "An Intelligent Mobile
Agent Framework for Distributed Network
Management", Proceedings of the IEEE Global
Telecommunications Conference (Globecom '97), pp.
160-164, 1997.

[5] Susilo G., Bieszczad A. and Pagurek B.,
“ Infrastructure for Advanced Network Management
based on Mobile Code” , Proceedings of the IEEE/IFIP
Network Operations and Management Symposium
NOMS'98, pp. 322-333, 1998.

[6] Sun Microsystems: "Java Language Overview – White
Paper" [On-line] (1998), URL:
http://www.javasoft.com/docs/white/index.html.

[7] Sun Microsystems, URL:
http://www.javasoft.com/products/jini.

[8] McCloghrie K., Rose M., “Management Information
Base for Network Management of TCP/IP-based
internets: MIB-II” , RFC 1213, March 1991.

[9] Rivest R.L., Shamir A., Adleman L., “A Method for
obtaining Digital Signatures and Public-Key
Cryptosystems” , Communication of the ACM, 21(2),
Feb. 1978.

[10] Goldszmidt G., “On Distributed Systems
Management” , Proceedings of the 3rd IBM/CAS
Conference, 1993, URL
http://www.cs.columbia.edu/~german/papers.html.

[11] AdventNet, URL: http://www.adventnet.com/.

