
COMPLIMENTARY POLLING MODES FOR NETWORK PERFORMANCE
MANAGEMENT EMPLOYING MOBILE AGENTS

Damianos Gavalas†, Dominic Greenwood*, Mohammed Ghanbari†, Mike O’Mahony†

†Electronic Systems Engineering Department,
University of Essex, Colchester, CO4 3SQ, U.K.

E-mail: { dgaval, ghan, mikej} @essex.ac.uk
*Fujitsu Telecommunications Europe Ltd.,

Northgate House, St. Peters Street, CO1 1HH, Colchester, U.K.
E-mail: D.Greenwood@ftel.co.uk

Abstract

Several distributed Network Management (NM)
architectures, exploiting the advantages of Mobile Agents
(MA), have been recently proposed to answer some of the
limitations intrinsic to client-server based centralised NM,
such as information bottlenecks and lack of flexibility.
However, when considering network performance
management, they fail to address scalability problems. In
this paper, we introduce two efficient, lightweight polling
modes based on MAs that address these limitations. Both
real-time and off-line NM data acquisition is considered.
The introduced modes are shown to outperform SNMP-
based polling both in terms of response time and bandwidth
consumption.

1. Introduction

Network Management Systems (NMS) in service today
are typically based on a centralised model, which involves a
management application (manager) and several managed
entities (agents) embedded within Network Elements (NE).
Protocols, such as SNMP, are used for interaction between
managing and managed parties. Several drawbacks are
apparent with this approach: due to rigid design time defini-
tions, NMS functionality cannot be dynamically updated,
whilst frequent polling is known to result in substantial data
transmission rates and processing bottlenecks.

All these problems have triggered an evolution towards
distributed NM, hence leading to several Mobile Agent
Frameworks (MAF) reported in [1][2][3]. MAs provide a
powerful software interaction paradigm that allows code
migration between hosts for remote execution. The data
throughput problem can be addressed by delegation of
authority from managers to MAs, where these agents are
able to filter and process data locally without the need for
transmission to a central manager. However, neither [1] nor
[2] consider remote processing issues and, as a result, the
manager host still suffers from a computational burden.
These issues are addressed in [3].

All the aforementioned works involve frequent MA
transfers, when the collection of management statistics is
considered. In addition to the apparent network overhead,

these frameworks are not scalable as they assume a ’ flat’
network architecture, i.e. a single MA is launched from the
manager platform and sequentially visits all the managed
NEs, regardless from the underlying topology. Thus, for
large networks the round-trip delay for the MA will greatly
increase, whilst the extracted statistics will not be accurate
and reliable due to the non-negligible time intervals
between the acquisition of each data sample for every NE.
For such reasons, these MAFs are not appropriate for
Network Performance Management (NPM), which
represents the main focus of this paper.

NPM involves gathering and logging of data, which
may be analysed off-line or in real-time. That process helps
in determining the performance, throughput and availability
of network resources. The advantage of analysing the data
in real-time is that it allows sophisticated NMSs to foresee
possible congestions or failures and take preventive
measures before the actual error occurs. On the other hand,
collected data may be used to build daily, weekly or
monthly reports to assist the administrator in network
planning. In such cases there is no need for real-time NM
data and, hence, an alternative and complimentary polling
mechanism should be applied.

Therefore, we propose two MA-based polling modes
intended to provide an efficient method for obtaining both
real-time and off-line management data. In the first
approach, called Get ’n’ Go (GnG), used to collect real-
time data, the network is partitioned into several domains
and a single MA object is assigned to each of them. In
every Polling Interval (PI), this MA sequentially visits all
NEs within the network domain and obtains the requested
information before returning to the manager. The second
polling scheme, called Go ’n’ Stay (GnS), targets the
acquisition of data to be analysed off-line, where the need
to obtain data in short time frames is no longer an
imperative. Thus, we introduce a method where an MA
object is broadcasted to all managed devices; the MA
remains there for a number of PIs and collects an equal
number of samples before returning to the manager. The
infrastructure described in [3] has been extended in order to
support the deployment of the introduced polling modes.

The paper is organised as follows: Section 2 provides a
brief description of the MAF used to support this work,
while Section 3 describes in detail the two introduced
polling modes. A performance analysis is given in Section
4, with experimental results reported and discussed in
Section 5. Section 6 concludes the paper.

2. Mobile Agent Network Management Framework

The MA-based NM framework has been entirely
developed in Java [4] as it offers the platform independence
required for the management of distributed heterogeneous
environments. This and other features, such the rich class
hierarchy for communication in TCP/IP networks and its
already wide acceptance for the development of distributed
applications, positions Java as an ideal platform for MA-
oriented management services.

Our infrastructure consists of four major components
[3], illustrated in Figure 1:

Figure 1: The Mobile Agents-based Infrastructure

Manager Application: The manager application, equipped
with a browser style User Interface (UI), co-ordinates
monitoring and control policies relating to the NEs. Active
agent processes are discovered by the manager, which
maintains and dynamically updates a ‘discovered list’ .

Mobile Agent Server (MAS): The interface between
visiting MAs and legacy management systems is achieved
through MAS modules, installed on every managed device.
The MAS resides logically above the SNMP agent, creating
an efficient run-time environment for receiving,
instantiating, executing, and dispatching MA objects. It also
provides requested management information to active MAs
and protects the host system against external attack. The
MAS composes four primary components (see Figure 2):

� Mobile Agent Listener,
� Security Component,
� Service Facility Component,
� Migration Facility Component,
while Network Discovery Daemon and Class Loader
Daemon exist outside the boundary of the MAS.

Figure 2: The Mobile Agent Server structure

Mobile Agent Generator (MAG): The MAG is essentially
a factory for constructing customised MAs in response to
service requirements. Such MAs may dynamically extend
NMS functionality, post MAS initialisation, to accomplish
management tasks tailored to the needs of a changing
network environment. The MAG’s operation is described in
detail in [3]. Its functionality has been extended though, so
as to allow the operator (through a dedicated UI) to specify:

� Whether GnG or GnS polling will be used;
� The polling frequency (i.e. the PI’s duration);
� Whether or not to encrypt collected data.

It should be emphasised that the transfer of the MA
bytecode is performed only once, through broadcasting it to
all active MASs at MA construction time. Thereafter, the
transfer of persistent state, obtained from serialising [4] the
MA instance, is sufficient for the MAS entities to recognise
the incoming MA and recover its state. In contrast, in [1]
and [2] the transfer of both the MA’s bytecode and
persistent state is required, resulting in a much higher
demand on network resources, as bytecode size is typically
much larger than state size.

Pre-defined MA property sequences are stored in
configuration files and parsed at manager initialisation to
instantiate the corresponding MA objects. These properties
may be modified at runtime.

Mobile Agent: From our perspective, MAs are Java objects
with a unique ID, capable of migrating between hosts where
they execute as separate threads and perform their specific
management tasks. MAs are supplied with an itinerary
table, a data folder where collected management
information is stored and several methods to control
interaction with polled devices. The MA’s state information
is compressed (using the Java gzip utility) before being
transferred to the next destination host.

3. Polling Modes

3.1. Get ’n’ Go Polling Mode

Traditional SNMP-based polling involves a flood of
request/response messages as shown in Figure 3(a). This

JVM

NDD

SFC

SC

MFC

MAL

MAS

NE

 MA

CLD Bytecode

 UI

Manager

...

MAG – Mobile Agents Generator
MAS – Mobile Agent Server
UI – User Interface
MA – Mobile Agent
SNMP – Simple Network Management Protocol
MIB – Management Information Base

Dispatch

Return &
Display results

Compressed MA state

MAG

 MAs UI

MAS

Agent Host #1

MAS

Agent Host #n

naturally leads to a significant proportion of available
bandwidth being used for management data.

On the other hand, recently reported NM MAFs
[1][2][3] assume a flat network structure, hence as the
number of managed devices grows, the network becomes
increasingly unmanageable. This is a consequence of
having a single MA responsible for obtaining NM data from
each device in every PI (see Figure 3(b)), causing serious
scalability problems. In addition, the order in which
managed devices are visited is arbitrary. This represents a
significant problem when the management of remote LANs
is considered, as a travelling MA may have to be
transferred several times across expensive and low-
bandwidth WAN links during its lifetime.

As previously mentioned, the concept behind GnG
polling is to partition the managed network into several
logical/physical domains. The partitioning criteria are
specified by the administrator and may correspond to: (i)
the number of nodes assigned to each MA, (ii) the physical
distribution of polled devices, or (iii) a hybrid of these two
approaches. The number of MAs required per PI is
automatically evaluated, and their individual itineraries
instantly specified. For instance, in Figure 3(c), an MA
object polls the devices of the remote LAN, whereas a
second MA is assigned to the network segment local to the
manager host. With the GnG approach, MAs are required to
visit a limited number of devices and, as a result, the overall
response time is minimised. This factor suggests GnG as a
suitable polling scheme for the acquisition of real-time data.

In terms of implementation, GnG polling is carried out

through Polling Threads (PT). PTs are started and
controlled by the manager application; each of them
corresponds to a single polling instance. When started, PTs
retrieve polling definitions and schedules from their
associated configuration files and poll NEs on a regular
basis. Specifically, PTs instantiate and launch the required
number of MAs (supplied with their corresponding
itinerary) and then ‘sleep’ for one PI. When this period
elapses the same process is repeated. Meanwhile, a
manager’s listener daemon receives the MAs that return to
the manager carrying their collected data.

PTs may be synchronised in such way that they are not
initiated simultaneously. This ensures that the traffic around
the manager host will be distributed over time.

3.2. Go ’n’ Stay Polling Mode

GnS polling introduces an alternative approach to
NPM, targeting data intended for off-line analysis. This
reduces the number of MA transfers whilst the volume of
data carried by each MA increases. Hence, the proportion
of useful management information within the MAs state is
substantially increased, compared to the other approaches
where a large number of MA transfers may be required to
obtain a few data samples.

Specifically, every PT broadcasts at regular intervals an
MA object to all agent hosts. The MAs then remain active
on the hosts for p PIs (where p is specified by the
administrator). At the end of each PI they obtain a sample
of the requested data set and encapsulate it into their state.
The MAs then sleep for one PI and then awaken to obtain

(a) Centralised (b) Flat

(c) Get ‘n’ Go (d) Go ‘n’ Stay

Agent

Manager

Amiga 3000

Remote LAN

Agent Agent

Agent

Agent

AgentAgent

Manager

Amiga 3000

Remote LAN

MAS

MAS

MAS MAS

MAS MAS

MAS

Manager

Amiga 3000

Remote LAN

MAS

MAS

MAS MAS

MAS MAS

MAS

Manager

Amiga 3000

Remote LAN

MASMAS

MAS

MAS MAS

MAS MAS

Figure 3: Approaches to polling.

another sample. When the p PIs elapse, the MAs return to
the manager to deliver the acquired samples (see Figure
3(d)). Meanwhile, PTs suspend execution for a duration gi-
ven by the product of PI and the number p of PIs that MAs
remain on the managed devices (PI × p). When this period
expires, they resume operation and the process is repeated.

Clearly, there is a trade-off between bandwidth
consumption and response time. As p increases, so does the
response time to the manager. However, as the MA
transfers become sparser the network overhead imposed by
polling reduces. If, for instance, p=100, MA objects will be
broadcasted every 100 PIs. When changing to p=50, the
MA transfers are doubled but the response time is halved.
In the extreme case that p=1, the response time is
minimised and GnS mode becomes similar to SNMP-based
polling and identical to GnG, when each MA is assigned to
a single device. The administrator is given the option to
modify the value of p and also dynamically change the
polling mode from GnS to GnG and vice versa, depending
on the managed network traffic conditions and the necessity
for obtaining certain types of management information.
When changing from GnS to GnG, automatic network
domain segregation takes place.

4. Per formance Analysis

The performance of our polling modes is tested using a
function, known as a health function (HF) [5] that
aggregates multiple Management Information Base (MIB)
variables into a more meaningful indicator of system state.
For example, the percentage E(t) of IP output datagrams
discarded over the total number of datagrams sent during a
specific time interval, is a function of five MIB-II objects:

E(t)=
gramsipForwData stsipOutReque

100*s)ipFragFail tesipOutNoRou ards(ipOutDisc

+
++

(1)

Thus, when centralised polling is employed, the value
of E(t) is computed by the manager when all the object

values appearing in Eqn. (1) have been returned by the
static agents, in separate response packets. Hence, if Sreq/res

is the average request/response size, and in the general case
that polling of n devices for v operational variables is
applied, the wasted bandwidth for i PIs would be:

ivnS2B req/rescentr ∗∗∗∗= (2)

If on the other hand GnG or GnS polling is used, the
HF calculation is performed at the local agent host, leading
to more balanced processing distribution. Also, consider-
able compression of data is achieved since a large number
of operational variables are reduced to a single value. Thus,
assuming an MA average compressed code size of Sc and
compressed state information size Ss, the resulting overhead
for GnG polling (with d network domains) would be,

i1)+
d

n
(Sd+Sn=B SCGnG ∗



∗∗∗ , nd ≤ (3)

as the v variables are aggregated into one. The first term of
the equation describes the overhead imposed when
broadcasting the MA code to all MASs, while the second
represents the bandwidth consumed by the MA state
transfers between the manager and the polled devices (each

MA is assigned to 




d

n
 NEs). Thus, for large v and i, GnG

mode is less bandwidth intensive than centralised polling.
Similarly, for GnS polling,









∗∗∗+∗=

p

i
)Sn(Sn B ScGnS 2 (4)

as MAs remain on the managed devices for p PIs. For a
large p, GnS mode becomes the most lightweight polling
approach in terms of bandwidth consumption.

5. Exper imental Results

The experimental testbed comprises a network of
several Solaris and WinNT machines. We assume the
physical distribution of managed devices in the network as

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

Polled Devices

R
es

p
o

n
se

 T
im

e
(m

se
c)

SNM P-based Polling GnG polling (1 M A)
GnG polling (2 M As) GnG polling (3 M As)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9
#Devices Assigned to Each MA

R
es

p
o

n
se

 T
im

e
(m

se
c)

GnG polling of 4 devices GnG polling of 6 devices
GnG polling of 8 devices GnG polling of 9 devices

 (a) (b)
Figure 4: Response time of (a) SNMP-based vs. GnG polling, (b) GnG polling as a function

of the number of devices assigned to each MA object.

arbitrary to these experiments.

Response Time
In Figure 4, GnG polling mode is compared to an

SNMP implementation [6] in terms of the response time for
the acquisition of the HF result of Eqn. (1). Figure 4(a)
shows that the flat approach (using one MA) does not scale
well as the number of NEs increases. This makes it
necessary to partition the managed network into several
domains in order to maintain lower response times over the
SNMP-based polling scheme.

Depending on the managed network size, the optimum
number of domains can be determined from the minimum
point of the corresponding curve of Figure 4(b). For
instance, in a network of six devices, the response time is
minimised when each MA is assigned to two NEs, i.e. the
network is segmented into three domains. Hence, the
manager application (through the PTs) should
autonomously adapt the number of domains according to
the current number of managed devices. This issue is
currently under investigation.

Bandwidth Consumption
Figure 5 illustrates the traffic overhead imposed when

applying SNMP-based, GnG and GnS polling schemes,
according to equations (2), (3) and (4), respectively.

For this experiment, Sreq/res=50 bytes (on application
layer), Sc=2.1Kb, Ss=205 bytes, while n=50 devices and
v=5 operational values. It is noted that the starting point for
GnG/GnS polling is at 105Kbytes (50×2.1Kb), derived
from the first terms of Eqn. (3) and (4). Clearly, both GnG
and GnS modes represent a notable improvement over
SNMP-based polling. In addition, the segmentation of the
managed network into several domains (use of more than
one MAs in GnG polling) does not seriously effect
bandwidth consumption, while GnS mode becomes more
attractive as p increases.

The selection of the appropriate polling mode (and the
associated parameters) is, therefore, a compromise between
network overhead and response time, depending primarily
on the type of management data to be collected.

6. Conclusions

Two novel polling modes that exploit the capabilities of
MAs in NPM have been described. First, we introduced the
GnG mode that improves the scalability of recently reported
MAFs and may be used for obtaining real-time NM data as
overall response time is minimised. This method is also pre-
ferable when considering the management of remote LANs.

Concerning the off-line analysis of management data,
we propose the GnS mode. In this approach, MAs collect a
larger amount of data before returning to the manager
leading to a direct reduction in the number of MA transfers.

In both cases, remote data aggregation methods are
applied to reduce the bandwidth usage. Empirical results
indicate a significant improvement in both response time
and traffic overhead when comparing the introduced polling
modes to traditional centralised polling.

References

[1] Ku H., Luderer G., Subbiah B., "An Intelligent Mobile
Agent Framework for Distributed Network Manage-
ment", Proceedings of the IEEE Globecom’97, 1997.

[2] Susilo G., Bieszczad A., Pagurek B., “ Infrastructure for
Advanced Network Management based on Mobile
Code” , Proceedings of the IEEE/IFIP NOMS'98, 1998.

[3] Gavalas D., Greenwood D., Ghanbari M., O’Mahony M.,
“An Infrastructure for Distributed and Dynamic Network
Management based on Mobile Agent Technology” ,
Proceedings of the IEEE ICC’99, 1999.

[4] Arnold K., Gosling J., “The Java Programming
Language” , Addison-Wesley, 1996.

[5] Goldszmidt G., “On Distributed Systems Management” ,
Proceedings of the 3rd IBM/CAS Conference, 1993.

[6] AdventNet, URL: http://www.adventnet.com/.

 (a) (b)
Figure 5: Bandwidth consumption for SNMP-based against (a) GnG and (b) GnS polling modes.

0

100

200

300

400

500

600

700

0 5 10 15 20 25
Polling Intervals

B
an

d
w

id
th

 U
sa

g
e

(K
b

yt
es

)

SNMP-based polling GnG polling (1 MA)
GnG polling (5 MAs) GnG polling (10 MAs)

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Polling Intervals

B
an

d
w

id
th

 U
sa

g
e

(K
b

yt
es

)

SNMP-based polling GnS Polling (5 PIs)
GnS Polling (15 PIs) GnS Polling (>30 PIs)

